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Semiemprical Methods

 Because of the difficulties in applying ab initio methods to medium and large molecules, 
many semiempirical methods have been developed to treat such molecules. 

 The earliest semiempirical methods treated only the π electrons of conjugated molecules. 

 In the π-electron approximation, the nπ π electrons are treated separately by 
incorporating the effects of the σ electrons and the nuclei into some sort of effective π-
electron Hamiltonian Ĥπ (recall the similar valence-electron approximation

 where Vi is the potential energy of the ith π electron in the field produced by the nuclei 
and the σ electrons. The core is everything except the π electrons.



 The most celebrated semiempirical π-electron theory is the Hückel molecular-orbital 
(HMO) method, developed in the 1930s to treat planar conjugated hydrocarbons. 

 Here the π-electron Hamiltonian is approximated by the simpler form

 where Ĥeff(i) incorporates the effects of the π-electron repulsions in an average way. 

 In fact the Hückel method does not specify any explicit form for Ĥeff(i). 

 Since the Hückel π-electron Hamiltonian is the sum of one-electron Hamiltonians, a 
separation of variables is possible. 



 We have

 The wave function takes no account of spin or the antisymmetry requirement. 

 To do so, we must put each electron in a spin-orbital ui=ii. The wave function π is then 
written as a Slater determinant of spin-orbitals.

 Since Ĥeff(i) is not specified, there is no point in trying to solve above eq. directly. 

 Instead, the variational method is used.



 The next assumption in the HMO method is to approximate the π MOs as LCAOs.

 This is a linear variation function, the optimum values of the coefficients for the cri lowest π
MOs satisfy

 where the ei
’s are the roots of the secular equation

The key assumptions in the Hückel theory involve the integrals in the above equation.



 where δrs is the Kronecker delta. α is called the Coulomb integral and β is the bond 
integral (or resonance integral).

 The HMO secular determinant equals the number of conjugated atoms. Students 
sometimes make the error of assuming that this order always equals the number of π
electrons.



 Hückel theory neglects interelectronic repulsions,

 A semiempirical π-electron theory that takes electron repulsion into account and thereby 
improves on the Hückel method is the Pariser–Parr–Pople (PPP) method, developed in 
1953.

 The π-electron Hamiltonian Ĥπ has the same form as the all-electron operator



 The Roothaan equations become

 In addition to assuming σ-π separability, the PPP method makes further approximations. 
As in Hückel theory, overlap is neglected:

 Consistent with the neglect of overlap integrals, when evaluating electron-repulsion 
integrals the PPP method makes the approximation of zero differential overlap (ZDO):



 Thus

 Thus the method ignores many (but not all) of the electron-repulsion integrals, thereby 
greatly simplifying the calculation. 

 In particular, all three- and fou-rcenter electron-repulsion integrals are ignored. The ZDO 
approximation is not used in the            integrals.

electron-repulsion integrals



General Semiempirical Methods

 The HMO and PPP methods apply only to planar conjugated molecules 
and treat only the π electrons.

 The semiempirical MO methods discussed in this section apply to all 
molecules and treat all the valence electrons.

 Semiempirical MO theories fall into two categories: those using a  
Hamiltonian that is the sum of one-electron terms, and those using a 
Hamiltonian that includes two-electron repulsion terms, as well as one-
electron terms. 

 The Hückel method is a one-electron theory, whereas the Pariser–Parr–
Pople method is a two-electron theory.



The Extended Huckel Method

 The most important one-electron semiempirical MO method for nonplanar 
molecules is the extended Hückel theory.

 The extended Hückel (EH) method begins with the approximation of treating 
the valence electrons separately from the rest.

 The valence-electron Hamiltonian is taken as the sum of one-electron 
Hamiltonians:

 All this is similar to simple Hückel theory. However, the extended Hückel theory 
does not neglect overlap. And other integrals ….



The CNDO, I NDO, and NDDO Methods

 Several semiempirical two-electron MO generalizations of the PPP method were 
developed that apply to both planar and nonplanar molecules. 

 The complete neglect of differential overlap (CNDO) method was proposed by Pople, 
Santry, and Segal in 1965. 

 The intermediate neglect of differential overlap (INDO) method was proposed by Pople, 
Beveridge, and Dobosh in 1967. 

 The neglect of diatomic differential overlap (NDDO) method suggested by Pople, Santry, 
and Segal in 1965, is an improvement on INDO in which differential overlap is neglected 
only between AOs centered on different atoms:

 f*r (1) fs(1) dv1 = 0 only when AOs r and s are on different atoms.

 these methods treat only the valence electrons explicitly.

 The valence-electron Hamiltonian is:



The MNDO, AM1, PM3, PM6, PM6-D3H4, PM7, and R 
M1 Methods

 Pople’s aim in the CNDO and INDO methods was to reproduce as well as possible the results of 
minimal-basis-set ab initio SCF MO calculations with theories requiring much less computer time 
than ab initio calculations. 

 Since CNDO and INDO use approximations, we can expect their results to be similar to but less 
accurate than minimal-basis ab initio SCF MO results. 

 Thus these methods do pretty well on molecular geometry but fail for binding energies. 

 Dewar and co-workers devised several semiempirical SCF MO theories that closely resemble 
the INDO and NDDO methods. 

 However, Dewar’s aim was not to reproduce ab initio SCF wave functions and properties but to 
have a theory that would give molecular binding energies with chemical accuracy within 1 
kcal/mol and that could be used for large molecules without a prohibitive amount of 
calculation. 

 It might seem unlikely that one could devise an SCF MO theory that involves approximations to 
the ab initio Hartree–Fock method but that succeeds for binding energies, where the Hartree–
Fock theory fails. 

 However, by proper choice of the parameters in the semiempirical SCF theory, one can 
actually get better results than ab initio SCF calculations, because the choice of suitable 
parameters can compensate for the partial neglect of electron correlation in ab initio SCF 
theory.



 The semiempirical theories of this section, which follow Dewar’s approach to 
parametrization, will be called Dewar-type theories. 

 These theories treat only the valence electrons, and most of these theories use a minimal-basis 
set of valence Slater-type s and p AOs (with orbital exponents given values determined by 
parametrization) to expand the valence-electron MOs.

 The Fock–Roothaan equations (with the overlap integrals Srs taken as δrs) are solved to find 
semiempirical SCF MOs.

 Some degree of neglect of differential overlap is used to eliminate many of the electron-
repulsion integrals. 

 In ab initio methods, the integrals occurring in the Fock matrix elements Frs are evaluated 
accurately, but this is not the approach used in Dewar-type theories. 

 Dewar-type theories take the one-center electron-repulsion integrals (ERIs) as parameters 
whose values are chosen to fit experimental atomic energy-level data and calculate the two-
center ERIs from the values of the one-center ERIs and the internuclear distances using an 
approximate formula that may involve parameters. 

 The remaining integrals are evaluated from approximate parameter containing formulas that 
are designed not to give values that accurately reproduce ab initio values but to be consistent 
with the approximations used in the theory.

 The Dewar-type theories are parametrized so as to yield good values of the 25 °C gas phase 
standard enthalpy of formation ΔH°f,298.



 The first useful Dewar-type theory was the MINDO/3 (third version of the modified INDO) 
method, published in 1975.

 MINDO/3 is based on the INDO approximation.

 Because MINDO/3 did not meet Dewar’s aims, Dewar and Thiel developed the MNDO 
(modified neglect of diatomic overlap) method.

 MNDO gives substantially improved results as compared with MINDO/3.

 In 1985 Dewar and co-workers published an improved version of MNDO called AM1 
(Austin model 1, named for the University of Texas at Austin).

 AM1 has been parametrized for nearly all the main-group elements and for Zn, Cd, and 
Hg.

 In 1989, Stewart re-parametrized AM1 to give the PM3 method (parametric method 3, 
methods 1 and 2 being MNDO and AM1)

 The RM1 method (Recife Model 1, so named because it was developed at the Federal 
University of Pernambuco in Recife, Brazil) has exactly the same structure as AM1, but all 
191 parameters for the atoms C, H, O, N, S, P, F, Cl, Br, I were reevaluated using data from 
1736 molecules (as compared with about 200 molecules used for AM1)



 Since parameters are available for only 10 elements, RM1 is less widely applicable than AM1 
or PM3.

 The PDDG/PM3 and PDDG/MNDO methods are modifications of PM3 and MNDO 

 add a certain function, called the pairwise distance directed Gaussian (PDDG) function, 
containing additional parameters, to the core-repulsion function, thereby significantly 
increasing the accuracy of these methods

 A major limitation of the original versions of the MNDO, AM1, and PM3 methods is that they use 
a basis set of s and p valence AOs only, so they cannot be used with transition metal 
compounds. (In Zn, Cd, and Hg, the d electrons are not valence electrons.) 

 Moreover, for compounds containing such second-row elements as S, the contributions of d 
orbitals to MOs are significant, and these methods do not perform well for such compounds.

 Thiel and Voityuk extended MNDO to include d orbitals for many second-row and later 
elements, giving the MNDO/d method. MNDO/d does not add d orbitals for first-row elements, 
so for a compound containing only C, H, O, and N, MNDO/d is precisely the same as MNDO.

 Stewart revised the PM3 method to give the PM5 method (Stewart, MOPAC2002), which gives 
more accurate ΔH°f,298 values than PM3 and has been parametrized for 50 elements, including 
many transition elements. (The PM4 method was never published, nor was it made available in 
a program. PM5 was never published.)



 In 2007, Stewart published the PM6 method, which has been parametrized for 70 elements 
(nearly all the main-group elements and nearly all the transition elements). 

 Data from 9000 compounds were used in the parametrization, including both 
experimental data and data from HF/6-31G* and B3LYP/6-31G* calculations. 

 PM6 gives a significant improvement in accuracy over its predecessors.

 Semiempirical methods usually give satisfactory bond lengths and bond angles, but their 
results are not as accurate as ab initio or DFT results with a suitable-size basis set.

 The semiempirical theories discussed so far do poorly in dealing with noncovalent 
interactions (hydrogen bonding, dispersion) that are key to determining the structures of 
biological molecules. The addition of parameter-containing empirical terms to the PM6 
energy that correct for dispersion (D) and hydrogen bonding (H) gave the PM6-DH2 
method.

 Further improvements in the dispersion and hydrogen-bonding correction terms gave the 
PM6-DH+ and PM6-D3H4 methods.

 In 2012, Stewart published the PM7 method, a reparametrization of PM6 that improves the 
accuracy of heats of formation of organic compounds and that includes dispersion and 
hydrogen-bonding terms to better represent intermolecular interactions.



 Semiempirical methods are widely available in many programs. 

 Gaussian 09: includes the MNDO, AM1, PM3, PPDG, PM6, MINDO/3, INDO, and

 CNDO methods. 

 Spartan: includes the MNDO, MNDO/d, AM1, PM3, PM6, and RM1 methods. 

 HyperChem: has the MNDO, MNDO/d, AM1, PM3, RM1, MINDO/3, CNDO, INDO, INDO/S 
and extended Hückel methods. 

 MOPAC2012: has the MNDO, AM1, PM3, PM6, PM6-DH2, PM6-DH+, PM7, and RM1 
methods.

 An older version is MOPAC2009

 AMPAC 9: has the SAM1, AM1, PM3, RM1, PM6, MNDO, and MNDO/d methods


