

University of Sistan and

Baluchestan

Department of Mechanical Engineering

Advanced Engineering Mathematics

Hamed Farzaneh – 1399 (2021)

COURSE OUTLINE

This is a course suitable for B.Tech / M.Tech students of various discipline. It deals with some advanced topics in Engineering Mathematics usually covered in a degree course.

COURSE DETAIL

Week	Class content	Class note
1	11.1 Fourier Series 11.2 Arbitrary Period. Even and Odd Functions. Half-Range Expansions	Ch.11
1	11.3 Forced Oscillations11.4 Approximation by Trigonometric Polynomials11.5 Sturm–Liouville Problems. Orthogonal Functions11.6 Orthogonal Series. Generalized Fourier Series	Ch.11
2	11.7 Fourier Integral11.8 Fourier Cosine and Sine Transforms11.9 Fourier Transform. Discrete and Fast Fourier Transforms11.10 Tables of Transforms	Ch.11
3	12.1 Basic Concepts of PDEs 12.2 Modeling: Vibrating String, Wave Equation 12.3 Solution by Separating Variables. Use of Fourier Series	Ch.12
4	12.4 D'Alembert's Solution of the Wave Equation.	Ch.12

	Characteristics	
	12.5 Modeling: Heat Flow from a Body in Space. Heat Equation	
	12.6 Heat Equation: Solution by Fourier Series.	
	Steady Two-Dimensional Heat Problems. Dirichlet	
	Problem	
	12.7 Heat Equation: Modeling Very Long Bars.	
	Solution by Fourier Integrals and Transforms	
5	12.8 Modeling: Membrane, Two-Dimensional Wave Equation	Ch.12
	12.9 Rectangular Membrane. Double Fourier Series	
	12.10 Laplacian in Polar Coordinates. Circular Membrane. Fourier–Bessel Series	
	12.11 Laplace's Equation in Cylindrical and Spherical Coordinates. Potential	
	12.12 Solution of PDEs by Laplace Transforms	
6	Exam I (covering Ch.11 and Ch.12)	
6	13.1 Complex numbers and their geometric representation	Ch.13
	13.2 Polar form of complex numbers	
7	13.3 Derivative. Analytic function	Ch.13
7	13.4 Cauchy-Riemann equations	Ch.13
	13.5 Exponential function	
8	13.6 Trigonometric and hyperbolic functions 13.7 Logarithm. Principle value	Ch.13
9	14.1 Line integral in complex plance	Ch.14
	14.2 Cauchy's integral theorem	
10	14.3 Cauchy's integral formula	Ch.14
11	15.1 Sequences, series, convergence tests 15.2 Power series	Ch.15
12	Exam II (Ch.8.3-8.5, Ch.13 and Ch.14)	
12	15.3 Functions given by power series	Ch.15
	15.4 Taylor and Maclaurin series	
13	15.5 Uniform convergence	Ch.15
	16.1 Laurent series	Ch.16
14	16.2 Singularities and zeros	Ch.16

	16.3 Residue integration method	
15	16.4 Residue integration and real integration	Ch.16
	Class review	
	Final Exam	

REFERENCES

Advanced Engineering Mathematics 10th ed. / Erwin Kreyszig / John Wiley & Sons