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¢ There are two principal models of molecular structure:

molecular orbital theory and valence bond theory.

* Even the simplest molecule, H; consists of three particles,

and its Schrodinger equation cannot be solved analytically.

® The Born—Oppenheimer approximation is very reliable for
ground electronic states, but it is less reliable for excited

states.

THE BORN-OPPENHEIMER
APPROXIMATION

* we assume the nuclei and electrons to be point
masses and neglect spin-orbit and other relativistic
interactions then the molecular Hamiltonian is
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The H, molecular Hamiltonian is
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the Schrodinger equation:

(g, 9.) = E¥(gs 4.)

g; and q, symbolize the electronic and nuclear
coordinates, respectively.

m, > m,

kinetic-energy terms

(Hy + Vynlea = Uy

Born-Oppenheimer approximation

a highly accurate, simplifying approximation exists.

considering the nuclei as fixed, we omit the nuclear

purely electronic Hamiltonian H,

ZaeIZ 6!2
FamD D Y
ia j o> Ny

N #2
Au=-1-SV-3 3

The electronic Hamiltonian including nuclear

repulsion is

A~

H, + Vi

The nuclear- repulsion term V is given by

Z,Zge"

Van =2 2

a B>a raﬂ

Born-Oppenheimer approximation
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Born-Oppenheimer approximation

The energy U is the electronic energy including internuclear
repulsion.

The internuclear distances I,g are not variables.

get a set of electronic wave functions and corresponding electronic
energies; each member of the set corresponds to a different
molecular electronic state. The electronic wave functions and

energies thus depend parametrically on the nuclear configuration:

d’el = lt[,el,n(qi; qa) and U = Un(qa)

n: electronic quantum numbers

ifVyy is omitted Hapy = Egy

purely electronic energy

Born-Oppenheimer approximation
U=E,;+ Vyy

The internuclear separation at the minimum in this curve is called
the equilibrium internuclear distance R .

The difference between the limiting value of U at infinite
internuclear separation and its value at R is called the equilibrium

dissociation energy Dc:

D, = U(OO) - U(Re)

molecular ground-vibrational-state dissociation energy D,,.
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Born-Oppenheimer approximation

h
U

Electronic energy including internuclear repulsion as a function of the

internuclear distance R for a diatomic-molecule bound electronic state.

Born-Oppenheimer approximation

dissociation of 1 mole of ideal—gas diatomic molecules:

AB(g) —> A(g) + B(g)

NAD():AU?] = AH(O)

For some diatomic-molecule electronic states, solution of the
electronic Schrodinger equation gives a U(R) curve with no
minimum. Such states are not bound and the molecule will

dissociate.
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Born-Oppenheimer approximation

I:IN'-//N = Eyy

H ——ﬁ—zgivuu
N 2 - m, a (qa)

The variables in the nuclear Schrodinger equation are the nuclear
coordinates, symbolized by q,.

The energy eigenvalue E is the total energy of the molecule, since
the Hamiltonian includes operators for both nuclear energy and

electronic energy.

Born-Oppenheimer approximation

The total energy E for an electronic state of a diatomic molecule is
approximately the sum of electronic, vibrational, rotational, and
translational energies:

E~ Eclcc + Evib + Erot + Etr where E = U(Rc)

clec

The approximation of separating electronic and nuclear motions is
called the Born-Oppenheimer approximation and is basic to

quantum chemistry.

Born and Oppenheimer's mathematical treatment indicated that

~
~

l!!(q,-, qa) = l//el(qi; qa)(pN(qa) molecular wave function

if (my/m )t < 1
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Born-Oppenheimer approximation

The Born-Oppenheimer approximation introduces little error

for the ground electronic states of diatomic molecules.

Corrections for excited electronic states are larger than for the
ground state, but still are usually small as compared with the errors
introduced by the approximations used to solve the electronic

Schrodinger equation of a many-electron molecule.

NUCLEAR MOTION IN DIATOMIC
MOLECULES

the Schrodinger equation for nuclear motion in a diatomic-

molecule bound electronic state

%2 N #? )
[_ om Ve — %Vﬁ + U(R)]ll‘N = E¢y

a

UNTV (Xa’Y(vZa’XB’YB’ZB)

U =U(R) the relative coordinates of the two nuclei

l

le = l,JN,trll’N,int and E = Etr + Eint

Two Schrodinger eq., one for translational

motion and one for internal motion
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Internal motion

ﬁZ
- Z VZ+U (R)}‘,’N,int = Entnme, M= mgmg/(m, + mp)

nucleus relative to the other

the potential energy depends on the Spherical coordinates of one
R only (a central-force problem)

Unim = PRY¥(On, én) T =0,1,2,..., M=—J,....J

the spherical harmonic functions

#2 2
—_— " + — r
o [P (R) + = P'(R) | +

J(J + 1)#?
=——" P(R) + U(R)P(R) = Ey,,P(R)
2uR

NUCLEAR MOTION IN DIATOMIC
MOLECULES

is simplified by
F(R) = RP(R)

J(J + 1)#?

ZMRZ F(R) = Ein F(R)

#?
__F"R + l] R

which looks like a one-dimensional Schrodinger equation with

the effective potential energy.

U(R) + J(J + 1)F*/2uR>
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1)

(a) solve the electronic Schrodinger equation at several values of R to
obtain E ; of the particular molecular electronic state one is
interested in

(b)yadd Z,Zze'*/R to each E; value to obtain U at these R values;

(c) devise a mathematical function U(R) whose parameters are
adjusted to give a good fit to the calculated U values;

(d) insert the function U(R) found in (c) into the nuclear-motion
radial Schrodinger equation and solve by numerical methods.

For a given ], F(R) is charactrized by v (the number of nodes in F(R)
P(R) be quadratically integrate depend on ] and v —— En=E,;

Y (6, dn) J and M are rotational quantum numbers.

v, which characterizes F(R), is a vibrational quantum number.

NUCLEAR MOTION IN DIATOMIC
MOLECULES

2)
expand U(R) in aTaylor series about Re
UR) = U(R) + U'(R)R — R) + U"(R)(R — R
+ WU RYR — RY + -

UR)=0 harmonic-oscillator
Defining (equilibrium force constant) k, = U"(R,) approximation

U(R) = U(R.) + 3k{(R — R} = U(R,) + 3k.x*
k,=U"(R) and x=R-R,
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ﬁz "
2, PR+ {U(R) +

J(J + 1) _
W}F(R) = EF(R)

2

J(J + DR?
- %S”(x) + [U(Re) + ke + JU+ DR

2u(x + RY
where S(x) = F(R)

rigid-rotor 1 1 1
- (

approximation (x + Re)2 = Rz(l + x/Re)2 Re Rz

2

- f—“s"(x) T 2kex®S(x) ~ [Eim - U(R,) - M]

2
1_2i+3x__... =

}S(X) =~ EneS(x)

NUCLEAR MOTION IN DIATOMIC
MOLECULES

harmonic oscillator

Epn — UR,) = J(J + DF/2uR: ~ (v + D)hv,
En=U(R,) + (v + Dhw, + J(J + 1)/2uR’
v, = (kJw)?2w, ©v=01,2,...

harmonic-oscillator and rigid—rotor approximation

E=FE .+ Eg + Egp+ Eqe approximately

is the same as the Schrodinger equation for a one-dimensional

En— UR) — J(J + 1)fl2/2,u,R§ Energy eigenvalues

Ali Ebrahimi e




Univ. of Sistan and Baluchestan AIEAVARA R

NUCLEAR MOTION IN DIATOMIC
MOLECULES

the nuclear-motion wave function

‘,’N = (l’N,trSv(R - Re)RﬂYy(eN’ d’N)
where S (R - R)) is a harmonic-oscillator eigenfunction with quantum

number v.

En=U(R,) + (v + Dhv, + J(J + DF/2uR?
poor agreement with experimentally observed vibration-rotation energy
levels of diatomic molecules.
The first- and second-order perturbation-theory energy corrections

additional terms corresponding to vibrational anharmonicity, vibration-rotation

interaction, and rotational centrifugal distortion of the molecule.

NUCLEAR MOTION IN DIATOMIC
MOLECULES

EXAMPLE An approximate representation of the potential-energy function of a diatomic
molecule is the Morse function

U(R) = U(R,) + D1 — e "~ RIP

Use of U"(R,) = k, [Eq. (4.61)] and (13.27) gives a = (k,/2D,)"/? = 2mv (u/2D,)* (Problem 4.29;
the Morse functions in Problem 4.29 and in this example differ because of different choices
for the zero of energy). Use the Morse function and the Numerov method (Section 4.4) to: (a)
find the lowest six vibrational energy levels of the 'H, molecule in its ground electronic state,
which has D,/hc = 38297 cm™', »,/c = 4403.2cm™, and R, = 0.741 A, where % and ¢ are Planck’s
constant and the speed of light; (b) find (R) for each of these vibrational states.
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Atomic units

¢ The system of atomic units that is based on Gaussian units:
® Mass: m, > g

¢ Charge: ¢' - statcoulomb

° angular momentum: h = g cm?/s

to change a formula from cgs Gaussian units to atomic units, we simply set these
quantities equal to 1.

Hydrogen-atom Hamiltonian is -1 /2V? - 1/r
Ground-state energy of the hydrogen atom: -1/2(¢’?/a,)
a, = h?/m_e'% a, in atomic units is 1

the ground-state energy of H atom: -1/2

Atomic unit of energy, e'?/a,

1 Hartree = E; = ¢'?/a, = ¢?/4Ta,g

1 bohr = a;, =h>/me"? =0.529177 A
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The hydrogen molecule ion

We now begin the study of the electronic energies of molecules.
We shall use the Born- Oppenheimer approximation,
We shall usually be considering an isolated molecule, ignoring

intermolecular

We start with diatomic molecules, the simplest of which is Hf

the coordinate origin is on the
internuclear axis, midway
between the nuclei, with the z
axis lying along the internuclear

axis

The electronic Schrodinger equation for H 5 is separable, and we
can get exact solutions for the eigenfunctions and eigenvalues.

Since the nuclei are fixed, we have a one-particle problem whose

purely electronic Hamiltonian is

. ﬁZ ef2 e/2
- — 2
He] -

2me I, ry
The first term is the electronic kinetic-energy operator;
the second and third terms are the attractions between the

electron and the nuclei.

In atomic units
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The H ; electronic Schrodinger equation is not separable in spherical
coordinates. However, separation of variables is possible using
confocal elliptic coordinates &, 1| and ¢. The coordinate ¢ is the angle
of rotation of the electron about the internuclear (z) axis,

_ratn T

¢ R R

The ranges of these coordinates

0<¢=<2m, 1=<¢=<o0, -1=sg9=1

We have

ro=3R(E+m), 1 =3R(¢ - n)

n =constant
¢ =constant

The elliptical coordinates &, 1), and ¢ used for
the separation of variables in the exact
treatment (within the Born—Oppenheimer

approximation) of the hydrogen molecule—ion.
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Exercise:

Express the Laplacian in confocal elliptic coordinates.

For the hydrogen atom, with spherical symmetry, the electronic
angular-momentum operators L? and ZZ both commute with H.The
H3 ion does not have spherical symmetry, and one finds that
(L2, H ] # 0 for Hy .

However, H, does have axial symmetry, and one can show that EZ
commutes with H . of Hf .Therefore the electronic wave functions
can be chosen to be cigenfunctions of lA,Z.

constant - (27r)"2¢™¢  where m =0, *1, *2, *3,...

Lz = mh (or m in atomic units).
L is not a constant for Hy .

The "constant" is a constant only as far as 0/0¢ is concerned,
Yo = L(E)M(n)(2m)" 2™

Substitution int 7
ubstitution into Hypa = Eeiper

the variables are separable; one gets two ordinary differential
equations, one for L(§) and one for M(1)).

the condition that \; be well-behaved requires that, for each fixed
value of R, only certain values of E | are allowed;

There is no algebraic formula for E j;

the quantum numbers are m, n; and n,, (give the number of
nodes in the L(§) and M(n) factors)
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VE[OY/VEF

Energy/hartrees

R, = 1.9972 bohrs = 1.06 A

At R =0 —> —1(2) hartrees = —2 hartrees

—1F
Ee]
-2 L 1 | ! 1
0 1 2 3 4 5 6
R/bohrs

a stable bound state.

~1.1033 hartrees Eg

—0.6026 hartree = L+ 1/R
& —0.5000 hartree at R = co.

D, = 0.1026 hartree = 2.79 eV

Note that the single electron in H} is sufficient to give a stable bound state.

034 ‘&t\
0.2 \ \\
0.1
N
1,
0 i
\ \ 7 20,
20y \
§ -o =
£ T —
S5 -0z f 4
1m, 30,
-03 \
—04
lo, = a}ls
\ :
-0.5
Y
—06 Lo, = o,ls
0 2 4 6 8 10 12 14
R/bohrs
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¢ occurs in H,; of Hj only as ¢*/0¢>. ——  E, depends on m?,

level with m # 0 is doubly degenerate

/\E|m|

A |0f1]2]3]4]
letter [o | 7w | 8¢ |7yl

Thus the lowest HJ electronic state is a G state.

Besides classifying the states of Hy according to A, we can also
classify them according to their parity

(x5 2)

(=x -y -2)
The effect of inversion of the electron’s coordinates in H3.

Wehaver, = r,,r, =r,and ¢’ = ¢ + .

Ali Ebrahimi RY%
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This leaves the potential-energy part of the electronic Hamiltonian
unchanged. The kinetic-energy operator is invariant under inversion.
Hence the parity operator commutes with the Hamiltonian,
and the H electronic wave functions can be classified as cither
even or odd. For even clectronic wave functions, we use the
subscript g (from the German word gerade, meaning even); for odd

wave functions, we use u (from ungerade).

T
RIS
\

—0.1

-0.2 T
\ 1w, 305,

Ulhartrees

) lo, =0}ls
V4
-0.5
\/
lo, = o,ls

R/bohrs
alternative notation o,1s indicates that this level dissociates to a 1s hydrogen atom.
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v" Also, we must take spin into account (multiply spatial H5
electronic wave functions by o or B)

v a: the component of electron spin along the internuclear axis is
+1/2

v B: the component of electron spin along the internuclear axis is
-1/2

v" Inclusion of spin doubles the degeneracy of all levels.

APPROXIMATE TREATMENTS OF THE
H3 GROUND ELECTRONIC STATE

For a many-electron atom:

By the self-consistent-field (SCF) method

'an approximate | ' a Slater determinant of (one- |
; e . . '
i wave function i electron) spin-orbitals

T spatial part

an atomic orbital (AO)

each AO = a spherical harmonic X a radial factor

_____________________

As an initial approximation

h/vdrogcnlikc radial functions with effective nuclear Chargcs

Ali Ebrahimi V4
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Va

For many-electron molecules

/ We use rnany of the ideas of the SCF treatment of atoms. \
an approxnnate molecular | a Slater determinant of (one- |
: ' electronic wave function P electron) spin-orbitals I

___________________

spatial part

will be called a molecular orbital (MO)

/

Each MO can hold no more than two electrons (the Pauli principle)

What kind of functions do we use for the MOs?

the analytic form of each MO is found by an SCF calculation

simple approximations for the MOs

the anaular part of -
each dlatornlc MO

____________

i the § and 1 factors in : simplcr functions that will

| the H + wave functions prow ide reasonably accurate
| are complicated = | approx1matlons to the Hy wave
| functions not readily | functions and that can be used to
.  usable in MO

. calculatlons . many electron diatomic molecules.

' | construct molecular orbitals for

Ali Ebrahimi A\
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The variation method approach,

/7

\

writing down some function containing several parameters

I |

and an upper bound to the ground— state energy

/

By use of the factor e™? in the trial function, we can get an upper

bound to the energy of the lowest H 5 level for any given value of

m . . . N
! linear variation | : approximations for |

functions excited states

The HF ground state has m = 0, and the wave function depends
only on § and 7.

We could try any well-behaved function of these coordinates as a

trial variation function.

for large values of the internuclear separation R

When the electron is near nucleus a: 12 e

When the electron is near nucleus b: V2™
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VE[OY/VEF

we try as a variation function

12

—-r,

ey Ve + ey Ve

\/

variational parameters.

Va

The perturbation theory approach

the unperturbed system

7T—1/Ze—r,, ,n_—l/Ze—r,,

In each case: E(® = -1/2 hartree

a doubly degenerate unperturbed energy level/

T
g _: \ \ Bringing the nuclei in from infinity
£ \ o= oifls gives rise to a perturbation that splits
= =
5 the doubly degenerate unperturbed
o lo, = als .
l level into two levels.

0 2 4 6 8 10 12 14

R/bohrs
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led to a secular equation

[A—

H11 - S11W H12 - SIZW

=0
Hy — SyW  Hyp — $SpW

W = EO® + EM

improve the trial function

R—(0 mmmp HI—>He' (=)

i the ground-state wave

—) : function of He™

i the ground-state wave

! function of H g’

...........................

0302~ V/2p=2r

R — 7er0 =) r andr, —r

l

i Pe + gy e

(¢ + c)ym Ve r
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Thus, trial function has the wrong limiting behavior at R = 0

-2r

it should go to e, not e™

/ c17r_1/2e_’" + czw_l/ze_"' \

Multiplying r, and ry, in the

k(0) = 2 and k(0) = 1 for the
H 2’ ground electronic state

exponentials by a variational
parameter k, which k = k(R)
Physically, k is some sort of
variational parameters

effective nuclear charge.

& = c,ls, + cpls,

k3’2 normalizes Is, and 1s,, Q= =2k s 1s, = k3/2’n'_1/2€y

Va

é = c,ls, + cls, linear combination of atomic orbitals,
J/ an LCAO-MO.

Haa - WSaa Hab - Wsab

=0
Hba - WSba be - Wshh

~

/Haa = Jls";lfllsa dv, Hy, = Jlstﬂlsb dv  Coulomb integrals

N 1 1
=-ly2_ - _ - —
H, 3V P, H,=H,
H, = fls’!,‘]rllsh dv, H, = [lstﬁlsa dv resonance (or bond) integral.

H is Hermitian and the functions are real — H_ = H,_

Q‘z = [1s”; lsa dv=1= Sbb Sab = Jls’,‘,‘lsb dv = Sba ovcrlap jntcgral/

Ali Ebrahimi Y¥



Univ. of Sistan and Baluchestan AIEAVARA R

Haa - WSaa Hab - WSab =0
Hba - WSba th - WSbb
Haa -Ww Hab - SabW =0
Hab - SabW Haa -w
Haa -W= i(I_Iab - SabW)
W, _Haa+Hab W. _Haa_Hab
o1+, 1=,

H,, is negative, so W is the lower-energy root.

For the root W, (Hye — W)c, + (Hayp — SW)e, = 0

_Haa+Hab
l U1+ S,

cje, =1
¢l = ca(lsa + lsb)

l

e J (152 + 153 + 2 - 1s,1s,) dv = 1
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For the rootW,, (Hye — W)c, + (Huyp — SuW)e, = 0

Haa_Hab
A —
l Po1-8,

______

Evaluation of the integrals H ,, H,, and S
1Sa — k3/2,n.71/267kr,,, 151; = k3/21r—1/26—kr,,
_Ta +r _Ta Tl
§=—p—> N="p— l

1s,1s, = Ko~ le ™ ratn) = 317 kRE

/ Sab = jlstlé‘b dv = Sba

1s,1s, = K le Mretr) = 3 lekRE

dv = LR(& — ) dé dn d¢b

\_ S = e *F(1 + kR + 3k’R?)
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/
H, =3k —k — R'+ e *f(k + R™")

Problem 13.18
H,, = =328, — k(2 — k)(1 + kR)e ™R

kK2 —k — R'+ R (1 + kR)e™*R = k(k — 2)(1 + kR)e %k
1 * e *R(1 + kR + K*R%/3)

Wy, = —3k* +

+ :forWw,
""""""" -:forw,

Ui o(R) = W;, + 1/R

At many fixed R : vary k to minimize first U;(R) and then U,(R)

Solve problems 13.19 (analytically ) and 13.20 (numerically ).

For (1s, tIs,) :R (0 —0) => k(1 —2)
For (1s, — 1s)) : R (0 —> 0) = k(1 —0.4)

H,, = —3kS. — k(2 — k)(1 + kR)e™®
l 0<k=2and S, >0
H,, is negative

l _Hy, + Hy, W, = H, — Hy
T+ S, P18,
i W, corresponds to the ground electronic state (G o1s) of H,"

For the ground state: k(R,) = 1.24

Ali Ebrahimi Yv



Univ. of Sistan and Baluchestan AIEAVARA R

For (Is, — 1s)) : R (0 — 0) = k(1 —04) why?

otls

k (1 >52.0)

The lowest odd

* . RN
ouls (oddparity) A
zero electronic orbital )
angular momentum along | /// 2}) ; S
L . 0 orm =

the internuclear (z) axis

kK2 —k—R '+ Rl +kRe 2R =+ k(k — 2)(1 + kR)e R
1 * e™*R(1 + kR + K*R%/3)

1) k(R) for W,
+1/R 2) k(R) for W,

U(R) curves

The calculated ground—state :

calculated:
R, = 2.0 bohrs (true R, = 2.0 bohrs)
UR,) =-15.96eV—>D_ =2.36¢V (true D, = 2.79 eV)

calculated R, = 2.49 and D, = 1.76 if k =1
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The appearance of the trial functions for the Ggls and o* [s states
at intermediate values of R

The probability density for an

electron in a Is, atomic orbital

,,,,,,

The probability density for half an electron in a ls, AO and half

an electron in a Is, AO

% [15,(0,0,2)]

the values of the functions
(Is,)? and (ls;)?at points on the
internuclear axis

a b z

1[1s4(0,0, )

The HY ground-state probability density

For the ¢ gls function (1s, + ls,) : a buildup of

electronic probability density between the nuclei

¢ _ 1Sa + 15[,
PN+ Sy
1
2 _ 2 2
b3 T+ 5y [1s7 + 1s3 + 2(1s,15,)]

[ 15,(0,0,2) + 15,(0,0, 2))
201+ 8,)

a b F4
It is especially significant that the buildup of charge between
the nuclei is greater than that obtained by Simply taking the

sum of the separate atomic charge densities.
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1
2 _ 1012 2y _ _ 2 2 _
&7 — 3(1s; + 1s3) 20+ S,) [2(1s,15,) — Sa(ls; + 1s3)] =D

R=2.0 k=124
Ss = e *X(1 + kR + ik*R?) S, = 0.46 atR,

At the midpoint of the intemuclear axis

l Is, = ls,

, the bracketed terms = 2(1s,)?- 0.92(ls,)> = 15> > 0

uildup of charge probability density between the nuclei in the molecule

o, ¥s=(Is, ~ls)) c(e™—e™)  =0atr,=r,
anodal plane

0, 1s orbital is bonding and the 6* Is orbital is antibonding

[ 15,(0,0,2) + 15,(0,0, 7))

2{1+ 8w bonding
a b z
[ 15,(0,0,2) — 15,(0,0, )] antibonding
2(1 = Sg)
a b z
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to the lowering in the average electronic potential energy

the decrease in electronic potential energy due to the sharing
is of the same order of magnitude as the nuclear repulsion

energy 1/R and hence is insufficient by itself

Two other effects also contribute to the bonding:

The increase in atomic orbital exponent

(k =1.24 at R, versus 1.0 at )

Moreover, the buildup of charge in the internuclear region
makes d\y//dz zero at the midpoint of the molecular axis and

small in the region close to this point, thus

%f |0¢/az|2 dr < <1>

z component of the average

electronic kinetic energy the atomic value

Reflection of the electron's coordinates in the 6}, symmetry
plane perpendicular to the molecular axis and midway between
the nuclei .

The operator C)Gh commutes with the electronic Hamiltonian
and with the parity (inversion) operator (eigenvalues must be
+1land-1)

star
starred orbitals are antibonding.

Nodal plane
I

a,ls axls

Contour (of constant | |) diagrams of the orbitals
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VE[OY/VEF

comparison

-

helium

1s(1)2s(2)  1s(2)2s(1)

~

degenerate functions

[1s(1)25(2) % 15(2)25(1)]/V2 the correct zeroth-order functions

/

1s, and 1s,

(1s, * 1s,)/ V2(1 = S,,)?

\

degenerate functions

the correct zeroth-order functions

/

binding in Hy

resonance integral H,

arises out of the nature of the LCAO approximation

LCAO
the AOs s andls, ——— the two H," MOs
_ + Hnb - Haasnb
Wia = Hu = =g,

H,, = (1s/H[ls,)
N

purely electronic Hamiltonian
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Haa

v' the molecule's purely electronic energy if the electron's
wave function in the molecule were 1s,.

v’ is the energy of the 1s, orbital in the molecule (in the limit
R = o, becomes the 1s AO energy in the H atom)

In the molecule, H_, is substantially lower than the electronic
energy of an H atom because the electron is attracted to both

nuclei.

separated-atoms description o,ls ag¥ls
united-atom description 1so, 2poy
2pyo;

not necessary

the fact that it is a O state tells us that it correlates with the
united-atom 2p,, state

For the united-atom description, the subscripts g and u are not needed, since
molecular states correlating with s, d, g,... atomic states must be g, while
states correlating with p, f, h,... atomic states must be u.
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how the trial function can be improved?

the perturbation of molecule formation will mix in other

hydrogen—atom states besides 1s.

¢ = [1sa + C(ZP[)).;J + [1Sb + C(zpﬂ)b]

572

m B -
1s, = k3= 2p0), = (2p.), = r.e P cos 8,
s, m ( pO) ( pz) 4(27]_)1/2

¢, k, and P are variational parameters

0, and 6, refer to two sets of spherical coordinates,

(x 3 2)

8y

/a 2 /Oz Zp /b
¥y Yo

Ya

using a right—handed coordinate system on atom

aand a left-handed system on atom b.
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hybridization

Is + ¢2p, is a hybridized atomic orbital

R, =2.01 bohrs.
k=1.246, = 2.965,and c = 0.138
D, = 2.73 eV (true value = 2.79 eV)

in atomic units 1s, = kg1 2ekr

. . . — 32, _—1/2,—k
in ordlnary units 1s, = (k/ay) /2y =12kl
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