Heisenberg Uncertainty Principle

a beam of particles with momentum p, traveling in the y direction, and fall on a narrow slit (w)
uncertainty in the coordinate at the time of going through the slit $=\Delta x$

Heisenberg Uncertainty Principle

For a particle deflected upward by an angle a:

$$
p_{x}=p \sin \alpha
$$

For a particle deflected downward by an angle a:

$$
p_{x}=-p \sin \alpha
$$

most of the particles undergo deflections in the range $-\alpha$ to $+\alpha$, where α is the angle to the first minimum in the diffraction pattern

$$
\begin{gathered}
\Delta p_{x}=p \sin \alpha \\
\Delta x \Delta p_{x}=p w \sin \alpha
\end{gathered}
$$

Heisenberg Uncertainty Principle

$\Delta x \Delta p_{x}=p w \sin \alpha$	Wsin $\alpha=\lambda$
$\Delta x \Delta p_{x}=p \lambda$	$\lambda=h / p$
$\Delta x \Delta p_{x}=h$	
$\Delta x \Delta p_{x} \approx h$	
$\Delta x \Delta p_{x} \geq h / 4 \Pi$	Uncertainty Principle

Heisenberg Uncertainty Principle

Exercises:
Drive: $\quad W \sin \alpha=\lambda$

Time-dependent Schrödinger equation

The word (state) in classical mechanics means a specification of the position and velocity of each particle at some instant time, plus specification of the forces acting on the particles.
\square To describe the state in quantum mechanics, we postulate the existence of a function of the coordinates called the wave function (State function), Ψ. For one particle, one-dimensional system:
$\Psi=\Psi(x, t)$

$$
-\frac{\hbar}{i} \frac{\partial \Psi(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+V(x, t) \Psi(x, t)
$$

$\hbar=\frac{h}{2 \pi} \quad \mathbf{m}=$ particle mass, $\mathbf{V}(\mathbf{x}, \mathbf{t})=$ potential energy. $\mathbf{i}=\sqrt{-1}$

Time-dependent Schrödinger equation

Born Postulate

$$
|\Psi(x, t)|^{2} d x
$$

The probability at time t of finding the particle in the region of the x axis lying between x and $x=d x$

$$
|\Psi(x, t)|^{2} \equiv \text { Probability density }
$$

Time-independent Schrödinger equation

Special case where the potential energy is independent of time but depends only on x

$$
-\frac{\hbar}{i} \frac{\partial \Psi(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+V(x, t) \Psi(x, t)
$$

Schrödinger equation can be solved by the technique called separation of variables:

$$
\Psi(x, t)=\psi(x) f(t)
$$

the partial derivatives of this equation:

$$
\frac{\partial \Psi(x, t)}{\partial t}=\frac{d f(t)}{d t} \psi(x), \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}=\frac{d^{2} \psi(x)}{d x^{2}} f(t)
$$

Time-independent Schrödinger equation

Making the substitution in equation 2:

$$
\bar{i} \frac{d f(t)}{d t} \psi(x)=\frac{-h^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}} f(t)+V(x) \psi(x) f(t)
$$

Dividing by

$$
\begin{gathered}
\psi(x) f(t) \\
\frac{-h}{i} \frac{1}{f(t)} \frac{d f(t)}{d t}=\frac{-h^{2}}{2 m} \frac{1}{\psi(x)} \frac{d^{2} \psi(x)}{d x^{2}}+V(x)=\mathrm{E}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{-\mathrm{h}}{i} \frac{1}{f(t)} \frac{d f(t)}{d t}=\frac{-h^{2}}{2 m} \frac{1}{\psi(x)} \frac{d^{2} \psi(x)}{d x^{2}}+V(x)=\mathrm{E} \\
& \frac{d f(t)}{f(t)}=\frac{-i E}{h} d t \quad \frac{-h^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E \psi(x)
\end{aligned}
$$

Time-independent Schrödinger equation

Taking the left side of equation:
$\frac{d f(t)}{f(t)}=\frac{-\boldsymbol{i} E}{\mathrm{~h}} d \boldsymbol{t}$
$\ln f(t)=\frac{-\boldsymbol{i E t}}{\mathrm{h}}+C \quad$ integration constant

$$
\begin{aligned}
& f(t)=\boldsymbol{e}^{c} \boldsymbol{e}^{-i E t / h} \\
& \boldsymbol{f}(\boldsymbol{t})=\boldsymbol{A} \boldsymbol{e}^{-i E t / \mathrm{h}}
\end{aligned}
$$

$$
f(t)=e^{-i E t / h}
$$

$$
\Psi(x, t)=\psi(x) e^{-i E t / h}
$$

ψ contains an imaginary quantity, So, it has no physical meaning.

Time-independent Schrödinger equation

$$
\begin{aligned}
& \frac{-h^{2}}{2 m} \frac{d^{2} \psi(\boldsymbol{x})}{d x^{2}}+\boldsymbol{V}(\boldsymbol{x}) \psi(\boldsymbol{x})=\boldsymbol{E} \psi(\boldsymbol{x}) \\
& \text { or } \quad \frac{-\mathrm{h}^{2}}{2 m} \frac{d^{2} \psi(\boldsymbol{x})}{d x^{2}}+\boldsymbol{V}(\boldsymbol{x}) \psi(\boldsymbol{x})=\boldsymbol{E} \psi(\boldsymbol{x})
\end{aligned}
$$

time-independent Schrödinger equation for a single particle of mass m moving in one dimension.

The constant E has the dimension of energy.

It is postulated that E is the energy of the system.

Probability Density

Wave function is a complex, i.e.

$$
|\Psi|^{2}=\psi \psi^{*}
$$

ψ^{*} is a complex conjugate of ψ

$$
\begin{aligned}
& |\Psi(\boldsymbol{x}, \boldsymbol{t})|^{2}=\left[\psi(\boldsymbol{x}) \boldsymbol{e}^{-i E t / h}\right]\left[\psi(\boldsymbol{x}) e^{-i E t / h}\right]^{*} \text { for stationary state } \\
& =\boldsymbol{e}^{0} \psi^{*}(\boldsymbol{x}) \psi(\boldsymbol{x})=\psi(\boldsymbol{x}) \psi^{*}(\boldsymbol{x})=|\psi(\boldsymbol{x})|^{2}
\end{aligned}
$$

is called the Probability Density (Time-independent wave function).

What $\psi(x)$ means?

$\square \psi$ is sometimes a complex function, not measurable, imaginary value.
$\square \psi \psi^{*}$ is a function, which may be real, and positive.
$\square \psi$ has no physical meaning but $\psi \psi^{*}$ is the probability density

The probability

What is the probability that the particle lies in some finite region of space $a \leq x \leq b$.

$$
\int_{a}^{b}|\Psi|^{2} d x=\operatorname{Pr}(a \leqslant x \leqslant b)
$$

The probability of a certainty
$\int_{-\infty}^{+\infty} \psi(x) \psi^{*}(x) d x=1$
If we have two different wave functions, ψ_{1} and ψ_{2}
$\left.\begin{array}{l}\int_{-\infty}^{+\infty} \psi_{1}(x) \psi_{1}^{*}(x) d x=1 \\ \int_{-\infty}^{+\infty} \psi_{2}(x) \psi^{*} 2(x) d x=1\end{array}\right\}$
Normalized function

The probability

$$
\left.\left.\begin{array}{c}
\int_{-\infty}^{+\infty} \psi_{1}(x) \psi_{2}^{*}(x) d x=0 \\
\int_{-\infty}^{+\infty} \psi_{2}(x) \psi^{*}(x) d x=0
\end{array}\right\} \text { Orthogonal functions }\right\} \text { Orthonormalized functions }, \quad \begin{cases}=0 & i \neq j \\
=1 & i=j\end{cases}
$$

The probability

EXAMPLE : A one-particle, one-dimensional system has $\Psi=\mathrm{a}^{-1 / 2} \mathrm{e}^{-\mathrm{x} / \mathrm{x} / \mathrm{a}}$ at $\mathrm{t}=0$, where $\mathrm{a}=1.0000 \mathrm{~nm}\left(1 \mathrm{~nm}=10^{-9} \mathrm{~m}\right)$. At $\mathrm{t}=0$, the particle's position is measured, (a) Find the probability that the measured value lies between $x=$ 1.5000 nm and $x=1.5001 \mathrm{~nm}$. (b) Find the probability that the measured value is between $x=0$ and $x=2 n m$. (c) Verify that Ψ is normalized.
a) $|\Psi|^{2} d x=a^{-1} e^{-2 \mid x / a} d x=(1 \mathrm{~nm})^{-1} e^{-2(1.5 \mathrm{~nm}) /(1 \mathrm{~nm})}(0.0001 \mathrm{~nm})=4.979 \times 10^{-6}$
b)

$$
\operatorname{Pr}(0 \leqslant x \leqslant 2 \mathrm{~nm})=\int_{0}^{2 \mathrm{~nm}}|\Psi|^{2} d x=a^{-1} \int_{0}^{2 \mathrm{~nm}} e^{-2 x / a} d x
$$

$$
=-\left.\frac{1}{2} e^{-2 x / a}\right|_{0} ^{2 \mathrm{~nm}}=-\frac{1}{2}\left(e^{-4}-1\right)=0.4908
$$

c)

$$
\begin{aligned}
\int_{-\infty}^{\infty}|\Psi|^{2} d x & =a^{-1} \int_{-\infty}^{0} e^{2 x / a} d x+a^{-1} \int_{0}^{\infty} e^{-2 x / a} d x \\
& =a^{-1}\left(\left.\frac{1}{2} a e^{2 x / a}\right|_{-\infty} ^{0}\right)+a^{-1}\left(-\left.\frac{1}{2} a e^{-2 x / a}\right|_{0} ^{\infty}\right)=\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

Homeworks:

1) What is a complex number?
2) Two different systems of units are cgs Gaussian and SI.

State units of length, mass, force and charge in these systems.
3) Solve problems 1-29

COMPLEX NUMBERS

```
\(z=x+i y\)
\(i \equiv \sqrt{-1}\)
```

x and y (real and imaginary parts of z) are real numbers $x=\operatorname{Re}(z) ; y=\operatorname{Im}(z)$.

A convenient representation:


```
the complex conjugate \(z^{*}\) \(z^{*} \equiv x-i y=r e^{-i \theta}\)
```

$$
\begin{gathered}
z z^{*}=(x+i y)(x-i y)=x^{2}+i y x-i y x-i^{2} y^{2} \\
z z^{*}=x^{2}+y^{2}=r^{2}=|z|^{2} \\
|z|=r=\left(x^{2}+y^{2}\right)^{1 / 2}, \quad \tan \theta=y / x \\
z=x+i y \\
z=r \cos \theta, \quad y=r \sin \theta \quad \downarrow \\
z=r \cos \theta+i r \sin \theta=r e^{i \theta} \overline{\quad} e^{i \theta}=\cos \theta+i \sin \theta
\end{gathered}
$$

$\checkmark z$ is real if and only if $z=z^{*}$.
$\checkmark\left(z^{*}\right)^{*}=z$
$\checkmark i^{2}=-1$

$$
\begin{aligned}
& \left.z_{1}=r_{1} e^{i \theta_{1}}\right] \\
& \left.z_{2}=r_{2} e^{i \theta_{2}}\right] \\
& \left(z_{1} z_{2}\right)^{*}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}, \quad \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)} \\
& \left(\frac{z_{1}}{z_{2}}\right)^{*}=\frac{z_{1}^{*}}{z_{2}^{*}}, \quad\left(z_{1}+z_{2}\right)^{*}=z_{1}^{*}+z_{2}^{*}, \quad\left(z_{1}-z_{2}\right)^{*}=z_{1}^{*}-z_{2}^{*} \\
& \left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|, \quad\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}
\end{aligned}
$$

UNITS

```
the cgs Gaussian system:
\checkmark ~ L e n g t h ~ \rightarrow ~ c e n t i m e t e r ~ ( c m )
\checkmark ~ M a s s ~ \rightarrow ~ g r a m ~ ( g ) ~
\checkmark Time }->\mathrm{ second (s)
\checkmark ~ F o r c e ~ \rightarrow ~ d y n e s ~ ( d y n )
\checkmark ~ e n e r g y ~ \rightarrow ~ e r g s ~
```

Coulomb's law $F=Q_{i}^{\prime} Q^{\prime} / r^{2} \quad$ statcoulombs (statC)

International System (SI):
\checkmark Length \rightarrow meter (m)
\checkmark Mass \rightarrow kilogram (kg)
\checkmark Time \rightarrow second (s)
\checkmark Force \rightarrow newtons (N)
\checkmark energy \rightarrow joules (J)

Coulomb's law

$$
F=Q_{1} Q_{2} / 4 \pi \varepsilon_{0} r^{2}=
$$

$$
Q^{\prime}=Q /\left(4 \pi \varepsilon_{0}\right)^{1 / 2}
$$

Calculus

$\square \quad c, n$, and b are constants and f and g are functions of x,

$$
\begin{aligned}
& \frac{d c}{d x}=0, \quad \frac{d(c f)}{d x}=c \frac{d f}{d x}, \quad \frac{d x^{n}}{d x}=n x^{n-1} \quad \frac{d e^{c x}}{d x}=c e^{c x} \\
& \frac{d(\sin c x)}{d x}=c \cos c x, \quad \frac{d(\cos c x)}{d x}=-c \sin c x, \quad \frac{d \ln c x}{d x}=\frac{1}{x} \\
& \frac{d(f+g)}{d x}=\frac{d f}{d x}+\frac{d g}{d x}, \quad \frac{d(f g)}{d x}=f \frac{d g}{d x}+g \frac{d f}{d x} \bar{\Longrightarrow} \\
& \frac{d(f / g)}{d x}=\frac{d\left(f g^{-1}\right)}{d x}=-f g^{-2} \frac{d g}{d x}+g^{-1} \frac{d f}{d x} \bar{\Longrightarrow} \\
& \frac{d}{d x} f(g(x))=\frac{d f}{d g} \frac{d g}{d x} \bar{\Longrightarrow}
\end{aligned}
$$

An example of the last formula is $d\left[\sin \left(c x^{2}\right)\right] / d x=2 c x \cos \left(c x^{2}\right)$. Here, $g(x)=c x^{2}$ and $f=\sin$.

$$
\begin{aligned}
& \int c f(x) d x=c \int f(x) d x, \quad \int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x \\
& \int d x=x, \quad \int x^{n} d x=\frac{x^{n+1}}{n+1} \quad \text { for } n \neq-1, \quad \int \frac{1}{x} d x=\ln x \\
& \int e^{c x} d x=\frac{e^{c x}}{c}, \quad \int \sin c x d x=-\frac{\cos c x}{c}, \quad \int \cos c x d x=\frac{\sin c x}{c} \\
& \int_{b}^{c} f(x) d x=g(c)-g(b) \quad \text { where } \frac{d g}{d x}=f(x) \Longrightarrow
\end{aligned}
$$

