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Preface

Toss a symmetric coin twice. What is the probability that both tosses will
yield a head?

This is a well-known problem that anyone can solve. Namely, the proba-
bility of a head in each toss is 1/2, so the probability of two consecutive heads
is 1/2 · 1/2 = 1/4.

BUT! What did we do? What is involved in the solution? What are the
arguments behind our computations? Why did we multiply the two halves
connected with each toss?

This is reminiscent of the centipede1 who was asked by another animal
how he walks; he who has so many legs, in which order does he move them
as he is walking? The centipede contemplated the question for a while, but
found no answer. However, from that moment on he could no longer walk.

This book is written with the hope that we are not centipedes.
There exist two kinds of probabilists. One of them is the mathematician

who views probability theory as a purely mathematical discipline, like algebra,
topology, differential equations, and so on. The other kind views probability
theory as the mathematical modeling of random phenomena, that is with a
view toward applications, and as a companion to statistics, which aims at
finding methods, principles and criteria in order to analyze data emanating
from experiments involving random phenomena and other observations from
the real world, with the ultimate goal of making wise decisions. I would like
to think of myself as both.

What kind of a random process describes the arrival of claims at an in-
surance company? Is it one process or should one rather think of different
processes, such as one for claims concerning stolen bikes and one for houses
that have burnt down? How well should the DNA sequences of an accused
offender and a piece of evidence match each other in order for a conviction? A

1Cent is 100, so it means an animal with 100 legs. In Swedish the name of the
animal is tusenfoting, where “tusen” means 1000 and “fot” is foot; thus an animal
with 1000 legs or feet.
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milder version is how to order different species in a phylogenetic tree. What
are the arrival rates of customers to a grocery store? How long are the service
times? How do the clapidemia cells split? Will they create a new epidemic or
can we expect them to die out? A classical application has been the arrivals
of telephone calls to a switchboard and the duration of calls. Recent research
and model testing concerning the Internet traffic has shown that the classical
models break down completely and new thinking has become necessary. And,
last but (not?) least, there are many games and lotteries.

The aim of this book is to provide the reader with a fairly thorough treat-
ment of the main body of basic and classical probability theory, preceded by
an introduction to the mathematics which is necessary for a solid treatment
of the material. This means that we begin with basics from measure theory,
such as σ-algebras, set theory, measurability (random variables) and Lebesgue
integration (expectation), after which we turn to the Borel-Cantelli lemmas,
inequalities, transforms and the three classical limit theorems: the law of large
numbers, the central limit theorem and the law of the iterated logarithm. A
final chapter on martingales – one of the most efficient, important, and useful
tools in probability theory – is preceded by a chapter on topics that could
have been included with the hope that the reader will be tempted to look fur-
ther into the literature. The reason that these topics did not get a chapter of
their own is that beyond a certain number of pages a book becomes deterring
rather than tempting (or, as somebody said with respect to an earlier book
of mine: “It is a nice format for bedside reading”).

One thing that is not included in this book is a philosophical discussion
of whether or not chance exist, whether or not randomness exists. On the
other hand, probabilistic modeling is a wonderful, realistic, and efficient way
to model phenomena containing uncertainties and ambiguities, regardless of
whether or not the answer to the philosophical question is yes or no.

I remember having read somewhere a sentence like “There exist already so
many textbooks [of the current kind], so, why do I write another one?” This
sentence could equally well serve as an opening for the present book.

Luckily, I can provide an answer to that question. The answer is the short
version of the story of the mathematician who was asked how one realizes that
the fact he presented in his lecture (because this was really a he) was trivial.
After 2 minutes of complete silence he mumbled

I know it’s trivial, but I have forgotten why.

I strongly dislike the arrogance and snobbism that encompasses mathematics
and many mathematicians. Books and papers are filled with expressions such
as “it is easily seen”, “it is trivial”, “routine computations yield”, and so on.
The last example is sometimes modified into “routine, but tedious, computa-
tions yield”. And we all know that behind things that are easily seen there
may be years of thinking and/or huge piles of scrap notes that lead nowhere,
and one sheet where everything finally worked out nicely.
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Clearly, things become routine after many years. Clearly, facts become, at
least intuitively, obvious after some decades. But in writing papers and books
we try to help those who do not know yet, those who want to learn. We wish
to attract people to this fascinating part of the world. Unfortunately though,
phrases like the above ones are repellent, rather than being attractive. If a
reader understands immediately that’s fine. However, it is more likely that he
or she starts off with something that either results in a pile of scrap notes or in
frustration. Or both. And nobody is made happier, certainly not the reader. I
have therefore avoided, or, at least, tried to avoid, expressions like the above
unless they are adequate.

The main aim of a book is to be helpful to the reader, to help her or him
to understand, to inform, to educate, and to attract (and not for the author
to prove himself to the world). It is therefore essential to keep the flow, not
only in the writing, but also in the reading. In the writing it is therefore of
great importance to be rather extensive and not to leave too much to the
(interested) reader.

A related aspect concerns the style of writing. Most textbooks introduce
the reader to a number of topics in such a way that further insights are gained
through exercises and problems, some of which are not at all easy to solve,
let alone trivial. We take a somewhat different approach in that several such
“would have been” exercises are given, together with their solutions as part
of the ordinary text – which, as a side effect, reduces the number of exercises
and problems at the end of each chapter. We also provide, at times, results
for which the proofs consist of variations of earlier ones, and therefore are
left as an exercise, with the motivation that doing almost the same thing as
somebody else has done provides a much better understanding than reading,
nodding and agreeing. I also hope that this approach creates the atmosphere
of a dialogue rather than of the more traditional monologue (or sermon).

The ultimate dream is, of course, that this book contains no errors, no
slips, no misprints. Henrik Wanntorp has gone over a substantial part of
the manuscript with a magnifying glass, thereby contributing immensely to
making that dream come true. My heartfelt thanks, Henrik. I also wish to
thank Raimundas Gaigalas for several perspicacious remarks and suggestions
concerning his favorite sections, and a number of reviewers for their helpful
comments and valuable advice. As always, I owe a lot to Svante Janson for
being available for any question at all times, and, more particularly, for always
providing me with an answer. John Kimmel of Springer-Verlag has seen me
through the process with a unique combination of professionalism, efficiency,
enthusiasm and care, for which I am most grateful.

Finally, my hope is that the reader who has digested this book is ready and
capable to attack any other text, for which a solid probabilistic foundation is
necessary or, at least, desirable.

Uppsala Allan Gut
November 2004
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Outline of Contents

In this extended list of contents, we provide a short expansion of the headings
into a quick overview of the contents of the book.

Chapter 1. Introductory Measure Theory

The mathematical foundation of probability theory is measure theory and the
theory of Lebesgue integration. The bulk of the introductory chapter is de-
voted to measure theory: sets, measurability, σ-algebras, and so on. We do not
aim at a full course in measure theory, rather to provide enough background
for a solid treatment of what follows.

Chapter 2. Random Variables

Having set the scene, the first thing to do is to forget probability spaces (!).
More precisely, for modeling random experiments one is interested in cer-
tain specific quantities, called random variables, rather than in the underly-
ing probability space itself. In Chapter 2 we introduce random variables and
present the basic concepts, as well as concrete applications and examples of
probability models. In particular, Lebesgue integration is developed in terms
of expectation of random variables.

Chapter 3. Inequalities

Some of the most useful tools in probability theory and mathematics for prov-
ing finiteness or convergence of sums and integrals are inequalities. There exist
many useful ones spread out in books and papers. In Chapter 3 we make an
attempt to present a sizable amount of the most important inequalities.

Chapter 4. Characteristic Functions

Just as there are i.a. Fourier transforms that transform convolution of func-
tions into multiplication of their corresponding transforms, there exist proba-
bilistic transforms that “map” addition of independent random variables into
multiplication of their transforms, the most prominent one being the charac-
teristic function.



XVIII Outline of Contents

Chapter 5. Convergence
Once we know how to add random variables the natural problem is to in-
vestigate asymptotics. We begin by introducing some convergence concepts,
prove uniqueness, after which we investigate how and when they imply each
other. Other important problems are when, and to what extent, limits and
expectations (limits and integrals) can be interchanged, and when, and to
what extent, functions of convergent sequences converge to the function of
the limit.

Chapter 6. The Law of Large Numbers
The law of large numbers states that (the distribution of) the arithmetic mean
of a sequence of independent trials stabilizes around the center of gravity of
the underlying distribution (under suitable conditions). There exist weak and
strong laws and several variations and extensions of them. We shall meet some
of them as well as some applications.

Chapter 7. The Central Limit Theorem
The central limit theorem, which (in its simplest form) states that if the vari-
ance is finite, then the arithmetic mean, properly rescaled, of a sequence of
independent trials approaches a normal distribution as the number of ob-
servations increases. There exist many variations and generalizations, of the
theorem, the central one being the Lindeberg-Lévy-Feller theorem. We also
prove results on moment convergence, and rate results, the foremost one being
the celebrated Berry-Esseen theorem.

Chapter 8. The Law of the Iterated Logarithm
This is a special, rather delicate and technical, and very beautiful, result,
which provides precise bounds on the oscillations of sums of the above kind.
The name obviously stems from the iterated logarithm that appears in the
expression of the parabolic bound.

Chapter 9. Limit Theorems; Extensions and Generalizations
There are a number of additional topics that would fit well into a text like
the present one, but for which there is no room. In this chapter we shall
meet a number of them – stable distributions, domain of attraction, infinite
divisibility, sums of dependent random variables, extreme value theory, the
Stein-Chen method – in a somewhat more sketchy or introductory style. The
reader who gets hooked on such a topic will be advised to some relevant
literature (more can be found via the Internet).

Chapter 10. Martingales
This final chapter is devoted to one of the most central topics, not only in
probability theory, but also in more traditional mathematics. Following some
introductory material on conditional expectations and the definition of a mar-
tingale, we present several examples, convergence results, results for stopped
martingales, regular martingales, uniformly integrable martingales, stopped
random walks, and reversed martingales.
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In Addition

A list of notation and symbols precedes the main body of text, and an ap-
pendix with some mathematical tools and facts, a bibliography, and an index
conclude the book. References are provided for more recent results, for more
nontraditional material, and to some of the historic sources, but in general
not to the more traditional material. In addition to cited material, the list of
references contains references to papers and books that are relevant without
having been specifically cited.

Suggestions for a Course Curriculum

One aim with the book is that it should serve as a graduate probability course
– as the title suggests. In the same way as the sections in Chapter 9 contain
materials that no doubt would have deserved chapters of their own, Chapters
6,7, and 8 contain sections entitled “Some Additional Results and Remarks”,
in which a number of additional results and remarks are presented, results
that are not as central and basic as earlier ones in those chapters.

An adequate course would, in my opinion, consist of Chapters 1-8, and
10, except for the sections “Some Additional Results and Remarks”, plus a
skimming through Chapter 9 at the level of the instructor’s preferences.



Notation and Symbols

Ω the sample space
ω an elementary event
F the σ-algebra of events

x+ max{x, 0}
x− −min{x, 0}
[x] the integer part of x
log+ x max{1, log x}
∼ the ratio of the quantities on either side tends to 1

N the (positive) natural numbers
Z the integers
R the real numbers
R the Borel σ-algebra on R

λ( · ) Lebesgue measure
Q the rational numbers
C the complex numbers
C the continuous functions
C0 the functions in C tending to 0 at ±∞
CB the bounded continuous functions
C[a, b] the functions in C with support on the interval [a, b]
D the right-continuous, functions with left-hand limits
D[a, b] the functions in D with support on the interval [a, b]
D+ the non-decreasing functions in D
JG the discontinuities of G ∈ D

I{A} indicator function of (the set) A
#{A} number of elements in (cardinality of) A
|A| number of elements in (cardinality of) A
Ac complement of A
∂A the boundary of A
P (A) probability of A
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X, Y, Z, . . . random variables
F (x), FX(x) distribution function (of X)
X ∈ F X has distribution (function) F
C(FX) the continuity set of FX

p(x), pX(x) probability function (of X)
f(x), fX(x) density (function) (of X)
X, Y, Z, . . . random (column) vectors
X′, Y′, Z′, . . . the transpose of the vectors
FX,Y (x, y) joint distribution function (of X and Y )
pX,Y (x, y) joint probability function (of X and Y )
fX,Y (x, y) joint density (function) (of X and Y )
E, E X expectation (mean), expected value of X
Var , Var X variance, variance of X
Cov (X, Y ) covariance of X and Y
ρ, ρX,Y correlation coefficient (between X and Y )
med (X) median of X

g(t), gX(t) (probability) generating function (of X)
ψ(t), ψX(t) moment generating function (of X)
ϕ(t), ϕX(t) characteristic function (of X)

X ∼ Y X and Y are equivalent random variables
X

a.s.= Y X and Y are equal (point-wise) almost surely
X

d= Y X and Y are equidistributed
Xn

a.s.→ X Xn converges almost surely (a.s.) to X

Xn
p→ X Xn converges in probability to X

Xn
r→ X Xn converges in r-mean (Lr) to X

Xn
d→ X Xn converges in distribution to X

Xn

a.s.

�→ Xn does not converge almost surely

Xn

p

�→ Xn does not converge in probability

Xn

r

�→ Xn does not converge in r-mean (Lr)

Xn

d

�→ Xn does not converge in distribution

Φ(x) standard normal distribution function
φ(x) standard normal density (function)
F ∈ D(G) F belongs to the domain of attraction of G
g ∈ RV (ρ) g varies regularly at infinity with exponent ρ
g ∈ SV g varies slowly at infinity
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Be(p) Bernoulli distribution
β(r, s) beta distribution
Bin(n, p) binomial distribution
C(m, a) Cauchy distribution
χ2(n) chi-square distribution
δ(a) one-point distribution
Exp(a) exponential distribution
F (m, n) (Fisher’s) F -distribution
Fs(p) first success distribution
Γ (p, a) gamma distribution
Ge(p) geometric distribution
H(N, n, p) hypergeometric distribution
L(a) Laplace distribution
LN(µ, σ2) log-normal distribution
N(µ, σ2) normal distribution
N(0, 1) standard normal distribution
NBin(n, p) negative binomial distribution
Pa(k, α) Pareto distribution
Po(m) Poisson distribution
Ra(α) Rayleigh distribution
t(n) (Student’s) t-distribution
Tri(a, b) triangular distribution on (a, b)
U(a, b) uniform or rectangular distribution on (a, b)
W (a, b) Weibull distribution
X ∈ P (θ) X has a P -distribution with parameter θ
X ∈ P (α, β) X has a P -distribution with parameters α and β

a.e. almost everywhere
a.s. almost surely
cf. confer, compare, take counsel
i.a. inter alia, among other things, such as
i.e. id est, that is
i.o. infinitely often
iff if and only if
i.i.d. independent, identically distributed
viz. videlicet, in which
w.l.o.g. without loss of generality
♠ hint for solving a problem
♣ bonus remark in connection with a problem
� end of proof, definitions, exercises, remarks, etc.
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Introductory Measure Theory

1 Probability Theory: An Introduction

The object of probability theory is to describe and investigate mathematical
models of random phenomena, primarily from a theoretical point of view.
Closely related to probability theory is statistics, which is concerned with
creating principles, methods, and criteria in order to treat data pertaining to
such (random) phenomena or data from experiments and other observations
of the real world, by using, for example, the theories and knowledge available
from the theory of probability.

Probability models thus aim at describing random experiments, that is,
experiments that can be repeated (indefinitely) and where future outcomes
cannot be exactly predicted – due to randomness – even if the experimental
situation can be fully controlled.

The basis of probability theory is the probability space. The key idea behind
probability spaces is the stabilization of the relative frequencies. Suppose that
we perform “independent” repetitions of a random experiment and that we
record each time if some “event” A occurs or not (although we have not yet
mathematically defined what we mean by independence or by an event). Let
fn(A) denote the number of occurrences of A in the first n trials, and rn(A)
the relative frequency, rn(A) = fn(A)/n. Since the dawn of history one has
observed the stabilization of the relative frequencies, that is, one has observed
that (it seems that)

rn(A) converges to some real number as n →∞.

The intuitive interpretation of the probability concept is that if the probability
of some event A is 0.6, one should expect that by performing the random
experiment “many times” the relative frequency of occurrences of A should
be approximately 0.6.

The next step is to axiomatize the theory, to make it mathematically rig-
orous. Although games of chance have been performed for thousands of years,
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a mathematically rigorous treatment of the theory of probability only came
about in the 1930’s by the Soviet/Russian mathematician A.N. Kolmogorov
(1903–1987) in his fundamental monograph Grundbegriffe der Wahrschein-
lichkeitsrechnung [163], which appeared in 1933.

The first observation is that a number of rules that hold for relative fre-
quencies should also hold for probabilities. This immediately calls for the
question “which is the minimal set of rules?”

In order to answer this question one introduces the probability space or
probability triple (Ω,F , P ), where

• Ω is the sample space;
• F is the collection of events;
• P is a probability measure.

The fact that P is a probability measure means that it satisfies the three
Kolmogorov axioms (to be specified ahead).

In a first course in probability theory one learns that

“the collection of events = the subsets of Ω”,

maybe with an additional remark that this is not quite true, but true enough
for the purpose of that course.

To clarify the situation we need some definitions and facts from measure
theory in order to answer questions such as

“What does it mean for a set to be measurable?”

After this we shall return to a proper definition of the probability space.

2 Basics from Measure Theory

In addition, to straighten out the problems raised by such questions, we need
rules for how to operate on what we shall define as events. More precisely,
a problem may consist of finding the probability of one or the other of two
things happening, or for something not to happen, and so on. We thus need
rules and conventions for how to handle events, how we can combine them or
not combine them. This means i.a. that we need to define collections of sets
with a certain structure. For example, a collection such that the intersection
of two events is an event, or the collection of sets such that the complement of
an event is an event, and also rules for how various collections connect. This
means that we have to confront ourselves with some notions from measure
theory. Since this is rather a tool than a central theme of this book we confine
ourselves to an overview of the most important parts of the topic, leaving
some of the “routine but tedious calculations” as exercises.
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2.1 Sets

Definitions; Notation

A set is a collection of “objects”, concrete or abstract, called elements. A set
is finite if the number of elements is finite, and it is countable if the number of
elements is countable, that is, if one can label them by the positive integers in
such a manner that no element remains unlabeled. Sets are usually denoted
by capitals from the early part of the alphabet, A, B, C, and so on. If several
sets are related, “of the same kind”, it is convenient to use the same letter for
them, but to add indices; A1, A2, A3, . . ..

The set A = {1, 2, . . . , n} is finite; |A| = n. The natural numbers, N

constitute a countable set, and so do the set of rationals, Q, whereas the
set of irrationals and the set of reals, R, are uncountable, as is commonly
verified by Cantor’s diagonal method. Although the natural numbers and
the reals belong to different collections of sets they are both infinite in the
sense that the number of elements is infinite in both sets, but the infinities are
different. The same distinction holds true for the rationals and the irrationals.
Infinities are distinguished with the aid of the cardinal numbers, which came
about after Cantor’s proof of the fact that the infinity of the reals is larger
than that of the natural numbers, that there are “more” reals than natural
numbers. Cardinal numbers are denoted by the Hebrew letter alef, where the
successively larger cardinal numbers have increasing indices. The first cardinal
number is ℵ0 = |N|, the cardinality of N. Moreover, |R| = 2ℵ0 .

Let us mention in passing that a long-standing question, in fact, one of
Hilbert’s famous problems, has been whether or not there exist infinities be-
tween |N| and |R|. The famous continuum hypothesis states that this is not the
case, a claim that can be formulated as ℵ1 = 2ℵ0 . The interesting fact is that
it has been proved that this claim can neither be proved nor disproved within
the usual axiomatic framework of mathematics. Moreover, one may assume
it to be true or false, and neither assumption will lead to any contradictory
results. The continuum hypothesis is said to be undecidable. For more, see
[51].

Set Operations

Just as real (or complex) numbers can be added or multiplied, there exist
operations on sets. Let A, A1, A2, . . . and B, B1, B2, . . . be sets.

• Union: A ∪B = {x : x ∈ A or x ∈ B};
• Intersection: A ∩B = {x : x ∈ A and x ∈ B};
• Complement: Ac = {x : x /∈ A};
• Difference: A � B = A ∩Bc;
• Symmetric difference: A � B = (A � B) ∪ (B � A).
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We also use standard notations such as ∪n
k=1Ak and ∩∞

j=1Bj for unions and
intersections of finitely or countably many sets.

Exercise 2.1. Check to what extent the associative and distributive rules for these
operations are valid. �

Some additional terminology:

• the empty set: ∅;
• subset: A is a subset of B, A ⊂ B, if x ∈ A =⇒ x ∈ B;
• disjoint: A and B are disjoint if A ∩B = ∅;
• power set: P(Ω) = {A : A ⊂ Ω};
• {An, n ≥ 1} is non-decreasing , An ↗ , if A1 ⊂ A2 ⊂ · · · ;
• {An, n ≥ 1} is non-increasing , An ↘ , if A1 ⊃ A2 ⊃ · · · .
The de Morgan formulas,

( n⋃
k=1

Ak

)c

=
n⋂

k=1

Ac
k and

( n⋂
k=1

Ak

)c

=
n⋃

k=1

Ac
k , (2.1)

can be verified by picking ω ∈ Ω belonging to the set made up by the left-
hand side and then show that it also belongs to the right-hand side, after which
one does the same the other way around (please do that!). Alternatively one
realizes that both members express the same fact. In the first case, this is the
fact that an element that does not belong to any Ak whatsoever belongs to
all complements, and therefore to their intersection. In the second case this is
the fact that an element that does not belong to every Ak belongs to at least
one of the complements.

Limits of Sets

It is also possible to define limits of sets. However, not every sequence of sets
has a limit.

Definition 2.1. Let {An, n ≥ 1} be a sequence of subsets of Ω. We define

A∗ = lim inf
n→∞

An =
∞⋃

n=1

∞⋂
m=n

Am,

A∗ = lim sup
n→∞

An =
∞⋂

n=1

∞⋃
m=n

Am.

If the sets A∗ and A∗ agree, then

A = A∗ = A∗ = lim
n→∞

An. �

One instance when a limit exists is when the sequence of sets is monotone.
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Proposition 2.1. Let {An, n ≥ 1} be a sequence of subsets of Ω.

(i) If A1 ⊂ A2 ⊂ A3 · · · , then

lim
n→∞

An =
∞⋃

n=1

An.

(ii) If A1 ⊃ A2 ⊃ A3 · · · , then

lim
n→∞

An =
∞⋂

n=1

An.

Exercise 2.2. Prove the proposition. �

2.2 Collections of Sets

Collections of sets, are defined according to a setup of rules. Different rules
yield different collections. Certain collections are more easy to deal with than
others depending on the property or theorem to prove. We now present a
number of rules and collections, as well as results on how they connect. Since
much of this is more or less well known to a mathematics student we leave
essentially all proofs, which consist of longer or shorter, sometimes routine
but tedious, manipulations, as exercises.

Let A be a non-empty collection of subsets of Ω, and consider the following
set relations:

(a) A ∈ A =⇒ Ac ∈ A;
(b) A, B ∈ A =⇒ A ∪B ∈ A;
(c) A, B ∈ A =⇒ A ∩B ∈ A;
(d) A, B ∈ A, B ⊂ A =⇒ A � B ∈ A;
(e) An ∈ A, n ≥ 1, =⇒

⋃∞
n=1 An ∈ A;

(f) An ∈ A, n ≥ 1, Ai ∩Aj = ∅, i �= j =⇒
⋃∞

n=1 An ∈ A;
(g) An ∈ A, n ≥ 1, =⇒

⋂∞
n=1 An ∈ A;

(h) An ∈ A, n ≥ 1, An ↗ =⇒
⋃∞

n=1 An ∈ A;
(j) An ∈ A, n ≥ 1, An ↘ =⇒

⋂∞
n=1 An ∈ A.

A number of relations among these rules and extensions of them can be estab-
lished. For example (a) and one of (b) and (c), together with the de Morgan
formulas, yield the other; (a) and one of (e) and (g), together with the de
Morgan formulas, yield the other; (b) and induction shows that (b) can be
extended to any finite union of sets; (c) and induction shows that (c) can be
extended to any finite intersection of sets, and so on.

Exercise 2.3. Check these statements, and verify some more. �
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Here are now definitions of some collections of sets.

Definition 2.2. Let A be a collection of subsets of Ω.

• A is an algebra or a field if Ω ∈ A and properties (a) and (b) hold;
• A is a σ-algebra or a σ-field if Ω ∈ A and properties (a) and (e) hold;
• A is a monotone class if properties (h) and (j) hold;
• A is a π-system if property (c) holds;
• A is a Dynkin system if Ω ∈ A, and properties (d) and (h) hold. �

Remark 2.1. Dynkin systems are also called λ-systems.

Remark 2.2. The definition of a Dynkin system varies. One alternative, in
addition to the assumption that Ω ∈ A, is that (a) and (f) hold. �

Exercise 2.4. The obvious exercise is to show that the two definitions of a Dynkin
system are equivalent. �

The definitions of the different collections of sets are obviously based on
minimal requirements. By manipulating the different properties (a)–(j), for
example together with the de Morgan formulas, other properties can be de-
rived. The following relations between different collections of sets are obtained
by such manipulations.

Theorem 2.1. The following connections hold:

1. Every algebra is a π-system.
2. Every σ-algebra is an algebra.
3. An algebra is a σ-algebra if and only if it is a monotone class.
4. Every σ-algebra is a Dynkin system.
5. A Dynkin system is a σ-algebra if and only if it is π-system.
6. Every Dynkin system is a monotone class.
7. Every σ-algebra is a monotone class.
8. The power set of any subset of Ω is a σ-algebra on that subset.
9. The intersection of any number of σ-algebras, countable or uncountable,

is, again, a σ-algebra.
10. The countable union of a non-decreasing sequence of σ-algebras is an

algebra, but not necessarily a σ-algebra.
11. If A is a σ-algebra, and B ⊂ Ω, then B ∩ A = {B ∩A : A ∈ A} is a

σ-algebra on B.
12. If Ω and Ω′ are sets, A′ a σ-algebra in Ω′ and T : Ω → Ω′ a mapping,

then T−1(A′) = {T−1(A′) : A′ ∈ A′} is a σ-algebra on Ω.

Exercise 2.5. (a) Prove the above statements.

(b) Find two σ-algebras, the union of which is not an algebra (only very few elements
in each suffice).

(c) Prove that if, for the infinite set Ω, A consists of all A ⊂ Ω, such that either A
or Ac is finite, then A is an algebra, but not a σ-algebra. �
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2.3 Generators

Let A be a collection of subsets of Ω. Since the power set, P(Ω), is a σ-
algebra, it follows that there exists at least one σ-algebra containing A. Since,
moreover, the intersection of any number of σ-algebras is, again, a σ-algebra,
there exists a smallest σ-algebra containing A. In fact, let

F∗ = {σ-algebras ⊃ A}.

The smallest σ-algebra containing A equals⋂
G∈F∗

G,

and is unique since we have intersected all σ-algebras containing A.

Definition 2.3. Let A be a collection of subsets of Ω. The smallest σ-algebra
containing A, σ{A}, is called the σ-algebra generated by A. Similarly, the
smallest Dynkin system containing A, D{A}, is called the Dynkin system gen-
erated by A, and the smallest monotone class containing A, M{A}, is called
the monotone class generated by A. In each case A is called the generator of
the actual collection. �

Remark 2.3. The σ-algebra generated by A is also called “the minimal σ-
algebra containing A”. Similarly for the other collections.

Remark 2.4. Let {An, n ≥ 1} be σ-algebras. Even though the union need not
be a σ-algebra, σ{

⋃∞
n=1An}, that is, the σ-algebra generated by {An, n ≥ 1},

always exists. �

Exercise 2.6. Prove that

(i) If A = A, a single set, then σ{A} = σ{A} = {∅, A, Ac, Ω}.
(ii) If A is a σ-algebra, then σ{A} = A. �

The importance and usefulness of generators is demonstrated by the following
two results.

Theorem 2.2. Let A be an algebra. Then

M{A} = σ{A}.

Proof. Since every σ-algebra is a monotone class (Theorem 2.1) and M{A}
is the minimal monotone class containing A, we know from the outset that
M{A} ⊂ σ{A}. To prove the opposite inclusion we must, due to the mini-
mality of σ{A}, prove that M{A} is a σ-algebra, for which it is sufficient to
prove that M{A} is an algebra (Theorem 2.1 once more). This means that
we have to verify that properties (a) and (b) hold;
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B ∈ M{A} =⇒ Bc ∈ M{A}, and

B, C ∈ M{A} =⇒ B ∪ C ∈ M{A}.
(2.2)

Toward this end, let

E1 =
{
B ∈ M{A} : B ∪ C ∈ M{A} for all C ∈ A

}
,

E2 =
{
B ∈ M{A} : Bc ∈ M{A}

}
.

We first note that E1 is a monotone class via the identities( ∞⋂
k=1

Bk

)
∪ C =

∞⋂
k=1

(Bk ∪ C) and
( ∞⋃

k=1

Bk

)
∪ C =

∞⋃
k=1

(Bk ∪ C), (2.3)

and that E2 is a monotone class via the de Morgan formulas, (2.1).
Secondly, by definition, A ⊂ M{A}, and by construction,

A ⊂ Ek ⊂ M{A}, k = 1, 2,

so that, in view of minimality of M{A},

M{A} = E1 = E2.

To finish off, let

E3 =
{
B ∈ M{A} : B ∪ C ∈ M{A} for all C ∈ M{A}

}
.

Looking at E1 = M{A} from another angle, we have shown that for every
B ∈ M{A} we know that if C ∈ A, then B ∪ C ∈ M{A}, which means that

A ⊂ E3.

Moreover, E3 is a monotone class via (2.3), so that, by minimality again, we
must have M{A} = E3.

We have thus shown that M{A} obeys properties (a) and (b). �

By suppressing the minimality of the monotone class, the following corol-
lary emerges (because an arbitrary monotone class contains the minimal one).

Corollary 2.1. If A is an algebra and G a monotone class containing A, then

G ⊃ σ{A}.

A related theorem, the monotone class theorem, concerns the equality between
the Dynkin system and the σ-algebra generated by the same π-system.

Theorem 2.3. (The monotone class theorem)
If A is a π-system on Ω, then

D{A} = σ{A}.

Proof. The proof runs along the same lines as the previous one. Namely, one
first observes that D{A} ⊂ σ{A}, since every σ-algebra is a Dynkin system
(Theorem 2.1) and D{A} is the minimal Dynkin system containing A.
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For the converse we must show that D{A} is a π-system (Theorem 2.1).
In order to achieve this, let

DC =
{
B ⊂ Ω : B ∩ C ∈ D{A}

}
for C ∈ D{A}.

We claim that DC is a Dynkin system.
To prove this we check the requirements for a collection of sets to constitute

a Dynkin system. In this case we use the following alternative (recall Remark
2.2), namely, we show that Ω ∈ DC , and that (a) and (f) hold.

Let C ∈ D{A}.
• Since Ω ∩ C = C, it follows that Ω ∈ DC .
• If B ∈ DC , then

Bc ∩ C = (Ω � B) ∩ C = (Ω ∩ C) � (B ∩ C),

which shows that Bc ∈ DC .
• Finally, if {Bn, n ≥ 1} are disjoint sets in DC , then

( ∞⋃
n=1

Bn

)
∩ C =

∞⋃
n=1

(Bn ∩ C),

which proves that
⋃∞

n=1 Bn ∈ DC .
The requirements for DC to be a Dynkin system are thus fulfilled. And,

since C was arbitrarily chosen, this is true for any C ∈ D{A}.
Now, since, by definition, A ⊂ DA for every A ∈ A, it follows that

D{A} ⊂ DA for every A ∈ A.

For C ∈ D{A} we now have C∩A ∈ D{A} for every A ∈ A, which implies that
A ⊂ DC , and, hence, that D{A} ⊂ DC for every C ∈ D{A}. Consequently,

B, C ∈ D{A} =⇒ B ∩ C ∈ D{A},

that is, D{A} is a π-system. �

By combining Theorems 2.2 and 2.3 (and the exercise preceding the for-
mer) the following result emerges.

Corollary 2.2. If A is a σ-algebra, then

M{A} = D{A} = σ{A} = A.

2.4 A Metatheorem and Some Consequences

A frequent proof technique is to establish some kind of reduction from an
infinite setting to a finite one; simple functions, rectangles, and so on. Such
proofs can often be identified in that they open by statements such as

“it suffices to check rectangles”,
“it suffices to check step functions”.
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The basic idea behind such statements is that there either exists some
approximation theorem that “takes care of the rest”, or that some convenient
part of Theorem 2.1 can be exploited for the remaining part of the proof.
Our next result puts this device into a more stringent form, although in a
somewhat metaphoric sense.

Theorem 2.4. (A Metatheorem)
(i) Suppose that some property holds for some monotone class E of subsets. If
A is an algebra that generates the σ-algebra G and A ⊂ E, then E ⊃ G.
(ii) Suppose that some property holds for some Dynkin system E of subsets. If
A is a π-system that generates the σ-algebra G and A ⊂ E, then E ⊃ G.

Proof. Let
E = {E : the property is satisfied}.

(i): It follows from the assumptions and Theorem 2.2, respectively, that

E ⊃ M{A} = σ{A} = G.

(ii): Apply Theorem 2.3 to obtain

E ⊃ D{A} = σ{A} = G. �

Remark 2.5. As the reader may have discovered, the proofs of Theorems 2.2
and 2.3 are of this kind.

Remark 2.6. The second half of the theorem is called Dynkin’s π-λ theorem.�

3 The Probability Space

We now have sufficient mathematics at our disposal for a formal definition of
the probability space or probability triple, (Ω,F , P ).

Definition 3.1. The triple (Ω,F , P ) is a probability (measure) space if

• Ω is the sample space, that is, some (possibly abstract) set;
• F is a σ-algebra of sets (events) – the measurable subsets of Ω.

The “atoms”, {ω}, of Ω, are called elementary events;
• P is a probability measure,

that is, P satisfies the following Kolmogorov axioms:

1. For any A ∈ F , there exists a number P (A) ≥ 0; the probability of A.
2. P (Ω) = 1.
3. Let {An, n ≥ 1} be disjoint. Then

P (
∞⋃

n=1

An) =
∞∑

n=1

P (An). �
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Remark 3.1. Axiom 3 is called countable additivity (in contrast to finite addi-
tivity). �

Departing from the axioms (only!) one can now derive various relations be-
tween probabilities of unions, subsets, complements and so on. Following is a
list of some of them:

Let A, A1, A2, . . . be measurable sets. Then

• P (Ac) = 1− P (A);
• P (∅) = 0;
• P (A1 ∪A2) ≤ P (A1) + P (A2);
• A1 ⊂ A2 =⇒ P (A1) ≤ P (A2);
• P (

⋃n
k=1 Ak) + P (

⋂n
k=1 Ac

k) = 1.

Exercise 3.1. Prove these relations. �

Remark 3.2. There exist non-empty sets which have probability 0. �

From now on we assume, unless otherwise stated, that all sets are measurable.

3.1 Limits and Completeness

One of the basic questions in mathematics is to what extent limits of objects
carry over to limits of functions of objects. In the present context the question
amounts to whether or not probabilities of converging sets converge.

Theorem 3.1. Suppose that A and {An, n ≥ 1} are subsets of Ω, such that
An ↗ A (An ↘ A) as n →∞. Then

P (An) ↗ P (A) ( P (An) ↘ P (A) ) as n →∞.

Proof. Suppose that An ↗ A, let B1 = A1 and set Bn = An ∩ Ac
n−1, n ≥ 2.

Then {Bn, n ≥ 1} are disjoint sets, and

An =
n⋃

k=1

Bk for all n ≥ 1, and
∞⋃

n=1

An =
∞⋃

n=1

Bn,

so that by Proposition 2.1 (and σ-additivity)

P (An) =
n∑

k=1

P (Bk) ↗
∞∑

k=1

P (Bk) = P
( ∞⋃

k=1

Bk

)
= P

( ∞⋃
k=1

Ak

)
= P (A).

The case An ↘ A follows similarly, or, alternatively, by considering comple-
ments (since Ac

n ↗ Ac as n →∞). �

A slight extension of this result yields the following one.
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Theorem 3.2. Let A and {An, n ≥ 1} be subsets of Ω, and set, as before,
A∗ = lim infn→∞ An, and A∗ = lim supn→∞ An. Then

(i) P (A∗) ≤ lim infn→∞ P (An) ≤ lim supn→∞ P (An) ≤ P (A∗);
(ii) An → A as n →∞ =⇒ P (An) → P (A) as n →∞.

Proof. (i): By definition, for any n, we obtain, recalling Proposition 2.1, that

A∗ ↖
∞⋂

m=n

Am ⊂ An ⊂
∞⋃

m=n

Am ↘ A∗,

where the limits are taken as n →∞. Joining this with Theorem 3.1, yields

P (A∗) ≤ lim inf
n→∞

P (An) ≤ lim sup
n→∞

P (An) ≤ P (A∗),

which proves (i), from which (ii) is immediate, since the extreme members
coincide under the additional assumption of set convergence. �

As a corollary we obtain the following intuitively reasonable result.

Corollary 3.1. Suppose that An → ∅ as n →∞. Then

P (An) → 0 as n →∞.

Proof. Immediate from the previous theorem with A = ∅. �

To prepare for the next two results we introduce the notion of a null set.

Definition 3.2. A set A is a null set if there exists B ∈ F , such that B ⊃ A
with P (B) = 0. �

In normal prose this means that a set is a null set if it is contained in a
measurable set which has probability 0. In particular, null sets need not be
measurable. The concept of completeness takes care of that problem.

Definition 3.3. A probability space (Ω,F , P ) is complete if every null set is
measurable, that is, if

A ⊂ B ∈ F , P (B) = 0 =⇒ A ∈ F , (and, hence, P (A) = 0). �

One can show that it is always possible to enlarge a given σ-algebra, and
extend the given probability measure to make the, thus, extended probabil-
ity space complete; one completes the probability space. It is therefore no
restriction really to assume from the outset that a given probability space is
complete. In order to avoid being distracted from the main path, we assume
from now on, without further explicit mentioning, that all probability spaces
are complete. Completeness is important in the theory of stochastic processes
and for stochastic integration.

We close this subsection by showing that the union of a countable number
of null sets remains a null set, and that the intersection of countably many
sets with probability 1 also has probability 1. The meaning of the latter is that
peeling off sets of probability 0 countably many times still does not reduce
the intersection with more than a null set.
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Theorem 3.3. Suppose that {An, n ≥ 1} are subsets of Ω with P (An) = 0
for all n. Then

P
( ∞⋃

n=1

An

)
= 0.

Proof. By σ-sub-additivity,

P
( ∞⋃

n=1

An

)
≤

∞∑
n=1

P (An) = 0. �

Theorem 3.4. Suppose that {Bn, n ≥ 1} are subsets of Ω with P (Bn) = 1
for all n. Then

P
( ∞⋂

n=1

Bn

)
= 1.

Proof. Using the de Morgan formulas (2.1) and Theorem 3.3,

P
( ∞⋂

n=1

Bn

)
= 1− P

( ∞⋃
n=1

Bc
n

)
= 1. �

Having defined the probability space, we prove, as a first result that for
two probability measures to coincide it suffices that they agree on a suitable
generator. The proof is a nice illustration of the Metatheorem, Theorem 2.4.

Theorem 3.5. Suppose that P and Q are probability measures defined on
the same probability space (Ω,F), and that F is generated by a π-system A.
If P (A) = Q(A) for all A ∈ A, then P = Q, i.e., P (A) = Q(A) for all A ∈ F .

Proof. Define
E = {A ∈ F : P (A) = Q(A)}.

Since

• Ω ∈ E ,
• A, B ∈ E , A ⊂ B =⇒ B � A ∈ E ,
• An ∈ E , n ≥ 1, An ↗ =⇒

⋃
n An ∈ E ,

where we used Theorem 3.1 in the final step, it follows that E is a Dynkin
system. An application of Theorem 2.4 finishes the proof. �

3.2 An Approximation Lemma

The following result states that any set in a σ-algebra can be arbitrary well
approximated by another set that belongs to an algebra that generates the σ-
algebra. The need for this result is the fact that the infinite union of σ-algebras
is not necessarily a σ-algebra (recall Theorem 2.1.10).

The general description of the result reveals that it reduces an infinite set-
ting to a finite one, which suggests that the proof builds on the metatheorem
technique.
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Lemma 3.1. Suppose that F0 is an algebra that generates the σ-algebra F ,
that is, F = σ{F0}. For any set A ∈ F and any ε > 0 there exists a set
Aε ∈ F0, such that

P (A � Aε) < ε.

Proof. Let ε > 0, and define

G = {A ∈ F : P (A � Aε) < ε for some Aε ∈ F0}.

(i): If A ∈ G, then Ac ∈ G, since Ac � (Aε)c = A � Aε.
(ii): If An ∈ G, n ≥ 1, then so does the union. Namely, set A =

⋃∞
n=1 An, let

ε be given and choose n∗, such that

P

(
A \

n∗⋃
k=1

Ak

)
< ε. (3.1)

Next, let {Ak,ε ⊂ F0, 1 ≤ k ≤ n∗} be such that

P (Ak � Ak,ε) < ε for 1 ≤ k ≤ n∗. (3.2)

Since ( n∗⋃
k=1

Ak

)
�
( n∗⋃

k=1

Ak,ε

)
⊂

n∗⋃
k=1

(Ak � Ak,ε),

it follows that

P

(( n∗⋃
k=1

Ak

)
�
( n∗⋃

k=1

Ak,ε

))
≤

n∗∑
k=1

P (Ak � Ak,ε) < n∗ε,

so that, finally,

P

(
A �

( n∗⋃
k=1

Ak,ε

))
< (n∗ + 1)ε.

This proves the second claim – the claim would have followed with an approx-
imation error ε instead of (n∗ + 1)ε if we had chosen ε to be ε/2 in (3.1) and
as ε/(2n∗) in (3.2). But that’s cheating.

To summarize: G is non-empty, since G ⊃ F0 by construction (choose
Aε = A whenever A ∈ F0), and G obeys properties (a) and (e), so that G is a
σ-algebra. Moreover, G ⊃ F , since F is the minimal σ-algebra containing F0,
and, since, trivially, G ⊂ F , it finally follows that G = F . �

3.3 The Borel Sets on R

Definition 3.4. A set Ω together with an associated σ-algebra, A, i.e., the
pair (Ω,A), is called a measurable space. �
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In this subsection we shall find out what the terminology we have introduced
above means for Ω = R, and characterize R, the σ-algebra of Borel sets on
the real line.

A set F is open if, for every point x ∈ F , there exists an ε-ball, B(x, ε) ⊂ F .
This means that the boundary points do not belong to the set; ∂F �⊂ F . A set
G is closed if its complement Gc is open. If G is closed, then ∂G ⊂ G.

The sets in R are called Borel sets, and the space (R,R) is called the Borel
space. The σ-algebra of Borel sets, or the Borel-σ-algebra, is defined as the
σ-algebra generated by the open subsets of R;

R = σ{F : F is open}. (3.3)

An important fact is that the Borel sets can, equivalently, be generated by
intervals as follows.

Theorem 3.6. We have

R = σ{(a, b], −∞ ≤ a ≤ b < ∞}
= σ{[a, b), −∞ < a ≤ b ≤ ∞}
= σ{(a, b), −∞ ≤ a ≤ b ≤ ∞}
= σ{[a, b], −∞ < a ≤ b < ∞}
= σ{(−∞, b], −∞ < b < ∞}.

Proof. We confine ourselves by providing a sketch. The equivalences build on
relations such as

(a, b) =
∞⋃

n=1

(
a, b− 1

n

]
and (a, b] =

∞⋂
n=1

(
a, b +

1
n

)
,

and so on, or, more generally, by choosing a sequence {xn, n ≥ 1}, such that,
if xn ↓ 0 as n →∞, then

(a, b) =
∞⋃

n=1

(a, b− xn] and (a, b] =
∞⋂

n=1

(a, b + xn) .

Once these relations have been established one shows that a given σ-algebra
is contained in another one and vice versa (which proves that they coincide),
after which one of them is proven to be equivalent to (3.3). We leave the
(boring?) details to the reader. �

For probability measures on the real line Theorem 3.5 becomes

Theorem 3.7. Suppose that P and Q are probability measures on (R,R) that
agree on all intervals (a, b], −∞ ≤ a ≤ b < ∞, say. Then P = Q.

Proof. The collection of intervals constitutes a π-system, that generates R. �
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Remark 3.3. The theorem obviously remains true for all kinds of intervals
mentioned in Theorem 3.6. �

The statement of Theorem 3.7 amounts to the fact that, if we know a prob-
ability measure on all intervals (of one kind) we know it on any Borel set.
Knowledge on the intervals thus determines the measure. The intervals are
said to form a determining class.

For comparison with higher dimensions we interpret intervals as one-
dimensional rectangles.

3.4 The Borel Sets on Rn

For Borel sets in higher (finite) dimensions one extends Theorem 3.6 to higher-
dimensional rectangles. The extension of Theorem 3.7 tells us that two prob-
ability measures on (Rn,Rn) agree if and only if they agree on the rectangles.

In infinite dimensions things become much harder. Existence follows from
the famous Kolmogorov extension theorem. Moreover, by using the metatheo-
rem technique one can show that if the finite-dimensional distributions of two
probability measures agree, then the measures agree. The finite-dimensional
distributions constitute a determining class. We omit all details.

4 Independence; Conditional Probabilities

One of the most central concepts of probability theory is independence, which
means that successive experiments do not influence each other, that the future
does not depend on the past, that knowledge of the outcomes so far does not
provide any information about future experiments.

Definition 4.1. The events {Ak, 1 ≤ k ≤ n} are independent iff

P
(⋂

Aik

)
=
∏

P (Aik
),

where intersections and products, respectively, are to be taken over all subsets
of {1, 2, . . . , n}.

The events {An, n ≥ 1} are independent if {Ak, 1 ≤ k ≤ n} are indepen-
dent for all n. �

Exercise 4.1. How many equations does one have to check in order to establish
that {Ak, 1 ≤ k ≤ n} are independent? �

The classical examples are coin-tossing and throwing dice where successive
outcomes are independent, and sampling without replacement from a finite
population, where this is not the case, the typical example being drawing
cards from a card deck.
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Exercise 4.2. Prove that, if A and B are independent, then so are A and Bc, Ac

and B, and Ac and Bc. �

A suggestive way to illustrate independence is to introduce conditional prob-
abilities.

Definition 4.2. Let A and B be two events, and suppose that P (A) > 0. The
conditional probability of B given A is defined as

P (B | A) =
P (A ∩B)

P (A)
. �

The conditional probability thus measures the probability of B given that
we know that A has occurred. The numerator is the probability that both of
them occur, and the denominator rescales this number in order for conditional
probabilities to satisfy the Kolmogorov axioms.

Exercise 4.3. Prove that, given A with P (A) > 0, P ( · | A) satisfies the Kol-
mogorov axioms, and, hence, is a bona fide probability measure. �

If, in particular, A and B are independent, then

P (B | A) =
P (A) · P (B)

P (A)
= P (B),

which means that knowing that A has occurred does not change the proba-
bility of B occurring. As expected.

Remark 4.1. It is also possible to begin by defining conditional probabilities,
after which one “discovers” that for events satisfying P (A∩B) = P (A) ·P (B)
one has P (B | A) = P (B), which implies that for such events, the fact that
A has occurred does not change the probability of B occurring, after which
one introduces the notion of independence. In order to take care of sets with
measure 0 one observes that

0 ≤ P (A ∩B) ≤ P (A) = 0,

i.e., null sets are independent of everything.
Note, in particular, that a null set is independent of itself. �

4.1 The Law of Total Probability; Bayes’ Formula

Having introduced conditional probabilities, the following facts are just around
the corner.

Definition 4.3. A partition of Ω is a collection of disjoint sets, the union of
which equals Ω. Technically, {Hk, 1 ≤ k ≤ n} is a partition of Ω if

Ω =
n⋃

k=1

Hk, where Hi ∩Hj = ∅ for 1 ≤ i, j ≤ n, i �= j. �
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Proposition 4.1. (The law of total probability)
Let {Hk, 1 ≤ k ≤ n} be a partition of Ω. Then, for any event A ⊂ Ω,

P (A) =
n∑

k=1

P (A | Hk) · P (Hk).

Proposition 4.2. (Bayes’ formula)
Let {Hk, 1 ≤ k ≤ n} be a partition of Ω. Then, for any event A ⊂ Ω, such
that P (A) > 0,

P (Hk | A) =
P (A | Hk) · P (Hk)

P (A)
=

P (A | Hk) · P (Hk)∑n
i=1 P (A | Hi) · P (Hi)

.

Exercise 4.4. Prove these two results. �

4.2 Independence of Collections of Events

Next we extend the definition of independence to independence between col-
lections, in particular σ-algebras, of events.

Definition 4.4. Let {Ak} be a finite or infinite collection. The collections are
independent iff, for any k ∈ N, and non-empty subset of indices i1, i2, . . . , ik,
the events {Aij ∈ Aij , j = 1, 2, . . . , k} are independent. �

Remark 4.2. It follows from the definition that:

• If every collection of events contains exactly one event, the definition re-
duces to Definition 4.1.

• An infinite collection of events is independent if and only if every finite
sub-collection is independent.

• Every sub-collection of independent events is independent.
• Disjoint sub-collections of independent events are independent. �

Exercise 4.5. Check the statements of the remark. �

From the metatheorem and some of its consequences we already know that
it frequently suffices to “check rectangles”, which, more stringently speaking,
amounts to the fact that it suffices to check some generator. This is also true
for independence.

Theorem 4.1. (i) If {An, n ≥ 1} are independent non-empty collections
of events, then so are

{
D{An}, n ≥ 1}, the Dynkin systems generated by

{An, n ≥ 1}.
(ii) If, in addition, {An, n ≥ 1} are π-systems, then

{
σ{An}, n ≥ 1

}
, the

σ-algebras generated by {An, n ≥ 1}, are independent. �

Proof. Since, as was noticed before, an infinite collection is independent if
and only if every finite subcollection is independent, it is no restriction to
depart from a finite collection {Ak, 1 ≤ k ≤ n}. Moreover, once the result is
established for n = 2, the general case follows by induction.
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(i): Let n = 2, and define

EC = {B ∈ D{A1} : P (B ∩ C) = P (B) · P (C)} for C ∈ A2.

We claim that EC is a Dynkin system for every C ∈ A2.
To see this we argue as in the proof of Theorem 2.3:
Let C ∈ A2.

• Since P (Ω ∩ C) = P (C) = P (Ω) · P (C), we have Ω ∈ EC .
• For B ∈ EC , we have Bc ∈ EC , since

P (Bc ∩ C) = P ((Ω � B) ∩ C) = P ((Ω ∩ C) � (B ∩ C))
= P (C � (B ∩ C)) = P (C)− P (B ∩ C)
= P (C)− P (B)P (C) = (1− P (B))P (C)
= P (Bc) · P (C).

• If Bn ∈ EC , n ≥ 1, are disjoint sets, then
⋃∞

n=1 Bn ∈ EC , because

P

(( ∞⋃
n=1

Bn

)
∩ C

)
= P

( ∞⋃
n=1

(Bn ∩ C)
)

=
∞∑

n=1

P (Bn ∩ C)

=
∞∑

n=1

P (Bn) · P (C) = P
( ∞⋃

n=1

Bn

)
· P (C).

This concludes the proof of the fact that EC is a Dynkin system for every
C ∈ A2.

Next, since A1 ⊂ EC for every C ∈ A2, it follows that, D{A1} ⊂ EC for
every C ∈ A2, which, by definition, means that D{A1} and A2 are indepen-
dent.

Repeating the same arguments with

FC = {B ∈ D{A2} : P (B ∩ C) = P (B) · P (C)} for C ∈ D{A1},

that is, with D{A2} and D{A1} playing the roles of D{A1} and A2, respec-
tively, shows that D{A1} and D{A2} are independent as desired.

This completes the proof of the first part of the theorem.
(ii): The second half is immediate from the first part and Theorem 2.3, ac-
cording to which the σ-algebras and Dynkin systems coincide because of the
assumption that {An, n ≥ 1} are π-systems. �

4.3 Pair-wise Independence

This is an independence concept which is slightly weaker than independence
as defined in Definition 4.1.

Definition 4.5. The events {Ak, 1 ≤ k ≤ n} are pair-wise independent iff

P (Ai ∩Aj) = P (Ai) · P (Aj) for all 1 ≤ i �= j ≤ n. �
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Exercise 4.6. How many equations does one have to check? �

Having defined pair-wise independence the obvious request at this point is an
example which shows that this is something different from independence as
defined earlier.

Example 4.1. Pick one of the four points (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1, 1)
at random, that is, with probability 1/4 each, and let

Ak = {the k th coordinate equals 1}, k = 1, 2, 3.

An easy calculation shows that

P (Ak) =
1
2

for k = 1, 2, 3,

P (Ai ∩Aj) =
1
4

for i, j = 1, 2, 3, i �= j,

P (Ai)P (Aj) =
1
4

for i, j = 1, 2, 3, i �= j,

P (A1 ∩A2 ∩A3) =
1
4
,

P (A1)P (A2)P (A3) =
1
8
.

The sets A1, A2, A3 are thus pair-wise independent, but not independent. �

5 The Kolmogorov Zero-one Law

One magic result in probability theory concerns situations in which the prob-
ability of an event can only be 0 or 1. Theorems that provide criteria for such
situations are called zero-one laws. We shall encounter one such result here,
another one in Section 2.18, and then reprove the first one in Chapter 10.

In order to state the theorem we need to define the σ-algebra that contains
information about “what happens at infinity”.

Let {An, n ≥ 1} be arbitrary events and, set

An = σ{A1, A2, . . . , An} for n ≥ 1,

A′
n = σ{An+1, An+2, . . .} for n ≥ 0.

Definition 5.1. The tail-σ-field is defined as

T =
∞⋂

n=0

A′
n.

�

Remark 5.1. Since T is defined as an intersection of σ-algebras it is, indeed,
itself a σ-algebra. �
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If we think of n as time, then A′
n contains the information beyond time n

and T contains the information “beyond time n for all n”, that is, loosely
speaking, the information at infinity. Another name for the tail-σ-field is the
σ-algebra of remote events.

The famous Kolmogorov zero-one law states that if {An, n ≥ 1} are in-
dependent events, then the tail-σ-field is trivial, which means that it only
contains sets of probability measure 0 or 1.

Theorem 5.1. (The Kolmogorov zero-one law)
Suppose that {An, n ≥ 1} are independent events. If A ∈ T , then

P (A) = 0 or 1.

There exist several proofs of this theorem. We shall provide one “proof” and
one proof.
“Proof”. This is only a sketch which has to be rectified. The essential idea is
that if A ∈ T , then A ∈ A′

n for all n and, hence, is independent of An for all
n. This implies, on the one hand, that

A ∈ σ{A1, A2, A3, . . .}, (5.1)

and, on the other hand, that

A is independent of σ{A1, A2, A3, . . .}. (5.2)

By combining the two it follows that A is independent of itself, which leads
to the very special equation,

P (A) = P (A ∩A) = P (A) · P (A) = (P (A))2, (5.3)

the solutions of which are P (A) = 0 and P (A) = 1. “�”
This is not completely stringent; the passages to infinity have to be per-

formed with greater care, remember, for example, that the infinite union of
σ-algebras need not be a σ-algebra.

Proof. Suppose that A ∈ T . This means that A ∈ A′
n for every n, and, hence,

that A and An are independent for every n.
To turn the “proof” into a proof we need to rectify the transition to (5.2).

This is achieved by the following slight elaboration of Lemma 3.1, namely,
that there exists a sequence En ∈ An, such that

P (En � A) → 0 as n →∞.

This tells us that

P (En ∩A) → P (A) as n →∞, (5.4)
P (En) → P (A) as n →∞. (5.5)

Moreover, since A ∈ A′
n for all n, it follows that A is independent of every

En, so that (5.4) can be rewritten as

P (A) · P (En) → P (A) as n →∞. (5.6)
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However, by (5.5) we also have

P (A) · P (En) → (P (A))2 as n →∞, (5.7)

which, in view of (5.6) forces the equation P (A) = (P (A))2, and we rediscover
(5.3) once again. �

Exercise 5.1. Write down the details of the elaboration of Lemma 3.1 that was
used in the section proof. �

We shall return to the theorem in Chapter 10 and provide another, very
elegant, proof (which, admittedly, rests on a lot more background theory).

6 Problems

Throughout, A, B, {An, n ≥ 1}, and {Bn, n ≥ 1} are subsets of Ω.

1. Show that

A � B = (A ∩Bc) ∪ (B ∩Ac) = (A ∪B) � (A ∩B),
Ac � Bc = A � B,

{A1 ∪A2} � {B1 ∪B2} ⊂ {A1 � B1} ∪ {A2 � B2}.

2. Which of the following statements are (not) true?

lim sup
n→∞

{An ∪Bn} = lim sup
n→∞

An ∪ lim sup
n→∞

Bn ;

lim sup
n→∞

{An ∩Bn} = lim sup
n→∞

An ∩ lim sup
n→∞

Bn ;

lim inf
n→∞

{An ∪Bn} = lim inf
n→∞

An ∪ lim inf
n→∞

Bn ;

lim inf
n→∞

{An ∩Bn} = lim inf
n→∞

An ∩ lim inf
n→∞

Bn ;

An → A, Bn → B =⇒ An ∪Bn → A ∪B as n →∞ ;
An → A, Bn → B =⇒ An ∩Bn → A ∩B as n →∞ .

3. Let Ω = R, set Ik = [k − 1, k) for k ≥ 1, and let An = σ{Ik, k =
1, 2, . . . , n}. Show that

⋃∞
n=1An is not a σ-algebra.

4. Suppose that Bk =
⋃k

j=1 Aj for k = 1, 2, . . . , n. Prove that

σ{B1, B2, . . . , Bn} = σ{A1, A2, . . . , An}.

5. Let {An, n ≥ 1} be a sequence of sets.
(a) Suppose that P (An) → 1 as n → ∞. Prove that there exists a subse-

quence {nk, k ≥ 1}, such that

P
( ∞⋂

k=1

Ank

)
> 0.
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(b) Show that this is not true if we only assume that

P (An) ≥ α for all n. (6.1)

(c) Show that, if An, n ≥ 1, are non-decreasing and such that (6.1) holds
for some α ∈ (0, 1), then

P
( ∞⋂

n=1

An

)
≥ α.

(d) Show that, if An, n ≥ 1, are non-increasing and

P (An) ≤ α for all n

for some α ∈ (0, 1), then

P
( ∞⋂

n=1

An

)
≤ α.

6. Show that

I{A ∪B} = max{I{A}, I{B}} = I{A}+ I{B} − I{A} · I{B} ;
I{A ∩B} = min{I{A}, I{B}} = I{A} · I{B} ;
I{A � B} = I{A}+ I{B} − 2I{A} · I{B} = (I{A} − I{B})2 .

7. Show that

An → A as n →∞ ⇐⇒ I{An} → I{A} as n →∞.

8. Let, for n ≥ 1, 0 ≤ an ↗ 1, and 1 < bn ↘ 1 as n →∞. Show that

sup
n

[0, an) = [0, 1) and/but sup
n

[0, an] �= [0, 1] ;

inf
n

[0, bn] = [0, 1] and inf
n

[0, bn) = [0, 1] .

9. The Bonferroni inequalities. Show that

P
( n⋃

k=1

Ak

)
≤

n∑
k=1

P (Ak) ;

P
( n⋃

k=1

Ak

)
≥

n∑
k=1

P (Ak)−
∑

1≤i<j≤n

P (Ai ∩Aj) ;

P
( n⋃

k=1

Ak

)
≤

n∑
k=1

P (Ak)−
∑

1≤i<j≤n

P (Ai ∩Aj)

+
∑

1≤i<j<k≤n

P (Ai ∩Aj ∩Ak) .
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10. The inclusion-exclusion formula. Show that

P
( n⋃

k=1

Ak

)
=

n∑
k=1

P (Ak)−
∑

1≤i<j≤n

P (Ai ∩Aj)

+
∑

1≤i<j<k≤n

P (Ai ∩Aj ∩Ak)

+ · · · − (−1)nP (A1 ∩A2 ∩ · · · ∩An) .

11. Suppose that the events {An, n ≥ 1} are independent. Show that the
inclusion-exclusion formula reduces to

P
( n⋃

k=1

Ak

)
= 1−

n∏
k=1

(
1− P (Ak)

)
.

12. Show, in the setup of the previous problem, that

P
( n⋃

k=1

Ak

)
≥ 1− exp

{
−

n∑
k=1

P (Ak)
}

,

∞∑
n=1

P (An) = ∞ =⇒ P
( ∞⋃

n=1

An

)
= 1 .

13. Let An, n ≥ 1, be Borel sets on the Lebesgue space ([0, 1],F(0, 1), λ).
Show that, if there exists η > 0, such that λ(An) ≥ η for all n, then there
exists at least one point that belongs to infinitely many sets An.

14. At the end of a busy day n fathers arrive at kindergarten to pick up their
kids. Each father picks a child to take home uniformly at random. Use the
inclusion-exclusion formula to show that the probability that at least one
father picks his own child equals

1− 1
2!

+
1
3!
− 1

4!
+ · · · − (−1)n 1

n!
,

and that this probability tends to 1− 1/e ≈ 0.6321 as n →∞.
♣ The mathematical formulation of this problem, which is called the rencontre

problem or the mathcing problem, is that we seek the probability that a
random permutation of the numbers 1, 2, . . . , n leaves at least one position
unchanged. The traditional (outdated) formulation is that n men pick a hat
at random from the hat rack when they leave a party, and one seeks the
probability that at least one of them picks his own hat.
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Random Variables

The standard situation in the modeling of a random phenomenon is that the
quantities of interest, rather than being defined on the underlying probability
space, are functions from the probability space to some other (measurable)
space. These functions are called random variables. Strictly speaking, one uses
the term random variable when they are functions from the probability space
to R. If the image is in Rn for some n ≥ 2 one talks about n-dimensional
random variables or simply random vectors. If the image space is a general
abstract one, one talks about random elements.

1 Definition and Basic Properties

Let (Ω,F , P ) be a probability space.

Definition 1.1. A random variable X is a measurable function from the sam-
ple space Ω to R;

X : Ω → R,

that is, the inverse image of any Borel set is F-measurable:

X−1(A) = {ω : X(ω) ∈ A} ∈ F for all A ∈ R.

We call X simple if, for some n,

X =
n∑

k=1

xkI{Ak},

where {xk, 1 ≤ k ≤ n} are real numbers, and {Ak, 1 ≤ k ≤ n} is a finite
partition of Ω, that is Ai ∩Aj = ∅ if i �= j and ∪n

k=1Ak = Ω.
We call X elementary if

X =
∞∑

n=1

xnI{An},
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where {xn, n ≥ 1} are real numbers, and {An, n ≥ 1} is an infinite partition
of Ω.

If X : Ω → [−∞, +∞] we call X an extended random variable. �

Random variables are traditionally denoted by large capitals toward the end
of the alphabet; X, Y, Z, U, V, W, . . .. For sequences of “similar kinds” it is
convenient to use indices; X1, X2, . . . , and so on.

We do not distinguish between random variables that differ on a null set.

Definition 1.2. Random variables which only differ on a null set are called
equivalent

The equivalence class of a random variable X is the collection of random
variables that differ from X on a null set.

If X and Y are equivalent random variables we write X ∼ Y . �

So far we have described the map from (Ω,F) to (R,R). In order to
complete the picture we must find a third component in the triple – the
appropriate probability measure.

To each random variable X we associate an induced probability measure,
P, through the relation

P(A) = P (X−1(A)) = P ({ω : X(ω) ∈ A}) for all A ∈ R. (1.1)

In words this means that we define the probability (on (R,R)) that the ran-
dom variable X falls into a Borel set as the probability (on (Ω,F)) of the
inverse image of this Borel set. This is the motivation for the measurability
assumption.

That the definition actually works is justified by the following result.

Theorem 1.1. The induced space (R,R, P) with P defined by (1.1) is a prob-
ability space – the induced probability space.

Proof. The proof amounts to checking the Kolmogorov axioms, which, in turn,
amounts to going back and forth between the two probability spaces.
1. P(A) = P ({ω : X(ω) ∈ A}) ≥ 0 for any A ∈ R.
2. P(X) = P ({ω : X(ω) ∈ Ω}) = 1.
3. Suppose that {An, n ≥ 1} are disjoint subsets of R. Then

P

( ∞⋃
n=1

An

)
= P

({
ω : X(ω) ∈

∞⋃
n=1

An

})
= P

( ∞⋃
n=1

{ω : X(ω) ∈ An}
)

=
∞∑

n=1

P ({ω : X(ω) ∈ An}) =
∞∑

n=1

P(An).
�

Remark 1.1. Once one gets used to the fact that only the random variables are
of interest one need no longer worry about the exact probability space behind
the random variables. In the remainder of this book we therefore refrain from
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distinguishing between the probability measures P and P, and we omit the
brackets { and } to emphasize that {X ∈ A} actually is a set. So, instead
of writing P(A) we shall write P (X ∈ A). There is absolutely no danger of
confusion! �

Definition 1.3. A degenerate random variable is constant with probability 1.
Thus, X is degenerate if, for some a ∈ R, P (X = a) = 1. A random variable
that is not degenerate is called non-degenerate. �

There are different ways to interpret the equality X = Y . The random vari-
ables X and Y are equal in distribution iff they are governed by the same
probability measure:

X
d= Y ⇐⇒ P (X ∈ A) = P (Y ∈ A) for all A ∈ R

and they are point-wise equal , iff they agree for almost all elementary events:

X
a.s.= Y ⇐⇒ P ({ω : X(ω) = Y (ω)}) = 1,

i.e., X and Y are equivalent random variables, X ∼ Y .
Next we provide an example to illustrate that there is a clear difference

between the two equality concepts. The following example shows that two
random variables, in fact, may well have the same distribution, and at the
same time there is no elementary event where they agree.

Example 1.1. Toss a fair coin once and set

X =

{
1, if the outcome is heads,
0, if the outcome is tails,

and

Y =

{
1, if the outcome is tails,
0, if the outcome is heads.

Clearly, P (X = 1) = P (X = 0) = P (Y = 1) = P (Y = 0) = 1/2, in particular,
X

d= Y . But X(ω) and Y (ω) differ for every ω. �

Exercise 1.1. Prove that if X(ω) = Y (ω) for almost all ω, then X
d= Y . �

For X to be a random variable one has to check that the set {ω : X(ω) ∈
A} ∈ F for all A ∈ R. However, as a consequence of Theorem 1.3.6 it suf-
fices to check measurability for (e.g.) all sets of the form (−∞, x]; why? This
important fact deserves a separate statement.

Theorem 1.2. X is a random variable iff

{ω : X(ω) ≤ x} ∈ F for all x ∈ R.
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1.1 Functions of Random Variables

A random variable is, as we have seen, a function from one space (Ω) to
another space (R). What can be said of a (real valued) function of a random
variable? Since, we know from analysis that a function of a function is a
function, the following result does not come to us as a surprise.

Theorem 1.3. A Borel measurable function of a random variable is a ran-
dom variable, viz., if g is a real, Borel measurable function and X a random
variable, then Y = g(X) is a random variable.

Proof. The proof follows, in fact, from the verbal statement, since Y is a
composite mapping from Ω “via R” to R. A more detailed proof of this is
that, for any A ∈ R,

{Y ∈ A} = {ω : Y (ω) ∈ A} = {ω : g(X(ω)) ∈ A}
= {ω : X(ω) ∈ g−1(A)} ∈ F .

�

By taking advantage of Theorem 1.2 we can prove measurability of the
following functions, that is, we can prove that the following objects are, indeed,
random variables.

Proposition 1.1. Suppose that X1, X2, . . . are random variables. The fol-
lowing quantities are random variables:

(a) max{X1, X2} and min{X1, X2};
(b) supn Xn and infn Xn;
(c) lim supn→∞ Xn and lim infn→∞ Xn.
(d) If Xn(ω) converges for every ω as n →∞, then limn→∞ Xn is a

random variable.

Proof. (a): For any x,

{ω : max{X1, X2}(ω) ≤ x} = {ω : max{X1(ω), X2(ω)} ≤ x}
= {ω : X1(ω) ≤ x} ∩ {ω : X2(ω) ≤ x}

and

{ω : min{X1, X2}(ω) ≤ x} = {ω : min{X1(ω), X2(ω)} ≤ x}
= {ω : X1(ω) ≤ x} ∪ {ω : X2(ω) ≤ x},

which proves (a), since an intersection and a union, respectively, of two mea-
surable sets are measurable.
(b): Similarly,

{ω : sup
n

Xn(ω) ≤ x} =
⋂
n

{ω : Xn(ω) ≤ x} ∈ F ,

since a countable intersection of measurable sets is measurable, and

{ω : inf
n

Xn(ω) < x} =
⋃
n

{ω : Xn(ω) < x} ∈ F ,

since a countable union of measurable sets is measurable.
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(c): In this case,

{ω : lim sup
n→∞

Xn(ω) ≤ x} = {ω : inf
n

sup
m≥n

Xm(ω) ≤ x}

=
∞⋃

n=1

∞⋂
m=n

{ω : Xm(ω) ≤ x} ∈ F ,

and

{ω : lim inf
n→∞

Xn(ω) < x} = {ω : sup
n

inf
m≥n

Xm(ω) < x}

=
∞⋂

n=1

∞⋃
m=n

{ω : Xm(ω) < x} ∈ F ,

since, once again, we have only performed legal operations.
Alternatively, since supn≥m Xn(ω) is a random variable by (b), it follows,

also by (b), that infm

(
supn≥m Xn(ω)

)
is a random variable. Similarly for

lim infn→∞ Xn(ω).
(d): This is true, because in this case lim sup and lim inf coincide (and both
are measurable). Moreover, the limit exists and is equal to the common value
of lim sup and lim inf. �

Exercise 1.2. Prove that a continuous function of a random variable is a random
variable. �

The usual construction procedure for properties of functions, or for con-
structions of new (classes of) functions, is to proceed from non-negative simple
functions, sometimes via elementary functions, to non-negative functions, to
the general case. This works for random variables too. The following lemma
is closely related to Lemma A.9.3 which deals with the approximation of real
valued functions.

Lemma 1.1. (i) For every non-negative random variable X there exists a
sequence {Xn, n ≥ 1} of non-negative simple variables, such that

Xn(ω) ↑ X(ω) for all ω ∈ Ω.

(ii) For every random variable X there exists a sequence {Xn, n ≥ 1} of
simple variables, such that

Xn(ω) → X(ω) for all ω ∈ Ω.

Proof. (i): Let n ≥ 1, and set

Xn(ω) =

{
k−1
2n , for k−1

2n ≤ X(ω) < k
2n , k = 1, 2, . . . , n2n,

n, for X(ω) ≥ n.
(1.2)
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The sequence thus constructed has the desired property because of the dyadic
construction and since

X(ω)−Xn(ω) <
1
2n

for n sufficiently large.

The limit is a random variable by Proposition 1.1. This proves (i).
To prove (ii) we use the mirrored approximation and the fact that X =

X+ −X−. �

2 Distributions

In analogy with the arguments that preceded Theorem 1.2, the complete de-
scription of the distribution of a random variable X would require knowledge
about P (X ∈ A) for all sets A ∈ R. And, once again, the fact that the in-
tervals (−∞, x] generate R comes to our rescue. This fact is manifested by
introducing the concept of distribution functions.

2.1 Distribution Functions

Definition 2.1. Let X be a real valued random variable. The distribution
function of X is

F (x) = P (X ≤ x), x ∈ R.

The continuity set of F is

C(F ) = {x : F (x) is continuous at x}. �

Whenever convenient we index a distribution function by the random variable
it refers to; FX , FY , and so on.

Definition 2.2. The distribution function of a degenerate random variable is
a degenerate distribution function. If F is degenerate, then, for some a ∈ R,

F (x) =

{
0, for x < a,

1, for x ≥ a.

A distribution function that is not degenerate is called non-degenerate. �

In order to describe the properties of distribution functions it is convenient
to introduce the following class of functions.

Definition 2.3. The class D is defined as the set of right-continuous, real
valued functions with left-hand limits;

F (x−) = lim
xn↗x
xn<x

F (xn).

The class D+ is defined as the set of non-decreasing functions in D+. �
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Proposition 2.1. Let F be a distribution function. Then

(a) F ∈ D+;
(b) limx→−∞ F (x) = 0 and limx→∞ F (x) = 1;
(c) F has at most a countable number of discontinuities.

Proof. (a): Let X be a random variable associated with F . Boundedness fol-
lows from the fact that 0 ≤ F (x) = P (X ≤ x) ≤ 1 for all x. To see that F is
non-decreasing, let x ≤ y. Then {X ≤ x} ⊂ {X ≤ y}, so that

F (x) = P (X ≤ x) ≤ P (X ≤ y) = F (y).

Next, let xn, n ≥ 1, be reals, xn ↘ x as n →∞. Then {X ≤ xn} ↘ {X ≤
x}, so that by monotonicity (Theorem 1.3.1)

F (xn) = P (X ≤ xn) ↘ P (X ≤ x) = F (x),

which establishes right-continuity.
In order to verify left-continuity, we let yn, n ≥ 1, be reals, such that

yn ↗ x as n → ∞. Then {X ≤ yn} ↗ {X < x}, so that by monotonicity
(Theorem 1.3.1),

F (yn) = P (X ≤ yn) ↗ P (X < x) = F (x−).

This concludes the proof of the fact that F ∈ D+.
(b): This follows from the set convergences {X ≤ x} ↘ ∅ as x → −∞, and
{X ≤ x} ↗ Ω as x → +∞, respectively, together with Theorem 1.3.1.
(c): Immediate from Lemma A.9.1(i). �

Remark 2.1. We shall, at times, encounter non-negative functions in D+ with
total mass at most equal to 1. We shall call such functions sub-probability
distribution functions. They can be described as distribution functions, except
for the fact that the total mass need not be equal to 1. �

To complement the proposition, we find that with xn and yn as given
there, we have

P (yn < X ≤ xn) →
{

FX(x)− FX(x−)
P (X = x)

as n →∞.

Proposition 2.2. Let X be a random variable. Then

P (X = x) = FX(x)− FX(x−).

In order to prove uniqueness it sometimes suffices to check a generator or
a dense set. Following are some results of this kind.

Proposition 2.3. Suppose that F and G are distribution functions, and that
F = G on a dense subset of the reals. Then F = G for all reals.
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Proof. Combine Proposition 2.1 and Lemma A.9.1(ii). �

In Chapter 1 we discussed probability measures. In this chapter we have
introduced distribution functions of random variables. Now, to any given prob-
ability measure P on (R,R) we can associate a distribution function F via the
relation

F (b)− F (a) = P((a, b]) for all a, b, −∞ < a ≤ b < ∞,

and since P as well as F is uniquely defined by their values on the rectangles
we have established the following equivalence.

Theorem 2.1. Every probability measure on (R,R) corresponds uniquely to
the distribution function (of some random variable(s)).

Remark 2.2. Recall from Example 1.1 that different random variables may
have coinciding distribution functions. �

Having defined distribution functions, a natural challenge is to determine
how many different kinds or types there may exist. For example, the number
of dots resulting after throwing dice, the number of trials until a first success,
the number of customers that visit a given store during one day, all those ex-
periments have non-negative integers as outcomes. Waiting times, durations,
weights, and so on are continuous quantities. So, there are at least two kinds
of random variables or distributions. Are there any others?

Well, there also exist mixtures. A simple mixture is the waiting time at
a traffic light. With some given probability the waiting time is 0, namely if
the light is green upon arrival. If the light is red the waiting time is some
continuous random quantity. So, there exist at least two kinds of random
variables and mixtures of them. Are there any others?

The main decomposition theorem states that there exist exactly three
kinds of random variables, and mixtures of them. However, before we turn to
that problem in Subsection 2.2.3 we need some additional terminology.

2.2 Integration: A Preview

The classical integral is the Riemann integral, which was later generalized
to the Riemann-Stieltjes integral. However, it turns out that the Riemann-
Stieltjes integral has certain deficiencies that are overcome by another integral,
the Lebesgue integral. The problem is that we need to be able to integrate
certain wild functions that the Riemann-Stieltjes integral cannot handle. After
having defined the Lebesgue integral we shall exhibit a perverse example that
is Lebesgue integrable, but not Riemann-Stieltjes integrable.

There exists a probabilistic analog to integration, called expectation, de-
noted by the letter E. Now, instead of describing and proving a number of
properties for functions and integrals and then translating them into state-
ments about random variables and expectations (which basically amounts to
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replacing f by X and
∫

by E), we shall develop the theory in a probabilistic
framework, beginning in Section 2.4. However, since we need some (not much)
terminology earlier, we present a few definitions and facts without proof in
the language of mathematics already here. The reader who is eager for proofs
is referred to standard books on measure theory and/or function theory. The
amount of details and the choice of which statements to prove and which to
“leave as exercises” varies between books.

The Riemann-Stieltjes Integral

From analysis we remember that the Riemann integral of a function g on a
bounded interval (a, b] is defined via a partition ∆ of the interval into disjoint
subintervals;

a = x0 < x1 < x2 < · · · < xn = b,

and the Riemann sums

R(n) =
n∑

j=1

g(tj)∆j ,

where ∆j = xj − xj−1, and tj ∈ (xj−1, xj ]. The mesh of the partition is
‖∆‖ = max1≤k≤n{∆k}.

The integral exists iff there exists a number A, such that

lim
‖∆‖→0

|R(n)−A| → 0,

for any partition and arbitrary intermediate points. The limit is denoted with
the aid of the integral sign:

A =
∫ b

a

g(x) dx.

If the integral exists we may, in particular, select the tj ’s so that g always
assumes its maximum in the subintervals, and also such that the minimum is
attained. As a consequence the actual value A is sandwiched between those
two special sums, the upper sum and the lower sum.

We also note that, for simple functions, the Riemann integral coincides
with the Riemann sum (let the partition coincide with the steps).

In the definition of the Riemann-Stieltjes integral of a function f on a
bounded interval one replaces the ∆-differences along the x-axis by differences
of a function. Thus, let, in addition, γ be a real valued function on the interval
(a, b], let the partition be defined as before, and (or but) set ∆j = γ(xj) −
γ(xj−1). The Riemann-Stieltjes sum is

RS(n) =
n∑

j=1

g(tj)∆j =
n∑

j=1

g(tj)(γ(xj)− γ(xj−1)),
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and the Riemann-Stieltjes integral exists iff there exists a number A, such
that

lim
‖∆‖→0

|RS(n)−A| → 0

for any partition and arbitrary intermediate points. The notation is

A =
∫ b

a

g(x) dγ(x).

Once again, we may select the points of the partition in such a way that the
actual value A can be sandwiched between an upper sum and a lower sum.

As for existence criteria we mention without proof that the Riemann-
Stieltjes integral exists if (for example) g is continuous and γ is bounded
and non-decreasing. The integral is then suitably extended to all of R. The
interesting example is that distribution functions fit this requirement for γ.

An inspection of the definition and the limiting procedure shows that

• if γ is discrete with point masses {xj}, then∫
g(x) dγ(x) =

∑
k

g(xk)γ({xk});

• if γ is absolutely continuous with density f(x), then∫
g(x) dγ(x) =

∫
g(x)f(x) dx.

For the latter conclusion we also lean on the mean value theorem.
In addition, by departing from the approximating Riemann-Stieltjes sum

and partial summation, one obtains a formula for partial integration:∫ b

a

g(x) dγ(x) = g(b)γ(b)− g(a)γ(a)−
∫ b

a

γ(x) dg(x).

And, needless to say, if γ(x) = x the Riemann-Stieltjes integral reduces to the
ordinary Riemann integral.

The Lebesgue Integral

Paralleling the notion of a simple random variable (Definition 1.1) we say that
f is simple real valued function if, for some n,

f =
n∑

k=1

xkI{Ak},

where {xk, 1 ≤ k ≤ n} are real numbers, and {Ak, 1 ≤ k ≤ n} is a finite
partition of R.
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We call f elementary if

f =
∞∑

n=1

xnI{An},

where {xn, n ≥ 1} are real numbers, and {An, n ≥ 1} is an infinite partition
of R.

The following lemma is a translation of Lemma 1.1; cf. also Lemma A.9.3.

Lemma 2.1. (i) For every non-negative function f there exists a sequence
{fn, n ≥ 1} of non-negative simple functions, such that

fn ↑ f point-wise.

(ii) For every function f there exists a sequence {fn, n ≥ 1} of simple func-
tions, such that

fn → f point-wise.

Proof. For (i) we set

fn(x) =

{
k−1
2n , for k−1

2n ≤ f(x) < k
2n , k = 1, 2, . . . , n2n,

n, for f(x) ≥ n,

and for (ii) we add the mirrored version, and apply f = f+ − f−. �

The Lebesgue integral is an integral with respect to Lebesgue measure.

Definition 2.4. The Lebesgue measure, λ, is a measure on (R,R), satisfying

λ((a, b]) = b− a for all a < b, a, b ∈ R.

Definition 2.5. For the simple function f =
∑n

k=1 xkI{Ak} we define the
Lebesgue integral with respect to a probability measure λ as∫

f dλ =
n∑

k=1

xkλ(Ak).
�

After proving several properties such as additivity and monotonicity one de-
fines the Lebesgue integral of arbitrary non-negative functions as the limit of
the integrals of the simple functions defined in the proof of Lemma 1.1:

∫
f dλ = lim

n→∞

n2n∑
k=1

k − 1
2n

λ
(k − 1

2n
≤ f(x) <

k

2n

)
.

Since, as mentioned in the introduction of this section, we shall traverse the
theory in the probabilistic language in a moment, we close the discussion in
mathematical terms with some comments on how the Lebesgue integral and
the Riemann-Stieltjes integral relate to each other.
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Theorem 2.2. If the Riemann-Stieltjes integral of a function exists, then so
does the Lebesgue integral, and both agree.

We close this preview (i) by recalling that what has been stated so far will
soon be justified, and (ii) with an example of a function that is Lebesgue
integrable but not Riemann-Stieltjes integrable.

Example 2.1. Let f(x) be defined as follows on the unit interval:

f(x) =

{
1, for x ∈ [0, 1] � Q,

0, for x ∈ [0, 1] ∩Q,

that is, f equals 1 on the irrationals and 0 on the rationals.
This function is Lebesgue integrable – the integral equals 1 – but not

Riemann integrable, the reason for the latter being that the upper and lower
sums equal 1 and 0, respectively, for any partition of the unit interval.

The explanation for the difference in integrability is that the “slices” in
the definition of the Lebesgue integral are horizontal, whereas those of the
Riemann integral are vertical. �

As for a converse we mention without proof that any Lebesgue integrable
function can be arbitrarily well approximated by Riemann integrable func-
tions, and refer the reader, once again, to specialized literature.

Theorem 2.3. If f is Lebesgue integrable, then, for any ε > 0, there exists,
(a) a simple function g, such that

∫∞
−∞ |f(x)− g(x)|dx < ε.

(b) a continuous, integrable function h, such that
∫∞

−∞ |f(x)− h(x)|dx < ε.

2.3 Decomposition of Distributions

In this subsection we show that that every distribution function can be de-
composed into a convex combination of three “pure” kinds.

Definition 2.6. A distribution function F is

• discrete iff for some countable set of numbers {xj} and point masses {pj},

F (x) =
∑
xj≤x

pj , for all x ∈ R.

The function p is called probability function.
• continuous iff it is continuous for all x.
• absolutely continuous iff there exists a non-negative, Lebesgue integrable

function f , such that

F (b)− F (a) =
∫ b

a

f(x) dx for all a < b.

The function f is called the density of F .
• singular iff F �≡ 0, F ′ exists and equals 0 a.e. �
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The ultimate goal of this subsection is to prove the following decomposition
theorem.

Theorem 2.4. Every distribution function can be decomposed into a convex
combination of three pure types, a discrete one, an absolutely continuous one,
and a continuous singular one. Thus, if F is a distribution function, then

F = αFac + βFd + γFcs,

where α, β, γ ≥ 0 and α + β + γ = 1. This means that

• Fac(x) =
∫ x

−∞ f(y) dy, where f(x) = F ′
ac(x) a.e.;

• Fd is a pure jump function with at most a countable number of jumps;
• Fcs is continuous and F ′

cs(x) = 0 a.e.

For the proof we have to accept the following (rather natural) facts. For the
proof we refer the reader to his or her favourite book on measure theory or
function theory.

Lemma 2.2. Let F be a distribution function. Then

(a) F ′(x) exists a.e., and is non-negative and finite.
(b)

∫ b

a
F ′(x) dx ≤ F (b)− F (a) for all a, b ∈ R.

(c) Set Fac(x) =
∫ x

−∞ F ′(y) dy, and Fs(x) = F (x)− Fac(x) for all x ∈ R.
Then F ′

ac(x) = F ′(x) a.e. and F ′
s = 0 a.e. In particular, Fs ≡ 0 or Fs

is singular.

Remark 2.3. The components Fac(x) and Fs(x) in Lemma 2.2 are, in contrast
to those of Theorem 2.4, sub-distribution functions in that the total mass is
only at most equal to 1. �

Discrete distributions are obviously singular. But, as we shall see, there also
exist continuous singular distributions. We shall exhibit one, the Cantor dis-
tribution, in Subsection 2.2.6 below, and later, in more detail, in Section 2.11.

The first step is the Lebesgue decomposition theorem, in which the distribu-
tion function is split into an absolutely continuous component and a singular
one.

Theorem 2.5. Every distribution function can be decomposed into a convex
combination of an absolutely continuous distribution function and a singular
one. Thus, if F is a distribution function, then

F = αFac + (1− α)Fs,

where 0 ≤ α ≤ 1.

Proof. Let f(x) = F ′(x), which, according to Lemma 2.2 exists a.e., and,
moreover, equals F ∗

ac(x) a.e., where
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F ∗
ac(x) =

∫ x

−∞
f(y) dy.

In order to see that F ∗
ac is a distribution function, except, possibly, for the

fact that F ∗
ac(+∞) ≤ 1, we observe that F ∗

ac is non-decreasing since f ≥ 0
a.e., and that F ∗

ac(−∞) = 0 since F ∗
ac(x) ≤ F (x). Continuity is obvious, since

the integral is continuous.
Next, set F ∗

s (x) = F (x) − F ∗
ac. Then, F ∗

s is non-decreasing by Lemma
2.2, and F ∗

s (−∞) = 0, since F ∗
s (x) ≤ F (x), which shows that F ∗

s is also a
distribution function, except, possibly, for having total mass less than one.

If α = 0 or 1 we are done. Otherwise, set

Fac(x) =
F ∗

ac(x)
F ∗

ac(+∞)
and Fs(x) =

F ∗
s (x)

F ∗
s (+∞)

. �

The following theorem provides a decomposition of a distribution function
into a discrete component and a continuous component.

Theorem 2.6. Every distribution function F can be written as a convex com-
bination of a discrete distribution function and a continuous one:

F = βFd + (1− β)Fc,

where 0 ≤ β ≤ 1.

Proof. By Proposition 2.1 we know that F may have at most a countable
number of jumps. Let {xj} be those jumps (if they exist), let p(j) = F (xj+)−
F (xj−) = F (xj) − F (xj−) for all j (recall that F is right-continuous), and
define

F ∗
d (x) =

∑
xj≤x

pj , x ∈ R.

By construction, F ∗
d , being equal to the sum of all jumps to the left of x, is

discrete, and has all properties of a distribution function, except that we only
know that limx→∞ F ∗

d (x) ≤ 1.
Next, let F ∗

c (x) = F (x)−F ∗
d (x) for all x. Since F ∗

d (x) increases at xj by pj

and stays constant between jumps, and since F is non-decreasing, it follows
that F ∗

c (x) must be non-negative and non-decreasing. Moreover,

lim
x→−∞

F ∗
c (x) = lim

x→−∞
(F (x)− F ∗

d (x)) = 0− 0 = 0,

and

0 ≤ lim
x→∞

F ∗
c (x) = lim

x→∞
(F (x)− F ∗

d (x)) = 1− lim
x→∞

F ∗
d (x) ≤ 1,

so that F ∗
c (x) also has all properties of a distribution function, except that

the total mass may be less than 1. In particular, F ∗
c ∈ D+.
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The next thing to prove is that F ∗
c (x) is continuous, which seems rather

obvious, since we have reduced F by its jumps. Nevertheless,

F ∗
c (x)− F ∗

c (x−) = F (x)− F ∗
d (x)− (F (x−)− F ∗

d (x−))
= F (x)− F (x−)− (F ∗

d (x)− F ∗
d (x−))

=

{
pj − pj = 0, when x = xj for some j,

0, otherwise,

which shows that F ∗
c is left-continuous. This tells us that F ∗

c is continuous,
since, as we have already seen, F ∗

c ∈ D+. A final rescaling, if necessary, finishes
the proof. �

Proof of Theorem 2.4. Let F be a distribution function. Then, by the Lebesgue
decomposition theorem, we know that

F = αFac + (1− α)Fs,

and by Theorem 2.6 applied to the singular part we know that

Fs = βFd + (1− β)Fcs.
�

Theorem 2.7. The decompositions are unique.

Exercise 2.1. Prove the uniqueness (by contradiction). �

2.4 Some Standard Discrete Distributions

Following is a list of some of the most common discrete distributions. The
domains of the parameters below are a ∈ R, 0 ≤ p = 1 − q ≤ 1, n ∈ N, and
m > 0.

Distribution Notation Probability function Domain
One point δ(a) p(a) = 1
Symmetric Bernoulli p(−1) = p(1) = 1

2
Bernoulli Be(p) p(0) = q, p(1) = p

Binomial Bin(n, p) p(k) =
(

n
k

)
pkqn−k k = 0, 1, . . . , n

Geometric Ge(p) p(k) = pqk k ∈ N ∪ 0
First success Fs(p) p(k) = pqk−1 k ∈ N

Poisson Po(m) p(k) = e−m mk

k! k ∈ N ∪ 0

Table 2.1. Some discrete distributions

The Be(p)-distribution describes the outcome of one “coin-tossing” exper-
iment, and the Bin(n, p)-distribution the number of successes in n trials. The
Ge(p)-distribution describes the number of failures prior to the first success,
and the Fs(p)-distribution the number of trails required to succeed once.
Finally, the typical experiment for a Poisson distribution is a coin-tossing
experiment where the probability of success is “small”. Vaguely speaking,
Bin(n, p) ≈ Po(np) if p is small (typically “small” means < 0.1). This can, of
course, be rigorously demonstrated.
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2.5 Some Standard Absolutely Continuous Distributions

In this subsection we list some of the most common absolutely continuous
distributions. The parameters p, θ, σ, r, s, α, β below are all non-negative, and
a, b, µ ∈ R.

Distribution Notation Density function Domain
Uniform U(a, b) f(x) = 1

b−a
a < x < b

U(0, 1) f(x) = 1 0 < x < 1
U(−1, 1) f(x) = 1

2 |x| < 1
Triangular Tri(−1, 1) f(x) = 1 − |x| |x| < 1
Exponential Exp(θ) f(x) = 1

θ
e−x/θ x > 0

Gamma Γ (p, θ) f(x) = 1
Γ (p) xp−1 1

θp e−x/θ x > 0
Beta β(r, s) f(x) = Γ (r+s)

Γ (r)Γ (s) xr−1(1 − x)s−1 0 < x < 1

Normal N(µ, σ2) f(x) = 1
σ

√
2π

e− 1
2 (x−µ)2/σ2

x ∈ R

N(0, 1) f(x) = 1√
2π

e−x2/2 x ∈ R

Log-normal LN(µ, σ2) f(x) = 1
σx

√
2π

e− 1
2 (log x−µ)2/σ2

x > 0
Cauchy C(0, 1) f(x) = 1

π
· 1

1+x2 x ∈ R

Pareto Pa(β, α) f(x) = αkα

xα+1 x > β

Table 2.2. Some absolutely continuous distributions

We have listed two special uniform distributions and the standard nor-
mal distribution because of their frequent occurrences, and confined ourselves
to the special triangular distribution which has support on [−1, 1] and the
standard Cauchy distribution for convenience.

Uniform distributions typically describe phenomena such as picking a point
“at random” in the sense that the probability that the resulting point belongs
to an interval only depends on the length of the interval and not on its position.

Exponential and gamma distributed random variables typically are used
to model waiting times, life lengths, and so on, in particular in connection
with the so-called Poisson process.

The normal distribution, also called the Gaussian distribution, models
cumulative or average results of “many” repetitions of an experiment; the
formal result is the central limit theorem, which we shall meet in Chapter 7.
The multivariate normal distribution, that we shall encounter in Subsection
4.5.1, plays, i.a., an important role in many statistical applications.

2.6 The Cantor Distribution

The third kind of distributions, the continuous singular ones, are the most spe-
cial or delicate ones. In this subsection we shall define the Cantor distribution
and prove that it belongs to that class.
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The standard Cantor set is constructed on the interval [0, 1] as follows.
One successively removes the open middle third of each subinterval of the
previous set. The Cantor set itself is the infinite intersection of all remaining
sets. More precisely, let C0 = [0, 1], and, successively,

C1 =
[
0,

1
3

]
∪
[2
3
, 1
]
, C2 =

[
0,

1
9

]
∪
[2
9
,
1
3

]
∪
[2
3
,
7
9

]
∪
[8
9
, 1
]
,

and so on.

0 11/3 2/3

...
...

...
...

...
...

...
...

C0

C1

C2

C3

C4

Figure 2.1. The Cantor set on [0, 1]

The Cantor set is

C =
∞⋂

n=0

Cn,

and the Cantor distribution is the distribution that is uniform on the Cantor
set.

Having thus defined the distribution we now show that it is continuous
singular.
(i): The Lebesgue measure of the Cantor set equals 0, since C ⊂ Cn for all
n, so that

λ(C) ≤ λ(Cn) =
(2

3

)n

for every n =⇒ λ(C) = 0.

Alternatively, in each step we remove the middle thirds. The Lebesgue
measure of the pieces we remove thus equals

1
3

+ 2
(1

3

)2
+ 4
(1

3

)3
+ · · · =

∞∑
n=1

2n−1
(1

3

)n

= 1.

The Cantor set is the complement, hence λ(C) = 0.
(ii): The Cantor distribution is singular, since its support is a Lebesgue null
set.
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(iii): The distribution function is continuous. Namely, let Fn be the distri-
bution function corresponding to the distribution that is uniform on Cn. This
means that Fn(0) = 0, Fn is piecewise constant with 2n jumps of size 2−n

and Fn(1) = 1. Moreover, F ′
n(x) = 0 for all x except for the end-points of the

2n intervals.
The distribution function of the Cantor distribution is

F (x) = lim
n→∞

Fn(x).

Now, let x, y ∈ Cn. Every subinterval of Cn has length 3−n. Therefore,

0 < x− y <
1
3n

=⇒

F (y)− F (x)

{
= 0, when x, y are in the same subinterval,
≤ 1

2n when x, y are in adjacent subintervals.

This proves that F , in fact, is uniformly continuous on C.
(iv) F ′(x) = 0 for almost all x, because F ′(x) = 0 for all x ∈ Cn for all n.

This finishes the proof of the fact that the Cantor distribution is continuous
singular. We shall return to this distribution in Section 2.11, where an elegant
representation in terms of an infinite sum will be given.

2.7 Two Perverse Examples

In Example 2.1 we met the function on the unit interval, which was equal to
1 on the irrationals and 0 on the rationals:

f(x) =

{
1, for x ∈ [0, 1] � Q,

0, for x ∈ [0, 1] ∩Q.

Probabilistically this function can be interpreted as the density of a random
variable, X, which is uniformly distributed on the irrationals in [0, 1].

Note that, if U ∈ U(0, 1), then the probability that the two random vari-
ables differ equals

P (X �= U) = P (X ∈ Q) = 0,

so that X ∼ U .
An extreme variation of this example is the following:

Example 2.2. Let {rk, k ≥ 1} be an enumeration of the rationals in the unit
interval, and define

p(rk) =

{
6

π2k2 , for rk ∈ (0, 1) ∩Q,

0, otherwise.

Since
∑∞

k=1 1/k2 = π2/6, this is a bona fide discrete distribution.
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This may seem as a somewhat pathological distribution, since it is defined
along an enumeration of the rationals, which by no means is neither unique
nor “chronological”. �

3 Random Vectors; Random Elements

Random vectors are the same as multivariate random variables. Random ele-
ments are “random variables” in (more) abstract spaces.

3.1 Random Vectors

Random vectors are elements in the Euclidean spaces Rn for some n ∈ N.

Definition 3.1. An n-dimensional random vector X is a measurable function
from the sample space Ω to Rn;

X : Ω → Rn,

that is, the inverse image of any Borel set is F-measurable:

X−1(A) = {ω : X(ω) ∈ A} ∈ F for all A ∈ Rn.

Random vectors are considered column vectors;

X = (X1, X2, . . . , Xn)′,

where ′ denotes transpose (i.e., X′ is a row vector).
The joint distribution function of X is

FX1,X2,...,Xn(x1, x2, . . . , xn) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn),

for xk ∈ R, k = 1, 2, . . . , n. �

Remark 3.1. A more compact way to express the distribution function is

FX(x) = P (X ≤ x), x ∈ Rn,

where the event {X ≤ x} is to be interpreted component-wise, that is,

{X ≤ x} = {X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn} =
n⋂

k=1

{Xk ≤ xk}. �

For discrete distributions the joint probability function is defined by

pX(x) = P (X = x), x ∈ Rn.

In the absolutely continuous case we have a joint density ;

fX(x) =
∂nFX(x)

∂x1∂x2 · · · ∂xn
x ∈ Rn .

The following example illuminates a situation where a problem intrinsically is
defined in a “high” dimension, but the object of interest is “low-dimensional”
(in the example, high = 2 and low = 1).



44 2 Random Variables

Example 3.1. Let (X, Y ) be a point that is uniformly distributed on the unit
disc, that is,

fX,Y (x, y) =

{
1
π , for x2 + y2 ≤ 1,

0, otherwise.

Determine the distribution of the x-coordinate. �

In order to solve this problem we consider, as a preparation, the discrete
analog, which is easier to handle. Let (X, Y ) be a given two-dimensional ran-
dom variable whose joint probability function is pX,Y (x, y) and that we are
interested in finding pX(x). By the law of total probability, Proposition 1.4.1,

pX(x) = P (X = x) = P

(
{X = x} ∩

{⋃
y

{Y = y}
})

= P

(⋃
y

{
{X = x} ∩ {Y = y}

})

=
∑

y

P (X = x, Y = y) =
∑

y

pX,Y (x, y).

The distribution of one of the random variables thus is obtained by adding
the joint probabilities along “the other” variable.

Distributions thus obtained are called marginal distributions, and the cor-
responding probability functions are called marginal probability functions.

The marginal distribution function of X at the point x is obtained by
adding the values of the marginal probabilities to the left of x:

FX(x) =
∑
u≤x

pX(u) =
∑
u≤x

∑
v

pX,Y (u, v).

Alternatively,

FX(x) = P (X ≤ x, Y < ∞) =
∑
u≤x

∑
v

pX,Y (u, v).

In the absolutely continuous case we depart from the distribution function

FX(x) = P (X ≤ x, Y < ∞) =
∫ x

−∞

∫ ∞

−∞
fX,Y (u, v) dudv,

and differentiate to obtain the marginal density function,

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy,

that is, this time we integrate along “the other” variable.
Marginal distribution functions are integrals of the marginal densities.
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Analogous formulas hold in higher dimensions, and for more general dis-
tributions. Generally speaking, marginal distributions are obtained by inte-
grating in the generalized sense (“getting rid of”) those components that are
not relevant for the problem at hand.

Let us now solve the problem posed in Example 3.1. The joint density was
given by

fX,Y (x, y) =

{
1
π , for x2 + y2 ≤ 1,

0, otherwise,

from which we obtain

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ √
1−x2

−
√

1−x2

1
π

dy =
2
π

√
1− x2, (3.1)

for −1 < x < 1 (and fX(x) = 0 otherwise).

Exercise 3.1. Let (X, Y, Z) be a point chosen uniformly within the three-dimen-
sional unit sphere. Find the marginal distributions of (X, Y ) and X. �

We have seen how a problem might naturally be formulated in a higher
dimension than that of interest. The converse concerns to what extent the
marginal distributions determine the joint distribution. Interesting applica-
tions are computer tomography and satellite pictures; in both cases one de-
parts from two-dimensional pictures from which one wishes to make conclu-
sions about three-dimensional objects (the brain and the Earth).

A multivariate distribution of special importance is the normal one, for
which some facts and results will be presented in Chapter 4.

3.2 Random Elements

Random elements are random variables on abstract spaces.

Definition 3.2. A random element is a measurable mapping from a measur-
able space (Ω,F) to a measurable, metric space (S,S):

X : (Ω,F) → (S,S). �

In this setting measurability thus means that

X−1(A) = {ω : X(ω) ∈ A} ∈ F for all A ∈ S.

The meaning thus is the same as for ordinary random variables. With a slight
exaggeration one may say that the difference is “notational”.

The distribution of a random element is “the usual one”, namely the in-
duced one, P = P ◦X−1;

P(A) = P ({ω : X(ω) ∈ A}) for A ∈ S.
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A typical example is the space C[0, 1] of continuous functions on the unit
interval, endowed with the uniform topology or metric

d(x, y) = sup
0≤t≤1

|x(t)− y(t)| for x, y ∈ C[0, 1].

For more on this and on the analog for the space D[0, 1] of right-continuous
functions with left-hand limits on the unit interval, endowed with the Skoro-
hod J1- or M1-topologies [224], see also [20, 188].

4 Expectation; Definitions and Basics

Just as random variables are “compressed versions” of events from a probabil-
ity space, one might be interested in compressed versions of random variables.
The typical one is the expected value, which is the probabilistic version of the
center of gravity of a physical body. Another name for expectation is mean.

Mathematically, expectations are integrals with respect to distribution
functions or probability measures. We must therefore develop the theory of
integration, more precisely, the theory of Lebesgue integration. However, since
this is a book on probability theory we prefer to develop the theory of Lebesgue
integration in terms of expectations. We also alert the reader to the small in-
tegration preview in Subsection 2.2.2, and recommend a translation of what is
to come into the traditional mathematics language – remember that rewriting
is much more profitable than rereading.

Much of what follows next may seem like we are proving facts that are
“completely obvious” or well known (or both). For example, the fact that the
tails of convergent integrals tend to 0 just as the terms in a convergent series
do. We must, however, remember that we are introducing a new integral con-
cept, namely the Lebesgue integral, and for that concept we “do not yet know”
that the results are “trivial”. So, proofs and some care are required. Along the
way we also obtain the promised justifications of facts from Subsection 2.2.2.

4.1 Definitions

We begin with the simple case.

Simple Random Variables

We remember from Definition 1.1 that a random variable X is simple if, for
some n,

X =
n∑

k=1

xkI{Ak},

where {xk, 1 ≤ k ≤ n} are real numbers, and {Ak, 1 ≤ k ≤ n} is a finite
partition of Ω.
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Definition 4.1. For the simple random variable X =
∑n

k=1 xkI{Ak}, we de-
fine the expected value as

E X =
n∑

k=1

xkP (Ak).
�

Non-negative Random Variables

In the first section of this chapter we found that if X is a non-negative random
variable, then the sequence of simple non-negative random variables Xn, n ≥
1, defined by

Xn(ω) =

{
k−1
2n , for k−1

2n ≤ X(ω) < k
2n , k = 1, 2, . . . , n2n,

n, for X(ω) ≥ n,

converges monotonically from below to X as n → ∞. With this in mind we
make the following definition of the expected value of arbitrary, non-negative
random variables.

Definition 4.2. Suppose that X is a non-negative random variable. The ex-
pected value of X is defined as

E X = lim
n→∞

n2n∑
k=1

k − 1
2n

P
(k − 1

2n
≤ X <

k

2n

)
.

Note that the limit may be infinite. �

The definition is particularly appealing for bounded random variables. Namely,
suppose that X is a non-negative random variable, such that

X ≤ M < ∞, for some M > 0,

and set,

Yn(ω) =

{
k
2n , for k−1

2n ≤ X(ω) < k
2n , k = 1, 2, . . . , n2n,

n, for X(ω) ≥ n,

for n ≥ M , where we pretend, for simplicity only, that M is an integer. Then
Yn ↘ X as n →∞, and moreover,

Xn ≤ X ≤ Yn, and Yn −Xn =
1
2n

.

Thus, by the consistency property that we shall prove in Theorem 4.2 below,

E Xn ≤ E X ≤ E Yn, and E(Yn −Xn) =
1
2n

→ 0 as n →∞.
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The General Case

Definition 4.3. For an arbitrary random variable X we define

E X = E X+ − E X−,

provided at least one of E X+ and E X− is finite (thus prohibiting ∞−∞).
We write

E X =
∫

Ω

X(ω) dP (ω) or, simply,
∫

X dP.

If both values are finite, that is, if E|X| < ∞, we say that X is integrable.�

Throughout our treatment, P is a probability measure, and assumptions
about integrability are with respect to P . Recall that a.s. means almost surely,
that is, if a property holds a.s. then the set where it does not hold is a null
set. If X and Y are random variables, such that X = Y a.s., this means that
P (X = Y ) = 1, or, equivalently, that P (X �= Y ) = 0.

During the process of constructing the concept of expectated values, we
shall need the concept of almost sure convergence, which means that we shall
meet situations where we consider sequences X1, X2, . . . of random variables
such that Xn(ω) → X(ω) as n → ∞, not for every ω, but for almost all ω.
This, as it turns out, is sufficient, (due to equivalence; Definition 1.2), since
integrals over sets of measure 0 are equal to 0.

As a, somewhat unfortunate, consequence, the introduction of the concept
of almost sure convergence cannot wait until Chapter 5.

Definition 4.4. Let X, X1, X2, . . . be random variables. We say that Xn

converges almost surely (a.s.) to the random variable X as n →∞, Xn
a.s.→ X

as n →∞, iff

P
(
{ω : Xn(ω) → X(ω) as n →∞}

)
= 1,

or, equivalently, iff

P
(
{ω : Xn(ω) �→ X(ω) as n →∞}

)
= 0. �

4.2 Basic Properties

The first thing to prove is that the definition of expectation is consistent, after
which we turn our attention to a number of properties, such as additivity,
linearity, domination, and so on.

Simple Random Variables

We thus begin with a lemma proving that the expected value of a random
variable is independent of the partition.
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Lemma 4.1. If {Ak, 1 ≤ k ≤ n} and {Bj , 1 ≤ j ≤ m} are partitions of Ω,
such that

X =
n∑

k=1

xkI{Ak} and X =
m∑

j=1

yjI{Bj},

Then
n∑

k=1

xkP (Ak) =
m∑

j=1

yjP (Bj).

Proof. The fact that {Ak, 1 ≤ k ≤ n} and {Bk, 1 ≤ k ≤ m} are partitions
implies that

P (Ak) =
m∑

j=1

P (Ak ∩Bj) and P (Bj) =
n∑

k=1

P (Ak ∩Bj),

and, hence, that

n∑
k=1

xkP (Ak) =
n∑

k=1

m∑
j=1

xkP (Ak ∩Bj),

and
m∑

j=1

yjP (Bj) =
m∑

j=1

n∑
k=1

yjP (Ak ∩Bj).

Since the sets {Ak ∩Bj , 1 ≤ k ≤ n, 1 ≤ j ≤ m} also form a partition of Ω it
follows that xk = yj whenever Ak ∩Bj �= ∅, which proves the conclusion. �

Next we show that intuitively obvious operations are permitted.

Theorem 4.1. Let X, Y be non-negative simple random variables. Then:

(a) If X = 0 a.s., then E X = 0;
(b) E X ≥ 0;
(c) If E X = 0, then X = 0 a.s.;
(d) If E X > 0, then P (X > 0) > 0;
(e) Linearity: E(aX + bY ) = aE X + bE Y for any a, b ∈ R+;
(f) E XI{X > 0} = E X;
(g) Equivalence: If X = Y a.s., then E Y = E X;
(h) Domination: If Y ≤ X a.s., then E Y ≤ E X.

Proof. (a): If X(ω) = 0 for all ω ∈ Ω, then, with A1 = {X = 0} (= Ω), we
have X = 0 · I{A1}, so that E X = 0 · P (A1) = 0 · 1 = 0.

If X = 0 a.s., then X =
∑n

k=1 xkI{Ak}, where x1 = 0, and x2, x3, . . . , xn

are finite numbers, A1 = {X = 0}, and A2, A3, . . . , An are null sets. It follows
that

E X = 0 · P (A1) +
n∑

k=2

xk · 0 = 0.
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(b): Immediate, since the sum of non-negative terms is non-negative.
(c): By assumption,

n∑
k=1

xkP (Ak) = 0.

The fact that the sum of non-negative terms can be equal to 0 if and only if
all terms are equal to 0, forces one of xk and P (Ak) to be equal to 0 for every
k ≥ 2 (A1 = {X = 0} again). In particular, we must have P (Ak) = 0 for any
nonzero xk, which shows that P (X = 0) = 1.
(d): The assumption implies that at least one of the terms xkP (Ak), and
therefore both factors of this term must be positive.
(e): With X =

∑n
k=1 xkI{Ak} and Y =

∑m
j=1 yjI{Bj}, we have

X + Y =
n∑

k=1

m∑
j=1

(xk + yj)I{Ak ∩Bj},

so that

E(aX + bY ) =
n∑

k=1

m∑
j=1

(axk + byj)P (Ak ∩Bj)

= a

n∑
k=1

m∑
j=1

xkP (Ak ∩Bj) + b

n∑
k=1

m∑
j=1

yjP (Ak ∩Bj)

= a

n∑
k=1

xkP

(
Ak ∩

( m⋃
j=1

Bj

))
+ b

m∑
j=1

yjP

(( n⋃
k=1

Ak

)
∩Bj

)

= a

n∑
k=1

xkP (Ak) + b

m∑
j=1

yjP (Bj) = aE X + bE Y.

(f): Joining (a) and (e) yields

E X = E XI{X > 0}+ E XI{X = 0} = E XI{X > 0}+ 0 = E XI{X > 0}.

(g): If X = Y a.s., then X − Y = 0 a.s., so that, by (a), E(X − Y ) = 0, and
by (e),

E X = E
(
(X − Y ) + Y

)
= E(X − Y ) + E Y = 0 + E Y.

(h): The proof is similar to that of (g). By assumption, X − Y ≥ 0 a.s., so
that, by (b), E(X − Y ) ≥ 0, and by linearity,

E Y = E X − E(X − Y ) ≤ E X. �

Non-negative Random Variables

Once again, the first thing to prove is consistency.
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Theorem 4.2. (Consistency)
Let X be a non-negative random variable, and suppose that {Yn, n ≥ 1} and
{Zn, n ≥ 1} are sequences of simple random variables, such that

Yn ↗ X and Zn ↗ X as n →∞.

Then
lim

n→∞
E Yn = lim

n→∞
E Zn (= E X).

Proof. The first remark is that if the limits are equal, then they must be
equal to E X because of the definition of the expected value for non-negative
random variables (Definition 4.2).

To prove equality between the limits it suffices to show that if 0 ≤ Yn ↗ X
as n →∞, and X ≥ Zm, then

lim
n→∞

E Yn ≥ E Zm, (4.1)

because by switching roles between the two sequences, we similarly obtain

lim
m→∞

E Zm ≥ E Yn,

and the desired equality follows.
To prove (4.1) we first suppose that

Zm > c > 0.

Next we note that there exists M < ∞, such that Zm ≤ M (because Zm is
simple, and therefore has only a finite number of supporting points).

Let ε < M , set An = {Yn ≥ Zm − ε}, and observe that, by assumption,
An ↗ Ω a.s. as n →∞. Moreover,

Yn ≥ YnI{An} ≥ (Zm − ε)I{An}.

By domination we therefore obtain (all random variables are simple)

E Yn ≥ E YnI{An} ≥ E(Zm − ε)I{An} = E ZmI{An} − εP (An)
= E Zm − E ZmI{Ac

n} − ε ≥ E Zm −MP (Ac
n)− ε,

so that,
lim inf
n→∞

E Yn ≥ E Zm − ε,

since P (Ac
n) → 0 as n → ∞. The arbitrariness of ε concludes the proof for

that case. Since c was arbitrary, (4.1) has been verified for Zm strictly positive.
If c = 0, then, by domination, and what has already been shown,

lim inf
n→∞

E Yn ≥ lim inf
n→∞

E YnI{Zm > 0} ≥ E ZmI{Zm > 0} = E Zm,

where, to be precise, we used Theorem 4.1(f) in the last step. �

We have thus shown consistency and thereby that the definition of the
expected value is in order.
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A slight variation to prove consistency runs as follows.

Theorem 4.3. Suppose that X is a non-negative random variable, and that
{Yn, n ≥ 1} are non-negative simple random variables, such that 0 ≤ Yn ↗ X
as n → ∞. Suppose further, that Y is a simple random variable, such that
0 ≤ Y ≤ X. Then

lim
n→∞

EYn ≥ E Y.

Exercise 4.1. Prove the theorem by showing that it suffices to consider indicator
functions, Y = I{A} for A ∈ F .
Hint: Think metatheorem. �

The next point in the program is to show that the basic properties we
have provided for simple random variables carry over to general non-negative
random variables.

Theorem 4.4. Let X, Y be non-negative random variables. Then

(a) If X = 0 a.s., then E X = 0;
(b) E X ≥ 0;
(c) If E X = 0, then X = 0 a.s.;
(d) If E X > 0, then P (X > 0) > 0;
(e) Linearity: E(aX + bY ) = aE X + bE Y for any a, b ∈ R+;
(f) E XI{X > 0} = E X;
(g) Equivalence: If X = Y a.s., then E Y = E X;
(h) Domination: If Y ≤ X a.s., then E Y ≤ E X;
(j) If E X < ∞, then X < ∞ a.s., that is, P (X < ∞) = 1.

Remark 4.1. Note that infinite expected values are allowed. �

Proof. The properties are listed in the same order as for simple random vari-
ables, but verified in a different order (property (j) is new).

The basic idea is that there exist sequences {Xn, n ≥ 1} and {Yn, n ≥ 1}
of non-negative simple random variables converging monotonically to X and
Y , respectively, as n → ∞, and which obey the basic rules for each n. The
conclusions then follow by letting n →∞.

For (a) there is nothing new to prove.
To prove linearity, we know from Theorem 4.1(e) that

E(aXn + bYn) = aE Xn + bE Yn for any a, b ∈ R+,

which, by letting n →∞, shows that

E(aX + bY ) = aE X + bE Y for any a, b ∈ R+.

The proof of (h), domination, follows exactly the same pattern. Next, (b)
follows from (h) and (a): Since X ≥ 0, we obtain E X ≥ E 0 = 0. In order to
prove (c), let An = {ω : X(ω) ≥ 1

n}. Then
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1
n

I{An} ≤ XnI{An} ≤ X,

so that
1
n

P (An) ≤ E XnI{An} ≤ E X = 0,

which forces P (An) = 0 for all n, that is P (X < 1
n ) = 1 for all n.

Moreover, (d) follows from (a), and (f) follows from (e) and (a), since

E X = E XI{X = 0}+ E XI{X > 0} = 0 + E XI{X > 0}.

Equivalence follows as in Theorem 4.1, and (j), finally, by linearity,

∞ > E X = E XI{X < ∞}+ E XI{X = ∞} ≥ E XI{X = ∞},

from which there is no escape except P (X = ∞) = 0. �

The General Case

Recall that the expected value of a random variable X is defined as the
difference between the expected values of the positive and negative parts,
E X = E X+ − E X−, provided at least one of them is finite, and that the
expected value is finite if and only if E|X| < ∞, in which case we call the
random variable integrable.

By reviewing the basic properties we find that (a) remains (nothing is
added), that (b) disappears, and that (c) is no longer true, since, e.g., sym-
metric random variables whose mean exists have mean 0 – one such example
is P (X = 1) = P (X = −1) = 1/2. The remaining properties remain with
minor modifications.

Theorem 4.5. Let X, Y be integrable random variables. Then

(a) If X = 0 a.s., then E X = 0;
(b) |X| < ∞ a.s., that is, P (|X| < ∞) = 1;
(c) If E X > 0, then P (X > 0) > 0;
(d) Linearity: E(aX + bY ) = aE X + bE Y for any a, b ∈ R;
(e) E XI{X �= 0} = E X;
(f) Equivalence: If X = Y a.s., then E Y = E X;
(g) Domination: If Y ≤ X a.s., then E Y ≤ E X;
(h) Domination: If |Y | ≤ X a.s., then E|Y | ≤ E X.

Proof. For the proofs one considers the two tails separately. Let us illustrate
this by proving linearity.

Since, by the triangle inequality, |aX + bY | ≤ |a||X|+ |b||Y | it follows, by
domination and linearity for non-negative random variables, Theorem 4.4(h)
and (e), that

E|aX + bY | ≤ E|a||X|+ E|b||Y | = |a|E|X|+ |b|E|Y | < ∞,
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so that the sum is integrable. Next we split the sum in two different ways:

aX + bY =

{
(aX + bY )+ − (aX + bY )−,

(aX)+ − (aX)− + (bY )+ − (bY )−.

Because of linearity it suffices to prove additivity.
Since all random variables to the right are non-negative we use linearity

to conclude that

E(X + Y )+ + E(X−) + E(Y −) = E(X + Y )− + E(X+) + E(Y +),

which shows that

E(X + Y ) = E(X + Y )+ − E(X + Y )−

= E(X+)− E(X−) + E(Y +)− E(Y −) = E X + E Y. �

Exercise 4.2. Complete the proof of the theorem. �

5 Expectation; Convergence

In addition to the basic properties one is frequently faced with an infinite
sequence of functions and desires information about the limit. A well-known
fact is that it is not permitted in general to reverse the order of taking a
limit and computing an integral; in technical probabilistic terms the problem
amounts to the question

lim
n→∞

E Xn ? = ? E lim
n→∞

Xn. (5.1)

We shall encounter this problem in greater detail in Chapter 5 which is devoted
to various convergence modes. We therefore provide just one illustration here,
the full impact of which will be clearer later.

Example 5.1. Let α > 0, and set

P (Xn = 0) = 1− 1
n2 and P (Xn = nα) =

1
n2 , n ≥ 1.

Taking only two different values these are certainly simple random variables,
but we immediately observe that one of the points slides away toward infinity
as n increases.

One can show (this will be done in Chapter 5) that Xn(ω) → 0 as n →∞
for almost every ω, which means that P (limn→∞ Xn = 0) = 1 – at this point
we may at least observe that P (Xn = 0) → 1 as n →∞.

As for the limit of the expected values,

E Xn = 0 ·
(
1− 1

n2

)
+ nα · 1

n2 = nα−2 →

⎧⎪⎨
⎪⎩

0, for 0 < α < 2,

1, for α = 2,

∞, for α > 2.

The answer to the question addressed in (5.1) thus may vary. �
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Typical conditions that yield positive results are uniformity, monotonicity
or domination conditions. All of these are tailored in order to prevent masses
to escape, “to pop up elsewhere”.

A first positive result concerns random variables that converge monotoni-
cally.

Theorem 5.1. (Monotone convergence)
Let {Xn, n ≥ 1} be non-negative random variables. If Xn ↗ X as n → ∞,
then

E Xn ↗ E X as n →∞.

Remark 5.1. The limit may be infinite. �

Proof. From the consistency proof we know that the theorem holds if {Xn, n ≥
1} are non-negative simple random variables. For the general case we there-
fore introduce non-negative, simple random variables {Yk,n, n ≥ 1} for every
k, such that

Yk,n ↗ Xk as n →∞.

Such sequences exist by definition and consistency.
In addition, we introduce the non-negative simple random variables

Zn = max
1≤k≤n

Yk,n, n ≥ 1.

By construction, and domination, respectively,

Yk,n ≤ Zn ≤ Xn, and E Yk,n ≤ E Zn ≤ E Xn. (5.2)

Letting n →∞ and then k →∞ in the point-wise inequality yields

Xk ≤ lim
n→∞

Zn ≤ lim
n→∞

Xn = X and then X ≤ lim
n→∞

Zn ≤ X,

respectively, so that,

lim
n→∞

E Zn = E X = E lim
n→∞

Zn, (5.3)

where the first equality holds by definition (and consistency), and the second
one by equivalence (Theorem 4.4(g)).

The same procedure in the inequality between the expectations in (5.2)
yields

E Xk ≤ lim
n→∞

EZn ≤ lim
n→∞

E Xn,

and then
lim

k→∞
E Xk ≤ lim

n→∞
E Zn ≤ lim

n→∞
E Xn.

Combining the latter one with (5.3) finally shows that

lim
n→∞

E Xn = lim
n→∞

E Zn = E lim
n→∞

Zn = E X. �
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The following variation for non-increasing sequences immediately suggests
itself.

Corollary 5.1. Let {Xn, n ≥ 1} be non-negative random variables and sup-
pose that X1 is integrable. If Xn ↘ X as n →∞, then

E Xn ↘ E X as n →∞.

Proof. Since 0 ≤ 2X − Xn ↗ X as n → ∞, the conclusion is, indeed, a
corollary of the monotone convergence theorem. �

A particular case of importance is when the random variables Xn are
partial sums of other random variables. The monotone convergence theorem
then translates as follows:

Corollary 5.2. Suppose that {Yn, n ≥ 1} are non-negative random variables.
Then

E

( ∞∑
n=1

Yn

)
=

∞∑
n=1

E Yn.

Exercise 5.1. Please write out the details of the translation. �

In Example 5.1 we found that the limit of the expected values coincided
with the expected value in some cases and was larger in others. This is a
common behavior.

Theorem 5.2. (Fatou’s lemma)
(i) If {Xn, n ≥ 1} are non-negative random variables, then

E lim inf
n→∞

Xn ≤ lim inf
n→∞

E Xn.

(ii) If, in addition, Y and Z are integrable random variables, such that Y ≤
Xn ≤ Z a.s. for all n, then

E lim inf
n→∞

Xn ≤ lim inf
n→∞

EXn ≤ lim sup
n→∞

E Xn ≤ E lim sup
n→∞

Xn.

Proof. (i): Set Yn = infk≥n Xk, n ≥ 1. Since

Yn = inf
k≥n

Xk ↗ lim inf
n→∞

Xn as n →∞,

the monotone convergence theorem yields

E Yn ↗ E lim inf
n→∞

Xn.

Moreover, since Yn ≤ Xn, Theorem 4.4(h) tells us that

E Yn ≤ E Xn for all n.

Combining the two proves (i).
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To prove (ii) we begin by noticing that

lim inf
n→∞

(Xn − Y ) = lim inf
n→∞

Xn − Y and lim inf
n→∞

(Z −Xn) = Z − lim sup
n→∞

Xn,

after which (ii) follows from (i) and additivity, since {Xn − Y, n ≥ 1} and
{Z −Xn, n ≥ 1} are non-negative random variables. �

Remark 5.2. The right-hand side of (i) may be infinite.

Remark 5.3. If the random variables are are indicators, the result transforms
into an inequality for probabilities and we rediscover Theorem 1.3.2. Tech-
nically, if Xn = I{An}, n ≥ 1, then (i) reduces to P (lim infn→∞ An) ≤
lim infn→∞ P (An), and so on.

A typical use of Fatou’s lemma is in cases where one knows that a point-
wise limit exists, and it is enough to assert that the expected value of the
limit is finite. This situation will be commonplace in Chapter 5. However,
if, in addition, the sequence of random variables is dominated by another,
integrable, random variable, we obtain another celebrated result.

Theorem 5.3. (The Lebesgue dominated convergence theorem)
Suppose that |Xn| ≤ Y , for all n, where E Y < ∞, and that Xn → X a.s. as
n →∞. Then

E|Xn −X| → 0 as n →∞,

In particular,
E Xn → E X as n →∞.

Proof. Since also |X| ≤ Y it follows that |Xn−X| ≤ 2Y , so that by replacing
Xn by |Xn −X|, we find that the proof reduces to showing that if 0 ≤ Xn ≤
Y ∈ L1, and Xn → 0 almost surely as n → ∞, then E Xn → 0 as n → ∞.
This, however, follows from Theorem 5.2(ii). �

Remark 5.4. If, in particular, Y is constant, that is, if the random variables
are uniformly bounded, |Xn| ≤ C, for all n and some constant C, the result
is sometimes called the bounded convergence theorem.

Remark 5.5. In the special case when the random variables are indicators of
measurable sets we rediscover the last statement in Theorem 1.3.2:

An → A =⇒ P (An) → P (A) as n →∞. �

The following corollary, the verification of which we leave as an exercise,
parallels Corollary 5.2.

Corollary 5.3. Suppose that {Yn, n ≥ 1} are random variables, such that∣∣∑∞
n=1 Yn

∣∣ ≤ X, where X is integrable. If
∑∞

n=1 Yn converges a.s. as n →∞,
then

∑∞
n=1 Yn, as well as every Yn, are integrable, and

E

( ∞∑
n=1

Yn

)
=

∞∑
n=1

E Yn.
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This concludes our presentation of expected values. Looking back we find
that the development is rather sensitive in the sense that after having traversed
elementary random variables, the sequence of results, that is, extensions, con-
vergence results, uniqueness, and so on, have to be pursued in the correct
order. Although many things, such as linearity, say, are intuitively “obvious”
we must remember that when the previous section began we knew nothing
about expected values – everything had to be verified.

Let us also mention that one can define expected values in different, albeit
equivalent ways. Which way one chooses is mainly a matter of taste.

Exercise 5.2. Prove that the definition

E X = sup
0≤Y ≤X

{E Y : Y is a simple random variable}

is equivalent to Definition 4.2.

Exercise 5.3. Review the last two sections in the language of Subsection 2.2.2,
i.e., “translate” the results (and the proofs) into the language of mathematics. �

6 Indefinite Expectations

In mathematical terminology one integrates over sets. In probabilistic terms
we suppose that X is an integrable random variable, and consider expressions
of the form

µX(A) = E XI{A} =
∫

A

X dP =
∫

Ω

XI{A}dP, where A ∈ F .

In other words, µX( · ) is an “ordinary” expectation applied to the random
variable XI{ · }. In order to justify the definition and the equalities it there-
fore suffices to consider indicator variables, for which the equalities reduce to
equalities between probabilities – note that µI{Λ}(A) = P (Λ∩A) for Λ ∈ F –,
after which one proceeds via non-negative simple random variables, monotone
convergence, and X = X+ −X− according to the usual procedure.

The notation µX( · ) suggests that we are confronted with a signed measure
with respect to the random variable X, that is, a measure that obeys the
properties of a probability measure except that it can take negative values,
and that the total mass need not be equal to 1. If X is non-negative and
integrable the expression suggests that µ is a non-negative, finite measure,
and if E X = 1 a probability measure.

Theorem 6.1. Suppose that X is a non-negative, integrable random variable.
Then:

(a) µX(∅) = 0.
(b) µX(Ω) = E X.
(c) P (A) = 0 =⇒ µX(A) = 0.
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(d) If µX(A) = 0 for all A ∈ F , then X = 0 a.s.
(e) If {An, n ≥ 1} are disjoint sets, then µX(

⋃∞
n=1 An) =

∑∞
n=1 µX(An).

(f) If µX(A) = 0 for all A ∈ A, where A is a π-system that generates F ,
then X = 0 a.s.

(g) If µX(A) = 0 for all A ∈ A, where A is an algebra that generates F ,
then X = 0 a.s.

Proof. The conclusions follow, essentially, from the definition and the different
equivalent forms of µX( · ). For (a)–(e) we also need to exploit some of the
earlier results from this chapter, and for (f) and (g) we additionally need
Theorems 1.2.3 and 1.2.2, respectively.

Exercise 6.1. Spell out the details. �

Remark 6.1. The theorem thus verifies that µX is a finite measure whenever
X is a non-negative integrable random variable. �

It is now possible to extend the theorem to arbitrary integrable random
variables by considering positive and negative parts separately, and to com-
pare measures, corresponding to different random variables, by paralleling the
development for ordinary expectations.

Theorem 6.2. Suppose that X and Y are integrable random variables. Then:

(i) If µX(A) = µY (A) for all A ∈ F , then X = Y a.s.
(ii) If µX(A) = µY (A) for all A ∈ A, where A is a π-system that generates

F , then X = Y a.s.
(iii) If µX(A) = µY (A) for all A ∈ A, where A is an algebra that generates

F , then X = Y a.s.

Exercise 6.2. Once again we urge the reader to fill in the proof. �

The following result is useful for integrals over tails or small, shrinking
sets of integrable random variables.

Theorem 6.3. Let X be a random variable with finite mean, and A and An,
n ≥ 1, be arbitrary measurable sets (events). Then:

(i)
∣∣µX({|X| > n})

∣∣ ≤ µ|X|({|X| > n}) → 0 as n →∞.

(ii) If P (An) → 0 as n →∞, then
∣∣µX(An)

∣∣ ≤ µ|X|(An) → 0 as n →∞.

Proof. Since the inequalities are consequences of the basic properties it suffices
to prove the conclusion for non-negative random variables.

Thus, suppose that X ≥ 0. The first claim follows from monotone conver-
gence, Theorem 5.1(i) and linearity. Namely, since XI{X ≤ n} ↗ X, which
is integrable, it follows that

E XI{X ≤ n} ↗ E X < ∞ as n →∞,
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so that

µX({X > n}) = E XI{X > n} = E X − E XI{X ≤ n} ↘ 0 as n →∞.

As for (ii), let M > 0. Then

µX(An) = E XI{An} = E XI{An ∩ {X ≤ M}}+ E XI{An ∩ {X > M}}
≤ MP (An) + E XI{X > M},

so that
lim sup

n→∞
E XI{An} ≤ E XI{X > M}.

The conclusion now follows from (i), since E XI{X > M} can be made arbi-
trarily small by choosing M large enough. �

Remark 6.2. Note the idea in (ii) to split the set An into a “nice” part which
can be handled in more detail, and a “bad” part which is small. This device
is used abundantly in probability theory (and in analysis in general) and will
be exploited several times as we go on. �

7 A Change of Variables Formula

We have seen that random variables are functions from the sample space to
the real line, and we have defined expectations of random variables in terms
of integrals over the sample space. Just as the probability space behind the
random variables sinks into the background, once they have been properly
defined by the induced measure (Theorem 1.1), one would, in the same vein,
prefer to compute an integral on the real line rather than over the probability
space. Similarly, since measurable functions of random variables are new ran-
dom variables (Theorem 1.3), one would also like to find the relevant integral
corresponding to expectations of functions of random variables. The following
theorem, which we might view as the establishing of “induced expectations”,
settles the problem.

Theorem 7.1. (i) Suppose that X is integrable. Then

E X =
∫

Ω

X dP =
∫

R

xdFX(x).

(ii) Let X be a random variable, and suppose that g is a measurable function,
such that g(X) is an integrable random variable. Then

E g(X) =
∫

Ω

g(X) dP =
∫

R

g(x) dFX(x).
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Proof. We follow the usual procedure.
(i) If X is an indicator random variable, X = I{A} for some A ∈ F , then
the three members all reduce to P (X ∈ A). If X is a simple random variable,
X =

∑n
k=1 xkI{Ak}, where {Ak, 1 ≤ k ≤ n} is a partition of Ω, then the three

members reduce to
∑n

k=1 P (Ak). If X is non-negative, the conclusion follows
by monotone convergence, and for the general case we use X = X+−X− and
additivity.
(ii) We proceed as in (i) with g playing the role of X. If g(x) = IA(x), then

{ω : g(X(ω)) = 1} = {ω : X(ω) ∈ A},

so that
E g(X) = P (X ∈ A) =

∫
A

dFX(x) =
∫

R

g(x) dFX(x).

If g is simple, the conclusion follows by linearity, if g is non-negative by mono-
tone convergence, and, finally, in the general case by decomposition into pos-
itive and negative parts. �

Exercise 7.1. As always, write out the details. �

By analyzing the proof we notice that if X is discrete, then X is, in fact,
an elementary random variable (recall Definition 1.1), that is, an infinite sum∑∞

k=1 xkI{Ak}. If X is non-negative, then, by monotonicity,

E X =
∞∑

k=1

xkP (Ak),

and in the general case this holds by the usual decomposition. This, and
the analogous argument for g(X), where g is measurable proves the following
variation of the previous result in the discrete and absolutely continuous cases,
respectively.

Theorem 7.2. If X is a discrete random variable with probability function
pX(x), g is a measurable function, and E|g(X)| < ∞, then

E g(X) =
∫

Ω

g(X) dP =
∞∑

k=1

g(xk)pX(xk) =
∞∑

k=1

g(xk)P (X = xk).

Proof. We use the decomposition Ak = {X = xk}, k = 1, 2, . . ., and A0 =(⋃∞
n=1 Ak

)c, observing that P (A0) = 0. �

Theorem 7.3. If X is an absolutely continuous random variable, with den-
sity function fX(x), g is a measurable function, and E|g(X)| < ∞, then

E g(X) =
∫

Ω

g(X) dP =
∫ ∞

−∞
g(x)fX(x) dx.



62 2 Random Variables

Proof. If g(x) = IA(x) is an indicator, of A ∈ R, say, then

E g(X) =
∫

Ω

I{A}dP = P (A) =
∫

A

fX(x) dx

=
∫ ∞

−∞
IA(x)fX(x) dx =

∫ ∞

−∞
g(x)fX(x) dx,

after which one proceeds along the usual scheme. �

In addition to being a computational vehicle, the formula for computing
E g(X) shows that we do not need to know the distribution of g(X) in order
to find its mean.

Example 7.1. Let X ∈ U(0, 1), and suppose, for example, that g(x) = sin x.
Then

E sin X =
∫ 1

0
sin xdx = 1− cos 1,

whereas one has to turn to the arcsin function in order to find the density of
sin X. And, ironically, if one then computes E sin X, one obtains the same
integral as three lines ago after a change of variable. �

8 Moments, Mean, Variance

Expected values measure the center of gravity of a distribution; they are
measures of location. In order to describe a distribution in brief terms there
exist additional measures, such as the variance which measures the dispersion
or spread, and moments.

Definition 8.1. Let X be a random variable. The

• moments are E Xn, n = 1, 2, . . .;
• central moments are E(X − E X)n, n = 1, 2, . . .;
• absolute moments are E|X|n, n = 1, 2, . . .;
• absolute central moments are E|X − E X|n, n = 1, 2, . . ..

The first moment, E X, is the mean. The second central moment is called
variance:

Var X = E(X − E X)2 (= E X2 − (E X)2).

All of this, provided the relevant quantities exist. �

Following are tables which provide mean and variance for the standard
discrete and absolutely continuous distributions listed earlier in this chapter.
The reader is advised to check that the entries have been correctly inserted
in both tables.

Mean and variance for the Cantor distribution will be given in Section
2.11 ahead.
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Distribution Notation Mean Variance
One point δ(a) a 0
Symmetric Bernoulli 0 1
Bernoulli Be(p) p pq
Binomial Bin(n, p) np npq
Geometric Ge(p) q

p
q

p2

First success Fs(p) 1
p

q
p2

Poisson Po(m) m m

Table 2.3. Mean and variance for some discrete distributions

Distribution Notation Mean Variance

Uniform U(a, b) a+b
2

(b−a)2

12
U(0, 1) 1

2
1
12

U(−1, 1) 0 1
3

Triangular Tri(−1, 1) 0 1
6

Exponential Exp(θ) θ θ2

Gamma Γ (p, θ) pθ pθ2

Beta β(r, s) r
r+s

rs
(r+s)2(r+s+1)

Normal N(µ, σ2) µ σ2

N(0, 1) 0 1

Log-normal LN(µ, σ2) eµ+
1
2 σ2

e2µ(e2σ2 − eσ2
)

Cauchy C(0, 1) − −
Pareto Pa(β, α) αβ

α−1
αβ2

(α−2)(α−1)

Table 2.4. Mean and variance for some absolutely continuous distributions

The Cauchy distribution possesses neither mean nor variance. The ex-
pected value and variance for the Pareto distribution only exist for α > 1 and
α > 2, respectively (as is suggested by the formulas).

If we think of the physical interpretation of mean and variance it is rea-
sonable to expect that a linear transformation of a random variable changes
the center of gravity linearly, and that a translation does not change the dis-
persion. The following exercise puts these observations into formulas.

Exercise 8.1. Prove the following properties for linear transformations: Let X be
a random variable with E X = µ and Var X = σ2, and set Y = aX + b, where
a, b ∈ R. Prove that

E Y = aµ + b and that Var Y = a2σ2. �

Two Special Examples Revisited

In Subsection 2.2.7 we presented two examples, the first of which was a random
variable X which was uniformly distributed on the irrationals in [0, 1], that
is, with density
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f(x) =

{
1, for x ∈ [0, 1] � Q,

0, for x ∈ [0, 1] ∩Q.

The random variable was there seen to be equivalent to a standard U(0, 1)-
distributed random variable, so that a direct computation shows that E X =
1/2 and that VarX = 1/12.

The other example was a discrete random variable with probability func-
tion

p(rk) =

{
6

π2k2 , for rk ∈ (0, 1) ∩Q,

0, otherwise,

where {rk, k ≥ 1} was an enumeration of the rationals in the unit interval.
We also pointed out that this is a somewhat pathological situation, since the
enumeration of the rationals is not unique. This means that all moments, in
particular the expected value and the variance, are ambiguous quantities in
that they depend on the actual enumeration of Q.

9 Product Spaces; Fubini’s Theorem

Expectations of functions of random vectors are defined in the natural way
as the relevant multidimensional integral. The results from Section 2.7 carry
over, more or less by notation, that is, by replacing appropriate roman letters
by boldface ones.

For example, if (X, Y )′ is a random vector and g a measurable function,
then

E g(X, Y ) =
∫

Ω

g(X, Y ) dP =
∫

R2
g(x, y) dFX,Y (x, y).

In the discrete case,

E g(X, Y ) =
∞∑

i=1

∞∑
j=1

g(xi, xj)pX,Y (xi, xj),

and in the absolutely continuous case

E g(X, Y ) =
∫

R2
g(x, y)fX,Y (x, y) dxdy.

In each case the proviso is absolute convergence.
Expectations of functions of random variables take special and useful forms

when the probability spaces are product spaces.

9.1 Finite-dimensional Product Measures

Let (Ωk,Fk, Pk), 1 ≤ k ≤ n, be probability spaces. We introduce the notation
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F1 ×F2 × · · · × Fn = σ{F1 × F2 × · · · × Fn : Fk ∈ Fk, k = 1, 2, . . . , n}.

Given this setup one can now construct a product space, (×n
k=1Ωk,×n

k=1Fk),
with an associated probability measure P, such that

P(A1 ×A2 × · · · ×An) =
n∏

k=1

Pk(Ak) for Ak ∈ Fk, 1 ≤ k ≤ n.

Note that the probability measure has a built-in independence.
Moreover, the probability space (×n

k=1Ωk,×n
k=1Fk,×n

k=1Pk) thus obtained
is unique. We refer to the literature on measure theory for details.

As for infinite dimensions we confine ourselves to mentioning the existence
of a theory. A prominent example is the space of continuous functions on the
unit interval and the associated σ-algebra – (C[0, 1], C[0, 1]). For this and more
we recommend [20].

9.2 Fubini’s Theorem

Fubini’s theorem is a result on integration, which amounts to the fact that an
expectation, which in its general form is a double integral, can be evaluated
as iterated single integrals.

Theorem 9.1. Let (Ω1,F1, P1) and (Ω2,F2, P2) be probability spaces, and
consider the product space (Ω1 × Ω2,F1 × F2, P ), where P = P1 × P2 is
the product measure as defined above, suppose that X = (X1, X2)′ is a two-
dimensional random variable, and that g is F1×F2-measurable, and (i) non-
negative or (ii) integrable. Then

E g(X) =
∫

Ω

g(X) dP =
∫

Ω1×Ω2

g(X1, X2) d(P1 × P2)

=
∫

Ω1

(∫
Ω2

g(X) dP2

)
dP1 =

∫
Ω2

(∫
Ω1

g(X) dP1

)
dP2.

Proof. For indicators the theorem reduces to the construction of product mea-
sure, after which one proceeds via simple functions, monotone convergence and
non-negative functions and the usual decomposition. We omit all details. �

A change of variables (recall Section 2.7) applied to Fubini’s theorem yields
the following computationally more suitable variant.

Theorem 9.2. Suppose that (X, Y )′ is a two-dimensional random variable,
and g is R2 = R×R-measurable, and non-negative or integrable. Then

E g(X, Y ) =
∫∫

R2
g(x, y) dFX(x) dFY (y)

=
∫

R

(∫
R

g(x, y) dFY (y)
)
dFX(x)

=
∫

R

(∫
R

g(x, y) dFX(x)
)
dFY (y).
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Exercise 9.1. Write down the analogous formulas in the absolutely continuous
and discrete cases, respectively. �

9.3 Partial Integration

A first application of Fubini’s theorem is to show that the usual formula for
partial integration carries over to the present context.

Theorem 9.3. Let a < b ∈ R, and suppose that F, G ∈ D+ have no common
points of discontinuity on (a, b]. Then∫ b

a

G(x) dF (x) = G(b)F (b)−G(a)F (a)−
∫ b

a

F (x) dG(x).

If, in addition, G is absolutely continuous with density g, then∫ b

a

G(x) dF (x) = G(b)F (b)−G(a)F (a)−
∫ b

a

F (x)g(x) dx.

Proof. We first note that if the formula holds for F and G, then, by linearity,
it also holds for linear transformations; αF + β and γG + δ, since then∫ b

a

γG(x) d(αF (x)) = γα

∫ b

a

G(x)dF (x)

= γα

(
G(b)F (b)−G(a)F (a)−

∫ b

a

F (x) dG(x)
)

=
(
γG(b)

)(
αF (b)

)
−
(
γG(a)

)(
αF (a)

)
−
∫ b

a

(
αF (x)

)
d(γG(x)),

and ∫ b

a

(G(x) + δ) d(F (x) + β) =
∫ b

a

G(x) dF (x) + δ(F (b)− F (a))

= G(b)F (b)−G(a)F (a)−
∫ b

a

F (x) dG(x) + δ(F (b)− F (a))

= (G(b) + δ)F (b)− (G(a) + δ)F (a)−
∫ b

a

F (x) d(G(x) + δ).

It is therefore no restriction to assume that F and G are true distribution func-
tions, which we associate with the random variables X and Y , respectively,
the point being that we can express the integrals as probabilities. Namely, by
an appeal to Fubini’s theorem, we obtain, on the one hand, that

P (a < X ≤ b, a < Y ≤ b) =
∫ b

a

∫ b

a

d(F ×G)(x, y) =
∫ b

a

∫ b

a

dF (x)dG(y)

=
∫ b

a

dF (x)
∫ b

a

dG(y) =
(
F (b)− F (a)

)(
G(b)−G(a)

)
,
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and, by splitting the probability that the point (X, Y ) lies inside the square
(a, b] × (a, b] into three pieces, on the other hand (via product measure and
Fubini), that

P (a < X ≤ b, a < Y ≤ b) = P (a < X < Y ≤ b) + P (a < Y < X ≤ b)
+P (a < Y = X ≤ b)

=
∫ b

a

∫ x

a

d(F ×G)(x, y) +
∫ b

a

∫ x

a

d(G× F )(x, y) + 0

=
∫ b

a

(∫ x

a

dF (y)
)
dG(x) +

∫ b

a

(∫ x

a

dG(y)
)
dF (x)

=
∫ b

a

(
F (x)− F (a)

)
dG(x) +

∫ b

a

(
G(x)−G(a)

)
dF (x)

=
∫ b

a

F (x) dG(x) +
∫ b

a

G(x) dF (x)− F (a)
(
G(b)−G(a)

)
−G(a)

(
F (b)− F (a)

)
.

The formula for partial integration now follows by equating the two expres-
sions for P (a < X ≤ b, a < Y ≤ b).

The conclusion for the special case when G is absolutely continuous follows
from the fact that ∫ b

a

F (x) dG(x) =
∫ b

a

F (x)g(x) dx. �

Remark 9.1. The interval (a, b] can be replaced by infinite intervals provided
enough integrability is available. �

9.4 The Convolution Formula

Consider once again the usual product space (Ω1×Ω2,F1×F2, P1×P2), and
suppose that (X1, X2)′ is a two-dimensional random variable whose marginal
distribution functions are F1 and F2, respectively. The convolution formula
provides the distribution of X1 + X2.

Theorem 9.4. In the above setting

FX1+X2(u) =
∫ ∞

−∞
F1(u− y) dF2(y).

If, in addition, X2 is absolutely continuous with density f2, then

FX1+X2(u) =
∫ ∞

−∞
F1(u− y)f2(y) dy.

If X1 is absolutely continuous with density f1, the density of the sum equals
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fX1+X2(u) =
∫ ∞

−∞
f1(u− y) dF2(y).

If both are absolutely continuous, then

fX1+X2(u) =
∫ ∞

−∞
f1(u− y)f2(y) dy.

Proof. Once again, an application of Fubini’s theorem does the job for us.

FX1+X2(u) = P (X1 + X2 ≤ u) =
∫∫

x+y≤u

d(F1 × F2)(x, y)

=
∫ ∞

−∞

∫ u−y

−∞
d(F1 × F2)(x, y) =

∫ ∞

−∞

(∫ u−y

−∞
dF1(x)

)
dF2(y)

=
∫ ∞

−∞
F1(u− y) dF2(y).

The remaining parts are immediate. �

10 Independence

One of the central concepts in probability theory is independence. The out-
comes of repeated tosses of coins and throws of dice are “independent” in a
sense of normal language, meaning that coins and dice do not have a mem-
ory. The successive outcomes of draws without replacements of cards from a
deck are not independent, since a card that has been drawn cannot be drawn
again. The mathematical definition of independence differs from source to
source. Luckily the two following ones are equivalent.

Definition 10.1. The random variables X1, X2, . . . , Xn are independent iff,
for arbitrary Borel measurable sets A1, A2, . . . , An,

P

( n⋂
k=1

{Xk ∈ Ak}
)

=
n∏

k=1

P (Xk ∈ Ak).

Definition 10.2. The random variables X1, X2, . . . , Xn or, equivalently, the
components of the random vector X are independent iff

FX(x) =
n∏

k=1

FXk
(xk) for all x ∈ Rn.

�

Independence according to the first definition thus means that all possible
joint events are independent, and according to the second definition that the
joint distribution function equals the product of the marginal ones.



10 Independence 69

Theorem 10.1. The two definitions are equivalent.

Proof. The second definition obviously is implied by the first one, since the
half-open infinite sets are a subclass of all measurable sets. For the converse
we note that this subclass is a π-system that generates the σ-algebra of Borel
measurable sets (Theorem 1.3.6). An application of Theorem 1.3.5 finishes the
proof. �

Remark 10.1. Independence implies that the joint measure is product measure
(due to uniqueness). �

Exercise 10.1. Prove that it is, in fact, enough to check any class of sets that
generates the Borel sets to assert independence. �

For discrete and absolutely continuous distributions independence is equiv-
alent to the factorization of joint probability functions and joint densities,
respectively.

Theorem 10.2. (i) If X and Y are discrete, then X and Y are independent
iff the joint probability function is equal to the product of the marginal ones,
that is iff

pX,Y (x, y) = pX(x) · pY (y) for all x, y ∈ R.

(ii) If X and Y are absolutely continuous, then X and Y are independent iff
the joint density is equal to the product of the marginal ones, that is iff

fX,Y (x, y) = fX(x) · fY (y) for all x, y ∈ R.

Proof. The discrete case follows immediately by taking differences.
As for the absolutely the continuous case, if factorization holds, then, via

Fubini’s Theorem, Theorem 9.1,

FX,Y (x, y) =
∫ x

−∞

∫ y

−∞
fX,Y (u, v) dudv =

∫ x

−∞

∫ y

−∞
fX(u)fY (v) dudv

=
∫ x

−∞
fX(u) du

∫ y

−∞
fY (v) dv = FX(x) · FY (y).

To prove the converse, we use the metatheorem approach. Suppose that X
and Y are independent and define, for C = A×B, where A, B ∈ R,

E =
{

C :
∫∫

C

fX,Y (u, v) dudv =
∫∫

C

fX(u)fY (v) dudv.

}

Let, for x, y ∈ R, A = (−∞, x] and B = (−∞, y]. Then, by definition, the
independence assumption, and Fubini’s theorem,∫∫

C

fX,Y (u, v) dudv = P (A ∩B) = P (A)P (B)

=
∫

A

fX(u) du

∫
B

fY (v) dv =
∫∫

A×B

fX(u)fY (v) dudv

=
∫∫

C

fX(u)fY (v) dudv.
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This shows that E contains all rectangles. Since the class of rectangles con-
stitutes a π-system and generate the Borel σ-algebra, Theorem 1.2.3 tells us
that E = R. �

A more modern (but less common) definition (which we state for n = 2)
is that X and Y are independent iff

E g(X)h(Y ) = E g(X) · E h(Y ) for all g, h ∈ CB ,

where CB is the class of bounded continuous functions. For details and equiv-
alences, see [145], Chapter 10.

Exercise 10.2. Prove, via simple functions, non-negative functions, monotone
convergence, and differences of non-negative functions, that this definition is equiv-
alent to the other ones. �

Exercise 10.3. Prove that if X1, X2, . . . , Xn are independent, then

E

n∏
k=1

|Xk|sk =
n∏

k=1

E|Xk|sk ,

where s1, s2, . . . , sn are positive reals, and that

E

n∏
k=1

X
jk
k =

n∏
k=1

EX
jk
k ,

where j1, j2, . . . , jn are positive integers. �

Two of the basic properties of expectations were additivity and linearity.
A related question concerns variances; if X and Y are random variables with
finite variances, is it true that the variance of the sum equals the sum of
the variances? Do variances have the linearity property? These questions are
(partially) answered next.

Theorem 10.3. Let X and Y be independent random variables with finite
variances, and a, b ∈ R. Then

Var aX = a2Var X,

Var (X + Y ) = VarX + VarY,

Var (aX + bY ) = a2Var X + b2Var Y.

Exercise 10.4. Prove the theorem. �

Remark 10.2. Independence is sufficient for the variance of the sum to be equal
to the sum of the variances, but not necessary.

Remark 10.3. Linearity should not hold, since variance is a quadratic quantity.

Remark 10.4. Note, in particular, that Var (−X) = VarX. This is as expected,
since switching the sign should not alter the spread of the distribution. �
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10.1 Independence of Functions of Random Variables

The following theorem puts the natural result that functions of independent
random variables are independent into print.

Theorem 10.4. Let X1, X2, . . . , Xn be random variables and h1, h2, . . . , hn,
be measurable functions. If X1, X2, . . . , Xn are independent, then so are
h1(X1), h2(X2), . . . , hn(Xn).

Proof. Let A1, A2, . . . , An be Borel measurable sets. Then, by turning to in-
verse images and the Definition 10.1, we find that

P
( n⋂

k=1

{hk(Xk) ∈ Ak}
)

= P
( n⋂

k=1

{Xk ∈ h−1
k (Ak)}

)

=
n∏

k=1

P
(
Xk ∈ h−1

k (Ak)
)

=
n∏

k=1

P (hk(Xk) ∈ Ak).
�

10.2 Independence of σ-Algebras

As an analog to Theorem 1.4.1, independence of random variables implies
independence of the σ-algebras generated by them.

Theorem 10.5. If X1, X2, . . . , Xn are independent, then so are

σ{X1}, σ{X2}, . . . , σ{Xn}.

Exercise 10.5. Write out the details of the proof. �

10.3 Pair-wise Independence

Recall the distinction between independence and pair-wise independence of
sets from Section 1.4. The same distinction exists for random variables.

Definition 10.3. The random variables X1, X2, . . . , Xn are pair-wise inde-
pendent iff all pairs are independent. �

Independence obviously implies pair-wise independence, since there are several
additional relations to check in the former case. The following example shows
that there exist random variables that are pair-wise independent, but not
(completely) independent.

Example 10.1. Pick one of the points (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1, 1)
uniformly at random, and set, for k = 1, 2, 3,

Xk =

{
1, if coordinate k = 1,
0, otherwise.
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Then, with Ak = {Xk = 1}, we rediscover Example 1.4.1, which proves the
desired assertion. In addition,

E Xk =
1
2
, for k = 1, 2, 3,

E(X1X2X3) =
1
4
�= E X1E X2E X3 =

1
8
.

However, since XiXj = 1 if the point (1, 1, 1) is chosen, and XiXj = 0 other-
wise, we obtain

P (XiXj = 1) =
1
4
, and P (XiXj = 0) =

3
4
.

for all pairs (i, j), where (i �= j), which implies that

E XiXj =
1
4

= E XiE Xj .

In other words, moment factorization holds for pairs but not for triplets. �

Exercise 10.6. Prove that if X1, X2, . . . , Xn are pair-wise independent, then

Var (X1 + X2 + · · · + Xn) = Var X1 + Var X2 + · · · + Var Xn. �

10.4 The Kolmogorov Zero-one Law Revisited

The proof of the following Kolmogorov zero-one law for random variables
amounts to a translation of the proof of the zero-one law for events, Theorem
1.5.1.

Let {Xn, n ≥ 1} be arbitrary random variables, and set

Fn = σ{X1, X2, . . . , Xn} for n ≥ 1,

F ′
n = σ{Xn+1, Xn+2, . . .} for n ≥ 0.

Then

T =
∞⋂

n=0

F ′
n

is the tail-σ-field (with respect to {Xn, n ≥ 1}).

Theorem 10.6. (The Kolmogorov zero-one law)
Suppose that {Xn, n ≥ 1} are independent random variables. If A ∈ T , then

P (A) = 0 or 1.

Exercise 10.7. Prove the theorem, that is, rewrite (e.g.) the second proof of The-
orem 1.5.1 into the language of random variables. �
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Corollary 10.1. If, in the setting of the Theorem 10.6, X is a T -measurable
random variable, then X is a.s. constant.

Proof. The event {X ≤ x} ∈ T for all x ∈ R. Thus,

FX(x) = P (X ≤ x) = 0 or 1 for all x ∈ R,

which, in view of the properties of distribution functions, implies that there
exists c ∈ R, such that

FX(x) = P (X ≤ x) =

{
0, for x < c,

1, for x ≥ c. �

A consequence of the corollary is that random variables, such as limits,
limit superior and limit inferior of sequences of independent random variables
must be constant a.s. if they converge at all.

11 The Cantor Distribution

A beautiful way to describe a random variable that has the Cantor distribu-
tion on the unit interval is the following: Let X, X1, X2, . . . be independent
identically distributed random variables such that

P (X = 0) = P (X = 2) =
1
2
.

Then

Y =
∞∑

n=1

Xn

3n
∈ Cantor(0, 1).

Namely, the random variables X1, X2, . . . are the successive decimals of a
number whose decimals in the base 3 expansion are 0 or 2, and never 1.
Moreover, since the decimals each time have a 50-50 chance of being 0 or 2,
the infinite sum that constitutes Y is uniformly distributed over the Cantor
set.

To compute the mean we use additivity and monotone convergence for
series to obtain

E Y = E

( ∞∑
n=1

Xn

3n

)
=

∞∑
n=1

E
(Xn

3n

)
=

∞∑
n=1

E Xn

3n
=

∞∑
n=1

1
3n

=
1
2
,

which coincides with intuition.
To verify the result for the variance we also need the fact that the sum-

mands are independent (and an additional argument due to the fact that we
are faced with an infinite series) to obtain
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Var Y = Var
( ∞∑

n=1

Xn

3n

)
=

∞∑
n=1

Var
(Xn

3n

)
=

∞∑
n=1

Var Xn

(3n)2
=

∞∑
n=1

1
9n

=
1
8
.

By letting X be equal to 0 with probability 1/2, and equal to some other
positive integer with probability 1/2, and by modifying Y accordingly, we can
construct other Cantor-type distributions. For example,

Z =
∞∑

n=1

Xn

4n
, where P (X = 0) = P (X = 3) =

1
2
,

is a random variable corresponding to a number that is uniform over the
subset of the interval [0, 1] which consists of the numbers whose base 4 decimal
expansion contains only 0’s and 3’s, no 1’s or 2’s.

We have thus exhibited two different Cantor-type distributions.

Exercise 11.1. We have not explicitly proved that the base 4 example produces
a continuous singular distribution. Please check that this is the case (although this
seems pretty clear since the constructions is the same as that of the Cantor distri-
bution). �

Exercise 11.2. Compute E Z and Var Z. �

Although Cantor sets have Lebesgue measure 0 they are, somehow, of
different “sizes” in the sense that some are more “nullish” than others. After
all, in the classical, first case, we delete one-third of the support in each step,
whereas, in the second case we delete halves. The null set in the first case
therefore seems larger than in the second case.

There exists, in fact, a means to classify such sets, namely the Hausdorff
dimension, which can be used to measure the dimension of sets (such as
fractals), whose topological dimension is not a natural number. One can show
that the Hausdorff dimension of the classical Cantor set on the unit interval
is log 2/ log 3, and that the Hausdorff dimension pertaining to our second
example is log 2/ log 4 = 1/2 < log 2/ log 3 ≈ 0.631, and, hence smaller than
the classical Cantor set.

We close by mentioning that the same argument with 3 (or 4) replaced by
2, and Xk being 0 or 1 with equal probabilities for all k, generates a number
that is U(0, 1)-distributed (and, hence, an absolutely continuous distribution),
since it is the binary expansion of such a number. Its Hausdorff dimension
is, in fact, equal to log 2/ log 2 = 1, (which coincides with the topological
dimension).

12 Tail Probabilities and Moments

The existence of an integral or a moment clearly depends on how quickly tails
decay. It is therefore not far-fetched to guess that there exist precise results
concerning this connection.
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Theorem 12.1. Let r > 0, and suppose that X is a non-negative random
variable. Then:

(i) E X =
∫∞
0 (1− F (x)) dx =

∫∞
0 P (X > x) dx,

where both members converge or diverge simultaneously;
(ii) E Xr = r

∫∞
0 xr−1(1− F (x)) dx = r

∫∞
0 xr−1P (X > x) dx,

where both members converge or diverge simultaneously;
(iii) E X < ∞ ⇐⇒

∑∞
n=1 P (X ≥ n) < ∞.

More precisely,

∞∑
n=1

P (X ≥ n) ≤ E X ≤ 1 +
∞∑

n=1

P (X ≥ n).

(iv) E Xr < ∞ ⇐⇒
∑∞

n=1 nr−1P (X ≥ n) < ∞.
More precisely,

∞∑
n=1

nr−1P (X ≥ n) ≤ E Xr ≤ 1 +
∞∑

n=1

nr−1P (X ≥ n).

Proof. (i) and (ii): Let A > 0. By partial integration,

∫ A

0
xr dF (x) = −Ar(1− F (A)) +

∫ A

0
rxr−1(1− F (x)) dx

= −ArP (X > A) + r

∫ A

0
xr−1P (X > x) dx.

If E Xr < ∞, then

Ar(1− F (A)) ≤
∫ ∞

A

xr dF (x) → 0 as A →∞,

which shows that the integral on the right-hand side converges. If, on the
other hand, the latter converges, then so does the integral on the left-hand
side since it is smaller.

As for (iii),

E X =
∞∑

n=1

∫ n

n−1
xdF (x) ≤

∞∑
n=1

nP (n− 1 < |X| ≤ n)

=
∞∑

n=1

n∑
k=1

P (n− 1 < |X| ≤ n) =
∞∑

k=1

∞∑
n=k

P (n− 1 < |X| ≤ n)

=
∞∑

k=1

P (X > k − 1) ≤ 1 +
∞∑

k=1

P (X > k) ≤ 1 +
∞∑

k=1

P (X ≥ k).

The other half follows similarly, since
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E X ≥
∞∑

n=1

(n− 1)P (n− 1 < |X| ≤ n),

after which the computations are the same as before, and (iv) follows by
“slicing” the corresponding integral similarly. �

Remark 12.1. Alternatively, it suffices to prove (i), because

E Xr =
∫ ∞

0
P (Xr > x) dx =

∫ ∞

0
P (X > x1/r) dx,

after which the change of variable y = x1/r establishes the claim. �

If X is integer valued one can be a little more precise.

Theorem 12.2. If X is a non-negative, integer valued random variable, then

E X =
∞∑

n=1

P (X ≥ n).

Proof. The conclusion can be obtained from Theorem 12.1, or, else, directly:

E X =
∞∑

n=1

nP (X = n) =
∞∑

n=1

( n∑
k=1

1
)
P (X = n)

=
∞∑

k=1

∞∑
n=k

P (X = n) =
∞∑

k=1

P (X ≥ k).

Interchanging the order of summation is no problem since all terms are non-
negative. �

Exercise 12.1. Let X and Y be random variables and suppose that E|Y | < ∞.
Show that, if there exists x0 > 0, such that

P (|X| > x) ≤ P (|Y | > x) for all x > x0,

then E|X| < ∞. �

By modifying the proof of Theorem 12.1 one can obtain the following more
general results.

Theorem 12.3. Let X be a non-negative random variable, and g a non-
negative, strictly increasing, differentiable function. Then,

(i) E g(X) = g(0) +
∫∞
0 g′(x)P (X > x) dx, where both members converge or

diverge simultaneously;
(ii)E g(X) < ∞ ⇐⇒

∑∞
n=1 g′(n)P (X > n) < ∞.

Exercise 12.2. Prove the theorem. �
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Exercise 12.3. Let X be a non-negative random variable. Prove that

E log+ X < ∞ ⇐⇒
∞∑

n=1

1
n

P (X > n) < ∞;

E log+ log+ X < ∞ ⇐⇒
∞∑

n=1

1
n log n

P (X > n) < ∞;

E Xr(log+ X)p < ∞ ⇐⇒
∞∑

n=1

nr−1(log n)pP (X > n) < ∞, r > 1, p > 0;

E(log+ X)p < ∞ ⇐⇒
∞∑

n=1

(log n)p−1

n
P (X > n) < ∞, p > 1. �

A common proof technique is to begin by proving a desired result for some
subsequence. In such cases one sometimes runs into sums of the above kind
for subsequences. The following results may then be useful.

Theorem 12.4. Let X be a non-negative random variable, and λ > 1. Then,

E X < ∞ ⇐⇒
∫ ∞

0
λxP (X > λx) dx < ∞ ⇐⇒

∞∑
n=1

λnP (X > λn) < ∞.

Proof. By a change of variable, y = λx,∫ ∞

0
λxP (X > λx) dx = log λ

∫ ∞

0
P (X > y) dy,

which, together with Theorem 12.1 proves the conclusion. �

More general subsequences can be handled as follows.

Theorem 12.5. Suppose that {nk, k ≥ 1} is a strictly increasing subsequence
of the positive integers, and set

m(x) = #{k : nk ≤ x} and M(x) =
[x]∑

k=1

nk, x > 0.

Finally, let X be a non-negative random variable. Then

∞∑
k=1

nkP (X ≥ nk) = E M(m(X)),

where both sides converge and diverge together.

Proof. The conclusion follows from the fact that

{X ≥ nk} = {m(X) ≥ k},

partial summation and Theorem 12.1. �
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Exercise 12.4. Verify the following special cases:

E X3/2 < ∞ ⇐⇒
∞∑

k=1

k2P (X ≥ k2) < ∞;

E X1+(1/d) < ∞ ⇐⇒
∞∑

k=1

kdP (X ≥ kd) < ∞ for d ∈ N.

Exercise 12.5. Show that Theorem 12.5 reduces to Theorem 12.4 for nk = λk

where λ > 1. �

The subsequences we have dealt with so far were at most geometrically increas-
ing. For more rapidly increasing subsequences we have the following special
case.

Theorem 12.6. Suppose that {nk, k ≥ 1} is a strictly increasing subsequence
of the positive integers, such that

lim sup
k→∞

nk

nk+1
< 1,

and let X be a non-negative random variable. Then

E X < ∞ =⇒
∞∑

k=1

nkP (X ≥ nk) < ∞.

Proof. Set Σ =
∑∞

k=1 nkP (X ≥ nk). A consequence of the growth condition
is that there exists λ > 1, such that nk+1 ≥ λnk for all k, so that

Σ =
∞∑

k=1

(
nk−1 + (nk − nk−1)

)
P (X ≥ nk)

≤
∞∑

k=1

λ−1nk +
∞∑

k=1

nk∑
j=nk−1+1

P (X ≥ j)

≤ λ−1Σ +
∞∑

j=1

P (X ≥ j) = λ−1Σ + E X,

so that
Σ ≤ λ

λ− 1
E X < ∞. �

Remark 12.2. Combining this with Theorem 12.5 shows that

E M(m(X)) ≤ λ

λ− 1
E X.

The last result is, in general, weaker than the previous one, although frequently
sufficient. If, in particular, M(m(x)) ≥ Cx as x → ∞, the results coincide.
One such example is nk = 22k

, k ≥ 1. �
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Another variation involves double sums.

Theorem 12.7. Let X be a non-negative random variable. Then

E X log+ X < ∞ ⇐⇒
∞∑

m=1

∞∑
n=1

P (X > nm) < ∞.

Proof. By modifying the proof of Theorem 12.1(i) we find that the double
sum converges iff ∫ ∞

1

∫ ∞

1
P (X > xy) dxdy < ∞.

Changing variables u = x and v = xy transforms the double integral into∫ ∞

1

∫ v

1

1
u

P (X > v) dudv =
∫ ∞

1
log vP (X > v) dv,

and the conclusion follows from Theorem 12.3. �

13 Conditional Distributions

Conditional distributions in their complete generality involve some rather
delicate mathematical complications. In this section we introduce this con-
cept for pairs of purely discrete and purely absolutely continuous random
variables. Being an essential ingredient in the theory of martingales, condi-
tional expectations will be more thoroughly discussed in Chapter 10.

Definition 13.1. Let X and Y be discrete, jointly distributed random vari-
ables. For P (X = x) > 0, the conditional probability function of Y given
that X = x equals

pY |X=x(y) = P (Y = y | X = x) =
pX,Y (x, y)

pX(x)
,

and the conditional distribution function of Y given that X = x is

FY |X=x(y) =
∑
z≤y

pY |X=x(z).
�

Exercise 13.1. Show that pY |X=x(y) is a probability function of a true probability
distribution. �

This definition presents no problems. It is validated by the definition of con-
ditional probability; just put A = {X = x} and B = {Y = y}. If, however, X
and Y are jointly absolutely continuous, expressions like P (Y = y | X = x)
have no meaning, since they are of the form 0

0 . However, a glance at the
previous definition suggests the following one.
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Definition 13.2. Let X and Y have a joint absolutely continuous distribu-
tion. For fX(x) > 0, the conditional density function of Y given that X = x
equals

fY |X=x(y) =
fX,Y (x, y)

fX(x)
,

and the conditional distribution function of Y given that X = x is

FY |X=x(y) =
∫ y

−∞
fY |X=x(z) dz. �

Exercise 13.2. Show that fY |X=x(y) is the density function of a true probability
distribution

Exercise 13.3. Prove that if X and Y are independent then the conditional dis-
tributions and the unconditional distributions are the same. Explain why this is
reasonable. �

Remark 13.1. The definitions can (of course) be extended to situations with
more than two random variables. �

By combining the expression for the marginal density with the definition of
conditional density we obtain the following density version of the law of total
probability, Proposition 1.4.1:

fY (y) =
∫ ∞

−∞
fY |X=x(y)fX(x) dx. (13.1)

We also formulate, leaving the details to the reader, the following mixed ver-
sion, in which Y is discrete and X absolutely continuous:

P (Y = y) =
∫ ∞

−∞
pY |X=x(y)fX(x) dx. (13.2)

Example 13.1. In Example 3.1 a point was chosen uniformly on the unit disc.
The joint density was fX,Y (x, y) = 1

π , for x2 + y2 ≤ 1, and 0 otherwise, and
we found that the marginal densities were fX(x) = fY (x) = 2

π

√
1− x2, for

|x| < 1 and 0 otherwise.
Using this we find that the conditional density of the y-coordinate given

the x-coordinate equals

fY |X=x(y) =
fX,Y (x, y)

fX(x)
=

1/π
2
π

√
1− x2

=
1

2
√

1− x2
for |y| ≤

√
1− x2,

and 0 otherwise. This shows that the conditional distribution is uniform on
the interval (−

√
1− x2,

√
1− x2).

This should not be surprising, since we can view the joint distribution in
the three-dimensional space as a homogeneous, circular cake with a thickness
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equal to 1/π. The conditional distributions can then be viewed as the profile
of a face after a vertical cut across the cake. And this face, which is a picture
of the marginal distribution is a rectangle.

Note also that the conditional density is a function of the x-coordinate,
which means that the coordinates are not independent (as they would have
been if the cake were a square and we make a cut parallel to one of the
coordinate axes).

The conditional density of the x-coordinate given the y-coordinate is the
same, by symmetry. �

A simple example involving discrete distributions is that we pick a digit
randomly among 0, 1, 2, . . . , 9, and then a second one among those that are
smaller than the first one. The corresponding continuous analog is to break a
stick of length 1 randomly at some point, and then break one of the remaining
pieces randomly.

14 Distributions with Random Parameters

Random variables with random parameters are very natural objects. For ex-
ample, suppose that X follows a Poisson distribution, but in such a way that
the parameter itself is random. An example could be a particle counter that
emits particles of different kinds. For each kind the number of particles emitted
during one day, say, follows a Poisson distribution, However, the parameters
for the different kinds are different. Or the intensity depends on temperature
or air pressure, which, in themselves, are random. Another example could be
an insurance company that is subject to claims according to some distribution,
the parameter of which depends on the kind of claim: is it a house on fire?
a stolen bicycle? a car that has been broken into? Certainly, the intensities
with which these claims occur can be expected to be different.

It could also be that the parameter is unknown. The so-called Bayesian
approach is to consider the parameter as a random variable with a so-called
prior distribution.

Let us for computational convenience consider the following situation:

X ∈ Po(M) where M ∈ Exp(1).

This is an abusive way of writing that

X | M = m ∈ Po(m) with M ∈ Exp(1).

What is the “real” (that is, the unconditional) distribution of X? Is it a
Poisson distribution? Is it definitely not a Poisson distribution?

By use of the mixed version (13.2) of the law of total probability, the
following computation shows tells us that X is geometric; X ∈ Ge( 1

2 ). Namely,
for k = 0, 1, 2, . . . we obtain
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P (X = k) =
∫ ∞

0
P (X = k | M = x) · fM (x) dx =

∫ ∞

0
e−x xk

k!
· e−x dx

=
∫ ∞

0

xk

k!
e−2x dx =

1
2k+1 ·

∫ ∞

0

1
Γ (k + 1)

2k+1xk+1−1e−2x dx

=
1

2k+1 · 1 =
1
2
·
(1

2

)k

,

which establishes the geometric distribution as claimed.

Exercise 14.1. Determine the distribution of X if

• M ∈ Exp(a);
• M ∈ Γ (p, a). �

Suppose that a radioactive substance emits α-particles in such a way that
the number of particles emitted during one hour, N ∈ Po(λ). Unfortunately,
though, the particle counter is unreliable in the sense that an emitted particle
is registered with probability p ∈ (0, 1), whereas it remains unregistered with
probability q = 1−p. All particles are registered independently of each other.
Let X be the number of particles that are registered during one hour.

This means that our model is

X | N = n ∈ Bin(n, p) with N ∈ Po(λ).

So, what is the unconditional distribution of X? The following computation
shows that X ∈ Po(λp). Namely, for k = 0, 1, 2, . . .,

P (X = k) =
∞∑

n=0

P (X = k | N = n)P (N = n) =
∞∑

n=k

(
n

k

)
pkqn−ke−λ λn

n!

= e−λ (λp)k

k!

∞∑
n=k

(λq)n−k

(n− k)!
= e−λ (λp)k

k!
eλq = e−λp (λp)k

k!
.

Note that the sum starts at n = k; there must be at least as many particles
emitted as there are registered ones.

The following two exercises may or may not have anything to do with
everyday life.

Exercise 14.2. Susan has a coin with P (head) = p1 and John has a coin with
P (head) = p2. Susan tosses her coin m times. Each time she obtains heads, John
tosses his coin (otherwise not). Find the distribution of the total number of heads
obtained by John.

Exercise 14.3. Toss a coin repeatedly, and let Xn be the number of heads after
n coin tosses, n ≥ 1. Suppose now that the coin is completely unknown to us in
the sense that we have no idea of whether or not it is fair. Suppose, in fact, the
following, somewhat unusual situation, namely, that

Xn | P = p ∈ Bin(n, p) with P ∈ U(0, 1),

that is, we suppose that the probability of heads is U(0, 1)-distributed.
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• Find the distribution of Xn.
• Explain why the answer is reasonable.
• Compute P (Xn+1 = n + 1 | Xn = n).
• Are the outcomes of the tosses independent? �

A special family of distributions is the family of mixed normal, or mixed
Gaussian, distributions. These are normal distributions with a random vari-
ance, namely,

X | Σ2 = y ∈ N(µ, y) with Σ2 ∈ F ,

where F is some distribution (on (0,∞)).
As an example, consider a production process where some measurement

of the product is normally distributed, and that the production process is
not perfect in that it is subject to rare disturbances. More specifically, the
observations might be N(0, 1)-distributed with probability 0.99 and N(0, 100)-
distributed with probability 0.01. We may write this as

X ∈ N(0, Σ2), where P (Σ2 = 1) = 0.99 and P (Σ2 = 100) = 0.01.

What is the “real” distribution of X? A close relative is the next section.

15 Sums of a Random Number of Random Variables

In many applications involving processes that evolve with time, one is inter-
ested in the state of affairs at some given, fixed, time rather than after a
given, fixed, number of steps, which therefore amounts to checking the ran-
dom process or sequence after a random number of events. With respect to
what we have discussed so far this means that we are interested in the state
of affairs of the sum of a random number of independent random variables. In
this section we shall always assume that the number of terms is independent
of the summands. More general random indices or “times” will be considered
in Chapter 10.

Apart from being a theory in its own right, there are several interesting
and important applications; let us, as an appetizer, mention branching pro-
cesses and insurance risk theory which we shall briefly discuss in a subsection
following the theory.

Thus, let X, X1, X2, . . . be independent, identically distributed random
variables with partial sums Sn =

∑n
k=1 Xk, n ≥ 1, and let N be a non-

negative, integer valued random variable which is independent of X1, X2, . . . .
Throughout, S0 = 0.

The object of interest is SN , that is, the sum of N X’s. We may thus
interpret N as a random index.

For any Borel set A ⊂ (−∞,∞),

P (SN ∈ A | N = n) = P (Sn ∈ A | N = n) = P (Sn ∈ A), (15.1)
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where the last equality, being a consequence of the additional independence,
is the crucial one.

Here is an example in which the index is not independent of the summands.

Example 15.1. Let N = min{n : Sn > 0}. Clearly, P (SN > 0) = 1. This
implies that if the summands are allowed to assume negative values (with
positive probability) then so does Sn, whereas SN is always positive. Hence,
N is not independent of the summands, on the contrary, N is, in fact, defined
in terms of the summands. �

By (15.1) and the law of total probability, Proposition 1.4.1, it follows that

P (SN ∈ A) =
∞∑

n=1

P (SN ∈ A | N = n)P (N = n)

=
∞∑

n=1

P (Sn ∈ A)P (N = n), (15.2)

in particular,

P (SN ≤ x) =
∞∑

n=1

P (Sn ≤ x)P (N = n), −∞ < x < ∞, (15.3)

so that, by changing the order of integration and summation,

E h(SN ) =
∞∑

n=1

E
(
h(Sn)

)
P (N = n), (15.4)

provided the integrals are absolutely convergent.
By letting h(x) = x and h(x) = x2 we obtain expressions for the mean

and variance of SN .

Theorem 15.1. Suppose that X, X1, X2, . . . are independent, identically
distributed random variables with partial sums Sn =

∑n
k=1 Xk, n ≥ 1, and

that N is a non-negative, integer valued random variable which is independent
of X1, X2, . . . .
(i) If

E N < ∞ and E |X| < ∞,

then
E SN = E N · E X.

(ii) If, in addition,

Var N < ∞ and Var X < ∞,

then
Var SN = E N ·Var X + (E X)2 ·Var N.
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Proof. (i): From (15.4) we know that

E SN =
∞∑

n=1

E SnP (N = n) =
∞∑

n=1

nE XP (N = n)

= E X

∞∑
n=1

nP (N = n) = E XE N.

(ii): Similarly

E
(
S2

N ) =
∞∑

n=1

E
(
S2

n

)
P (N = n) =

∞∑
n=1

(
Var Sn + (E Sn)2

)
P (N = n)

=
∞∑

n=1

(
n Var X + n2(E X)2

)
P (N = n)

= VarX

∞∑
n=1

nP (N = n) + (E X)2
∞∑

n=1

n2P (N = n)

= VarXE N + (E X)2E N2.

By inserting the conclusion from (i) we find that

Var SN = E
(
S2

N )− (E SN )2 = E N Var X + (E X)2E N2 −
(
E NE X

)2
= E N Var X + (E X)2 Var N. �

15.1 Applications

Applications of this model are ubiquitous. In this subsection we first illustrate
the theory with what might be called a toy example, after which we mention
a few more serious applications. It should also be mentioned that in some of
the latter examples the random index is not necessarily independent of the
summands (but this is of no significance in the present context).

A “Toy” Example

Example 15.2. Suppose that the number of customers that arrive at a store
during one day is Po(λ)-distributed and that the probability that a customer
buys something is p and just browses around without buying is q = 1 − p.
Then the number of customers that buy something can be described as SN ,
where N ∈ Po(λ), and Xk = 1 if customer k shops and 0 otherwise.

Theorem 15.1 then tells us that

E SN = E NE X = λ · p,

and that
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Var SN = E N Var X + (E X)2 Var N = λ · pq + p2λ = λp.

We have thus found that E SN = VarSN = λp, which makes it tempting to
guess that, in fact SN ∈ Po(λp). This may seem bold, but knowing that the
Poisson process has many “nice” features, this may seem reasonable. After
all, the new process can be viewed as the old process after having run through
a “filter”, which makes it seem like a thinner version of the old one. And, in
fact, there is a concept, the thinned Poisson process, which is precisely this,
and which is Poisson distributed with a parameter that is the product of the
old one and the thinning probability.

And, in fact, by (15.2), we have, for k = 0, 1, 2, . . .,

P (SN = k) =
∞∑

n=1

P (Sn = k)P (N = n) =
∞∑

n=k

(
n

k

)
pkqn−ke−λ λn

n!

= e−λ (λp)k

k!

∞∑
n=k

(λq)n−k

(n− k)!
= e−λ (λp)k

k!
eλq = e−λp (λp)k

k!
,

so that, indeed Sn ∈ Po(λp).

Remark 15.1. The computations for determining the distribution of SN are
the same as in the previous section. The reason for this is that, instead of
introducing an indicator random variable to each customer, we may consider
the total number of customers as some random variable X, say, and note that
X | N = n ∈ Bin(n, p), after which we proceed as before. This is no surprise,
since if we identify every customer with a particle, then a shopping customer
is identified with a registered particle. So, they are conceptually the same
problem, just modeled or interpreted somewhat differently. �

More generally, let Yk be the amount spent by the kth customer. The sum
SN =

∑N
k=1 Yk then describes the total amount spent by the customers during

one day.
If, for example, Y1, Y2, . . . ∈ Exp(θ), and N ∈ Fs(p), then

E SN =
1
p
· θ and VarSN =

1
p
θ2 + θ2 q

p2 =
θ2

p2 . �

Exercise 15.1. Find the distribution of SN and check that mean and variance
agree with the above ones. �

Branching Processes

The most basic kind of branching processes, the Galton-Watson process, can
be described as follows:

At time t = 0 there exists one (or many) founding members X(0). During
its life span, every individual gives birth to a random number of children, who
during their life spans give birth to a random number of children, who during
their life spans . . ..

The reproduction rules in this model are the same for all individuals:
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• all individuals give birth according to the same probability law, indepen-
dently of each other;

• the number of children produced by an individual is independent of the
number of individuals in his or her generation.

Let, for n ≥ 0, X(n) = # individuals in generation n, and {Yk, k ≥ 1} and
Y be generic random variables denoting the number of children obtained by
individuals. We also suppose that X(0) = 1, and exclude the degenerate case
P (Y = 1) = 1.

It follows from the assumptions that

X(2) = Y1 + · · ·+ YX(1),

and, recursively, that

X(n + 1) = Y1 + · · ·+ YX(n).

Thus, by identifying Y1, Y2, . . . with X1, X2, . . . and X(n) with N it follows
that X(n + 1) is an “SN -sum”.

One simple example is cells that split or die, in other words, with probabil-
ity p they get two children and with probability 1−p they die. What happens
after many generations? Will the cells spread all over the universe or is the
cell culture going to die out? If the cells are antrax cells, say, this question
may be of some interest.

Insurance Risk Theory

Consider an insurance company whose business runs as follows:

• Claims arrive at random time points according to some random process;
• Claim sizes are (can be considered as being) independent, identically dis-

tributed random variables;
• The gross premium rate, that is, the premium paid by the policy holders,

arrive at a constant rate β/month (which is probably not realistic since
people pay their bills at the end of the month, just after payday).

Let us denote the number of claims during one year by N , and the successive
claims by X1, X2, . . . . If the initial capital, called the risk reserve, is v, then
the capital at the end of the first year equals

v + 12β −
N∑

k=1

Xk.

Relevant questions are probabilities of ruin, of ruin in 5 years, and so on.
Another important issue is the deciding of premiums, which means that one
wishes to estimate parameters from given data, and, for example, investigate
if parameters have changed or not.
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A Simple Queueing Model

Consider a store to which customers arrive, one at a time, according to some
random process (and that the service times, which are irrelevant here, are, say,
i.i.d. exponentially distributed random variables). If X1, X2, . . . denotes the
amount of money spent by the customers and there are M customers during
one day, then

M∑
k=1

Xk

depicts the amount of money in the cash register at the end of the day. The
toy example above falls into this category.

16 Random Walks; Renewal Theory

An important assumption in Theorem 15.1 was the independence of the ran-
dom index N and the random summands X1, X2, . . . . There obviously exist
many situations where such an assumption is unrealistic. It suffices to imagine
examples where a process is observed until something “special” occurs. The
number of summands at that moment is random and, by construction, defined
via the summands. In this section we present some applications where more
general random indices are involved.

16.1 Random Walks

A random walk {Sn, n ≥ 0} is a sequence of random variables, starting at
S0 = 0, with independent, identically distributed increments X1, X2, . . . .

The classical example is the simple random walk , for which the increments,
or steps, assume the values +1 or −1. The standard notation is

P (X = 1) = p, P (X = −1) = q, where 0 ≤ p, q ≤ 1, p + q = 1,

and where X is a generic random variable.
The following figure illustrates the situation.

0 1 2 3 4 5−1−2−3−4−5
� � � � � � � � � �� ��

�� �� ��
pq pq pq

Figure 2.2. The simple random walk

If the values are assumed with equal probabilities, p = q = 1/2, we call it
a symmetric simple random walk. Another example is the Bernoulli random
walk , where the steps are +1 or 0 with probabilities p and q, respectively.

Random walk theory is a classical topic. For an introduction and back-
ground we refer to the second edition of Spitzer’s legendary 1964 book, [234].
Applications are abundant: Sequential analysis, insurance risk theory, queue-
ing theory, reliability theory, just to name a few.
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16.2 Renewal Theory

Renewal processes are random walks with non-negative increments. The
canonical application is a light bulb that fails after a random time and is
instantly replaced by a new, identical one, which, upon failure is replaced by
another one, which, in turn, . . .. The central object of interest is the number
of replacements during a given time.

In order to model a renewal process we let X1, X2, . . . be the individual
life times and set Sn =

∑n
k=1 Xk, n ≥ 1. The number of replacements in the

time interval (0, t] then becomes

N(t) = max{n : Sn ≤ t}.

The following figure depicts a typical realization of a renewal process.
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t

Figure 2.3. The realization of a renewal process

The main process of interest is the renewal counting process,

{N(t), t ≥ 0}.

Some classical references are [53, 65, 201, 229, 230]. A summary of results can
be found in [110], Chapter II. A discrete version called recurrent events dates
back to [85] see also [87]. If, in particular, the life times are exponential, then
{N(t), t ≥ 0}, is a Poisson process.

A more general model which allows for repair times is the alternating
renewal process, a generalization of which is a two-dimensional random walk,
stopped when the second component reaches a given level after which the first
component is evaluated at that time point. For more on this, see [118] and/or
[110], Chapter IV (and Problem 7.8.17).

Classical proofs for the renewal counting process are based on the inversion

{N(t) ≥ n} = {Sn ≤ t}. (16.1)

The idea is that a limit theorem for one of the processes may be derived from
the corresponding limit theorem for the other one via inversion by letting t
and n tend to infinity jointly in a suitable manner.
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16.3 Renewal Theory for Random Walks

Instead of considering a random walk after a fixed number of steps, that is,
at a random time point, one would rather inspect or observe the process at
fixed time points, which means after a random number of steps. For example,
the closing time of a store is fixed, but the number of customers during a day
is random. The number of items produced by a machine during an 8-hour day
is random, and so on. A typical random index is “the first n, such that . . .”.
With reference to renewal theory in the previous subsection, we also note that
it seems more natural to consider a random process at the first occurrence
of some kind rather than the last one, defined by the counting process, let
alone, how does one know that a given occurrence really is the last one before
having information about the future of the process?

For this model we let X, X1, X2, . . . be independent, identically dis-
tributed random variables, with positive, finite, mean E X = µ, and set
Sn =

∑n
k=1 Xk, n ≥ 1. However, instead of the counting process we shall

devote ourselves to the first passage time process, {τ(t), t ≥ 0}, defined by

τ(t) = min{n : Sn > t}, t ≥ 0.

Although the counting process and the first passage time process are close on
average, they have somewhat different behaviors in other respects. In addition,
first passage times have, somewhat vaguely stated, “better” mathematical
properties than last exit times. Some of this vagueness will be clarified in
Section 10.14. A more extensive source is [110], Section III.3. Here we confine
ourselves by remarking that

• whereas N(t) + 1 = τ(t) for renewal processes, this is not necessarily the
case for random walks;

• the inversion relation (16.1) does not hold for random walks, since the
random walk may well fall below the level t after having crossed it.

Both facts may be observed in the next figure.
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Figure 2.4. First passage times of a random walk

Proofs of subsequent limit theorems for first passage time processes will be
based on limit theorems for randomly indexed random walks, {SN(t), t ≥ 0}.
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A special feature is that those proofs cover renewal processes as well as random
walks. In addition, no distinction is necessary between the continuous cases
and the discrete ones. A specialized reference on this topic is [110].

16.4 The Likelihood Ratio Test

Let X1, X2, . . . , Xn be a sample from an absolutely continuous distribution
with a characterizing parameter θ of interest, and suppose that we wish to
test the null hypothesis H0 : θ = θ0 against the alternative H1 : θ = θ1. The
Neyman-Pearson lemma in statistics tells us that such a test should be based
on the likelihood ratio statistic

Ln =
n∏

k=1

f(Xk; θ1)
f(Xk; θ0)

,

where fθ0 and fθ1 are the densities under the null and alternative hypotheses,
respectively.

The factors f(Xk;θ1)
f(Xk;θ0)

are independent, identically distributed random vari-
ables, and, under the null hypothesis, the mean equals 1;

E0

(f(Xk; θ1)
f(Xk; θ0)

)
=
∫ ∞

−∞

f(x; θ1)
f(x; θ0)

f(x; θ0) dx =
∫ ∞

−∞
f(x; θ1) dx = 1,

so that Ln equals a product of independent, identically distributed random
variables with mean 1.

For technical reasons it is sometimes more convenient to investigate the
log-likelihood, log Ln, which is a sum of independent, identically distributed
random variables, however, not with mean log 1 = 0.

16.5 Sequential Analysis

This is one of the most important statistical applications within the renewal
theoretic framework. The idea is that, instead of basing a log-likelihood test
on a sample of a fixed predetermined size, one performs the test sequentially.

The typical sequential procedure then would be to continue sampling until,
depending on the circumstances, the likelihood ratio Ln or the log-likelihood
ratio, log Ln, falls outside a given strip, at which time point one takes a
decision. Technically, this means that one defines

τa,b = min{n : Ln /∈ (a, b)}, where 0 < a < b < ∞,

or, equivalently,

τA,B = min{n : log Ln /∈ (A, B)}, where −∞ < A < B < ∞.

and continues sampling until the likelihood ratio (or, equivalently, the log-
likelihood ratio) escapes from the interval and rejects the null hypothesis
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if Lτa,b
> b (log LτA,B

> B), and accepts the null hypothesis if Lτa,b
< a

(log LτA,B
< A).

Although one can show that the procedure stops after a finite number
of steps, that is, that the sample size will be finite almost surely, one may
introduce a “time horizon”, m, and stop sampling at min{τ,m} (and accept
H0 if the (log)likelihood-ratio has not escaped from the strip at time m).

The classic here is the famous book by Wald [250]. A more recent one is
[223].

16.6 Replacement Based on Age

Let X1, X2, . . . be the independent, identically distributed lifetimes of some
component in a larger machine. The simplest replacement policy is to change
a component as soon as it fails. In this case it may be necessary to call a
repairman at night, which might be costly. Another policy, called replacement
based on age, is to replace at failure or at some given age, a, say, whichever
comes first. The inter-replacement times are

Wn = min{Xn, a}, n ≥ 1,

in this case. A quantity of interest would be the number of replacements due
to failure during some given time unit.

In order to describe this quantity we define

τ(t) = min
{

n :
n∑

k=1

Wk > t
}

, t > 0.

The quantity τ(t) equals the number of components that have been in action
at time t.

Next, let
Zn = I{Xn ≤ a}, n ≥ 1,

that is, Zn = 1 if the nth component is replaced because of failure, and
Zn = 0 if replacement is due to age. The number of components that have
been replaced because of failure during the time span (0, t] is then described
by

τ(t)∑
k=1

Zk.

If we attach a cost c1 to replacements due to failure and a cost c2 to replace-
ments due to age, then

τ(t)∑
k=1

(
c1I{Xk ≤ a}+ c2I{Xk > a}

)
provides information about the replacement cost during the time span (0, t].

For detailed results on this model, see [110, 118].
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Remark 16.1. Replacement based on age applied to humans is called retire-
ment, where a is the retirement age. �

17 Extremes; Records

The central results in probability theory are limit theorems for sums. How-
ever, in many applications, such as strength of materials, fatigue, flooding,
oceanography, and “shocks” of various kinds, extremes rather than sums are
of importance. A flooding is the result of one single extreme wave, rather than
the cumulative effect of many small ones.

In this section we provide a brief introduction to the concept of extremes
– “the largest observation so far” and a more extensive one to the theory of
records – “the extreme observations at their first appearance”.

17.1 Extremes

Let X1, X2, . . . be independent, identically distributed random variables. The
quantities in focus are the partial maxima

Yn = max
1≤k≤n

Xk or, at times, max
1≤k≤n

|Xk|.

Typical results are analogs to the law of large numbers and the central limit
theorem for sums. For the latter this means that we wish to find normalizing
sequences {an > 0, n ≥ 1}, {bn ∈ R, n ≥ 1}, such that

Yn − bn

an
possesses a limit distribution,

a problem that will be dealt with in Chapter 9.

17.2 Records

Let X, X1, X2, . . . be independent, identically distributed, continuous ran-
dom variables. The record times are L(1) = 1 and, recursively,

L(n) = min{k : Xk > XL(n−1)}, n ≥ 2,

and the record values are
XL(n), n ≥ 1.

The associated counting process {µ(n), n ≥ 1} is defined by

µ(n) = # records among X1, X2, . . . , Xn = max{k : L(k) ≤ n}.

The reason for assuming continuity is that we wish to avoid ties. And, indeed,
in this case we obtain, by monotonicity (Lemma 1.3.1),
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P

( ∞⋃
i,j=1
i�=j

{Xi = Xj}
)

= lim
n→∞

P

( n⋃
i,j=1
i�=j

{Xi = Xj}
)

≤ lim
n→∞

n∑
i,j=1
i�=j

P (Xi = Xj) = 0.

The pioneering paper in the area is [205]. For a more recent introduction and
survey of results, see [187, 207, 208].

Whereas the sequence of partial maxima, Yn, n ≥ 1, describe “the largest
value so far”, the record values pick these values the first time they appear.
The sequence of record values thus constitutes a subsequence of the partial
maxima. Otherwise put, the sequence of record values behaves like a com-
pressed sequence of partial maxima, as is depicted in the following figure.
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Figure 2.5. Partial maxima ◦
A preliminary observation is that the record times and the number of

records are distribution independent. This is a consequence of the fact that
given X with distribution function F , then F (X) is U(0, 1)-distributed, so
that there is a 1− 1 map from every (absolutely continuous) random variable
to every other one. And, by monotonicity, record times are preserved under
this transformation – however, not the record values.

Next, set

Ik =

{
1, if Xk is a record,
0, otherwise,

so that µ(n) =
∑n

k=1 Ik, n ≥ 1.
By symmetry, all permutations between X1, X2, . . . , Xn are equally likely.

Taking advantage of this fact, we introduce ranks, so that Xn has rank j if Xn

is the jth largest among X1, X2, . . . , Xn. Notationally, Rn = j. This means,
in particular, that if Xn is the largest among them, then Rn = 1, and if Xn

is the smallest, then Rn = n. Moreover,

P (R1 = r1, R2 = r2, . . . , Rn = rn) =
1
n!

,
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in particular,

P (Ik = 1) = 1− P (Ik = 0) =
1
k

, k = 1, 2, . . . , n.

The marginal probabilities are

P (Rn = rn) =
∑

{r1,r2,...,rn−1}
P (R1 = r1, R2 = r2, . . . , Rn = rn),

where the summation thus extends over all possible values of r1, r2, . . . , rn−1.
By symmetry, the summation involves (n − 1)! terms, all of which are the
same, namely 1/n!, so that

P (Rn = rn) =
(n− 1)!

n!
=

1
n

.

Since the same argument is valid for all n, we have, in fact, shown that

P (R1 = r1, R2 = r2, . . . , Rn = rn) =
1
n!

=
n∏

k=1

1
k

=
n∏

k=1

P (Rk = rk),

which proves the independence of the ranks. Moreover, since {In = 1} =
{Rn = 1} it follows, in particular, that {Ik, k ≥ 1} are independent random
variables.

Joining the above conclusions yields the following result.

Theorem 17.1. Let X1, X2, . . . , Xn be independent, identically distributed,
absolutely continuous, random variables, n ≥ 1. Then

(i) The ranks R1, R2, . . . , Rn are independent, and P (Rk = j) = 1/k for
j = 1, 2, . . . , k, where k = 1, 2, . . . , n;

(ii)The indicators I1, I2, . . . , In are independent, and P (Ik = 1) = 1/k for
k = 1, 2, . . . , n.

As a corollary it is now a simple task to compute the mean and the variance
of µ(n), and their asymptotics.

Theorem 17.2. Let γ = 0.5772 . . . denote Euler’s constant. We have

mn = E µ(n) =
n∑

k=1

1
k

= log n + γ + o(1) as n →∞;

Var µ(n) =
n∑

k=1

1
k

(
1− 1

k

)
= log n + γ − π2

6
+ o(1) as n →∞.

Proof. That E µ(n) =
∑n

k=1
1
k , and that Varµ(n) =

∑n
k=1

1
k (1− 1

k ), is clear.
The remaining claims follow from Remark A.3.1, and the (well-known) fact
that

∑∞
n=1 1/n2 = π2/6. �



96 2 Random Variables

18 Borel-Cantelli Lemmas

This section is devoted to an important tool frequently used in connection
with questions concerning almost sure convergence – a concept that we shall
meet in detail in Chapter 5 – the Borel-Cantelli lemmas [26].

We begin by recalling the definitions of limsup and liminf of sets from
Chapter 1 and by interpreting them in somewhat greater detail.

Let {An, n ≥ 1} be a sequence of events, that is, measurable subsets of
Ω. Then, recalling Definition 1.2.1,

A∗ = lim inf
n→∞

An =
∞⋃

n=1

∞⋂
m=n

Am, and A∗ = lim sup
n→∞

An =
∞⋂

n=1

∞⋃
m=n

Am.

Thus, if ω ∈ Ω belongs to the set lim infn→∞ An, then ω belongs to
⋂∞

m=n Am

for some n, that is, there exists an n such that ω ∈ Am for all m ≥ n. In
particular, if An is the event that something special occurs at “time” n, then
lim infn→∞ Ac

n means that from some n on this property never occurs.
Similarly, if ω ∈ Ω belongs to the set lim supn→∞ An, then ω belongs to⋃∞

m=n Am for every n, that is, no matter how large we choose n there is always
some m ≥ n such that ω ∈ Am, or, equivalently, ω ∈ Am for infinitely many
values of m or, equivalently, for arbitrarily large values of m. A convenient
way to express this is

ω ∈ A∗ ⇐⇒ ω ∈ {An i.o.} = {An infinitely often}.

If the upper and lower limits coincide the limit exists, and

A = A∗ = A∗ = lim
n→∞

An.

18.1 The Borel-Cantelli Lemmas 1 and 2

We now present the standard Borel-Cantelli lemmas, after which we prove
a zero-one law and provide an example to illustrate the applicability of the
results.

Theorem 18.1. (The first Borel-Cantelli lemma)
Let {An, n ≥ 1} be arbitrary events. Then

∞∑
n=1

P (An) < ∞ =⇒ P (An i.o.) = 0.

Proof. We have

P (An i.o.) = P (lim sup
n→∞

An) = P

( ∞⋂
n=1

∞⋃
m=n

Am

)

≤ P

( ∞⋃
m=n

Am

)
≤

∞∑
m=n

P (Am) → 0 as n →∞. �
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The converse does not hold in general. The easiest accessible one is ob-
tained under the additional assumption of independence.

Theorem 18.2. (The second Borel-Cantelli lemma)
Let {An, n ≥ 1} be independent events. Then

∞∑
n=1

P (An) = ∞ =⇒ P (An i.o.) = 1.

Proof. By independence,

P (An i.o.) = P

( ∞⋂
n=1

∞⋃
m=n

Am

)
= 1− P

( ∞⋃
n=1

∞⋂
m=n

Ac
m

)

= 1− lim
n→∞

P

( ∞⋂
m=n

Ac
m

)
= 1− lim

n→∞

∞∏
m=n

P (Ac
m)

= 1− lim
n→∞

∞∏
m=n

(
1− P (Am)

)
= 1− 0 = 1,

since, by Lemma A.4.1, the divergence of
∑∞

n=1 P (An) is equivalent to the
divergence of

∏∞
m=1(1− P (Am)). �

By combining the two results we note, in particular, that if the events
{An, n ≥ 1} are independent, then P (An i.o.) can only assume the values 0
or 1, and that the convergence or divergence of

∑∞
n=1 P (An) is the decisive

factor.

Theorem 18.3. (A zero-one law)
If the events {An, n ≥ 1} are independent, then

P (An i.o.) =

{
0, when

∑∞
n=1 P (An) < ∞,

1, when
∑∞

n=1 P (An) = ∞. �

A consequence of this zero-one law is that it suffices to prove that P (An i.o.) >
0 in order to conclude that the probability equals 1 (and that P (An i.o.) < 1
in order to conclude that it equals 0).

Here is an example to illuminate the results.

Example 18.1. Let X1, X2, . . . be a sequence of arbitrary random variables
and let An = {|Xn| > ε}, n ≥ 1, ε > 0. Then ω ∈ lim infn→∞ Ac

n means that
ω is such that |Xn(ω)| ≤ ε, for all sufficiently large n, and ω ∈ lim supn→∞ An

means that ω is such that there exist arbitrarily large values of n such that
|Xn(ω)| > ε. In particular, every ω for which Xn(ω) → 0 as n → ∞ must
be such that, for every ε > 0, only finitely many of the real numbers Xn(ω)
exceed ε in absolute value. Hence,
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P ({ω : lim
n→∞

Xn(ω) = 0}) = 1 ⇐⇒ P (|Xn| > ε i.o.) = 0 for all ε > 0.

If convergence holds as in the left-hand side we recall from Definition 4.4 that
the conclusion may be rephrased as

Xn
a.s.→ 0 as n →∞ ⇐⇒ P (|Xn| > ε i.o.) = 0 for all ε > 0. �

Summarizing our findings so far, we have seen that the first Borel-Cantelli
lemma tells us that if

∑∞
n=1 P (|Xn| > ε) < ∞, then Xn

a.s.→ 0 as n → ∞,
and the second Borel-Cantelli lemma tells us that the converse holds if, in
addition, X1, X2, . . . are independent random variables. In the latter case we
obtain the following zero-one law, which we state for easy reference.

Corollary 18.1. Suppose that X1, X2, . . . are independent random variables.
Then

Xn
a.s.→ 0 as n →∞ ⇐⇒

∞∑
n=1

P (|Xn| > ε) < ∞ for all ε > 0.

Remark 18.1. Convergence is a tail event, since convergence or not is inde-
pendent of X1, X2, . . . , Xn for any n. The zero-one law therefore is also a
consequence of the Kolmogorov zero-one law, Theorem 1.5.1. However, the
present, alternative, derivation is more elementary and direct. �

A common method in probability theory is to begin by considering sub-
sequences. A typical case in the present context is when one wishes to prove
that P (An i.o.) = 1 and the events are not independent, but a suitable sub-
sequence consists of independent events. In such cases the following rather
immediate result may be helpful.

Theorem 18.4. Let {An, n ≥ 1} be arbitrary events. If {Ank
, k ≥ 1} are

independent events for some subsequence {nk, k ≥ 1}, and
∞∑

k=1

P (Ank
) = ∞,

then P (An i.o.) = 1.

Proof. This is immediate from the fact that {An i.o.} ⊃ {Ank
i.o.}, and the

second Borel-Cantelli lemma:

P (An i.o.) ≥ P (Ank
i.o.) = 1 �

18.2 Some (Very) Elementary Examples

We first present a simple coin-tossing example, which is then expanded via a
monkey and a typewriter to the more serious problem of the so-called Bible
code, where serious is not to be interpreted mathematically, but as an example
of the dangerous impact of what is believed to be paranormal phenomena on
society. In a following subsection we provide examples related to records and
random walks.
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Coin Tossing

Toss a fair coin repeatedly (independent tosses) and let

An = {the nth toss yields a head}, n ≥ 1.

Then
P (An i.o.) = 1.

To prove this we note that
∑∞

n=1 P (An) =
∑∞

n=1
1
2 = ∞, and the conclusion

follows from Theorem 18.2.
For an arbitrary coin, one could imagine that if the probability of obtaining

heads is “very small,” then it might happen that, with some “very small”
probability, only finitely many heads appear. However, set P (heads) = p,
where 0 < p < 1. Then

∑∞
n=1 P (An) =

∑∞
n=1 p = ∞, and we conclude, once

again, that P (An i.o.) = 1.
Finally, suppose that the tosses are performed with different coins, let An

be defined as before, and set pn = P (An). Then

P (An i.o.) = 1 ⇐⇒
∞∑

n=1

pn = +∞.

The following exercises can be solved similarly, but a little more care is re-
quired, since the corresponding events are no longer independent.

Exercise 18.1. Toss a coin repeatedly as before and let

An = {the (n − 1)th and the nth toss both yield a head}, n ≥ 2.

Show that
P (An i.o.) = 1.

In other words, the event “two heads in a row” will occur infinitely often with
probability 1. (Remember Theorem 18.4.)

Exercise 18.2. Toss another coin. Show that any finite pattern occurs infinitely
often with probability 1.

Exercise 18.3. Toss a fair die with one face for every letter from A to Z repeatedly.
Show that any finite word will appear infinitely often with probability 1. �

The Monkey and the Typewriter

A classical, more humorous, example states that if one puts a monkey at a
typewriter he (or she) will “some day” all of a sudden have produced the
complete works of Shakespeare, and, in fact, repeat this endeavor infinitely
many times. In between successes the monkey will also complete the Uppsala
telephone directory and lots of other texts.
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Let us prove that this is indeed the case. Suppose that the letters the mon-
key produces constitute an independent sequence of identically distributed
random variables. Then, by what we have just shown for coins, and extended
in the exercises, every finite sequence of letters will occur (infinitely often!)
with probability 1. And since the complete works of Shakespeare (as well as
the Uppsala telephone directory) are exactly that, a finite sequence of letters,
the proof is complete – under these model assumptions, which, of course, can
be debated. After all, it is not quite obvious that the letters the monkey will
produce are independent of each other . . ..

Finally, by the same argument it follows that the same texts also will
appear if we spell out only every second letter or every 25th letter or every
37,658th letter.

The Bible Code

Paranormal or supernatural phenomena and superstition have always been
an important ingredient in the lives of many persons. Unfortunately a lot of
people are fooled and conned by this kind of mumbo-jumbo or by others who
exploit their fellow human beings.

In 1997 there appeared a book, The Bible Code [67], which to a large extent
is based on the paper [254]. In the book it is claimed that the Hebrew Bible
contains a code that reveals events that will occur thousands of years later.
The idea is that one writes the 304,805 letters in an array, after which one
reads along lines backward or forward, up or down, and looks for a given word.
It is also permitted to follow every nth letter for any n. By doing so one finds
all sorts of future events. One example is that by checking every 4772nd letter
one finds the name of Yitzhak Rabin, which shows that one could already in
the Bible find a hint concerning his murder in November 1995. An additional
comment is that it is claimed that only the Hebrew version contains the code,
no translation of it.

Although the “problem” is not exactly the same as the problem with
the monkey and the typewriter, the probabilistic parallel is that one faces a
(random) very long list of letters, among which one looks for a given word.
Here we do not have an infinite sequence, but, on the other hand, we do not
require a given word to appear infinitely often either.

If we look for a word of, say, k letters in an alphabet of, say, N letters, the
probability of this word appearing at any given spot is p = 1/Nk, under the
assumption that letters occur independently of each other and with the same
distribution at every site. Barring all model discussions, starting at letters
m(k + 1), for m = 1, 2, . . . (in order to make occurrences independent of
each other), the number of repetitions before a hit is geometric with mean
1/p = Nk, which is a finite number.

With the Borel-Cantelli lemmas in our mind it is thus not surprising that
one can find almost anything one wishes with this program. More about the
book can be found in the article [244], where, among other things, results
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from the same search method applied to translations of the bible as well as
to other books are reported.

Apart from all of this one might wonder: If G-d really has put a code into
the Bible, wouldn’t one expect a more sophisticated one? And if the code
really is a code, why did nobody discover the WTC attack on September 11,
2001, ahead of time? And the subway bombing in Madrid 2-1/2 years later?

Admittedly these examples may seem a bit elementary. On the other hand,
they illustrate to what extent such examples are abundant in our daily lives;
one may wonder how many fewer copies of books of this kind would be sold
if everybody knew the Borel-Cantelli lemmas . . ..

18.3 Records

Recall the setting from Subsection 2.17.2: X1, X2, . . . are independent, iden-
tically distributed, continuous random variables; the record times are

L(n) = min{k : Xk > XL(n−1)}, n ≥ 2, L(1) = 1;

and the associated counting variables are

µ(n) = # records among X1, X2, . . . , Xn =
n∑

k=1

Ik, n ≥ 1,

where P (Ik = 1) = P (Xk is a record) = 1 − P (Ik = 0) = 1/k, and the
indicators are independent.

Our concern for now is the “intuitively obvious(?)” fact that, one should
obtain infinitely many records if we continue sampling indefinitely, the reason
being that there is always room for a larger value than the largest one so far.
But, intuition is not enough; we require a proof.

Mathematically we thus wish to prove that

P (In = 1 i.o.) = 1.

Now,
∞∑

n=1

P (In = 1) =
∞∑

n=1

1
n

= ∞,

so that, the second Borel-Cantelli lemma tells us that our intuition was, in-
deed, a good one. Note that independence was important.

Let us also consider the number of double records, that is, two records
in a row. What about our intuition? Is it equally obvious that there will be
infinitely many double records? If there are infinitely many records, why not
infinitely many times two of them following immediately after each other?

Let Dn = 1 if Xn produces a double record, that is, if Xn−1 and Xn both
are records. Let Dn = 0 otherwise. Then, for n ≥ 2,
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P (Dn = 1) = P (In = 1, In−1 = 1) = P (In = 1) · P (In−1 = 1) =
1
n
· 1
n− 1

,

because of the independence of the indicators. Alternatively, by symmetry
and combinatorics, Dn = 1 precisely when Xn is the largest and Xn−1 is the
second largest among the first n observations. Thus,

∞∑
n=2

P (Dn = 1) =
∞∑

n=2

1
n(n− 1)

= lim
m→∞

m∑
n=2

( 1
n− 1

− 1
n

)
= lim

m→∞
(1− 1

m
) = 1,

so that by the first Borel-Cantelli lemma

P (Dn = 1 i.o.) = 0,

that is, the probability of infinitely many double records is 0. Note that
{Dn, n ≥ 2} are not independent, which, however, is no problem since the
sum was convergent.

The expected number of double records equals

E

∞∑
n=2

Dn =
∞∑

n=2

E Dn =
∞∑

n=2

P (Dn = 1) = 1,

in other words, we can expect one double record.
Moreover, since double records seem to be rare events, one might guess

that the total number of double records,
∑∞

n=2 Dn, has a Poisson distribution,
and if so, with parameter 1. That this is a correct guess has been proved
independently in [125] and [42], Theorem 1.

18.4 Recurrence and Transience of Simple Random Walks

Consider a simple random walk, {Sn, n ≥ 1}, starting at 0, and the probabil-
ities that

• the random walk eventually returns to 0;
• doing so infinitely often.

A return can only occur after an even number of steps, equally many to the
left and the right. It follows that

P (S2n = 0) =
(

2n

n

)
pnqn ∼

{
1√
πn

(4pq)n, for p �= q,
1√
πn

, for p = q,

so that
∞∑

n=1

P (Sn = 0)

{
< +∞, for p �= q,

= +∞, for p = q.

The first Borel-Cantelli lemma therefore tells us that
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P (Sn = 0 i.o.) = 0 for p �= q.

One can, in fact, show that the probability of returning eventually equals
min{p, q}/ max{p, q}, when p �= q. In this case the random walk is called
transient.

The case p = q = 1/2 is called the recurrent case, since the probability of
eventually returning to 0 equals 1. However, this is not a consequence of the
second Borel-Cantelli lemma, since the events {Sn = 0} are not independent.
So, in order to prove this we must use different arguments.

Thus, suppose that p = q = 1/2, let x be the probability we seek, namely,
that a random walk starting at 0 eventually returns to 0, and let y be the
probability that a random walk starting at 0 eventually reaches the point
+1. By symmetry, y also equals the probability that a random walk starting
at 0 eventually reaches the point −1, and by translation invariance, y also
equals the probability of eventually being one step to the left (or right) of the
current state. Conditioning on the first step we obtain, with the aid of these
properties,

x =
1
2
y +

1
2
y,

y =
1
2

+
1
2
y2,

which has the solution x = y = 1.
We have thus shown that the probability of eventually returning to 0 equals

1. Now, having returned once, the probability of returning again equals 1, and
so on, so that the probability of returning infinitely often equals 1, as claimed.

Remark 18.2. Note that the hard part is to show that the random walk returns
once; that it returns infinitely often follows as an immediate consequence! �

Exercise 18.4. If p �= q an analogous argument also requires z = the probability
that a random walk starting at 0 eventually reaches the point −1. In the symmetric
case y = z, but not here. Find the analogous system of (three) equations. �

Remark 18.3. A natural extension would be to consider the two-dimensional
variant, in which the random walk is performed in the plane in such a way
that transitions occur with probability 1/4 in each of the four directions.
The answer is that the probability of eventually returning to 0 equals 1 also
in this case. So, what about three dimensions? Well, in this case even the
symmetric random walk is transient. This is true for any dimension d ≥ 3.
The mathematical reason is that

∞∑
n=1

( 1√
n

)d
{

= +∞, for d = 1, 2,

< +∞, for d ≥ 3.

Note that for d ≥ 3 transience is a consequence of this and the first Borel-
Cantelli lemma. �
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18.5
∑∞

n=1 P (An) = ∞ and P (An i.o.) = 0

In the previous example with p = q we found that P (An i.o.) = 1, but
not because the Borel-Cantelli sum was divergent; the events were not in-
dependent, so we had to use a different argument. In the following example
the Borel-Cantelli sum diverges too, but in this case the conclusion is that
P (An i.o.) = 0. In other words, anything can happen for dependent events.

We ask the reader to trust the following claim, and be patient until Chapter
6 where everything will be verified.

Example 18.2. Let X, X1, X2, . . . be a sequence of independent, identically
distributed random variables and set Sn = X1 + X2 + · · ·+ Xn, n ≥ 1.

The two facts we shall prove in Chapter 6 are that

P
(∣∣Sn

n
− µ

∣∣ > ε i.o.
)

= 0 for all ε > 0 ⇐⇒ E|X| < ∞ and E X = µ,

and that
∞∑

n=1

P
(∣∣Sn

n
− µ

∣∣ > ε
)

< ∞ for all ε > 0 ⇐⇒ E X = µ and VarX < ∞.

This means that if the mean is finite, but the variance is infinite, then the
Borel-Cantelli sum diverges, and, yet, P (|Sn

n − µ| > ε i.o.) = 0. �

The remainder of this section deals with how to handle cases without
(total) independence.

18.6 Pair-wise Independence

We know from Subsection 2.10.3 that independence is a more restrictive as-
sumption than pair-wise independence. However, if sums of random variables
are involved it frequently suffices to assume pair-wise independence; for ex-
ample, because the variance of a sum is equal to the sum of the variances.

Our first generalization is, basically, a consequence of that fact.

Theorem 18.5. Let {An, n ≥ 1} be pair-wise independent events. Then

∞∑
n=1

P (An) = ∞ =⇒ P (An i.o.) = 1.

Proof. It is convenient to introduce indicator random variables. Let

In = I{An}, n ≥ 1.

Then E In = P (An), Var In = P (An)(1−P (An)), the pair-wise independence
translates into

E(IiIj) = E Ii · E Ij for i �= j,
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and the statement of the theorem into
∞∑

n=1

E In = ∞ =⇒ P

( ∞∑
n=1

In = ∞
)

= 1.

Now, by Chebyshev’s inequality,

P

(∣∣∣ n∑
k=1

(Ik − E Ik)
∣∣∣ > 1

2

n∑
k=1

P (Ak)
)
≤

Var
(∑n

k=1 Ik

)
( 1
2

∑n
k=1 P (Ak))2

=
4
∑n

k=1 P (Ak)(1− P (Ak))(∑n
k=1 P (Ak)

)2 ≤ 4∑n
k=1 P (Ak)

→ 0 as n →∞.

Recalling that E Ik = P (Ak), it follows, in particular, that

P
( n∑

k=1

Ik >
1
2

n∑
k=1

E Ik

)
→ 1 as n →∞.

Since both sums increase with n we may let n tend to infinity in
∑n

k=1 Ik and
then in

∑n
k=1 E Ik, to conclude that

P

( ∞∑
n=1

In = ∞
)

= 1. �

An immediate consequence is that the zero-one law, Theorem 18.3, remains
true for pair-wise independent random variables. For convenience we state this
fact as a theorem of its own.

Theorem 18.6. (A second zero-one law)
If {An, n ≥ 1} are pair-wise independent events, then

P (An i.o.) =

{
0, when

∑∞
n=1 P (An) < ∞,

1, when
∑∞

n=1 P (An) = ∞.

18.7 Generalizations Without Independence

The following result is due to Barndorff-Nielsen, [10].

Theorem 18.7. Let {An, n ≥ 1} be arbitrary events satisfying

P (An) → 0 as n →∞, (18.1)

and
∞∑

n=1

P (An ∩Ac
n+1) < ∞. (18.2)

Then
P (An i.o.) = 0.
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Remark 18.4. Note that
∑∞

n=1 P (An) may be convergent as well as divergent
under the present assumptions. In particular, the convergence of the sum is
not necessary in order for P (An i.o.) to equal 0. �

Proof. A glance at Theorem 18.1 shows that the second assumption alone
implies that P (An ∩Ac

n+1 i.o.) = 0, that is, that there are almost surely only
a finite number of switches between the sequences {An} and {Ac

n}, so that
one of them occurs only a finite number of times, after which the other one
takes over for ever. To prove the theorem it therefore suffices to prove that

P (Ac
n i.o.) = 1.

Now,

P (Ac
n i.o.) = lim

m→∞
P
( ⋃

n≥m

Ac
n

)
≥ lim

m→∞
P (Ac

m) → 1 as m →∞,

where the convergence to 1 follows from the first assumption. �

Continuing the discussion at the beginning of the proof we note that if
{An, n ≥ 1} are independent events, we may, in addition, conclude that one
of {An i.o.} and {Ac

n i.o.} has probability 1 and the other one has probability
0, since by the zero-one law in Theorem 18.3, the probabilities of these events
can only assume the values 0 or 1. For ease of future reference we collect these
facts separately. Note also that the conclusions are true whether (18.1) holds
or not.

Theorem 18.8. Let {An, n ≥ 1} be arbitrary events, and suppose (18.2)
holds.
(i) Then

P (An ∩Ac
n+1 i.o.) = 0.

(ii) If, in addition, {An, n ≥ 1} are independent, then

P (An i.o.) = 0 and P (Ac
n i.o.) = 1 or vice versa.

To exploit the crossing concept further we formulate the following result.

Theorem 18.9. Let {An, n ≥ 1} and {Bn, n ≥ 1} be arbitrary events, and
suppose that the pairs An and Bn+1 are independent for all n. If

∞∑
n=1

P (An ∩Bn+1) < ∞,

then
P (An i.o.) = 0 and P (Bn i.o.) = 1 or vice versa.

Proof. The arguments for Theorem 18.8 were given prior to its statement,
and those for Theorem 18.9 are the same. �
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In his paper Barndorff-Nielsen applied this result in order to prove a the-
orem on the rate of growth of partial maxima of independent, identically
distributed random variables. In order to illustrate the efficiency of his re-
sult we apply the idea to the partial maxima of standard exponentials. The
computations are based on a more general result in [124].

18.8 Extremes

Suppose that X1, X2, . . . are independent, standard exponential random vari-
ables, and set Yn = max{X1, X2, . . . , Xn}, n ≥ 1.

We begin by considering the original sequence, after which we turn our
attention to the sequence of partial maxima.

Since
P (Xn > ε log n) =

1
nε

,

it follows that

∞∑
n=1

P (Xn > ε log n)

{
< +∞ for ε > 1,

= +∞ for ε ≤ 1.

An appeal to the Borel-Cantelli lemmas asserts that

P ({Xn > ε log n} i.o.) =

{
0 for ε > 1,

1 for ε ≤ 1,
(18.3)

and, consequently, that

lim sup
n→∞

Xn

log n
= 1 a.s.

Moreover, since

∞∑
n=1

P (Xn < ε log n) =
∞∑

n=1

(
1− 1

nε

)
= +∞ for all ε > 0,

the second Borel-Cantelli lemma yields

lim inf
n→∞

Xn

log n
= 0 a.s.

This means, roughly speaking, that the sequence {Xn/ log n, n ≥ 1} oscillates
between 0 and 1.

Since Yn = max{X1, X2, . . . , Xn} is non-decreasing in n (and, hence can-
not oscillate) it is tempting to guess that

lim
n→∞

Yn

log n
= 1 a.s.



108 2 Random Variables

This is not only a guess as we shall show next.
The crucial observation is that

{Yn > ε log n i.o.} ⇐⇒ {Xn > ε log n i.o.},

since log n is increasing in n; although Yn exceeds ε log n more often that Xn,
the whole sequences do so infinitely often simultaneously. It follows that

P (Yn > ε log n i.o.) = 1 for ε < 1,

and that

P

(
lim sup

n→∞

Yn

log n
= 1
)

= 1. (18.4)

In order to show that the limit actually equals 1 we have a problem, since
Yn, n ≥ 1, are not independent, and this is where Theorem 18.9 comes to our
rescue.

Let 0 < ε < 1, and set

An = {Yn ≤ ε log n} and Bn = {Xn > ε log n}, n ≥ 1.

Then
∞∑

n=1

P (An ∩Ac
n+1) =

∞∑
n=1

P (An ∩Bn+1) =
∞∑

n=1

P (An) · P (Bn+1)

=
∞∑

n=1

(
1− 1

nε

)n

· 1
(n + 1)ε ≤

∞∑
n=1

exp{−n1−ε} · 1
nε

=
∞∑

n=1

∫ n

n−1
exp{−n1−ε} · 1

nε
dx ≤

∞∑
n=1

∫ n

n−1
exp{−x1−ε} · 1

xε
dx

=
∫ ∞

0
exp{−x1−ε} · 1

xε
dx =

[− exp{−x1−ε}
1− ε

]∞
0

=
1

1− ε
< ∞.

Since P (Bn i.o.) = 1 by (18.3), Theorem 18.9 tells us that we must have

P (An i.o.) = 0 for ε < 1,

which implies that

P

(
lim inf
n→∞

Yn

log n
≥ 1
)

= 1. (18.5)

Joining this with (18.4) establishes that

P

(
lim

n→∞

Yn

log n
= 1
)

= 1,
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or, equivalently, that Yn

log n

a.s.→ 1 as n →∞, as desired.
If, instead, the random variables have a standard normal distribution,

Mill’s ratio, Lemma A.2.1, yields

P (X > x) ∼ 1
x
√

2π
exp{−x2/2} as x →∞,

so that, for N large,

∑
n≥N

P (Xn > ε
√

2 log n) ∼
∑
n≥N

1
ε
√

2π log n
· 1
nε2

{
< +∞ for ε > 1,

= +∞ for ε ≤ 1,

from which it similarly follows that

P ({Xn > ε
√

2 log n} i.o.) =

{
0 for ε > 1,

1 for ε ≤ 1,

and that
lim sup

n→∞

Xn√
2 log n

= 1 a.s.

Since the standard normal distribution is symmetric around 0, it follows, by
considering the sequence {−Xn, n ≥ 1}, that

lim inf
n→∞

Xn√
2 log n

= −1 a.s.

Exercise 18.5. Prove the analog for partial maxima of independent standard nor-
mal random variables. �

18.9 Further Generalizations

For notational convenience we set, throughout the remainder of this section,

pk = P (Ak) and pij = P (Ai ∩Aj), for all k, i, j,

in particular, pkk = pk.
Inspecting the proof of Theorem 18.5, we find that the variance of the sum

of the indicator becomes

Var
( n∑

k=1

Ik

)
=

n∑
k=1

pk(1− pk) +
n∑

i=1

n∑
j=1

i�=j

(pij − pipj)

=
n∑

i=1

n∑
j=1

pij −
n∑

i=1

n∑
j=1

pipj =
n∑

i=1

n∑
j=1

pij −
( n∑

k=1

pk

)2

,

so that, in this case, the computation turns into
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P

(∣∣∣ n∑
k=1

(Ik − E Ik)
∣∣∣ > 1

2

n∑
k=1

pk

)
≤

Var
(∑n

k=1 Ik

)
( 1
2

∑n
k=1 pk)2

= 4

(∑n
i=1
∑n

j=1 pij(∑n
k=1 pk

)2 − 1

)
,

which suggests the following strengthening.

Theorem 18.10. Let {An, n ≥ 1} be arbitrary events, such that

lim inf
n→∞

∑n
i=1
∑n

j=1 P (Ai ∩Aj)(∑n
k=1 P (Ak)

)2 = 1

Then ∞∑
n=1

P (An) = ∞ =⇒ P (An i.o.) = 1.

Proof. By arguing as in the proof of Theorem 18.5, it follows from the com-
putations preceding the statement of Theorem 18.10 that

lim inf
n→∞

P

( n∑
k=1

Ik ≤
1
2

n∑
k=1

E Ik

)
= 0.

We may therefore select a subsequence {nj , j ≥ 1} of the integers in such a
way that

∞∑
j=1

P

( nj∑
k=1

Ik ≤
1
2

nj∑
k=1

E Ik

)
< ∞,

which, by the first Borel-Cantelli lemma, shows that

P

( nj∑
k=1

Ik ≤
1
2

nj∑
k=1

E Ik i.o.
)

= 0,

so that,

P

( nj∑
k=1

Ik >
1
2

nj∑
k=1

E Ik i.o.
)

= 1.

Finally, since this is true for any j and the sum of the expectations diverges,
we may, as in the proof of Theorem 18.5, let j tend to infinity in the sum of
the indicators, and then in the sum of the expectations to conclude that

P

( ∞∑
k=1

Ik = ∞
)

= 1.
�

With some additional work one can prove the following, stronger, result.
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Theorem 18.11. Let {An, n ≥ 1} be arbitrary events, such that

lim sup
n→∞

(∑n
k=m+1 P (Ak)

)2∑n
i=m+1

∑n
j=m+1 P (Ai ∩Aj)

≥ α,

for some α > 0 and m large. Then

∞∑
n=1

P (An) = ∞ =⇒ P (An i.o.) ≥ α.

An early related paper is [49], from which we borrow the following lemma,
which, in turn, is instrumental for the proof of the theorem. We also refer
to [234], P3, p. 317, where the result is used in connection with a three-
dimensional random walk, and to [195], Section 6.1 where also necessary and
sufficient conditions for ensuring that P (An i.o.) = α are given.

Lemma 18.1. Let {An, n ≥ 1} be arbitrary events. For m ≥ 1,

P

( n⋃
k=m+1

Ak

)
≥

(∑n
k=m+1 P (Ak)

)2∑n
i=m+1

∑n
j=m+1 P (Ai ∩Aj)

.

Proof. Set In = I{An}, n ≥ 1. Then

E

( n∑
k=m+1

Ik

)2

=
n∑

i,j=m+1

E IiIj =
n∑

k=m+1

E Ik +
n∑

i,j=m+1
i�=j

E IiIj

=
n∑

k=m+1

pk +
n∑

i,j=m+1
i�=j

pij =
n∑

i,j=m+1

pij .

Secondly, via Cauchy’s inequality,( n∑
k=m+1

pk

)2

=
(

E

n∑
k=m+1

Ik

)2

=
(

E

n∑
k=m+1

Ik · I{
n∑

k=m+1

Ik > 0}
)2

≤ E

( n∑
k=m+1

Ik

)2

· E
(

I
{ n∑

k=m+1

Ik > 0
})2

= E
( n∑

k=m+1

Ik

)2
E

(
I
{ n∑

k=m+1

Ik > 0
})

= E

(
n∑

k=m+1

Ik

)2

P
( n⋃

k=m+1

Ak

)
.

The conclusion follows by joining the extreme members from the two calcu-
lations. �

Proof of Theorem 18.11. Choosing m sufficiently large, and applying the
lemma, we obtain
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P (An i.o.) = lim
m→∞

P
( ∞⋃

k=m+1

Ak

)
≥ lim

m→∞
lim sup

n→∞
P
( n⋃

k=m+1

Ak

)

≥ lim
m→∞

lim sup
n→∞

(∑n
k=m+1 pk

)2∑n
i=m+1

∑n
j=m+1 pij

≥ α. �

Our final extension is a recent result in which the assumption about the
ratio of the sums is replaced by the same condition applied to the individual
terms; see [196]. For a further generalization we refer to [197].

Theorem 18.12. Let {An, n ≥ 1} be arbitrary events, such that, for some
α ≥ 1,

P (Ai ∩Aj) ≤ αP (Ai)P (Aj) for all i, j > m, i �= j. (18.6)

Then ∞∑
n=1

P (An) = ∞ =⇒ P (An i.o.) ≥ 1/α.

Proof. We first consider the denominator in right-hand side of Lemma 18.1.
Using the factorizing assumption and the fact that α ≥ 1, we obtain

n∑
i,j=m+1

pij =
n∑

k=m+1

pk +
n∑

i,j=m+1
i�=j

pij ≤
n∑

k=m+1

pk + α

n∑
i,j=m+1

i�=j

pij

≤
n∑

k=m+1

pk − α

n∑
k=m+1

p2
k + α

(
n∑

k=m+1

pk

)2

≤ α

n∑
k=m+1

pk

(
1 +

n∑
k=m+1

pk

)
,

so that, by the lemma,

P
( n⋃

k=m+1

Ak

)
≥
(∑n

k=m+1 pk

)2∑n
i,j=m+1 pij

≥
∑n

k=m+1 pk

α
(
1 +

∑n
k=m+1 pk

) .

The divergence of the sum, finally, yields

P (An i.o.) = lim
m→∞

P
( ∞⋃

k=m+1

Ak

)
≥ lim

m→∞
lim sup

n→∞
P
( n⋃

k=m+1

Ak

)

≥ lim
m→∞

lim sup
n→∞

∑n
k=m+1 pk

α
(
1 +

∑n
k=m+1 pk

) = 1/α.
�

We close by connecting Theorem 18.12 to some of the earlier results.
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• Lamperti [167] proves that P (An i.o.) > 0 under the assumption (18.6).
• If there exists some kind of zero-one law, the conclusion of the theorem

(and of that of Lamperti) becomes P (An i.o.) = 1; cf. Theorem 18.3.
• If (18.6) holds with α = 1, then P (An i.o.) = 1. One such case is when

{An, n ≥ 1} are (pair-wise) independent, in which case we rediscover
Theorems 18.2 and 18.5, respectively.

19 A Convolution Table

Let X and Y be independent random variables and set Z = X+Y . What type
of distribution does Z have if X and Y are absolutely continuous, discrete, or
continuous singular, respectively? If both are discrete one would guess that
so is Z. But what if X has a density and Y is continuous singular? What if
X is continuous singular and Y is discrete?

The convolution formula for densities, cf. Subsection 2.9.4, immediately
tells us that if both distributions are absolutely continuous, then so is the
sum. However, by inspecting the more general result, Theorem 9.4, we realize
that it suffices for one of them to be absolutely continuous.

If both distributions are discrete, then so is the sum; the support of the
sum is the direct sum of the respective supports:

supp (FX+Y ) = {x + y : x ∈ supp (FX) and y ∈ supp (FY )}.

If X is discrete and Y is continuous singular, the support of the sum is a
Lebesgue null set, so that the distribution is singular. The derivative of the
distribution function remains 0 almost everywhere, the new exceptional points
are contained in the support of X, which, by Proposition 2.1(iii), is at most
countable.

Our findings so far may be collected in the following diagram:

�
��

X
Y

AC D CS

AC

D

CS

AC

AC

AC

AC

D

CS

AC

CS

? ?

Figure 2.6. The distribution of X + Y
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It remains to investigate the case when X and Y both are continuous
singular. However, this is a more sophisticated one. We shall return to that
slot in Subsection 4.2.2 with the aid of (rescaled versions of) the Cantor type
random variables Y and Z from Subsection 2.2.6.

20 Problems

1. Let X and Y be random variables and suppose that A ∈ F . Prove that

Z = XI{A}+ Y I{Ac} is a random variable.

2. Show that if X is a random variable, then, for every ε > 0, there exists a
bounded random variable Xε, such that

P (X �= Xε) < ε.

♣ Observe the difference between a finite random variable and a bounded ran-
dom variable.

3. Show that
(a) if X is a random variable, then so is |X| ;
(b) the converse does not necessarily hold.
♠ Don’t forget that there exist non-measurable sets.

4. Let X be a random variable with distribution function F .
(a) Show that

lim
h↘0

P (x− h < X ≤ x + h) = lim
h↘0

(
F (x + h)− F (x− h)

)

=

{
P (X = x), if x ∈ JF ,

0, otherwise.

(b) A point x ∈ supp (F ) if and only if

F (x + h)− F (x− h) > 0 for every h > 0.

Prove that
x ∈ JF =⇒ x ∈ supp (F ).

(c) Prove that the converse holds for isolated points.
(d) Prove that the support of any distribution function is closed.

5. Suppose that X is an integer valued random variable, and let m ∈ N.
Show that ∞∑

n=1

P (n < X ≤ n + m) = m.

6. Show that, for any random variable, X, and a ∈ R,∫ ∞

−∞
P (x < X ≤ x + a) dx = a.

♣ An extension to two random variables will be given in Problem 20.15.
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7. Let (Ω,F , P ) be the Lebesgue measure space ([0, 1],B([0, 1]), λ), and let
{Xt, 0 ≤ t ≤ 1} be a family of random variables defined as

Xt(ω) =

{
1, for ω = t,

0, otherwise.

Show that

P (Xt = 0) = 1 for all t and/but P ( sup
0≤t≤1

Xt = 1) = 1.

♣ Note that there is no contradiction, since the supremum is taken over an
uncountable set of t values.

8. Show that, if {Xn, n ≥ 1} are independent random variables, then

sup
n

Xn < ∞ a.s ⇐⇒
∞∑

n=1

P (Xn > A) < ∞ for some A.

9. The name of the log-normal distribution comes from the fact that its
logarithm is a normal random variable. Prove that the name is adequate,
that is, let X ∈ N(µ, σ2), and set Y = eX . Compute the distribution
function of Y , differentiate, and compare with the entry in Table 2.2.

10. Let X ∈ U(0, 1), and θ > 0. Verify, by direct computation, that

Y = −θ log X ∈ Exp(θ).

♠ This is useful for generating exponential random numbers, which are needed
in simulations related to the Poisson process.

11. Compute the expected number of trials needed in order for all faces of a
symmetric die to have appeared at least once.

12. The coupon collector’s problem. Each time one buys a bag of cheese dood-
les one obtains as a bonus a picture (hidden inside the package) of a soccer
player. Suppose there are n different pictures which are equally likely to
be inside every package. Find the expected number of packages one has
to buy in order to get a complete collection of players.
♣ For n = 100 the numerical answer is 519, i.e., “a lot” more than 100.

13. Let X1, X2, . . . , Xn be independent, identically distributed random vari-
ables with E X4 < ∞, and set µ = E X, σ2 = VarX, and µ4 = E(X−µ)4.
Furthermore, set

X̄n =
1
n

n∑
k=1

Xk and m2
n =

1
n

n∑
k=1

(Xk − X̄n)2.

Prove that

E(m2
n) = σ2 n− 1

n
,

Var (m2
n) =

µ4 − σ4

n
− 2µ4 − 4σ4

n2 +
µ4 − 3σ4

n3 .
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♣ Observe that the sample variance, s2
n = 1

n−1

∑n
k=1(Xk − X̄n)2 = n−1

n
m2

n, is
unbiased , which means that E s2

n = σ2. On the other hand, the expression
for Var s2

n is more involved.
14. Let, for k ≥ 1, µk = E(X − E X)k be the kth central moment of the

random variable X. Prove that the matrix⎛
⎝ 1 0 µ2

0 µ2 µ3
µ2 µ3 µ4

⎞
⎠

(a) has a non-negative determinant;
(b) is non-negative definite.
♠ Assume w.l.o.g. that E X = 0 and investigate E(a0 + a1X + a2X

2)2, where
a0, a1, a2 ∈ R.

(c) Generalize to higher dimensions.
15. This problem extends Problem 20.6. Let X, Y be random variables with

finite mean. Show that∫ ∞

−∞

(
P (X < x ≤ Y )− P (Y < x ≤ X)

)
dx = E Y − E X.

16. Show that, if X and Y are independent random variables, such that
E|X| < ∞, and B is an arbitrary Borel set, then

E XI{Y ∈ B} = E X · P (Y ∈ B).

17. Suppose that X1, X2, . . . , Xn are random variables, such that E|Xk| < ∞
for all k, and set Yn = max1≤k≤n Xk.
(a) Prove that E Yn < ∞.
(b) Prove that E Xk ≤ E Yn for all k.
(c) Prove that E|Yn| < ∞.
(d) Show that the analog of (b) for absolute values (i.e. E|Xk| ≤ E|Yn|

for all k) need not be true.
♣ Note the distinction between the random variables | max1≤k≤n Xk| and

max1≤k≤n |Xk|.
18. Let X1, X2, . . . be random variables, and set Y = supn |Xn|. Show that

E|Y |r < ∞ ⇐⇒ |Y | ≤ Z for some Z ∈ Lr, r > 0.

19. Let X be a non-negative random variable. Show that

lim
n→∞

nE
( 1

X
I{X > n}

)
= 0 ,

lim
n→∞

1
n

E
( 1

X
I{X >

1
n
}
)

= 0 .

♠ A little more care is necessary for the second statement.
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20. Let {An, n ≥ 1} be independent events, and suppose that P (An) < 1 for
all n. Prove that

P (An i.o.) = 1 ⇐⇒ P
( ∞⋃

n=1

An

)
= 1.

Why is P (An) = 1 forbidden?
21. Consider the dyadic expansion of X ∈ U(0, 1), and let ln be the run length

of zeroes from the nth decimal and onward. This means that ln = k if
decimals n, n + 1, . . . , n + k − 1 are all zeroes. In particular, ln = 0 if the
nth decimal equals 1.

(a) Prove that P (ln = k) = 1
2k+1 for all k ≥ 0.

(b) Prove that P (ln = k i.o.) = 1 for all k.

♠ Note that the events {ln = k, n ≥ 1} are not independent (unless k = 0).
♣ The result in (b) means that, with probability 1, there will be infinitely

many arbitrarily long stretches of zeroes in the decimal expansion of X.
(c) Prove that P (ln = n i.o.) = 0.

♣ This means that if we require the run of zeroes that starts at n to have
length n, then, almost surely, this will happen only finitely many times.
(There exist stronger statements.)

22. Let X, X1, X2, . . . be independent, identically distributed random vari-
ables, such that P (X = 0) = P (X = 1) = 1/2.
(a) Let N1 be the number of 0’s and 1’s until the first appearance of the

pattern 10. Find E N1.

(b) Let N2 be the number of 0’s and 1’s until the first appearance of the
pattern 11. Find E N2.

(c) Let N3 be the number of 0’s and 1’s until the first appearance of the
pattern 100. Find E N3.

(d) Let N4 be the number of 0’s and 1’s until the first appearance of the
pattern 101. Find E N4.

(e) Let N5 be the number of 0’s and 1’s until the first appearance of the
pattern 111. Find E N5.

(f) Solve the same problem if X ∈ Be(p), for 0 < p < 1.

♣ No two answers are the same (as one might think concerning (a) and (b)).
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Inequalities

Inequalities play an important role in probability theory, because much work
concerns the estimation of certain probabilities by others, the estimation of
moments of sums by sums of moments, and so on.

In this chapter we have collected a number of inequalities of the following
kind:

• tail probabilities are estimated by moments;
• moments of sums are estimated by sums of moments and vice versa;
• the expected value of the product of two random variables is estimated by

a suitable product of higher-order moments;
• moments of low order are estimated by moments of a higher order;
• a moment inequality for convex functions of random variables is provided;
• relations between random variables and symmetrized versions;
• the probability that a maximal partial sum of random variables exceeds

some given level is related to the probability that the last partial sum does
so.

1 Tail Probabilities Estimated via Moments

We begin with a useful and elementary inequality.

Lemma 1.1. Suppose that g is a non-negative, non-decreasing function such
that E g(|X|) < ∞, and let x > 0. Then,

P (|X| > x) ≤ E g(|X|)
g(x)

.

Proof. We have

E g(|X|) ≥ E g(|X|)I{|X| > x} ≥ g(x)E I{|X| > x} = g(x)P (|X| > x). �
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Specializing g yields the following famous named inequality.

Theorem 1.1. (Markov’s inequality) Suppose that E|X|r < ∞ for some r >
0, and let x > 0. Then,

P (|X| > x) ≤ E|X|r
xr

.

Another useful case is the exponential function applied to bounded random
variables.

Theorem 1.2. (i) Suppose that P (|X| ≤ b) = 1 for some b > 0, that E X = 0,
and set Var X = σ2. Then, for 0 < t < b−1, and x > 0.

P (X > x) ≤ e−tx+t2σ2
,

P (|X| > x) ≤ 2e−tx+t2σ2
.

(ii) Let X1, X2, . . . , Xn be independent random variables with mean 0, sup-
pose that P (|Xk| ≤ b) = 1 for all k, and set σ2

k = VarXk. Then, for
0 < t < b−1, and x > 0.

P (|Sn| > x) ≤ 2 exp
{
− tx + t2

n∑
k=1

σ2
k

}
.

(iii) If, in addition, X1, X2, . . . , Xn are identically distributed, then

P (|Sn| > x) ≤ 2 exp{−tx + nt2σ2
1}.

Proof. (i): Applying Lemma 3.1.1 with g(x) = etx, for 0 ≤ t ≤ b−1, and
formula (A.A.1) yields

P (X > x) =
E etX

etx
≤ e−tx(1 + E tX + E (tX)2)

= e−tx(1 + t2σ2) ≤ e−txet2σ2
,

which proves the first assertion. The other one follows by considering the
negative tail and addition. Statements (ii) and (iii) are then immediate. �

The following inequality for bounded random variables, which we state
without proof, is due to Hoeffding, [138], Theorem 2.

Theorem 1.3. (Hoeffding’s inequality) Let X1, X2, . . . , Xn be independent
random variables, such that P (ak ≤ Xk ≤ bk) = 1 for k = 1, 2, . . . , n, and let
Sn, n ≥ 1, denote the partial sums. Then

P (Sn − E Sn > x) ≤ exp
{
− 2x2∑n

k=1(bk − ak)2

}
,

P (|Sn − E Sn| > x) ≤ 2 exp
{
− 2x2∑n

k=1(bk − ak)2

}
.
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The next result is a special case of Markov’s inequality and has a name of
its own.

Theorem 1.4. (Chebyshev’s inequality)
(i) Suppose that Var X < ∞. Then

P (|X − E X| > x) ≤ Var X

x2 , x > 0.

(ii) If X1, X2, . . . , Xn are independent with mean 0 and finite variances, then

P (|Sn| > x) ≤
∑n

k=1 Var Xk

x2 , x > 0.

(iii) If, in addition, X1, X2, . . . , Xn are identically distributed, then

P (|Sn| > x) ≤ nVar X1

x2 , x > 0.

The Chebyshev inequality presupposes finite variance. There exists, however,
a variation of the inequality which is suitable when variances do not exist.
Namely, for a given sequence X1, X2, . . . we define truncated random vari-
ables Y1, Y2, . . . as follows. Let

Yn =

{
Xn, when |Xn| ≤ bn,

c, otherwise.
(1.1)

Here {bn, n ≥ 1} is a sequence of positive reals and c some constant.
Typical cases are bn = b, bn = nα for some α > 0, and c = 0, c = M

for some suitable constant M . We shall be more specific as we encounter
truncation methods.

Theorem 1.5. (The truncated Chebyshev inequality) Let X1, X2, . . . , Xn be
independent random variables, let Y1, Y2, . . . , Yn be the truncated sequence,
and set S′

n =
∑n

k=1 Yk. Suppose also, for simplicity, that c = 0.
(i) Then, for x > 0,

P (|Sn − E S′
n| > x) ≤

∑n
k=1 Var Yk

x2 +
n∑

k=1

P (|Xk| > bk).

(ii) In particular, if X1, X2, . . . , Xn are identically distributed, and bk = b
for all k, then

P (|Sn − E S′
n| > x) ≤ nVar Y1

x2 + nP (|X1| > b).

Proof. Since the second half of the theorem is a particular case of the first
half, we only have to prove the latter.
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Toward that end,

P (|Sn − E S′
n| > x) = P

({
|Sn − E S′

n| > x
}⋂{ n⋂

k=1

{|Xk| ≤ bk}
})

+P
({
|Sn − E S′

n| > x
}⋂{ n⋃

k=1

{|Xk| > bk}
})

≤ P (|S′
n − E S′

n| > x) + P
( n⋃

k=1

{|Xk| > bk}
)

≤
∑n

k=1 Var Yk

x2 +
n∑

k=1

P (|Xk| > bk).
�

Remark 1.1. If E X = 0 then, in general, it is not true that E Y = 0. It is,
however, true for symmetric random variables.

Remark 1.2. Since independence is only used to assert that the variance of a
sum equals the sum of the variances, the last two theorems remain true under
the weaker assumption that X1, X2, . . . are pair-wise independent. �

With a little more work one can obtain the following extension of the
Chebyshev inequality pertaining to maximal sums; note that the bound re-
mains the same as for the sums themselves.

Theorem 1.6. (The Kolmogorov inequality) Let X1, X2, . . . , Xn be indepen-
dent random variables with mean 0 and suppose that Var Xk < ∞ for all k.
Then, for x > 0,

P ( max
1≤k≤n

|Sk| > x) ≤
∑n

k=1 Var Xk

x2 .

In particular, if X1, X2, . . . , Xn are identically distributed, then

P ( max
1≤k≤n

|Sk| > x) ≤ nVar X1

x2 .

Proof. For k = 1, 2, . . . , n, set

Ak = { max
1≤j≤k−1

|Sj | ≤ x, |Sk| > x}.

The idea behind this is that

{ max
1≤k≤n

|Sk| > x} =
n⋃

k=1

Ak,

and that the sets {Ak} are disjoint.
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Now,

n∑
k=1

Var Xk = E(S2
n) ≥

n∑
k=1

E(S2
nI{Ak})

=
n∑

k=1

E
(
(S2

k + 2Sk(Sn − Sk) + (Sn − Sk)2)I{Ak}
)

≥
n∑

k=1

E
(
(S2

k + 2Sk(Sn − Sk))I{Ak}
)

=
n∑

k=1

E(S2
kI{Ak}) + 2

n∑
k=1

E
(
(Sn − Sk)SkI{Ak})

)

=
n∑

k=1

E(S2
kI{Ak}) ≥ x2

n∑
k=1

E I{Ak} = x2
n∑

k=1

P (Ak)

= x2P
( n⋃

k=1

Ak

)
= x2P ( max

1≤k≤n
|Sk| > x).

The expectation of the double product equals 0 because Sn−Sk and SkI{Ak}
are independent random variables. �

Remark 1.3. Note that a direct application of Chebyshev’s inequality to the
left-hand side of the statement yields

P ( max
1≤k≤n

|Sk| > x) ≤ E(max1≤k≤n |Sk|)2
x2 ,

which is something different. However, with the aid of results for martingales
in Chapter 10 (more precisely Theorem 10.9.4) one can show that, in fact,
E(max1≤k≤n |Sk|2) ≤ 4E(S2

n), that is, one is a factor 4 off the Kolmogorov
inequality. �

Theorem 1.7. (The “other” Kolmogorov inequality) Let X1, X2, . . . , Xn be
independent random variables with mean 0, and such that, for some constant
A > 0,

sup
n
|Xn| ≤ A. (1.2)

Then

P ( max
1≤k≤n

|Sk| > x) ≥ 1− (x + A)2∑n
k=1 Var Xk

.

Proof. Let {Ak, 1 ≤ k ≤ n} be given as in the previous proof, set

Bk = { max
1≤j≤k

|Sk| ≤ x}, for k = 1, 2, . . . , n,
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and note that, for all k,

Ak

⋂
Bk = ∅ and

k⋃
j=1

Aj = Bc
k.

Thus,

Sk−1I{Bk−1}+ XkI{Bk−1} = SkI{Bk−1} = SkI{Bk}+ SkI{Ak}. (1.3)

Squaring and taking expectations in the left-most equality yields

E(SkI{Bk−1})2 = E(Sk−1I{Bk−1}+ XkI{Bk−1})2

= E(Sk−1I{Bk−1})2 + E(XkI{Bk−1})2

+2E(Sk−1I{Bk−1}XkI{Bk−1})
= E(Sk−1I{Bk−1})2 + VarXkP (Bk−1) (1.4)

by independence. The same procedure with the right-most equality yields

E(SkI{Bk−1})2 = E(SkI{Bk}+ SkI{Ak})2

= E(SkI{Bk})2 + E(SkI{Ak})2

+2E(SkI{Bk}SkI{Ak})
= E(SkI{Bk})2 + E

(
Sk−1I{Ak}+ XkI{Ak}

)2
≤ E(SkI{Bk})2 + (x + A)2P (Ak), (1.5)

where the last inequality is due to the fact that |Sk−1|I{Ak} < x and (1.2).
Joining (1.4) and (1.5), upon noticing that Bk ⊃ Bn for all k, now shows

that

P (Bn)VarXk ≤ E(SkI{Bk})2 − E(Sk−1I{Bk−1})2 + (x + A)2P (Ak),

so that, after summation and telescoping,

P (Bn)
n∑

k=1

Var Xk ≤ E(SnI{Bn})2 + (x + A)2P
( n⋃

k=1

Ak

)
≤ x2P (Bn) + (x + A)2P (Bc

n) ≤ (x + A)2.

The conclusion follows. �

Remark 1.4. If E Xn �= 0, then supn |Xn − E Xn| ≤ 2A, so that,

P ( max
1≤k≤n

|Sk − E Sk| > x) ≥ 1− (x + 2A)2∑n
k=1 Var Xk

. �

The common feature with the results above is that tail probabilities are es-
timated by moments or sums of variances. In certain convergence results in
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which one aims at necessary and sufficient conditions, converse inequalities
will be of great help. A rewriting of the conclusion of Theorem 1.7 produces
one such result. However, by picking from the last step in the proof of the
theorem, omitting the final inequality, we have

P ( max
1≤k≤n

|Sk| ≤ x)
n∑

k=1

Var Xk ≤ x2P ( max
1≤k≤n

|Sk| ≤ x)

+(x + A)2P ( max
1≤k≤n

|Sk| > x),

which we reshuffle into an estimate of the sum of the variances, and register
as a separate result.

Corollary 1.1. Let X1, X2, . . . , Xn be independent random variables with
E Xn = 0, such that, for some constant A > 0,

sup
n
|Xn| ≤ A. (1.6)

Then
n∑

k=1

Var Xk ≤ x2 +
(x + A)2P (max1≤k≤n |Sk| > x)

P (max1≤k≤n |Sk| ≤ x)
,

In particular, if P (max1≤k≤n |Sk| > x) < δ, for some δ ∈ (0, 1), then

n∑
k=1

Var Xk ≤ x2 + (x + A)2
δ

1− δ
.

�

Following is a generalization of the Kolmogorov inequality to weighted sums.

Theorem 1.8. (The Hájek-Rényi inequality) Let X1, X2, . . . , Xn be inde-
pendent random variables with E Xn = 0, and let {ck, 0 ≤ k ≤ n} be positive,
non-increasing real numbers. Then

P ( max
1≤k≤n

ck|Sk| > x) ≤
∑n

k=1 c2
kVar Xk

x2 , x > 0.

Remark 1.5. If ck = 1 for all k, the inequality reduces to the Kolmogorov
inequality.

Remark 1.6. Note the difference between

max
1≤k≤n

ck|Sk| and max
1≤k≤n

n∑
j=1

cj |Xj |,

and that a direct application of the Kolmogorov inequality to the latter max-
imum provides the same upper bound. �
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Proof. The proof follows the basic pattern of the proof of Theorem 1.6. Thus,
for k = 1, 2, . . . , n, we set

Ak = { max
1≤j≤k−1

|cjSj | ≤ x, |ckSk| > x},

so that

{ max
1≤k≤n

|ckSk| > x} =
n⋃

k=1

Ak,

with {Ak} being disjoint sets.
By partial summation and independence,

n∑
k=1

c2
kVar Xk =

n∑
k=1

c2
k(VarSk −Var Sk−1)

=
n−1∑
k=1

(c2
k − c2

k+1)VarSk + c2
nVar Sn

=
n−1∑
k=1

(c2
k − c2

k+1)E S2
k + c2

nE S2
n.

Moreover, E(S2
k{Aj}) ≥ E(S2

j {Aj}) for k ≥ j, precisely as in the proof of
Theorem 1.6. Rerunning that proof with minor modifications we thus arrive
at

n∑
k=1

c2
kVar Xk ≥

n∑
j=1

n∑
k=1

c2
kVar XkI{Aj}

=
n∑

j=1

n−1∑
k=1

(c2
k − c2

k+1)E(S2
kI{Aj}) +

n∑
j=1

c2
nE(S2

nI{Aj})

≥
n∑

j=1

n−1∑
k=j

(c2
k − c2

k+1)E(S2
kI{Aj}) +

n∑
j=1

c2
nE(S2

nI{Aj})

≥
n∑

j=1

n−1∑
k=j

(c2
k − c2

k+1)E(S2
j I{Aj}) +

n∑
j=1

c2
nE(S2

j I{Aj})

≥
n∑

j=1

n−1∑
k=j

(c2
k − c2

k+1)
x2

c2
j

EI{Aj}+
n∑

j=1

c2
n

x2

c2
j

EI{Aj}

=
n∑

j=1

n−1∑
k=j

(c2
k − c2

k+1)
x2

c2
j

P (Aj) +
n∑

j=1

c2
n

x2

c2
j

P (Aj)

= x2
n∑

j=1

P (Aj) = x2P
( n⋃

j=1

Aj

)
= x2P ( max

1≤k≤n
|ckSk| > x).

�
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2 Moment Inequalities

Next, some inequalities that relate moments of sums to sums of moments.
Note that we do not assume independence between the summands.

Theorem 2.1. Let r > 0. Suppose that E|X|r < ∞ and E|Y |r < ∞. Then

E|X + Y |r ≤ 2r(E|X|r + E|Y |r).

Proof. Set x = X(ω) and y = Y (ω). The triangle inequality and Lemma A.5.1
together yield

E|X + Y |r ≤ E(|X|+ |Y |)r ≤ 2r(E|X|r + E|Y |r). �

Although the inequality is enough for many purposes, a sharper one can be
obtained as follows.

Theorem 2.2. (The cr-inequality) Let r > 0. Suppose that E|X|r < ∞ and
E|Y |r < ∞. Then

E|X + Y |r ≤ cr(E|X|r + E|Y |r),

where cr = 1 when r ≤ 1 and cr = 2r−1 when r ≥ 1.

Proof. Set x = X(ω) and y = Y (ω) for ω ∈ Ω. By the triangle inequality and
the second inequality of Lemma A.5.1,

E|X + Y |r ≤ E(|X|+ |Y |)r ≤ E|X|r + E|Y |r,

which establishes the inequality for the case 0 < r ≤ 1.
For r ≥ 1 the desired inequality follows the same procedure with the

second inequality of Lemma A.5.1 replaced by the third one. �

The last two results tell us that the if the summands are integrable, then so
is the sum. The integrability assumption is of course superfluous, but without
it the right-hand side would be infinite, and the result would be void.

There is no general converse to that statement. If both variables are non-
negative the converse is trivial, since, then, X ≤ X + Y . However, let X and
Y be Cauchy-distributed, say, and such that Y = −X. Then X + Y equals 0
and thus has moments of all orders, but X and Y do not.

However, for independent summands independent there exists a converse.

Theorem 2.3. Let r > 0. If E|X + Y |r < ∞ and X and Y are independent,
then E|X|r < ∞ and E|Y |r < ∞.

Proof. By assumption,∫ ∞

−∞

∫ ∞

−∞
|x + y|r dF (x)dF (y) < ∞.
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The finiteness of the double integral implies that the inner integral must be
finite for at least one y (in fact, for almost all y). Therefore, pick y, such that∫ ∞

−∞
|x + y|r dF (x) < ∞,

which means that
E|X + y|r < ∞.

An application of the cr-inequality we proved a minute ago asserts that

E|X|r ≤ E|X + y|r + |y|r < ∞.

The integrability of Y follows similarly, or, alternatively, via another applica-
tion of the cr-inequality.

An alternative is to argue with the aid of Theorem 2.12.1. If both variables
are non-negative or non-positive the converse is trivial as mentioned above.
Thus, suppose that X, say, takes values with positive probability on both
sides of the origin. Then there exists α ∈ (0, 1), such that

P (X > 0) ≥ α and P (X < 0) ≥ α.

Moreover,

P (X + Y > n) ≥ P ({Y > n} ∩ {X > 0})
= P (Y > n) · P (X > 0) ≥ P (Y > n) · α,

which, together with the analog for the negative tail, yields

P (|X + Y | > n) ≥ P (|Y | > n) · α,

so that
∞∑

n=1

nr−1P (|Y | > n) ≤ 1
α

∞∑
n=1

nr−1P (|X + Y | > n) < ∞.

An application of Theorem 2.12.1 proves that E|Y |r < ∞, after which we can
lean on the cr-inequality to conclude that E|X|r < ∞. �

Before proceeding we introduce another piece of notation. For a random
variable X whose moment of order r > 0 is finite we set

‖X‖r =
(
E|X|r

)1/r
. (2.1)

The notation indicates that ‖X‖r is a norm in some space. That this is, in fact,
the case when r ≥ 1 will be seen after the proof of the Minkowski inequality in
Theorem 2.6. For convenience we still keep the notation also when 0 < r < 1,
but in that case it is only notation.
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Theorem 2.4. (The Hölder inequality) Let p−1 + q−1 = 1. If E|X|p < ∞
and E|Y |q < ∞, then

|E XY | ≤ E|XY | ≤ ‖X‖p · ‖Y ‖q .

Proof. Only the second inequality requires a proof. Once again the point of
departure is an elementary inequality for positive reals.

Let ω ∈ Ω, put x = |X(ω)|/‖X‖p and y = |Y (ω)|/‖Y ‖q, insert this into
Lemma A.5.2, and take expectations. Then

E
|X|
‖X‖p

· |Y |
‖Y ‖q

≤ 1
p
E
( |X|p
‖X‖p

p

)
+

1
q
E
( |Y |q
‖Y ‖q

q

)
=

1
p

+
1
q

= 1. �

A particular case, or a corollary, is obtained by putting Y = 1 a.s.

Theorem 2.5. (The Lyapounov inequality) For 0 < r ≤ p,

‖X‖r ≤ ‖X‖p.

Proof. We use the Hölder inequality with X replaced by |X|p, Y by 1, and p
by r/p (and q by 1− r/p). Then

E|X|p = E|X|p · 1 ≤ ‖|X|p‖r/p · 1

=
(
E(|X|p)r/p

)p/r = (E|X|r)p/r = (‖X‖r)p,

which yields the desired conclusion. �

The Hölder inequality concerns moments of products. The following, tri-
angular type of inequality concerns sums.

Theorem 2.6. (The Minkowski inequality) Let p ≥ 1. Suppose that X and
Y are random variables, such that E|X|p < ∞ and E|Y |p < ∞. Then

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p .

Proof. If ‖X + Y ‖p = 0 there is nothing to prove. We therefore suppose in
the following that ‖X + Y ‖p > 0. By the triangular and Hölder inequalities,
and by noticing that (p− 1)q = p and p/q = p− 1, we obtain

‖X + Y ‖p
p = E|X + Y |p−1|X + Y |
≤ E|X + Y |p−1|X|+ E|X + Y |p−1|Y |
≤ ‖|X + Y |p−1‖q‖X‖p + ‖|X + Y |p−1‖q‖Y ‖p

=
(
E|X + Y |(p−1)q)1/q(‖X‖p + ‖Y ‖p)

= ‖X + Y ‖p/q
p (‖X‖p + ‖Y ‖p).

Dividing the extreme members by ‖X + Y ‖p/q
p finishes the proof. �
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3 Covariance; Correlation

The Hölder inequality with p = q = 2 yields another celebrated inequality.

Theorem 3.1. (The Cauchy-Schwarz inequality) Suppose that X and Y have
finite variances. Then

|E XY | ≤ E|XY | ≤ ‖X‖2 · ‖Y ‖2 =
√

E X2 · E Y 2.

Recall from Chapter 2 that the variance is a measure of dispersion. The covari-
ance, which we introduce next, measures a kind of “joint spread”; it measures
the extent of covariation of two random variables.

Definition 3.1. Let (X, Y )′ be a random vector. The covariance of X and Y
is

Cov (X, Y ) = E(X − E X)(Y − E Y ) (= E XY − E XE Y ). �

The covariance measures the interdependence of X and Y in the sense that it is
large and positive when X and Y are both large and of the same sign; it is large
and negative if X and Y are both large and of opposite signs. Since, as is easily
checked, Cov (aX, bY ) = abCov (X, Y ), for a, b ∈ R, the covariance is not
scale invariant, which implies that the covariance may be “large” only because
the variables themselves are large. Changing from millimeters to kilometers
changes the covariance drastically. A better measure of interdependence is the
correlation coefficient.

Definition 3.2. Let (X, Y )′ be a random vector. The correlation coefficient
of X and Y is

ρX,Y =
Cov (X, Y )√
Var X ·Var Y

.

The random variables X and Y are uncorrelated iff

ρX,Y = 0. �

An application of the Cauchy-Schwarz inequality shows that

|Cov (X, Y )| ≤
√

Var X ·Var Y or, equivalently, that |ρX,Y | ≤ 1.

In particular, the covariance is well defined whenever the variances are finite.

Exercise 3.1. Check that the correlation coefficient is scale invariant. �

The next result tells us that uncorrelatedness is a weaker concept than inde-
pendence.

Theorem 3.2. Let (X, Y )′ be a random vector. If X and Y are independent,
then they are uncorrelated, viz.,

E XY = E X · E Y =⇒ Cov (X, Y ) = 0.
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Proof. By independence and Fubini’s theorem, Theorem 2.9.1,

E XY =
∫ ∞

−∞

∫ ∞

−∞
xy dFX,Y (x, y) =

∫ ∞

−∞

∫ ∞

−∞
xy dFX(x)dFY (y)

=
∫ ∞

−∞
xdFX(x) ·

∫ ∞

−∞
y dFY (y) = E X · E Y. �

In order to see that the implication is strict we return for a moment to
Example 2.3.1 – picking a point uniformly on the unit disc. By symmetry (or
by direct computation) we find that E X = E Y = E XY = 0, which shows
that the X- and Y -coordinates are uncorrelated. On the other hand, since a
large value of X forces Y to be small in order for the point to stay inside the
circle, it seems reasonable to guess that the coordinates are not independent.
That this is, indeed, the case follows from the fact that the joint density is
not equal to the product of the marginal ones (recall (2.3.1));

1
π
�= 2

π

√
1− x2 · 2

π

√
1− y2.

We have thus shown that the coordinates are uncorrelated, but not indepen-
dent.

4 Interlude on Lp-spaces

The Lp-spaces are defined as the set of measurable functions f such that the
integral

∫
|f(x)|p dx is convergent. One defines a norm on the space by ‖f‖p =

(
∫
|f(x)|p dx)1/p. However, this only works for p ≥ 1, since for 0 < p < 1 the

object ‖f‖p does not fulfill the requirements of a norm, namely, the “triangle
inequality” fails to hold.

The probabilistic version of these spaces is to consider the set of random
variables with a finite moment of order p and to define the norm of a random
variable ‖ · ‖p as

‖X‖p =
(
E|X|p

)1/p
.

We notice that ‖X‖p ≥ 0 with equality only when X = 0 a.s., and that
the Minkowski inequality, Theorem 2.6 is the desired “triangle inequality”;
however, only when p ≥ 1. Moreover, we have homogeneity in the sense that
if λ ∈ R, then ‖λX‖p = |λ|‖X‖p. The linearity and the Minkowski inequality
together show that if X and Y belong to Lp for some p ≥ 1, then so does
λ1X + λ2Y . Thus, ‖ · ‖p is, indeed, a norm (for p ≥ 1).

In addition, one can define a distance between two random variables X
and Y by d(X, Y ) = ‖X − Y ‖p. It is readily checked that d(X, Y ) ≥ 0 with
equality only when X = Y a.s., and that d(X, Z) ≤ d(X, Y ) + d(Y, Z), the
latter, once again, being a consequence of the Minkowski inequality, so that the
Lp-spaces are metric spaces (when p ≥ 1). In Section 5.12 we shall show that
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the so-called Cauchy convergence always implies convergence in this space,
which means that the spaces are complete.

The Lp-spaces are examples of Banach spaces. All of them have a dual
space that turns out to be another such space: the dual of Lp is Lq, where
p and q are what is called conjugate exponents, which means that they are
related via p−1 + q−1 = 1 (as, for example, in the Hölder inequality, Theorem
2.4 above).

An inspection of the relation between the exponents reveals that the case
p = q = 2 is special; L2 is self-dual. Moreover, one can define an inner product
with certain properties, among them that the inner product of an element with
itself equals the square of its norm. Banach spaces with a norm that can be
derived via an inner product are called Hilbert spaces. The covariance defined
in the previous section plays the role of the inner product.

All of this and much more belongs to the area of functional analysis, which
is an important branch of mathematics. The aim of this subsection was merely
to illustrate the connection to probability theory, how the theory can be de-
scribed in a probabilistic context, with random variables instead of measurable
functions, and moments instead of integrals, and so on.

5 Convexity

For the definition of convexity and some basic facts we refer to Section A.5.

Theorem 5.1. (Jensen’s inequality) Let X be a random variable, g a convex
function, and suppose that X and g(X) are integrable. Then

g(E X) ≤ E g(X).

Proof. If, in addition, g is twice differentiable we know that the second deriva-
tive is always positive. Therefore, by Taylor expansion, for any x,

g(x) ≥ g(E X) + (x− E X)g′(E X).

Putting x = X(ω), and taking expectations yields the desired conclusion.
In the general case one notices that the chord between g(x) and g(E X)

lies above the curve joining these points, after one proceeds similarly. �

Exercise 5.1. Complete the details in the general case. �

The first example is g(x) = |x|p for p ≥ 1, in which case the inequality states
that (E|X|)p ≤ E|X|p. A variation is (E|X|r)p ≤ E|X|rp, for r > 0, which
ran be restated as ‖X‖r ≤ ‖X‖rp, and thus reproves Lyapounov’s inequality,
Theorem 2.5.

A simple-minded example is obtained for g(x) = x2, in which case Jensen’s
inequality amounts to the statement that VarX ≥ 0.
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6 Symmetrization

For various reasons that will be more apparent later it is often easier to prove
certain theorems for symmetric random variables. A common procedure in
such cases is to begin by proving the theorem under the additional assump-
tion of symmetry and then to remove that assumption – to desymmetrize.
Important tools in this context are, as a consequence, relations between ordi-
nary random variables and symmetric ones, more precisely between ordinary
random variables and a kind of associated symmetric ones. The connection is
made clear via the following definitions, which is then followed by a number
of properties.

Definition 6.1. Let X and X ′ d= X be independent random variables. We
call Xs = X −X ′ the symmetrized random variable.

Definition 6.2. The median, med (X), of a random variable X is a real num-
ber satisfying

P (X ≤ med (X)) ≥ 1
2

and P (X ≥ med (X)) ≥ 1
2
. �

A median is a kind of center of the distribution in the sense that (at least)
half of the probability mass lies to the left of it and (at least) half of it to the
right. Medians always exist in contrast to expected values which need not.

The median is unique for absolutely continuous random variables. How-
ever, it need not be unique in general, and typically not for several discrete
distributions.

If moments exist one can obtain bounds for the median as follows.

Proposition 6.1. (i) Let a > 0. If P (|X| > a) < 1/2, then |med (X)| ≤ a.
(ii) If E|X|r < ∞ for some r ∈ (0, 1), then

|med (X)| ≤ 21/r‖X‖r.

(iii) If E|X|r < ∞ for some r ≥ 1, then

|med (X)− E X| ≤ 21/r‖X‖r.

In particular, if Var X = σ2 < ∞, then

|med (X)− E X| ≤ σ
√

2.

Proof. (i): By assumption, P (X < −a) < 1/2, so that, by definition, the
median must be ≥ −a. Similarly for the other tail; the median must be ≤ a.
(ii): Using Markov’s inequality we find that

P (|X| > 21/r‖X‖r) ≤
E|X|r

(21/r‖X‖r)r
=

1
2
.

(iii): The same proof with X replaced by X − E X. �
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Next we present two propositions that relate tail probabilities of random
variables to tail probabilities for their symmetrizations.

Proposition 6.2. (Weak symmetrization inequalities) For every x and a,

1
2
P (X −med (X) ≥ x) ≤ P (Xs ≥ x),

1
2
P (|X −med (X)| ≥ x) ≤ P (|Xs| ≥ x) ≤ 2P (|X − a| ≥ x/2).

In particular,

1
2
P (|X −med (X)| ≥ x) ≤ P (|Xs| ≥ x) ≤ 2P (|X −med (X)| ≥ x/2).

Proof. Since X
d= X ′, med (X) is also a median for X ′. Thus,

P (Xs ≥ x) ≥ P ({X −med (X) ≥ x} ∩ {X ′ −med (X ′) ≤ 0})
= P (X −med (X) ≥ x)P (X ′ −med (X ′) ≤ 0)

≥ P (X −med (X) ≥ x) · 1
2
,

which proves the first assertion. The left-hand inequality in the second asser-
tion follows by applying the first one to −X and addition. The right-most
inequality follows via

P (|Xs| ≥ x) = P (|X − a− (X ′ − a)| ≥ x)
≤ P (|X − a| ≥ x/2) + P (|X ′ − a| ≥ x/2)
= 2P (|X − a| ≥ x/2). �

The adjective weak in the name of the symmetrization inequalities suggests
that there exist strong ones too. The proofs of these consist of a modification
of the proof of the weak symmetrization inequalities in a manner related to
the extension from Chebyshev’s inequality to the Kolmogorov inequality.

Proposition 6.3. (Strong symmetrization inequalities) For every x and all
sequences {ak, 1 ≤ k ≤ n},

1
2
P ( max

1≤k≤n
(Xk −med (Xk)) ≥ x) ≤ P ( max

1≤k≤n
Xs

k ≥ x)

1
2
P ( max

1≤k≤n
|Xk −med (Xk)| ≥ x) ≤ P ( max

1≤k≤n
|Xs

k| ≥ x)

≤ 2P ( max
1≤k≤n

|Xk − ak| ≥ x/2).

In particular

1
2
P ( max

1≤k≤n
|Xk −med (Xk)| ≥ x) ≤ P ( max

1≤k≤n
|Xs

k| ≥ x)

≤ 2P ( max
1≤k≤n

|Xk −med (Xk)| ≥ x/2).
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Proof. Set

Ak = { max
1≤j≤k−1

(Xj −med (Xj)) < x, Xk −med (Xk) ≥ x},

Bk = {X ′
k −med (X ′

k) ≤ 0}, and
Ck = { max

1≤j≤k−1
Xs

j < x, Xs
k ≥ x}.

Then,

• {Ak, 1 ≤ k ≤ n} are disjoint;

•
⋃n

k=1 Ak = {max1≤k≤n(Xk −med (Xk)) ≥ x};
• {Ck, 1 ≤ k ≤ n} are disjoint;

•
⋃n

k=1 Ck = {max1≤k≤n Xs
k ≥ x};

• Ak ∩Bk ⊂ Ck, k = 1, 2, . . . , n;

• Ak and Bk are independent.

The conclusion follows upon observing that

P
( n⋃

k=1

Ck

)
=

n∑
k=1

P (Ck) ≥
n∑

k=1

P (Ak ∩Bk) =
n∑

k=1

P (Ak)P (Bk)

≥
n∑

k=1

P (Ak) · 1
2

=
1
2
P
( n⋃

k=1

Ak

)
.

�

Remark 6.1. Whereas the weak symmetrization inequalities are weak in the
sense that they concern distributional properties, the strong ones are called
strong, since the whole history of the process so far is involved. �

As a first application we use the weak symmetrization inequalities to relate
moments of random variables to their symmetrized counterparts.

Proposition 6.4. For any r > 0 and a,

1
2
E|X −med (X)|r ≤ E|Xs|r ≤ 2crE|X − a|r.

In particular,

1
2cr

E|X|r ≤ E|Xs|r + |med (X)|r ≤ 2crE|X|r + |med (X)|r,

so that
E|X|r < ∞ ⇐⇒ E|Xs|r < ∞.

Proof. To prove the first double inequality we suppose that E|X|r < ∞;
otherwise there is nothing to prove.
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The left-hand inequality is obtained via Proposition 6.2 and Theorem
2.12.1. The right-hand inequality follows by applying the cr-inequality, viz.

E|Xs|r = E|X − a− (X ′ − a)|r

≤ cr(E|X − a|r + E|X ′ − a|r) = 2crE|X − a|r.

The second double inequality follows from the first one via the cr-inequality,
and by putting a = 0, from which the equivalence between the integrability of
X and Xs is now immediate. Note also that this, alternatively, follows directly
from the cr-inequality and Theorem 2.3. �

A useful variation of the relation between moments of random variables
and their symmetrizations can be obtained from the following result in which
the assumption that the mean equals 0 is crucial; note that no assumptions
about centerings were made in the previous proposition.

Proposition 6.5. Let r ≥ 1, let X and Y be independent random variables,
suppose that E|X|r < ∞, E|Y |r < ∞, and that E Y = 0. Then

E|X|r ≤ E|X + Y |r.

In particular, if X has mean 0, and Xs is the symmetrized random variable,
then

E|X|r ≤ E|Xs|r.

Proof. Let x be a real number. Then, since Y has mean 0,

|x|r = |x + E Y |r ≤ E|x + Y |r =
∫ ∞

−∞
|x + y|r dFY (y),

so that

E|X|r ≤
∫ ∞

−∞

∫ ∞

−∞
|x + y|r dFY (y) dFX(x) = E|X + Y |r.

The particular case follows by letting Y = −X ′, where X ′ d= X and X ′ is
independent of X. �

As mentioned before, symmetric random variables are, in general, (much)
easier to handle. As an example, suppose that E|X + Y |r < ∞ for some
r > 0 and, in addition, that X and Y are independent and that Y (say) is
symmetric. Then, since Y

d= −Y , it follows that X +Y
d= X +(−Y ) = X−Y .

Exploiting this fact, together with the elementary identity

X =
1
2
(
(X + Y ) + (X − Y )

)
,

the Minkowski inequality when r ≥ 1, and the cr-inequality when 0 < r < 1,
shows that
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‖X‖r ≤
1
2
(
‖X + Y ‖r + ‖X − Y ‖r

)
= ‖X + Y ‖r,

and that

E|X|r ≤ 1
2
(
E|X + Y |r + E|X − Y |r

)
= E|X + Y |r,

respectively.
This provides, under slightly different assumptions, an alternative proof of

Theorem 2.3 and Proposition 6.5.
The last two inequalities suggest a connection to some kind of a generalized

parallelogram identity.

Theorem 6.1. Let 1 ≤ r ≤ 2.
(i) Let X and Y be random variables with finite moments of order r. Then

E|X + Y |r + E|X − Y |r ≤ 2
(
E|X|r + E|Y |r

)
.

If, in addition, X and Y are independent and Y , say, has a symmetric dis-
tribution, then

E|X + Y |r ≤ E|X|r + E|Y |r.
(ii) If X1, X2, . . . , Xn are independent, symmetric random variables with
finite moments of order r, then

E
∣∣∣ n∑

k=1

Xk

∣∣∣r ≤ n∑
k=1

E|Xk|r.

(iii) If X1, X2, . . . , Xn are independent random variables with mean 0 and
finite moments of order r, then

E
∣∣∣ n∑

k=1

Xk

∣∣∣r ≤ 2r
n∑

k=1

E|Xk|r.

Let r ≥ 2.
(iv) Let X and Y be random variables with finite moments of order r. Then

E|X|r + E|Y |r ≤ 1
2
(
E|X + Y |r + E|X − Y |r

)
.

If, in addition, X and Y are independent and Y , say, has a symmetric dis-
tribution, then

E|X|r + E|Y |r ≤ E|X + Y |r.
(v) If X1, X2, . . . , Xn are independent, symmetric random variables with
finite moments of order r, then

n∑
k=1

E|Xk|r ≤ E
∣∣∣ n∑

k=1

Xk

∣∣∣r.
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(vi) If X1, X2, . . . , Xn are independent random variables with mean 0 and
finite moments of order r, then

n∑
k=1

E|Xk|r ≤ 2rE
∣∣∣ n∑

k=1

Xk

∣∣∣r.
Proof. As before, put x = X(ω) and y = Y (ω), insert this into Clarkson’s
inequality, Lemma A.5.3, and take expectations. The first statement then
follows. The second one exploits, in addition, the fact that X + Y

d= X − Y .
Conclusion (ii) follows from (i) and induction.

As for (iii), we use Proposition 6.5, the cr-inequality, and (ii) to obtain

E
∣∣∣ n∑

k=1

Xk

∣∣∣r ≤ E

∣∣∣∣(
n∑

k=1

Xk

)s
∣∣∣∣
r

= E
∣∣∣ n∑

k=1

Xs
k

∣∣∣r ≤ n∑
k=1

E|Xs
k|r

≤
n∑

k=1

2r−1(E|Xk|r + E|X ′
k|r
)

= 2r
n∑

k=1

E|Xk|r.

The proof of the second half of the theorem follows the same procedure with
obvious modifications; (iv) and (v) by using the second inequality in Lemma
A.5.3 instead of the first one, and (vi) via (v), Proposition 6.5, and the cr-
inequality:

n∑
k=1

E|Xk|r ≤
n∑

k=1

E|Xs
k|r ≤ E

∣∣∣ n∑
k=1

Xs
k

∣∣∣r = E

∣∣∣∣(
n∑

k=1

Xk

)s
∣∣∣∣
r

≤ 2r−1
(

E
∣∣∣ n∑

k=1

Xk

∣∣∣r + E
∣∣∣ n∑

k=1

X ′
k

∣∣∣r) = 2r−12E
∣∣∣ n∑

k=1

Xk

∣∣∣r.
Recall that X ′

k
d= Xk for all k and that they are independent. �

Remark 6.2. Via Fourier analytic methods it has been shown in [7] (in a some-
what more general situation) that the constant 2r can be replaced by 2 in (iii)
for 1 ≤ r ≤ 2 (2r ≤ 4).

Remark 6.3. The fact that the inequalities in (i)–(iii) and (iv)–(vi) are the
same, except for the reversal of the inequality sign is a consequence of the
duality between the spaces Lp and Lq, where p−1 + q−1 = 1, which was
mentioned in Section 3.4. �

7 Probability Inequalities for Maxima

Another important kind of inequalities relates tail probabilities for the max-
imal partial sum so far to tail probabilities of the last partial sum. This and
some related facts are the topic of the present section.

Throughout, X1, X2, . . . are independent random variables with partial
sums Sn, n ≥ 1.
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Theorem 7.1. (The Lévy inequalities) For any x,

P ( max
1≤k≤n

(Sk −med (Sk − Sn)) > x) ≤ 2P (Sn > x),

P ( max
1≤k≤n

|Sk −med (Sk − Sn)| > x) ≤ 2P (|Sn| > x).

In particular, in the symmetric case,

P ( max
1≤k≤n

Sk > x) ≤ 2P (Sn > x),

P ( max
1≤k≤n

|Sk| > x) ≤ 2P (|Sn| > x).

Proof. For k = 1, 2, . . . , n, set

Ak = { max
1≤j≤k−1

(Sj −med (Sj − Sn)) ≤ x, Sk −med (Sk − Sn) > x},

Bk = {Sn − Sk −med (Sn − Sk) ≥ 0}.

The sets {Ak} are disjoint, Ak and Bk are independent since they contain no
common summands, P (Bk) ≥ 1/2, and

{Sn > x} ⊃
n⋃

k=1

{Ak

⋂
Bk}.

Consequently,

P (Sn > x) ≥
n∑

k=1

P (Ak

⋂
Bk) =

n∑
k=1

P (Ak)P (Bk)

≥
n∑

k=1

P (Ak)
1
2

=
1
2
P
( n⋃

k=1

Ak

)
=

1
2
P ( max

1≤k≤n
Sk > x),

which proves the first assertion, after which the other one follows by consid-
ering the other tail and addition. �

Remark 7.1. Note that, for symmetric random variables with finite variances
the Lévy inequality, together with Chebyshev’s inequality, yields

P ( max
1≤k≤n

Sk > x) ≤ 2
∑n

k=1 Var Xk

x2 ,

thus the Kolmogorov inequality with an additional factor 2. �

An immediate and rather useful consequence runs as follows.

Corollary 7.1. If X1, X2, . . . , Xn are symmetric, then, for all x and 1 ≤
k ≤ n,

P (Sk > x) ≤ 2P (Sn > x),
P (|Sk| > x) ≤ 2P (|Sn| > x).
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Proof. Immediate from the Lévy inequalities, since

{Sk > x} ⊂ { max
1≤k≤n

Sk > x} and {|Sk| > x} ⊂ { max
1≤k≤n

|Sk| > x}. �

If one replaces the symmetry assumption by the assumption that the ran-
dom variables have mean 0 and finite variance, the following variation of the
Lévy inequalities emerges via an application of Proposition 6.1.

Theorem 7.2. Suppose that E Xk = 0 for all k, that Var Xk = σ2
k < ∞, and

set s2
n =

∑n
k=1 σ2

k. Then, for any x,

P ( max
1≤k≤n

Sk > x) ≤ 2P (Sn > x− sn

√
2),

P ( max
1≤k≤n

|Sk| > x) ≤ 2P (|Sn| > x− sn

√
2).

Remark 7.2. The usefulness of this version is, of course, mainly when x itself
is of the order of magnitude of at least sn. �

The median was the point(s) such that (at least) half of the probability
mass is on either side. Analogously one can define quantiles as follows; cf.
[195], Theorem 2.1.

Definition 7.1. The α-quantile, λα(X), of a random variable X is a real
number satisfying

P (X ≥ λα(X)) ≥ α. �

Remark 7.3. The median thus is a 1
2 -quantile. �

A suitable modification of the proof of the Lévy inequalities yields the follow-
ing extension.

Theorem 7.3. (Extended Lévy inequalities) Let α ∈ (0, 1). For any x,

P ( max
1≤k≤n

(Sk − λα(Sk − Sn)) > x) ≤ 1
α

P (Sn > x),

P ( max
1≤k≤n

|Sk − λα(Sk − Sn)| > x) ≤ 1
α

P (|Sn| > x).

Remark 7.4. For α = 1/2 we rediscover the Lévy inequalities. �

Exercise 7.1. Prove Theorem 7.3. �

Since a bound on the tails of a random variable provides a bound on the
quantiles, the following variation of Theorem 7.3 can be obtained; cf. [195],
Theorem 2.3.
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Theorem 7.4. If X1, X2, . . . , Xn are independent random variables such
that

max
1≤k≤n

P (Sn − Sk ≥ −γ) ≥ α,

for some constants γ ≥ 0 and α > 0, then, for any x,

P ( max
1≤k≤n

Sk ≥ x) ≤ 1
α

P (Sn ≥ x− γ). �

Proof. The additional assumption implies, in particular, that

max
1≤k≤n

λα(Sn − Sk) ≥ −γ, so that max
1≤k≤n

λα(Sk − Sn) ≤ γ,

from which the conclusion follows via an application of Theorem 7.3. �

Remark 7.5. If the random variables are symmetric we may take γ = 0 and
α = 1/2, and the inequality reduces to the Lévy inequality. �

Another, extremely efficient inequality that, however, has not found its way
into textbooks so far is the following one. The first version was given by
Kahane in his celebrated book [150]. The inequality was later extended by
Hoffmann-Jørgensen, [139]. The iterated version in (iii) below is from [146].

Theorem 7.5. (The Kahane-Hoffmann-Jørgensen (KHJ) inequality)
Suppose that X1, X2, . . . , Xn have a symmetric distribution.
(i) For any x, y > 0,

P (|Sn| > 2x + y) ≤ P ( max
1≤k≤n

|Xk| > y) + 4
(
P (|Sn| > x)

)2
≤

n∑
k=1

P (|Xk| > y) + 4
(
(P (|Sn| > x)

)2
.

In particular, if X1, X2, . . . , Xn are identically distributed (and x = y), then

P (|Sn| > 3x) ≤ nP (|X1| > x) + 4
(
(P (|Sn| > x)

)2
.

(ii) For any x, y > 0,

P ( max
1≤k≤n

|Sk| > 2x + y) ≤ 2P ( max
1≤k≤n

|Xk| > y) + 8
(
(P (|Sn| > x)

)2
≤ 2

n∑
k=1

P (|Xk| > y) + 8
(
(P (|Sn| > x)

)2
.

In particular, if X1, X2, . . . , Xn are identically distributed (and x = y), then

P ( max
1≤k≤n

|Sk| > 3x) ≤ 2nP (|X1| > x) + 8
(
(P (|Sn| > x)

)2
.
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(iii) For any integer j ≥ 1,

P (|Sn| > 3jx) ≤ CjP ( max
1≤k≤n

|Xk| > x) + Dj

(
(P (|Sn| > x)

)2j

,

where Cj and Dj are numerical constants depending only on j.
In particular, if X1, X2, . . . , Xn are identically distributed, then

P (|Sn| > 3jx) ≤ CjnP (|X1| > x) + Dj

(
(P (|Sn| > x)

)2j

.

Proof. Set Yn = max1≤k≤n |Xk|, and, following the usual pattern,

Ak = { max
1≤j≤k−1

|Sj | ≤ x, |Sk| > x}, k = 1, 2, . . . , n.

The sets Ak are disjoint as always. Moreover,

{|Sn| > 2x + y} ⊂
n⋃

k=1

Ak,

so that

P (|Sn| > 2x + y) = P

(
{|Sn| > 2x + y}

⋂{ n⋃
k=1

Ak

})

=
n∑

k=1

P ({|Sn| > 2x + y} ∩Ak). (7.1)

Next, since by the triangular inequality,

|Sk| ≤ |Sk−1|+ |Xk|+ |Sn − Sk| for 1 ≤ k ≤ n,

it follows that, on the set {|Sn| > 2x + y} ∩Ak, we must have

|Sn − Sk| > |Sn| − |Sk−1| − |Xk| > 2x + y − x− Yn = x + y − Yn,

so that, noticing that Sn − Sk and Ak are independent,

P ({|Sn| > 2x + y} ∩Ak) ≤ P ({|Sn − Sk| > x + y − Yn} ∩Ak)
= P ({|Sn − Sk| > x + y − Yn} ∩Ak ∩ {Yn > y})

+P ({|Sn − Sk| > x + y − Yn} ∩Ak ∩ {Yn ≤ y})
≤ P (Ak ∩ {Yn > y}) + P ({|Sn − Sk| > x} ∩Ak)
= P (Ak ∩ {Yn > y}) + P (|Sn − Sk| > x) · P (Ak)
≤ P (Ak ∩ {Yn > y}) + 2P (|Sn| > x) · P (Ak),

the last inequality being a consequence of Corollary 7.1.
Joining this with (7.1) finally yields



7 Probability Inequalities for Maxima 143

P (|Sn| > 2x + y) ≤
n∑

k=1

P (Ak ∩ {Yn > y}) + 2
n∑

k=1

P (|Sn| > x) · P (Ak)

= P

({ n⋃
k=1

Ak

}
∩ {Yn > y}

)
+ 2P (|Sn| > x) · P

( n⋃
k=1

Ak

)
≤ P (Yn > y) + 2P (|Sn| > x) · P ( max

1≤k≤n
|Sk| > x)

≤ P (Yn > y) + 4
(
P (|Sn| > x)

)2
,

where we exploited the Lévy inequality in the final step.
Since P (Yn > y) ≤

∑n
k=1 P (|Xk| > y), which, in turn equals nP (|X1| > y)

in the i.i.d. case, the proof of (i) is complete, from which (ii) follows via the
Lévy inequality.

The proof of (iii) follows by induction. Consider the case j = 2. Iterating
the first inequality with y = x, and exploiting the fact that (a+b)2 ≤ 2a2+2b2

for positive reals a, b, we obtain

P (|Sn| > 9x) ≤ P (Yn > 3x) + 4
(
P (|Sn| > 3x)

)2
≤ P (Yn > 3x) + 4

(
P (Yn > x) + 4

(
P (|Sn| > x)

)2)2

≤ P (Yn > 3x) + 8
(
P (Yn > x)

)2 + 128
(
P (|Sn| > x)

)4
≤ 9P (Yn > x) + 128

(
P (|Sn| > x)

)4
.

Here we also used the fact powers of probabilities are smaller than the prob-
abilities themselves.

This establishes the first relation (with C2 = 9 and D2 = 128). The second
one follows as in (i). Continuing the same procedure proves the conclusion for
arbitrary j. �

Remark 7.6. We leave it to the reader(s) to formulate and prove the obvious
statement (iv). �

As was mentioned before, it is often convenient to prove things via symmetric
random variables, but it may still be of interest to have more general inequal-
ities available. For example, for the law of the iterated logarithm (Chapter 8)
one cannot use symmetrization procedures if one aims at best results.

In the proof of the KHJ inequality the symmetry property was used in
order to take care of Sn − Sk via the Lévy inequality. Reviewing the proof
(omitting details) we find that without symmetry we would obtain

P (|Sn| > 2x + y) ≤ P ( max
1≤k≤n

|Xk| > y) + 2P (|Sn| > x)

×
(
P (|Sn| > x/2) + max

1≤k≤n
P (|Sk| > x/2)

)
.

In the following inequality symmetry is not assumed.
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Theorem 7.6. (Etemadi’s inequality) Let X1, X2, . . . , Xn be independent
random variables. Then, for all x > 0,

P ( max
1≤k≤n

|Sk| > 3x) ≤ 3 max
1≤k≤n

P (|Sk| > x).

Proof. The proof resembles somewhat the proof of Theorem 7.5. Let

Ak = { max
1≤j≤k−1

|Sj | ≤ 3x, |Sk| > 3x}, k = 1, 2, . . . , n.

Once again, the sets Ak are disjoint, but in the present case,

n⋃
k=1

Ak = { max
1≤k≤n

|Sk| > 3x}.

Now,

P ( max
1≤k≤n

|Sk| > 3x) = P ({ max
1≤k≤n

|Sk| > 3x} ∩ {|Sn| > x})

+P ({ max
1≤k≤n

|Sk| > 3x} ∩ {|Sn| ≤ x})

≤ P (|Sn| > x) +
n∑

k=1

P (Ak ∩ {|Sn − Sk| > 2x})

= P (|Sn| > x) +
n∑

k=1

P (Ak) · P (|Sn − Sk| > 2x)

≤ P (|Sn| > x) + max
1≤k≤n

P (|Sn − Sk| > 2x) · P
( n⋃

k=1

Ak

)
≤ P (|Sn| > x) + max

1≤k≤n
P (|Sn − Sk| > 2x)

≤ P (|Sn| > x) + max
1≤k≤n

(
P (|Sn| > x) + P (|Sk| > x)

)
= 2P (|Sn| > x) + max

1≤k≤n
P (|Sk| > x)

≤ 3 max
1≤k≤n

P (|Sk| > x). �

Remark 7.7. If, in addition, we assume symmetry, then an application of
Corollary 7.1 to Etemadi’s inequality yields

P ( max
1≤k≤n

|Sk| > 3x) ≤ 6P (|Sn| > x).

However, the corollary alone tells us that

P ( max
1≤k≤n

|Sk| > 3x) ≤ 2P (|Sn| > 3x).

The strength of Etemadi’s inequality therefore is the avoidance of the sym-
metry assumption. �
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Some inequalities have many names; sometimes it is not clear who discovered
it first. The next one is such a case.

Theorem 7.7. (Skorohod’s or Ottaviani’s inequality)
Suppose that X1, X2, . . . , Xn are independent random variables, and let x
and y be positive reals. If

β = max
1≤k≤n

P (|Sn − Sk| > y) < 1,

then
P ( max

1≤k≤n
|Sk| > x + y) ≤ 1

1− β
P (|Sn| > x).

Proof. This time we set

Ak = { max
1≤j≤k−1

|Sj | ≤ x + y, |Sk| > x + y}.

Then, with one eye sneaking at the above proofs,

P (|Sn| > x) =
n∑

k=1

P ({|Sn| > x} ∩Ak) +
n∑

k=1

P ({|Sn| > x} ∩Ac
k)

≥
n∑

k=1

P ({|Sn| > x} ∩Ak) ≥
n∑

k=1

P ({|Sn − Sk| ≤ y} ∩Ak)

=
n∑

k=1

P (|Sn − Sk| ≤ y) · P (Ak) ≥ (1− β)P
( n⋃

k=1

Ak

)
= (1− β)P ( max

1≤k≤k
|Sk| > x + y). �

By inspecting the proofs concerning maximal partial sums we observe that
a common feature is the introduction of the sets {Ak}, with the aid of which
events like {max1≤k≤n Sk ≥ x} are sliced into disjoint sets, so that the proba-
bility of a union can be decomposed into the sum of probabilities; a common
and efficient tool in probability.

Another and very efficient way to produce this decomposition is to exploit
the notion of a stopping time, that is, vaguely speaking, a positive integer
valued random variable which is independent of the future. Stopping times
play an important role in martingale theory, and we shall return to them in
more detail in Chapter 10. Let us, for now, content ourselves by introducing,
for example,

τ = min{k : |Sk| > x}.
Then, and these are the main features,

{τ ≤ n} = { max
1≤k≤n

|Sk| > x},

{τ = k} = { max
1≤j≤k−1

|Sj | ≤ x, |Sk| > x} = Ak,

{τ ≤ k} ∈ σ{X1, X2, . . . , Xk}, k = 1, 2, . . . , n,

{τ ≤ k} is independent of Sn − Sk, k = 1, 2, . . . , n.
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It is an instructive exercise to rewrite (some of) the above proofs in the stop-
ping time language.

8 The Marcinkiewics-Zygmund Inequalities

We close this chapter with two deep inequalities between moments of sums
and moments of summands.

The point of departure in both cases is Khintchine’s inequality [158].
In order to state (and prove) this inequality, we need to introduce the so-
called Rademacher functions, which, probabilistically interpreted, are a kind
of rescaled and iterated coin-tossing random variables. Namely, for t ∈ R, let
r(t) be the periodically continued function defined by

r(t) =

{
1, for 0 ≤ t < 1

2 ,

−1, for 1
2 ≤ t < 1,

(8.1)

and set, for 0 ≤ t ≤ 1, rn(t) = r(2n−1t), n = 1, 2, . . .. The sequence {rn, n ≥
1} thus defined is the sequence of Rademacher functions. By construction,
they are piece-wise linear functions jumping between the values +1 and −1,
in such a way that they cut every stretch of the predecessor into two halves,
assigning the value +1 to the left half and the value −1 to the right half.
Figure 3.1 depicts this effect for n = 2 and n = 3.

�

�

�

�

−1 − 1
2 0 1

2 1 −1 − 1
2 0 1

2 1

r2(t) r3(t)

Figure 3.1.

An alternative way to describe the sequence {rn(t), n ≥ 1} is that it provides
the successive decimals in the binary expansion of t ∈ [−1, 1].

As for elementary properties, it is easily checked that
∫ 1

0
rn(t) dt = 0 and that

∫ 1

0
rn(t)rm(t) dt =

{
1, for m = n,

0, for m �= n,

that is, the Rademacher functions form an orthonormal system of functions.
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Talking probability theory, the Rademacher functions constitute a se-
quence of independent random variables, assuming the two values +1 and
−1 with probability 1/2 each, which implies that the mean is 0 and the vari-
ance equals 1.

Here is now the promised lemma.

Lemma 8.1. (Khintchine’s inequality) Let p > 0, let c1, c2, . . . , cn be arbi-
trary reals, and set

fn(t) =
n∑

k=1

ckrk(t).

There exist constants Ap and Bp, depending only on p, such that

Ap

( n∑
k=1

c2
k

)p/2
≤
∫ 1

0
|fn(t)|p dt ≤ Bp

( n∑
k=1

c2
k

)p/2
.

Proof. Via rescaling it is no loss of generality to assume that
∑n

k=1 c2
k = 1.

Moreover, it suffices to prove the lemma for integral values of p.
We thus wish to prove that, for p = 1, 2, . . .,

Ap ≤
∫ 1

0
|fn(t)|p dt ≤ Bp.

The right-hand inequality: We first consider fn.∫ 1

0
(fn(t))p dt ≤ p!

∫ 1

0
exp{fn(t)}dt

= p!
n∏

k=1

∫ 1

0
exp{ckrk(t)}dt = p!

n∏
k=1

1
2
(
eck + e−ck

)

≤ p!
n∏

k=1

exp{c2
k} = p! exp

{ n∑
k=1

c2
k

}
= p!e.

In this argument we have used the fact that one term in the Taylor expansion
of the exponential function is smaller than the function itself in the first
inequality, independence in the second equality, and, finally, the fact that
1
2 (ex + e−x) ≤ exp{x2} (use Taylor expansion; the odd terms cancel and the
even ones double).

By symmetry,∫ 1

0
|fn(t)|p dt = 2

∫ 1

0
fn(t)I{fn(t) > 0}dt ≤ 2p!

∫ 1

0
efn(t) dt ≤ 2p!e.

This establishes the right-hand inequality (with Bp = 2p!e when p is an inte-
ger).
The left-hand inequality: For p ≥ 2 we note that, by Lyapounov’s inequality,
Theorem 2.5 (translated to functions),
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(∫ 1

0
|fn(t)|p dt

)1/p

≥
(∫ 1

0
|fn(t)|2 dt

)1/2
=
( n∑

k=1

c2
k

)1/2
= 1, (8.2)

so that Ap = 1 does it in this case.
Now, let 0 < p < 2, and set γ(p) = p log(

∫ 1
0 |fn(t)|1/p dt). This is a convex

function (please, check this fact!), that is,

γ(αp1 + (1− α)p2) ≤ αγ(p1) + (1− α)γ(p2) for 0 < α < 1.

Let α = p
4−p , so that

α · 1
p

+ (1− α) · 1
4

=
1
2
.

The convexity of γ yields

1
2

log
(∫ 1

0
|fn(t)|2 dt

)
≤ 1

4− p
log
(∫ 1

0
|fn(t)|p dt

)

+
2− p

8− 2p
log
(∫ 1

0
|fn(t)|4 dt

)
.

By exponentiation and (8.2) it follows, recalling that the left-most quantity
equals 0, that

1 ≤
(∫ 1

0
|fn(t)|p dt

)1/(4−p)
·
(∫ 1

0
|fn(t)|4 dt

)(2−p)/(8−2p)
,

which shows that ∫ 1

0
|fn(t)|p dt ≥ Ap,

with Ap =
( ∫ 1

0 |fn(t)|4 dt
)(p/2)−1

.
This completes the proof of the lemma. �

Remark 8.1. The main purpose here was to show the existence of constants of
the desired kind. Much research has been devoted to finding best constants,
optimal rates, and so on.

A closer look at Khintchine’s inequality suggests the interpretation that it is
a relation between quantities of order p in some sense. We therefore introduce
the quadratic variation of a sequence of reals, functions, or random variables,
which we denote by the capital letter Q as follows.

Definition 8.1. Let {gk} be a sequence of real numbers, functions or random
variables. The quadratic variation of the sequence is

Q(g) =
(∑

k

g2
k

)1/2
,

where the summation extends over the indices under consideration. �
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Remark 8.2. Note that Q is homogeneous: Q(cg) = |c|Q(g) for c ∈ R. �

Letting Qn(c) be the quadratic variation (the index n referring to the depen-
dence on n), Khintchine’s inequality becomes

A′
pQn(c) ≤

(∫ 1

0
|fn(t)|p dt

)1/p

≤ B′
pQn(c),

where the primed constants are the unprimed ones raised to the power 1/p.
By noticing that the middle term is a norm when p ≥ 1 we can (abusing

the notation for 0 < p < 1) reformulate the inequality succinctly as

A′
pQn(c) ≤ ‖fn(t)‖p ≤ B′

pQn(c).

In case
∑∞

n=1 c2
n < ∞, Fatou’s lemma applied to the first part of the proof,

and the fact that the infinite sum dominates any finite sum, together yield
the following corollary.

Corollary 8.1. Let p > 0, let c1, c2, . . . be real numbers such that

Q(c) =
( ∞∑

n=1

c2
n

)1/2
< ∞,

and set

f(t) =
∞∑

n=1

cnrn(t) and ‖f‖p =
(∫ 1

0
|f(t)|p dt

)1/p

.

There exist constants Ap and Bp, depending only on p, such that

Ap

( ∞∑
n=1

c2
n

)p/2
≤
∫ 1

0
|f(t)|p dt ≤ Bp

( ∞∑
n=1

c2
n

)p/2
,

or, equivalently, such that

A1/p
p Q(c) ≤ ‖f‖p ≤ B1/p

p Q(c).

Exercise 8.1. Check the details of the proof of the corollary. �

Remark 8.3. A functional analytic interpretation of this is that, for p ≥ 1, the
closed linear subspace of the Rademacher functions in Lp is isomorphic to the
space �2 of square-summable sequences. �

Next we turn to the extension of Khintchine’s inequality to sums of random
variables by Marcinkiewicz and Zygmund, [180, 182].

Let X1, X2, . . . , Xn be independent random variables with mean 0, sup-
pose that E|Xk|p < ∞, for k = 1, 2, . . . , n and some p ≥ 1, set Sn =

∑n
k=1 Xk,
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and let, as always, random variables with superscript s denote symmetrized
versions. Further, set

Tn(t) =
n∑

k=1

Xkrk(t), for 0 ≤ t ≤ 1, n ≥ 1.

By symmetrization, integration, and Khintchine’s inequality and a bit more
we are now prepared to prove the following celebrated inequalities.

Theorem 8.1. (The Marcinkiewicz-Zygmund inequalities)
Let p ≥ 1. Suppose that X1, X2, . . . , Xn are independent random variables
with mean 0, such that E|Xk|p < ∞, for all k, and let {Sn, n ≥ 1} denote
the partial sums. Then there exist constants A∗

p and B∗
p depending only on p,

such that

A∗
pE
( n∑

k=1

X2
k

)p/2
≤ E|Sn|p ≤ B∗

pE
( n∑

k=1

X2
k

)p/2
,

or, equivalently,

(A∗
p)

1/p‖Qn(X)‖p ≤ ‖Sn‖p ≤ (B∗
p)1/p‖Qn(X)‖p,

where

Qn(X) =
( n∑

k=1

X2
k

)1/2

is the quadratic variation of the summands.

Proof. Consider Ss
n =

∑n
k=1 Xs

k and T s
n(t) =

∑n
k=1 Xkrk(t). By the coin-

tossing property of the Rademacher functions and symmetry it follows that

Ss
n

d= T s
n(t).

Invoking Proposition 6.5 and the cr-inequality we therefore obtain

E|Sn|p ≤ E|Ss
n|p = E|T s

n(t)|p ≤ 2pE|Tn(t)|p. (8.3)

Integrating the extreme members, changing the order of integration, and ap-
plying Khintchine’s lemma (for fixed ω) yields

E|Sn|p ≤ 2pE

∫ 1

0
|Tn(t)|p dt ≤ 2pBp

(
E

n∑
k=1

X2
k

)p/2
,

which proves the right-hand inequality with B∗
p = 2pBp, where Bp is the

constant in Khinchine’s inequality.
By running (8.3) backward, with Sn and Tn(t) playing reversed roles, we

obtain
E|Tn(t)|p ≤ 2pE|Sn|p,

which, after the same integration procedure and the other half of Khintchine’s
inequality, proves the left-hand inequality with A∗

p = 2−pAp, where Ap is the
constant in Khinchine’s inequality. �
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If, in addition, X1, X2, . . . , Xn are identically distributed the right-hand
inequality can be further elaborated.

Corollary 8.2. Let p ≥ 1. Suppose that X, X1, X2, . . . , Xn are independent,
identically distributed random variables with mean 0 and E|X|p < ∞. Set
Sn =

∑n
k=1 Xk, n ≥ 1. Then there exists a constant Bp depending only on p,

such that

E|Sn|p ≤
{

BpnE|X|p, when 1 ≤ p ≤ 2,

Bpn
p/2E|X|p/2, when p ≥ 2.

Proof. Let 1 ≤ p ≤ 2. Since p/2 < 1 we apply the cr-inequality to the
Marcinkiewicz-Zygmund inequalities:

E|Sn|p ≤ B∗
pE
( n∑

k=1

X2
k

)p/2
≤ B∗

pE
( n∑

k=1

(X2
k)p/2

)
= B∗

pnE|X|p.

For p ≥ 2 we use the convexity of |x|p/2:

E|Sn|p ≤ B∗
pE
( n∑

k=1

X2
k

)p/2
= B∗

pnp/2E
( 1

n

n∑
k=1

X2
k

)p/2

≤ B∗
pnp/2 1

n

( n∑
k=1

E(X2
k)p/2

)
= B∗

pnp/2E|X|p. �

In view of the central limit theorem for sums of independent, identically
distributed random variables it is interesting to observe that the bounds in
the corollary are of the correct order of magnitude for p ≥ 2; note that the
statement amounts to

E
∣∣∣ Sn√

n

∣∣∣p ≤ B∗
pE|X|p.

The natural question is, of course, whether or not there is actual convergence
of moments. A positive answer to this question will be given in Chapter 7.

9 Rosenthal’s Inequality

This is an inequality with an atmosphere of the Marcinkieiwicz-Zygmund
inequalities, and, in part, a consequence of them. The original reference is
[214]. We begin with an auxiliary result.

Lemma 9.1. Let p ≥ 1. Suppose that X1, X2, . . . , Xn are independent ran-
dom variables such that E|Xk|p < ∞ for all k. Then

E|Sn|p ≤ max
{

2p
n∑

k=1

E|Xk|p, 2p2
( n∑

k=1

E|Xk|
)p}

.

Proof. Since Sn ≤
∑n

k=1 |Xk| it is no restriction to assume that all summands
are non-negative.



152 3 Inequalities

Set S
(j)
n =

∑n
k=1,k �=j Xk. Using the cr-inequality (Theorem 2.2), indepen-

dence, non-negativity and Lyapounov’s inequality (Theorem 2.5), we obtain

E(Sn)p =
n∑

j=1

E(Sn)p−1Xj ≤ 2p−1
n∑

j=1

E
(
(Xp−1

j + (S(j)
n )p−1)Xj

)

= 2p−1
n∑

j=1

(
E Xp

j + E(S(j)
n )p−1 · E Xj

)

≤ 2p−1
n∑

j=1

(
E Xp

j + E(Sn)p−1 · E Xj

)

= 2p−1
( n∑

j=1

E Xp
j + E(Sn)p−1

n∑
j=1

E Xj

)

≤ 2p−1
( n∑

j=1

E Xp
j + (E(Sn)p)(p−1)/p

n∑
j=1

E Xj

)

≤ 2p max
{ n∑

j=1

E Xp
j , (E(Sn)p)(p−1)/p

n∑
j=1

E Xj

}
.

Thus,

E(Sn)p ≤ 2p
n∑

j=1

E Xp
j and E(Sn)p ≤ 2p(E(Sn)p)(p−1)/p

n∑
j=1

E Xj .

The conclusion follows. �

With the aid of this lemma, the Marcinkiewicz-Zygmund inequalities of
the previous section, and Theorem 6.1, we are now ready for Rosenthal’s
inequality. Recall the quadratic variation Qn(X) = (

∑n
k=1 X2

k)1/2.

Theorem 9.1. (Rosenthal’s inequality) For p > 2, let X1, X2, . . . , Xn be
independent random variables with mean 0, and suppose that E|Xk|p < ∞ for
all k. Then

E|Sn|p

⎧⎪⎨
⎪⎩
≤ Dp max

{∑n
k=1 E|Xk|p,

(∑n
k=1 E X2

k

)p/2}
,

≥ 2−p max
{∑n

k=1 E|Xk|p,
(∑n

k=1 E X2
k

)p/2}
,

or, equivalently,

max
{ n∑

k=1

E|Xk|p, (Qn(X))p

}
≤ 2pE|Sn|p

≤ D∗
p max

{ n∑
k=1

E|Xk|p, (Qn(X))p

}
,

where Dp is a constant that depends only on p, and D∗
p = 2pDp.



10 Problems 153

Proof. Applying the Marcinkiewicz-Zygmund inequalities and Lemma 9.1
yields

E|Sn|p ≤ B∗
pE
( n∑

k=1

X2
k

)p/2

≤ B∗
p max

{
2p/2

n∑
k=1

E
(
(X2

k)p/2
)
, 2(p/2)2

( n∑
k=1

E X2
k

)p/2
}

= Dp max
{ n∑

k=1

E|Xk|p,
( n∑

k=1

E X2
k

)p/2
}

,

with Dp = B∗
p2(p/2)2 .

As for the lower bound, the Marcinkiewicz-Zygmund inequalities tell us
that

E|Sn|p ≥ 2−p
( n∑

k=1

E X2
k

)p/2
,

and Theorem 6.1(vi) tells us that

E|Sn|p ≥ 2−p
n∑

k=1

E|Xk|p,

which together establish the lower bound.
Note also that the constant 2−p can be replaced by 1/2 if the random

variables are symmetric, since, in that case, we lean on Theorem 6.1(v) instead
of (vi) in the final inequality. �

10 Problems

1. Show that, for any non-negative random variable X,

E X + E
1
X
≥ 2,

E max
{

X,
1
X

}
≥ 1.

2. Let X be a random variable.
(a) Show that, if E X2 = 1 and E X4 < ∞, then

E|X| ≥ 1√
E X4

.

♠ Write X2 = |X|r|X|2−r, choose r conveniently, and exploit the Hölder
inequality.

(b) Suppose that E X2m < ∞, where m ∈ N. State and prove an analogous
inequality.
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3. Prove that, for any random variable X, the minimum of E(X − a)2 is
attained for a = E X.

4. Prove that, for any random variable X, the minimum of E|X − a| is
attained for a = med (X).

5. Let X be a positive random variable with finite variance, and let λ ∈ (0, 1).
Prove that

P (X ≥ λE X) ≥ (1− λ)2
(E X)2

E X2 .

6. Let, for p ∈ (0, 1), and x ∈ R, X be a random variable defined as follows:

P (X = −x) = P (X = x) = p, P (X = 0) = 1− 2p.

Show that there is equality in Chebyshev’s inequality for X.
♠ This means that Chebyshev’s inequality, in spite of being rather crude, can-

not be improved without additional assumptions.
7. Cantelli’s inequality. Let X be a random variable with finite variance, σ2.

(a) Prove that, for x ≥ 0,

P (X − E X ≥ x) ≤ σ2

x2 + σ2 ,

P (|X − E X| ≥ x) ≤ 2σ2

x2 + σ2 .

(b) Find X assuming two values where there is equality.
(c) When is Cantelli’s inequality better than Chebyshev’s inequality?
(d) Use Cantelli’s inequality to show that |med (X)−E X| ≤ σ

√
3; recall,

from Proposition 6.1, that an application of Chebyshev’s inequality
yields the bound σ

√
2.

(e) Generalize Cantelli’s inequality to moments of order r �= 1.
8. Recall, from Subsection 2.16.4, the likelihood ratio statistic, Ln, which

was defined as a product of independent, identically distributed random
variables with mean 1 (under the so-called null hypothesis), and the, some-
times more convenient, log-likelihood, log Ln, which was a sum of inde-
pendent, identically distributed random variables, which, however, do not
have mean log 1 = 0.
(a) Verify that the last claim is correct, by proving the more general state-

ment, namely that, if Y is a non-negative random variable with finite
mean, then

E(log Y ) ≤ log(E Y ).

(b) Prove that, in fact, there is strict inequality:

E(log Y ) < log(E Y ),

unless Y is degenerate.
(c) Review the proof of Jensen’s inequality, Theorem 5.1. Generalize with

a glimpse on (b).
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9. The concentration function of a random variable X is defined as

QX(h) = sup
x

P (x ≤ X ≤ x + h), h > 0.

(a) Show that QX+b(h) = QX(h).

(b) Is it true that QaX(h) = QX(h/a) ?

(c) Show that, if X and Y are independent random variables, then

QX+Y (h) ≤ min{QX(h), QY (h)}.

♣ To put the concept in perspective, if X1, X2, . . . , Xn are independent, iden-
tically distributed random variables, and Sn =

∑n
k=1 Xk, then there exists

an absolute constant, A, such that

QSn(h) ≤ A√
n

.

Some references: [79, 80, 156, 213], and [195], Section 1.5.
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Characteristic Functions

Adding independent random variables is a frequent occupation in probability
theory. Mathematically this corresponds to convolving functions. Just as there
are Fourier transforms and Laplace transforms which transform convolution
into multiplication, there are transforms in probability theory that transform
addition of independent random variables into multiplication of transforms.
Although we shall mainly use one of them, the characteristic function, we shall,
in this chapter, briefly also present three others – the cumulant generating
function, which is the logarithm of the characteristic function; the probability
generating function; and the moment generating function. In Chapter 5 we
shall prove so-called continuity theorems, which permit limits of distributions
to be determined with the aid of limits of transforms.

Uniqueness is indispensable in order to make things work properly. This
means that if we replace the adding of independent random variables with the
multiplication of their transforms we must be sure that the resulting transform
corresponds uniquely to the distribution of the sum under investigation. The
first thing we therefore have to do in order to see that we are on the right
track is to prove that

• summation of independent random variables corresponds to multiplication
of their transforms;

• the transformation is 1 to 1; there is a uniqueness theorem to the effect
that if two random variables have the same transform then they also have
the same distribution.

1 Definition and Basics

In this first section we define characteristic functions and prove some basic
facts, including uniqueness, inversion, and the “multiplication property”, in
other words, verify that characteristic functions possess the desired features.
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Definition 1.1. The characteristic function of the random variable X is

ϕX(t) = E eiix =
∫ ∞

−∞
eibx dFX(x). �

Remark 1.1. Apart from a minus sign in the exponent (and, possibly, a fac-
tor

√
1/2π), characteristic functions coincide with Fourier transforms in the

absolutely continuous case and with Fourier series in the lattice case. �

Before we prove uniqueness and the multiplication theorem we present some
basic facts. Note that the first property tells us that characteristic functions
exist for all random variables.

Theorem 1.1. Let X be a random variable. Then

(a) |ϕX(t)| ≤ ϕX(0) = 1;

(b) ϕX(t) = ϕX(−t) = ϕ−X(t);

(c) ϕX(t) is uniformly continuous.

Proof. (a): We have

|E eiti| ≤ E |eitX | = E 1 = 1 = E ei·0·X = ϕX(0).

To prove (b) we simply let the minus sign wander through the exponent:

eixt = cos xt + i sinxt = cos xt− i sin xt (= e(−i)xt)
= cos(x(−t)) + i sin(x(−t)) (= eix(−t))
= cos((−x)t) + i sin((−x)t) (= ei(−x)t).

As for (c), let t be arbitrary and h > 0 (a similar argument works for h < 0).
Apart from the trivial estimate |eix−1| ≤ 2, we know from Lemma A.1.2 that
|eix − 1| ≤ |x|.

Using the cruder estimate in the tails and the more delicate one in the
center (as is common practise), we obtain, for A > 0,

|ϕX(t + h)− ϕX(t)| = |E ei(t+h)X − E eitX | = |E eitX(eihX − 1)|
≤ E|eitX(eihX − 1)| = E|eihX − 1|
= E|eihX − 1|I{|X| ≤ A}+ E|eihX − 1|I{|X| > A}
≤ E|hX|I{|X| ≤ A}+ 2P (|X| > A) ≤ hA + 2P (|X| > A) < ε

for any ε > 0 if we first choose A so large that 2P (|X| ≥ A) < ε/2, and then
h so small that hA < ε/2. This proves that ϕX is uniformly continuous, since
the estimate does not depend on t. �

Following are two tables listing the characteristic functions of some stan-
dard distributions. We advise the reader to verify (some of) the entries in the
tables.
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First, some discrete distributions.

Distribution Notation Characteristic function

One point δ(a) eita

Symmetric Bernoulli cos t
Bernoulli Be(p) q + peit

Binomial Bin(n, p) (q + peit)n

Geometric Ge(p) p
1−qeit

First success Fs(p) pt
1−qeit

Poisson Po(m) em(eit−1)

Table 4.1. Some discrete distributions

As for the absolutely continuous distributions, the expressions for the
Pareto-, log-normal, and beta distributions are too complicated to put into
print.

Distribution Notation Characteristic function

Uniform U(a, b) eitb−eita

it(b−a)

U(0, 1) eit−1
it

U(−1, 1) sin t
t

Triangular Tri(−1, 1)
( sin t/2

t/2

)2

Exponential Exp(θ) 1
1−θit

Gamma Γ (p, θ)
( 1

1−θit

)p

Normal N(µ, σ2) eitµ− 1
2 t2σ2

N(0, 1) e− 1
2 t2

Cauchy C(0, 1) e−|t|

Table 4.2. Some absolutely continuous distributions

The most special distribution we have encountered so far (probably) is the
Cantor distribution. So, what’s the characteristic function of this particular
one?

Being prepared for this question, here is the answer: The characteristic
function of the Cantor distribution on the interval [− 1

2 ,− 1
2 ] (for simplicity)

equals

ϕ(t) =
∞∏

k=1

cos
( t

3k

)
.

The verification of this fact will be provided in Subsection 4.2.1.

1.1 Uniqueness; Inversion

We begin by stating the uniqueness theorem.



160 4 Characteristic Functions

Theorem 1.2. Let X and Y be random variables. If ϕX = ϕY , then X
d= Y

and conversely. �

Instead of providing a proof here we move directly on to inversion theorems,
from which uniqueness is immediate. After all, a uniqueness theorem is an
existence result (only), whereas an inversion theorem provides a formula for
explicitly computing the distribution.

Theorem 1.3. Let X be a random variable with distribution function F and
characteristic function ϕ. For a < b,

F (b)−F (a)+
1
2
P (X = a)− 1

2
P (X = b) = lim

T→∞

1
2π

∫ T

−T

e−itb − e−ita

−it
·ϕ(t) dt.

In particular, if a, b ∈ C(F ), then

F (b)− F (a) = lim
T→∞

1
2π

∫ T

−T

e−itb − e−ita

−it
· ϕ(t) dt.

Proof. By Lemma A.1.2 with n = 0,

∣∣∣e−itb − e−ita

t

∣∣∣ = ∣∣e−ita
∣∣ · ∣∣∣e−it(b−a) − 1

t

∣∣∣ ≤ b− a, (1.1)

which shows that∣∣∣ ∫ T

−T

e−itb − e−ita

−it
· ϕ(t) dt

∣∣∣ ≤ ∫ T

−T

∣∣∣e−itb − e−ita

t

∣∣∣ · 1 dt ≤ 2T (b− a).

We may therefore apply Fubini’s theorem, the Euler formulas, and symmetry,
to obtain

IT =
1
2π

∫ T

−T

e−itb − e−ita

−it
· ϕ(t) dt

=
1
2π

∫ T

−T

e−itb − e−ita

−it

(∫ ∞

−∞
eitx dF (x)

)
dt

=
1
π

∫ ∞

−∞

(∫ T

−T

eit(x−a) − eit(x−b)

2it
dt
)

dF (x)

=
1
π

∫ ∞

−∞

(∫ T

0

sin t(x− a)
t

− sin t(x− b)
t

dt
)

dF (x)

=
1
π

∫ ∞

−∞
H(a, b, t, x, T ) dF (x)

=
1
π

E H(a, b, t, X, T ),

where, thus, H(a, b, t, x, T ) is the inner integral. The expected value is merely
a probabilistic interpretation of the preceding line.
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From Lemma A.1.3 we know that∫ T

0

sin x

x
dx

{
≤

∫ π

0
sin x

x dx ≤ π for all T > 0,

→ π
2 as T →∞,

so that

lim
T→∞

H(a, b, t, x, T ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, for x < a,
π
2 , for x = a,

π, for a < x < b,
π
2 , for x = b,

0, for x > b.

By dominated convergence, Theorem 2.5.3, we therefore obtain

lim
T→∞

1
π

E H(a, b, t, X, T ) =
1
2
P (X = a) + P (a < X < b) +

1
2
P (X = b),

which proves the first inversion formula, from which the other one is immedi-
ate. �

As for the name of the transform, we have just seen that every random
variable possesses a unique characteristic function; the characteristic function
characterizes the distribution uniquely.

Theorem 1.3 is a general result. If we know more we can say more. This is,
for example, the case when the characteristic function is absolutely integrable.

Theorem 1.4. If
∫∞

−∞ |ϕ(t)|dt < ∞, then X has an absolutely continuous
distribution with a bounded, continuous density f = F ′, given by

f(x) =
1
2π

∫ ∞

−∞
e−itx · ϕ(t) dt.

Proof. Let h > 0 and set a = x and b = x + h in the inversion formula. First
of all, by (1.1),

F (x + h)− F (x) +
1
2
P (X = x)− 1

2
P (X = x + h) ≤ lim

T→∞

1
2π

∫ T

−T

h|ϕ(t)|dt

≤ h

2π

∫ ∞

−∞
|ϕ(t)|dt → 0 as h → 0,

so that

• the inversion formula holds for all of R;
• there cannot be any point masses;
• the limit of the integral exists as T →∞.
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Division by h therefore shows that

F (x + h)− F (x)
h

=
1
2π

∫ ∞

−∞

e−it(x+h) − e−itx

−ith
· ϕ(t) dt

=
1
2π

∫ ∞

−∞
e−itx 1− e−ith

ith
· ϕ(t) dt,

where h may be positive as well as negative. The conclusion follows by letting
h → 0 in the right-hand side under the integration sign. To see that this is
permitted, we observe that the integrand converges to 1 as h → 0, is bounded
in absolute value by 1 (once again be Lemma A.1.2), and that the upper bound
is integrable (by assumption), so that the dominated convergence theorem (in
its mathematical formulation) applies.

The boundedness of the density follows from the assumption that, for all
x, 0 ≤ f(x) ≤ 1

2π

∫∞
−∞ |ϕ(t)|dt < ∞, and the continuity from the continuity

of the defining integral. �

Remark 1.2. Although uniqueness follows from the inversion theorem, we shall
present a proof of the uniqueness theorem, as well as an alternative proof
of Theorem 1.4 in Subsection 5.11.1 when other tools are available, proofs
that are more elegant, primarily because of their more probabilistic nature
(although elegance may be considered as a matter of taste). On the other
hand, these proofs presuppose a certain amount of additional knowledge. So,
as ever so often, the swiftness of a proof or its elegance may be an effect of
additional work that is hidden, in the sense that it only appears as a reference;
“by Theorem such and such we obtain . . .”. �

Theorem 1.4 provides us with a sufficient condition for the distribution
to be absolutely continuous and a recipe for how to find the density in that
case. The U(−1, 1)-distribution, whose characteristic function equals sin t/t,
illustrates three facts:

• Absolute integrability is not necessary for absolute continuity.
• The density is not everywhere continuous.
• The characteristic function converges to 0 at ±∞ in spite of the fact that

it is not absolutely integrable.

The following result tells us that the latter property is universal for absolutely
continuous random variables.

Theorem 1.5. (The Riemann-Lebesgue lemma)
If X is an absolutely continuous random variable with characteristic function
ϕ, then

lim
t→±∞

|ϕ(t)| = 0.

Proof. For X ∈ U(a, b) the conclusion follows by recalling that
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ϕ(t) =
eitb − eita

it(b− a)
.

The final statement follows the usual way via simple random variables, and
approximation (Lemma A.9.3). �

If the distribution has point masses these can be recovered as follows.

Theorem 1.6. If P (X = a) > 0, then

P (X = a) = lim
T→∞

1
2T

∫ T

−T

e−ita · ϕ(t) dt.

Proof. By proceeding along the lines of the proof of Theorem 1.3 we obtain

1
2T

∫ T

−T

e−ita · ϕ(t) dt =
1

2T

∫ T

−T

e−ita
(∫ ∞

−∞
eitx dF (x)

)
dt

=
1

2T

∫ ∞

−∞

(∫ T

−T

eit(x−a) dt
)

dF (x)

=
1

2T

∫ ∞

−∞

(∫ T

−T

(
cos(t(x− a)) + i sin(t(x− a)

)
dt
)

dF (x)

=
1
T

∫ ∞

−∞

( sin(T (x− a))
x− a

+ 0
)

dF (x)

=
∫

R�a

sin(T (x− a))
T (x− a)

dF (x) + 1 · P (X = a)

= E
( sin(T (X − a))

T (X − a)
I{X �= a}

)
+ P (X = a)

→ 0 + P (X = a) = P (X = a) as T →∞,

where convergence of the expectation to 0 is justified by the fact that the
random variable sin(T (X−a))

T (X−a) I{X �= a} a.s.→ 0 as T →∞, and is bounded by 1,
so that dominated convergence is applicable. �

Discrete distributions have their mass concentrated on a countable set of
points. A special kind are the lattice distributions for which the set of point
masses is concentrated on a lattice, that is, on a set of the form

{kd + λ : k = 0,±1,±2, . . . , for some d > 0 and λ ∈ R}. (1.2)

The smallest such d is called the span. The characteristic function for lattice
distributions reduces to a sum. More precisely, if X has its support on the set
(1.2), and pk = P (X = kd + λ), k ∈ Z, then

ϕX(t) =
∑
k∈Z

pkei(kd+λ)t .

A particular case is the degenerate distribution, that is, the case when X
equals a constant, c, almost surely, in which case ϕX(t) = eitc. The following
result provides a converse.
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Theorem 1.7. Let X be a random variable with characteristic function ϕ.
The distribution of X is

(a) degenerate iff |ϕ(t)| = |ϕ(s)| = 1 for two values s, t, such that s/t is
irrational;

(b) a lattice distribution iff ϕ is periodic.

Proof. Only sufficiencies remain to be proved. Thus, suppose that |ϕ(t)| = 1,
so that ϕ(t) = eita for some a ∈ R. Then

1 = e−itaϕ(t) = E exp{it(x− a)} = E cos(t(X − a)),

where the last equality is a consequence of the fact that the expectation is
real (equal to 1). Restating this we find that

E
(
1− cos t(X − a)

)
= 0.

Since the integrand is non-negative and the expectation equals 0 we must have
cos(t(x − a)) = 1 for all x with P (X = x) > 0. Because of the periodicity
of the cosine function these points must be situated on a lattice with a span
proportional to 2π/t, which proves (b).

If, in addition, |ϕ(s)| = 1 where s/t is irrational, the same argument shows
that the collection of mass points must be situated on a lattice with a span
proportional to 2π/s, which is impossible, unless there is only a single mass
point, in which case the distribution is degenerate. �

We also mention, without proof, that if X has its support on the set (1.2),
and pk = P (X = kd + λ), k ∈ Z, then the inversion formula reduces to

pk =
d

2π

∫ π/d

−π/d

e−it(kd+λ)ϕX(t) dt.

In particular, if λ = 0 and d = 1, then

ϕX(t) =
∑
k∈Z

pkeikt and pk = P (X = k) =
1
2π

∫ π

−π

e−itkϕX(t) dt,

Exercise 1.1. Check the binomial, geometric and Poisson distributions. �

1.2 Multiplication

Next in line is the multiplication theorem.

Theorem 1.8. Let X1, X2, . . . , Xn be independent random variables, and set
Sn = X1 + X2 + · · ·+ Xn. Then

ϕSn(t) =
n∏

k=1

ϕXk
(t).

If, in addition, X1, X2, . . . , Xn are equidistributed, then

ϕSn(t) =
(
ϕX1(t)

)n
.
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Proof. Since X1, X2, . . . , Xn are independent, we know from Theorem 2.10.4
that same is true for eitX1 , eitX2 , . . . , eitXn , so that

ϕSn
(t) = E eit(X1+X2+...+Xn) = E

n∏
k=1

eitXk =
n∏

k=1

E eitXk =
n∏

k=1

ϕXk
(t).

The second part is immediate, since all factors are the same. �

There are several integrals that one can easily compute by identifying a
relation between densities and characteristic functions. As an example, recall
that the integral

∫∞
0 sin x/xdx was instrumental in the proof of Theorem

1.3. Moreover, we also found (in Lemma A.1.3) that the integral was con-
vergent but not absolutely convergent. Integrating (sinx/x)2 is a lot easier,
and provides a nice application of the inversion theorem for densities and the
multiplication theorem.

We first note that the integral is absolutely convergent:∫ ∞

0

( sin x

x

)2
dx ≤

∫ 1

0
1 dx +

∫ ∞

1

1
x2 dx = 2.

Moreover, since sin t/t is the characteristic function of a U(−1, 1)-distributed
random variable, the square is the characteristic function of a Tri(−2, 2)-
distributed random variable. The inversion theorem for densities therefore
tells us that, for |x| ≤ 2,

1
2

(
1− 1

2
|x|
)

=
1
2π

∫ ∞

−∞
e−itx

( sin t

t

)2
dt,

so that, by putting x = 0, switching from t to x, and exploiting symmetry, we
obtain

1
2

=
1
2π

∫ ∞

−∞

( sin x

x

)2
dx =

1
4π

∫ ∞

0

( sin x

x

)2
dx,

in other words, ∫ ∞

0

( sin x

x

)2
dx =

π

2
. �

1.3 Some Further Results

Here is another useful result.

Theorem 1.9. Let X be a random variable. Then

ϕX is real ⇐⇒ X
d= −X ,

(i.e., iff the distribution of X is symmetric).
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Proof. From Theorem 1.1(b) we recall that

ϕ−X(t) = ϕX(−t) = ϕX(t).

Now, if ϕX is real valued, then ϕX(t) = ϕX(t), and it follows that ϕ−X(t) =
ϕX(t), which means that X and −X have the same characteristic function,
and, hence, by uniqueness, the same distribution.

If, on the other hand, they are equidistributed, then ϕX(t) = ϕ−X(t),
which, together with Theorem 1.1(b), yields ϕX(t) = ϕX(t), that is, ϕX is
real valued. �

Exercise 1.2. Show that if X and Y are independent, identically distributed ran-
dom variables then X − Y has a symmetric distribution. �

Another useful tool concerns how to derive the characteristic function of
a linearly transformed random variable from the original one.

Theorem 1.10. Let X be a random variable, and let a, b ∈ R and b. Then

ϕaX+b(t) = eibt · ϕX(at).

Proof. ϕaX+b(t) = E eit(aX+b) = eitb · E ei(at)X = eitb · ϕX(at). �

Exercise 1.3. Let X ∈ N(µ, σ2). Use the fact that the characteristic function of
the standard normal distribution equals exp{−t2/2} and the above theorem to show
that ϕX(t) = eitµ− 1

2 σ2t2 .

2 Some Special Examples

In addition to the standard examples for which we listed the characteristic
functions there are some special ones that are of interest. First in line is the
Cantor distribution because of its special features. The Cantor distribution
also provides the means to complete the convolution table we started in Sec-
tion 2.19. After that we determine the characteristic function of the Cauchy
distribution, partly because it permits us to introduce a pleasant device, partly
because the moment generating function and the probability generating func-
tion that we introduce toward the end of this chapter do not exist for the
Cauchy distribution.

2.1 The Cantor Distribution

In Subsection 2.2.6 we found that a Cantor distributed random variable on
the unit interval could be represented as the infinite sum

∞∑
n=1

Xn

3n
,
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where X, X1, X2, . . . are independent, identically distributed random vari-
ables such that P (X = 0) = P (X = 2) = 1

2 . Moreover, since ϕX(t) = 1
2+ 1

2e2it,
we have

ϕXn/3n(t) = ϕX(t/3n) =
1
2

+
1
2
e2it/3n

,

so that, by independence, the characteristic function of the Cantor distribution
on (0, 1) equals the infinite product

∞∏
n=1

(1
2

+
1
2
e2it/3n

)
.

However, for mathematical convenience and beauty we prefer, in this sub-
section, to consider the Cantor distribution on [− 1

2 , 1
2 ]. We thus consider a

number in [− 1
2 , 1

2 ] whose decimals in base 3 are −1 and +1 with probability
1/2 each, and never 0. The analogous representation in this case is

Y =
∞∑

n=1

Xn

3n
,

where X, X1, X2, . . . are independent, identically distributed random vari-
ables such that

P (X = −1) = P (X = 1) =
1
2
.

The following figure depicts the situation.

−1/2 0 1/2−1/6 1/6

...
...

...
...

...
...

...
...

C0

C1

C2

C3

Figure 4.1. The Cantor set on [− 1
2 , 1

2 ]

The characteristic function of a decimal is ϕX(t) = cos t, so that the
characteristic function of the Cantor distribution on [− 1

2 , 1
2 ] becomes

ϕY (t) =
∞∏

n=1

ϕXn/3n(t) =
∞∏

n=1

ϕX

( t

3n

)
=

∞∏
n=1

cos
( t

3n

)
.
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By the same arguments we may consider the analog of the random variable
corresponding to a number that is uniform over the subset of the interval [0, 1],
whose base 4 decimal expansion contains only 0’s and 3’s and no 1’s or 2’s,
and the analogous random variable on the interval [− 1

3 , 1
3 ].

−1/3 −1/6 0 1/6 1/3

...
...

...
...

...
...

...
...

C0

C1

C2

C3

Figure 4.2. A Cantor type set on [− 1
3 , 1

3 ]

The characteristic function of the latter equals

∞∏
n=1

cos
( t

4n

)
.

Exercise 2.1. Check this fact. �

We shall make use of these random variables in the following subsection.

2.2 The Convolution Table Revisited

Let X and Y be independent random variables, and set Z = X+Y . In Chapter
2 we investigated what type of distribution Z would have if X and Y were
absolutely continuous, discrete or continuous singular, respectively. We were
able to check 8 out of the 9 possibilities, the remaining case being when both
are continuous singular, that is, Cantor-type distributions. Having found the
characteristic function of such distributions, we are now able to fill the last
slot in the diagram.

Remember from Subsection 2.2.6 that the uniform distribution on [0, 1]
can be represented as the infinite sum

U =
∞∑

n=1

Xn

2n
,

where X, X1, X2, . . . are independent identically distributed random vari-
ables such that

P (X = 0) = P (X = 1) =
1
2
,
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If, instead, we consider the U(−1, 1)-distribution, the representation as an
infinite sum is the same, except that now

P (X = −1) = P (X = 1) =
1
2
.

By arguing precisely as for the Cantor distribution in the previous subsection,
we find that

ϕU (t) =
∞∏

n=1

cos
( t

2n

)
.

On the other hand, we also know that ϕU (t) = sin t
t , which establishes the

relation

sin t

t
=

∞∏
n=1

cos
( t

2n

)
, (2.3)

by a purely probabilistic argument.
Now, splitting the product into two factors, with the even terms in one

factor and the odd ones in the other one, yields

∞∏
k=1

cos
( t

2k

)
=

∞∏
k=1

cos
(
2 · t

4k

)
·

∞∏
k=1

cos
( t

4k

)
.

By the uniqueness theorem for characteristic functions,

U
d= 2V1 + V2,

where V1 and V2 are independent random variables with the common charac-
teristic function

∏∞
k=1 cos( t

4k ) mentioned at the end of the previous subsec-
tion.

The punch line is that, although V1 and V2 both are continuous singular
(and so is 2V1), the sum 2V1 + V2 is uniformly distributed on the interval
[−1, 1], and, hence, absolutely continuous. This shows that it may happen
that the sum of two independent, continuous singular random variables is
absolutely continuous.

By arguing exactly in the same manner with the Cantor distribution,

∞∏
k=1

cos
( t

3k

)
=

∞∏
k=1

cos
(
3 · t

9k

)
·

∞∏
k=1

cos
( t

9k

)
,

we find that
Y

d= 3W1 + W2,

where W1 and W2 are continuous singular, that is, it is also possible to ex-
hibit two independent, continuous singular random variables whose sum is
continuous singular.
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This means that we have two options for the final slot in our diagram.

�
��

X
Y

AC D CS

AC

D

CS

AC

AC

AC

AC

D

CS

AC

CS

AC

CS

Figure 4.3. The distribution of X + Y

Remark 2.1. The traditional mathematical trick for (2.3) is to consider a finite
product, ΠN =

∏N
n=1 cos

(
t

2n

)
, to multiply both members by sin(t/2N ), and

then to apply the double angle formula for the sine function N − 1 times to
obtain

sin
( t

2N

)
ΠN =

sin t

2N
.

The conclusion then follows by letting N → ∞ (and exploiting the fact that
sin α

α → 1 as α → 0). �

2.3 The Cauchy Distribution

In order to compute the characteristic function for the Cauchy distribution
we shall use a kind of distribution joining device. We call two distributions
married if, except for a multiplicative constant, the density of one of them
equals the characteristic function of the other. In this terminology the stan-
dard normal distribution is married to itself, the density being 1√

2π
e−x2/2 and

the characteristic function being e−t2/2.
Let Y1 and Y2 be independent standard exponential random variables.

Using the convolution formula one can show that the difference, Y1 − Y2, has
a standard Laplace distribution, which means that

fY1−Y2(x) =
1
2
e−|x| for −∞ < x < ∞,

ϕY1−Y2(t) = ϕY1(t)ϕY2(−t) =
1

1− it
· 1
1 + it

=
1

1 + t2
.
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Since this characteristic function is integrable we may apply the inversion
formula for densities, Theorem 1.4, to obtain

1
2
e−|x| =

1
2π

∫ ∞

−∞
e−itx 1

1 + t2
dt.

A change of variables, x → t and t → x, and a deletion of 2 from the denom-
inators yields

e−|t| =
1
π

∫ ∞

−∞
e−ixt 1

1 + x2 dx.

The imaginary part vanishes by symmetry, so that

e−|t| =
∫ ∞

−∞
eixt 1

π(1 + x2)
dx.

Inspecting the right-hand side we realize that it defines the characteristic
function of the standard Cauchy distribution, which therefore must be equal
to the left-hand side. We have thus shown that

ϕC(0,1)(t) = e−|t|,

and that the Cauchy- and Laplace distributions are a married to each other.

2.4 Symmetric Stable Distributions

The Cauchy distribution actually belongs to a special class of distributions,
the symmetric stable distributions, the characteristic functions of which are

e−c|t|α , where 0 < α ≤ 2,

and where c is some positive constant.
We notice immediately that the standard Cauchy distribution is symmetric

stable with index 1, and that the normal distribution with mean 0 is symmetric
stable with index 2.

The reason that they are called stable is that the class of distributions
is closed under convolution: If X1, X2, . . . , Xn are symmetric with index α,
then, for any n,

∑n
k=1 Xk/n1/α is also symmetric stable with index α.

Exercise 2.2. Check this statement with the aid of characteristic functions. �

That this is true for the centered normal distribution is, of course, no news.
For the Cauchy distribution this means that the arithmetic mean, Sn

n , has the
same distribution as an individual summand.

We shall describe these distributions in a somewhat greater detail in Sec-
tion 9.1.
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2.5 Parseval’s Relation

Let X and Y be random variables with distribution functions F and G, re-
spectively, and characteristic functions ϕ and γ, respectively. Thus,

ϕ(y) =
∫ ∞

−∞
eiyx dF (x).

Multiplying both members with e−ity, integrating with respect to G, and
applying Fubini’s theorem yields∫ ∞

−∞
e−iuyϕ(y) dG(y) =

∫ ∞

−∞
e−iuy

(∫ ∞

−∞
eiyx dF (x)

)
dG(y)

=
∫ ∞

−∞

(∫ ∞

−∞
eiy(x−u) dG(y)

)
dF (x)

=
∫ ∞

−∞
γ(x− u) dF (x).

The equality between the extreme members is (one form of what is) called
Parseval’s relation.

By letting u = 0 we obtain the following useful formula:∫ ∞

−∞
ϕ(y) dG(y) =

∫ ∞

−∞
γ(x) dF (x). (2.4)

The idea is to join two distributions, where the left-hand side in (2.4 is a
“difficult” integral, but the right-hand side is an “easy” integral.

Example 2.1. Show that ∫ ∞

−∞

cos y

1 + y2 dy =
π

e
.

In order to solve this problem probabilistically, we let X be a coin-tossing
random variable, and Y a standard Cauchy-distributed random variable. By
identifying the integral as π

∫
ϕX(y)fY (y) dy, we obtain, using (2.4), that∫ ∞

−∞

cos y

1 + y2 dy = π

∫ ∞

−∞
ϕX(y)fY (y) dy = π

∫ ∞

−∞
ϕY (y) dFX(y)

= π

∫ ∞

−∞
e−|y| dFX(y) = π

(
e−|−1| · 1

2
+ e−|1| · 1

2

)
=

π

e
. �

Exercise 2.3. (a) Exploit X such that P (X = 1) = P (X = −1) = 1/2, and
Y1 + Y2, where Y1, Y2 ∈ U(− 1

2 , 1
2 ) are independent random variables to prove that∫ 1

−1
(1 − |y|) cos y dy = 2(1 − cos 1).

(b) Define two convenient random variables and prove that∫ ∞

−∞

1 − cos y

y2(1 + y2)
dy =

π

e
. �
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3 Two Surprises

Here are two examples that prevent false conclusions.

Example 3.1. The uniqueness theorem states that if two characteristic func-
tions coincide then so do their distributions. It is, however, not true that it
suffices for them to coincide on some finite interval.

To see this, let

ϕ(t) =

{
1− |t|, for |t| < 1,

0, otherwise,
(3.5)

which, as will be shown at the end of this example, is the characteristic func-
tion of the absolutely continuous distribution with density

f(x) =
1− cos x

πx2 , −∞ < x < ∞, (3.6)

and set

ϕ̃(t) =
1
3
ϕ(2t) +

2
3
ϕ(t/2). (3.7)

This is the characteristic function of a convex combination of two distribu-
tions of the above kind. More precisely, let F1 and F2 be the distribution
functions corresponding to the characteristic functions ϕ1(t) = ϕ(2t), and
ϕ2(t) = ϕ(t/2), respectively. Then F = 1

3F1 + 2
3F2 has characteristic function∫ ∞

−∞
eitx dF (x) =

1
3

∫ ∞

−∞
eitx dF1(x) +

2
3

∫ ∞

−∞
eitx dF2(x)

=
1
3
ϕ1(t) +

2
3
ϕ2(t) = ϕ̃(t).

The characteristic functions ϕ and ϕ̃ clearly coincide for |t| ≤ 1/2, but equally
clearly they are not the same function, so that, by the uniqueness theorem,
they must correspond to different distributions.

�

�

t

ϕ(t)

−1 0 1

1

�
�

�
��

�
�

� �

�

t

ϕ̃(t)

−2 −1 0 1 2

1

�
��

�

������ ������

Figure 4.4. Two characteristic functions coinciding on an interval

Before closing this example, let us prove that the density f is as claimed
in (3.6). This can be done by direct computation, but also by noticing that
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ϕ has the same form as the density of the Tri(−1, 1)-distribution, that is, we
have another married pair.

The triangular density is the result of X1 + X2, where X1 and X2 are
independent U(− 1

2 , 1
2 )-distributed random variables. Since the characteristic

function of this uniform distribution equals sin(t/2)
t/2 , the characteristic function

of the triangular distribution equals the square of the uniform one, which, by
definition, means that∫ 1

−1
eitx(1− |x|) dx =

( sin(t/2)
t/2

)2
.

With x and t switching places, using the symmetry of the integrand and the
formula for the double angle, we can rewrite this as

1
2π

∫ 1

−1
e−ixt(1− |t|) dt =

1
2π

( sin(x/2)
x/2

)2
=

1− cos x

πx2 .

At this point we use the inversion formula for densities, Theorem 1.4, to con-
clude that the expression in the right-hand side is the density corresponding
to the characteristic function ϕ of our example.

Example 3.2. For real numbers it is true that if ab = ac for a �= 0, then b = c.
However, the corresponding analog for characteristic functions is not true,
that is, if ϕi are characteristic functions (i = 1, 2, 3), then

ϕ1 · ϕ2 = ϕ1 · ϕ3 �=⇒ ϕ2 = ϕ3.

In the previous example we found that two characteristic functions may co-
incide on an interval without being identical. By exploiting this, let ϕ2 and
ϕ3 be the characteristic functions ϕ and ϕ̃ in (3.5) and (3.7), respectively.
From our previous example we know that ϕ2 and ϕ3 coincide on the interval
(−1/2, 1/2). Now, let ϕ1(t) = ϕ(2t), that is, the characteristic function which
is triangular with base (−1/2, 1/2). Then, clearly, ϕ1 · ϕ2 = ϕ1 · ϕ3, since ϕ
vanishes outside the interval (−1/2, 1/2). However, from our previous example
we know that ϕ2 �= ϕ3.

This fact can also be formulated in terms of random variables: Let X, Y ,
and Z have characteristic functions ϕ1, ϕ2, and ϕ3, respectively, and suppose
that X and Z are independent as well as Y and Z. Then we have shown that

X + Z
d= Y + Z �=⇒ X

d= Y,

in other words, we cannot “subtract” Z from the equality.
The problem is that ϕ1 vanishes outside the interval where ϕ2 and ϕ3

coincide. If this is not the case the situation is different. For example, a com-
mon procedure is “smoothing”, which for mathematicians means that one
convolves a function with a “nice” one in order to get a better, smoother,
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behavior. A probabilistic analog is to add an independent normal random
variable to some random variable of interest, the point being that the sum
will be absolutely continuous regardless of the random variable of interest;
remember the convolution table in Section 2.19. The general idea is to end
in some limiting procedure to the effect that the contribution of the normal
variable vanishes asymptotically.

Some examples of this procedure will be given in Subsection 5.11.1. �

4 Refinements

This section is devoted to connections between existence of moments and
differentiability of the characteristic function.

Theorem 4.1. Let X be a random variable with distribution function F and
characteristic function ϕ.
(i) If E |X|n < ∞ for some n = 1, 2, . . ., then

∣∣ϕ(t)−
n∑

k=0

(it)k

k!
E Xk

∣∣ ≤ E min
{
2
|t|n|X|n

n!
,
|t|n+1|X|n+1

(n + 1)!
}

In particular,
|ϕ(t)− 1| ≤ E min{2, |tX|},

if E|X| < ∞, then

|ϕ(t)− 1− itE X| ≤ E min{2|tX|, t2X2/2},

and if E X2 < ∞, then

|ϕ(t)− 1− itE X + t2E X2/2| ≤ E min{t2X2, |tX|3/6}.

(ii) If E |X|n < ∞ for all n, and |t|n
n! E|X|n → 0 as n → ∞ for all t ∈ R,

then

ϕ(t) = 1 +
∞∑

k=1

(it)k

k!
E Xk.

Proof. Replace y by tX in Lemma A.1.2 and take expectations. This proves
(i), from which (ii) is immediate. �

The theorem provides us with upper bounds for the difference between
the characteristic function and the first terms of the Taylor expansion when
a given number of moments exist. A variation of the theme is asymptotics
for small values of t. Such results prove most useful in proofs of convergence
theorems as we shall see in some subsequent chapters.
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Theorem 4.2. Let X be a random variable with distribution function F and
characteristic function ϕ. If E |X|n < ∞ for some n = 1, 2, . . ., then ϕ(k),
k = 1, 2, . . . , n, exist and are uniformly continuous, and

ϕ(k)(t) =
∫ ∞

−∞
(ix)keitx dF (x),

ϕ(k)(0) = ik · E Xk,

ϕ(t) = 1 +
n∑

k=1

(it)k

k!
· E Xk + o(|t|n) as t → 0.

In particular, if E X = 0 and Var X = 1, then

ϕ(t) = 1− 1
2
t2 + o(t2) as t → 0.

Proof. Let k = 1. We thus suppose that E|X| < ∞. Then

ϕ(t + h)− ϕ(t)
h

=
∫ ∞

−∞

ei(t+h)x − eitx

h
dF (x) =

∫ ∞

−∞
eitx · eihx − 1

h
dF (x)

→
∫ ∞

−∞
ixeitx dF (x) as h → 0,

by dominated convergence, since, by Lemma A.1.2, the integrand converges
to ix · eitx as h → 0, is bounded by |x| for |h| < 1, and E|X| < ∞.

Since the left-hand side converges to ϕ′(t) as h → 0 by definition, the
existence of the first derivative has been established, from which the second
formula follows by putting t = 0.

To prove uniform continuity of the derivative we argue as in the proof of
Theorem 1.1(c):

|ϕ′(t + h)− ϕ′(t)| =
∣∣∣∣
∫ ∞

−∞
ixeitx(eihx − 1)dFX(x)

∣∣∣∣ ≤
∫ ∞

−∞
|x||eihx − 1|dF (x)

≤
∫

|x|≤A

hx2 dF (x) + 2
∫

|x|>A

|x|dF (x)

≤ hA2 + 2
∫

|x|>A

|x|dF (x),

and so on.
This closes the case k = 1. The general case follows by induction. Namely,

by the same procedure,

ϕ(k)(t + h)− ϕ(k)(t)
h

=
∫ ∞

−∞
eitx · (ix)k eihx − 1

h
dFX(x)

→
∫ ∞

−∞
(ix)k+1eitx dF (x) as h → 0,
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by dominated convergence, since, by Lemma A.1.2, the integrand converges
to (ix)k+1 · eitx as h → 0, is bounded by |x|k+1 for |h| < 1, and E|X|k+1 < ∞.
Moreover, since the left-hand side converges to the derivative of order k + 1
as h → 0, the formula for the derivative has been proved, and putting t = 0
as before proves the second formula.

To prove uniform continuity a modification of the proof for the first deriva-
tive (please check) yields

|ϕ(k+1)(t + h)− ϕ(k+1)(t)| =
∣∣∣∣
∫ ∞

−∞
(ix)k+1eitx(eihx − 1)dFX(x)

∣∣∣∣
≤ hAk+2 + 2

∫
|x|>A

|x|k+1dF (x),

and so on.
It remains to establish the correct order of magnitude of the remainder in

the Taylor expansion. By Theorem 4.1(i) we have

∣∣ϕ(t)−
n∑

k=0

(it)k

k!
E Xk

∣∣ ≤ |t|nE min
{

2
|X|n
n!

,
|t||X|n+1

(n + 1)!

}
.

Now, min
{
2 |X|n

n! , |t||X|n+1

(n+1)!

}
converges to 0 as t → 0, and is bounded by 2 |X|n

n! ,
which is integrable by assumption, so that, by dominated convergence,

E min
{

2
|X|n
n!

,
|t||X|n+1

(n + 1)!

}
→ 0 as n →∞ ,

that is, the upper bound equals o(|t|n) as t → 0. �

Exercise 4.1. Find the mean and variance of the binomial, Poisson, uniform, ex-
ponential, gamma, and standard normal distributions. �

The theorem tells us that if moments of a given order exist, then the charac-
teristic function is differentiable as stated above. The converse, however, only
holds for moments of even order.

Theorem 4.3. Let X be a random variable. If, for some n = 0, 1, 2, . . ., the
characteristic function ϕ has a finite derivative of order 2n at t = 0, then
E|X|2n < ∞ (and the conclusions of the previous theorem hold).

Proof. The proof is similar to the previous one.
First, let k = 2, that is, suppose that ϕ′′(0) is finite. Then

ϕ(h)− 2ϕ(0) + ϕ(−h)
h2 =

∫ ∞

−∞

eihx − 2 + e−ihx

h2 dF (x)

= −
∫ ∞

−∞

2(1− cos hx)
h2 dF (x).
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Since 0 ≤ 2(1−cos hx)
h2 → x2 as h → 0, an application of Fatou’s lemma tells us

that

E X2 ≤ lim inf
h→0

−ϕ(h)− 2ϕ(0) + ϕ(−h)
h2 = −ϕ′′(0),

so that the variance is finite.
Higher-order results follow, once again, by induction. Thus, suppose that

ϕ(2n+2)(0) is finite. By the induction hypothesis, Theorem 4.2 is at our dis-
posal at the level 2n. Therefore,

ϕ(2n)(h)− 2ϕ(2n)(0) + ϕ(2n)(−h)
h2 =

∫ ∞

−∞
(ix)2n eihx − 2 + e−ihx

h2 dF (x)

= −(−1)n

∫ ∞

−∞
x2n 2(1− cos hx)

h2 dF (x),

so that, by Fatou’s lemma,

E X2n+2 ≤ (−1)nϕ(2n+2)(0) < ∞. �

Exercise 4.2. Show that e−t4 , 1
1+t4

and | cos t| are not characteristic functions.�

A consequence of Theorem 4.3 is that if, for example, one wishes to find
E X via differentiation of the characteristic function one must know that the
variance exists, which may be a problem if it does not.

For example, consider the symmetric stable distribution with characteristic
function

ϕ(t) = e−|t|α , for some α ∈ (1, 2).

This distribution has a finite mean, but infinite variance. Differentiating the
characteristic function twice for t > 0 yields

ϕ′′(t) = −α(α− 1)tα−2e−tα

+ α2t2(α−1)e−tα ↗ +∞ as t ↘ 0,

(and similarly for t negative). The second derivative does not exist at 0, so
that Theorem 4.3 cannot be used in order to prove existence of a finite mean,
let alone, determine its value (which must be 0 by symmetry!).

There exists, however, a way to find absolute moments of order r ∈ (0, 2)
via characteristic functions. The (sufficiency of the) following result is Lemma
2 of [7].

Theorem 4.4. Let X be a random variable with characteristic function ϕ. If
E|X|r < ∞ for some r ∈ (0, 2), then

E|X|r = C(r)
∫ ∞

−∞

1−Re(ϕ(t))
|t|r+1 dt, (4.8)

where

C(r) =
(∫ ∞

−∞

1− cos y

|y|r+1 dy
)−1

=
Γ (r + 1)

π
sin

rπ

2
.

Conversely, if the integral is finite, then E|X|r < ∞, and (4.8) holds.
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Proof. The point of departure is the relation

|x|r = C(r)
∫ ∞

−∞

1− cos xt

|t|r+1 dt,

which is obtained from the definition of C(r) by the change of variable y = xt.
Putting x = X(ω) for ω ∈ Ω, integrating and changing the order of inte-

gration (everything is non-negative), yields

E|X|r = E C(r)
∫ ∞

−∞

1− cos Xt

|t|r+1 dt = C(r)
∫ ∞

−∞

1− E cos Xt

|t|r+1 dt

= C(r)
∫ ∞

−∞

1−Re(ϕ(t))
|t|r+1 dt.

The converse follows by running the proof in the reverse. �

Next we turn our attention to some useful results that connect tail prob-
abilities and truncated moments with characteristic functions.

Lemma 4.1. Let X be a random variable with distribution function F and
characteristic function ϕ. For h > 0,

P (|X| > 2/h) ≤ 1
h

∫
|t|<h

(1− ϕ(t)) dt.

Proof. By Fubini’s theorem, and the fact that sin u
u ≤ 1/2 for |u| ≥ 2, hence

2(1− sin u
u ) ≥ 1, we obtain

1
h

∫
|t|<h

(1− ϕ(t)) dt =
1
h

∫
|t|<h

(
1−

∫ ∞

−∞
eitx dF (x)

)
dt

=
1
h

∫
|t|<h

(∫ ∞

−∞
(1− eitx) dF (x)

)
dt

=
∫ ∞

−∞

( 1
h

∫
|t|<h

(1− eitx) dt
)
dF (x) = 2

∫ ∞

−∞

(
1− sin hx

hx

)
dF (x)

≥ 2
∫

|x|≥2/h

(
1− sin hx

hx

)
dF (x) ≥

∫
|x|≥2/h

dF (x) = P (|X| > 2/h). �

Remark 4.1. Observe that the left-hand side is real, and that the integral of
the imaginary part vanishes. Indeed, it must vanish . . .. �

A corresponding inequality holds for truncated second moments.

Lemma 4.2. Let X be a random variable with distribution function F and
characteristic function ϕ. For h > 0,

E X2I{|X| < 2/h} ≤ 3
h2 (1−Re

(
ϕ(h)

)
.
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In particular, if X is symmetric, then

E X2I{|X| < 2/h} ≤ 3
h2 (1− ϕ(h)).

Proof. This time we exploit the cosine function; for |u| ≤ 2,

cos u ≤ 1− u2

2
+

u4

4!
≤ 1− u2

2
+

4u2

4!
= 1− u2

3
,

so that

E X2I{|X| < 2/h} ≤ 3
h2 E

(
1− cos(hX)

)
I{|X| < 2/h}

≤ 3
h2 E

(
1− cos(hX)

)
=

3
h2 (1−Re

(
ϕ(h)

)
,

which establishes the first inequality, from which the second one is imme-
diate, since characteristic functions of symmetric random variables are real
(Theorem 1.9). �

5 Characteristic Functions of Random Vectors

Characteristic functions can naturally be defined also for random vectors, by
replacing the product tx in the definition by the scalar product t′X.

Definition 5.1. Let X = (X1, X2 . . . , Xn)′ be a random vector. The char-
acteristic function of X is

ϕX1,X2,...,Xn
(t1, t2, . . . , tn) = E ei(t1X1+t2X2+···+tnXn),

or, in the more compact form,

ϕX(t) = E eit′X . �

In particular, the following special formulas, which are useful at times, can be
obtained:

ϕX(t) = ϕt′X(1),
ϕX(t, t, . . . , t) = ϕX1+X2+···+Xn

(t),
ϕX(t, 0, . . . , 0) = ϕX1(t).

5.1 The Multivariate Normal Distribution

This is probably the most important multivariate distribution, which really
would be worth a chapter of its own (for such a chapter, see, e.g., [113],
Chapter V). In this subsection we provide some basic facts and interesting
observations. In order to do so, however, we first need to extend the notions
expected value and covariance to random vectors.
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Definition 5.2. The mean vector of X is µ = E X, the components of which
are µk = E Xk, k = 1, 2, . . . , n.

The covariance matrix of X is

Λ = E(X− µ)(X− µ)′,

whose elements are λij = E(Xi − µi)(Xj − µj), i, j = 1, 2, . . . , n, that is,
λkk = VarXk, k = 1, 2, . . . , n, and λij = Cov (Xi, Xj) = λji, i, j = 1, 2, . . . , n,
i �= j. �

Since Cov (Xi, Xj) = Cov (Xj , Xi) it follows that every covariance matrix is
symmetric, and since, by linear algebra,

y′Λy = y′E(X− µ)(X− µ)′y = Var (y′(X− µ)) ≥ 0 for any y ∈ Rn,

we have, moreover, shown that

Theorem 5.1. Every covariance matrix is non-negative definite.

Remark 5.1. If detΛ > 0, the probability distribution of X is truly n-
dimensional in the sense that the row vectors of the covariance matrix span
all of Rn. In this case we call the distribution non-degenerate. If detΛ = 0,
the distribution is degenerate in the sense that the row vectors span a space
of a lower dimension. This is also called the singular case. �

Following is a vector analog of Exercise 2.8.1.

Theorem 5.2. If X has mean vector µ and covariance matrix Λ, then Y =
a + BX has mean vector a + Bµ and covariance matrix BΛB′.

Exercise 5.1. Prove this. �

Now we are ready for the multivariate normal distribution.

Definition 5.3. The random n-vector X is normal iff, for every vector
a ∈ Rn, the (one-dimensional) random variable a′X is normal. If X is
normal with mean vector µ and covariance matrix Cov (X) = Λ we write
X ∈ N(µ,Λ). �

Remark 5.2. The degenerate normal distribution, N(0, 0), is also included as
a possible distribution of a′X.

Remark 5.3. Note that no assumption about independence between the com-
ponents of X is involved in the definition. �

Exercise 5.2. Suppose that X = (X1, X2, . . . , Xn)′ is normal. Prove that

(a) every component is normal;
(b) X1 + X2 + · · · + Xn is normal;
(c) every marginal distribution is normal. �
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In order to compute the characteristic function ϕX(t) = E eit′X of a normal
vector we exploit the first of the three special cases, together with the fact that
Z = t′X has a one-dimensional normal distribution with mean m = E Z = t′µ
and variance σ2 = t′Λt; please check this. Thus,

ϕX(t) = ϕZ(1) = exp{im− σ2/2} = exp{it′µ− 1
2t

′Λt}.

Conversely, one can show that, given a non-negative definite matrix Λ and a
vector µ, the function exp{it′µ− 1

2t
′Λt} is a characteristic function of a ran-

dom vector, with the property that any linear combination of its components
has a one-dimensional normal distribution.

In the non-singular case, that is, when detΛ > 0, the inverse exists, and
one can show (via a set of independent, identically standard normal random
variables and a change of variables) that the density of X ∈ N(µ,Λ) equals

fX(x) =
( 1

2π

)n/2 1√
detΛ

exp
{
− 1

2 (x− µ)′Λ−1(x− µ)
}
, x ∈ Rn.

Here is now a beautiful and impressive result.

Theorem 5.3. The components of a normal random vector X are indepen-
dent iff they are uncorrelated.

Proof. The only thing to show is that uncorrelatedness implies independence.
By assumption, Cov (Xi, Xj) = 0, i �= j, that is, the covariance matrix

is diagonal, the diagonal elements being σ2
1 , σ2

2 , . . . , σ2
n. Now, if a variance

equals 0, then that component is degenerate and hence independent of the
others. We therefore assume in the following that all variances are positive.
This implies that the inverse Λ−1 is also diagonal, with diagonal elements
1/σ2

1 , 1/σ2
2 , . . . , 1/σ2

n. The density function therefore simplifies into

fX(x) =
( 1

2π

)n/2 1∏n
k=1 σk

· exp
{
− 1

2

n∑
k=1

(xk − µk)2

σ2
k

}

=
n∏

k=1

1√
2πσk

· exp
{
− (xk − µk)2

2σ2
k

}
,

which shows that the joint density factorizes, and, hence, by Theorem 2.10.2,
that the components are independent. �

Let us re-emphasize that independence is a stronger concept than uncor-
relatedness in general, but that the concepts, thus, are equivalent for normal
vectors. This means that the statement “X1, X2, . . . , Xn are independent,
standard normal random variables” is equivalent to the statement “the ran-
dom n-vector X ∈ N(0, I)”.

Nevertheless, there exist normal random variables that are not jointly
normal, for which the concepts are not equivalent.
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Exercise 5.3. Let X ∈ N(0, 1), let Z be a coin-tossing random variable, indepen-
dent of X; P (Z = 1) = P (Z = −1) = 1

2 . Set Y = Z · X. Prove that X and Y are
both (standard) normal, but that the random variables are not jointly normal.
Hint: Compute P (X + Y = 0). �

Theorem 5.3 can be extended to covariance matrices that have uncorre-
lated blocks:

Theorem 5.4. Suppose that X ∈ N(µ,Λ), where Λ can be partitioned as
follows:

Λ =

⎛
⎜⎜⎜⎝

Λ1 0 0 0
0 Λ2 0 0

0 0
. . . 0

0 0 0 Λk

⎞
⎟⎟⎟⎠

(possibly after reordering the components), where Λ1, Λ2, . . . , Λk are ma-
trices along the diagonal of Λ. Then X can be partitioned into vectors
X(1), X(2), . . . , X(k) with Cov (X(i)) = Λi, i = 1, 2, . . . , k, in such a way
that these random vectors are independent.

Exercise 5.4. Prove the theorem (by modifying the proof of the previous one).�

Example 5.1. Suppose that X ∈ N(0,Λ), where

Λ =

⎛
⎝3 0 0

0 5 2
0 2 4

⎞
⎠ .

Then X1 and (X2, X3)′ are independent. �

5.2 The Mean and the Sample Variance Are Independent

This is, in fact, a result that characterizes the normal distribution. We shall
(only) prove one half.

Let X1, X2, . . . , Xn be independent standard normal random variables.
The sample mean and sample variance are

X̄n =
1
n

n∑
k=1

Xk and s2
n =

1
n− 1

n∑
k=1

(Xk − X̄n)2,

respectively.
We claim that X̄n and s2

n are independent. The beauty of the proof is that
it basically relies on Theorem 5.4.

In order to prove this, let Xn = (X1, X2, . . . , Xn)′ ∈ N(0, I), where I is
the identity matrix, and set

Yn = (X̄n, X1 − X̄n, X2 − X̄n, . . . , Xn − X̄n)′.
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In matrix notation Yn = BXn, where

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
n

1
n

1
n . . . 1

n

1− 1
n − 1

n − 1
n . . . − 1

n

− 1
n 1− 1

n − 1
n . . . − 1

n

− 1
n

1
n 1− 1

n . . . − 1
n

...
...

...
. . .

...
− 1

n − 1
n − 1

n . . . 1− 1
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By definition, Yn is a normal vector, since it is a linear combination of the
components of Xn. By Theorem 2.5.2, and an easy computation, the covari-
ance matrix of Yn equals

Cov Yn = BΛB′ = BB′ =
( 1

n 0
0 A

)
,

where A is some matrix whose exact expression is of no importance. Namely,
the essential point is the structure of the covariance matrix, which tells us that
X̄n and (X1−X̄n, X2−X̄n, . . . , Xn−X̄n)′ are uncorrelated, and therefore, by
Theorem 5.4, independent. The independence of X̄n and s2

n finally follows by
invoking Theorem 2.10.4, since s2

n is a function of the vector (X1 − X̄n, X2 −
X̄n, . . . , Xn − X̄n)′, or, equivalently, of the random variables Xk − X̄n, 1 ≤
k ≤ n.

This ends our discussion of the characteristic function, and we turn our
attention to the other transforms mentioned in the introduction of this chap-
ter: the cumulant generating function, the (probability) generating function,
and the moment generating function.

6 The Cumulant Generating Function

This transform is closely related to the characteristic function.

Definition 6.1. The cumulant generating function of a random variable X
is

κX(t) = log ϕX(t),

where ϕX(t) is the characteristic function of X. �

It turns out that this transform, or, rather, the coefficients in the Taylor ex-
pansion, at times are more easily accessible than those of the characteristic
functions. For example, if X ∈ N(0, 1), then κX(t) = −t2/2. Moreover, as we
shall see in a minute, the cumulant generating function of a sum of indepen-
dent random variables equals the sum (and not the product) of the individual
cumulant generating functions.

Uniqueness is immediate, since characteristic functions uniquely determine
the distribution, and since the logarithmic function is strictly increasing.
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Theorem 6.1. (Uniqueness) Let X and Y be random variables. If κX = κY ,
then X

d= Y (and conversely).

Since the logarithm of a product equals the sum of the logarithms, the mul-
tiplication theorem for cumulant generating functions is, in fact, an addition
theorem.

Theorem 6.2. (“Multiplication”) Let X1, X2, . . . , Xn be independent ran-
dom variables, and set Sn = X1 + X2 + · · ·+ Xn. Then

κSn(t) =
n∑

k=1

κXk
(t).

If, in addition, X1, X2, . . . , Xn are equidistributed, then

κSn(t) = nκX1(t).

By combining the Taylor expansion of the logarithm with Theorem 4.2, we
obtain the following result; please check.

Theorem 6.3. Let X be a random variable with cumulant generating function
κ. If E |X|n < ∞ for some n = 1, 2, . . ., then

κX(t) = 1 +
n∑

k=1

(it)k

k!
· κk + o(|t|n) as t → 0.

The coefficients {κk} are called cumulants or semi-invariants, and were in-
troduced in [242, 243], cf. also [56], p. 186.

Next, let µk = E Xk, k ≥ 1, denote the moments of the random variable
X. In particular, µ = E X = µ1, and σ2 = VarX = µ2 − µ2

1, all of this,
provided the relevant quantities exist. By comparing the Taylor expansion of
the characteristic function with that of the cumulant generating function, the
following relations between moments and cumulants emerge.

Theorem 6.4. Let X be a random variable.

(a) If E|X| < ∞, then κ1 = µ1;
(b) If E X2 < ∞, then κ2 = µ2 − µ2

1;
(c) If E|X|3 < ∞, then κ3 = µ3 − 3µ1µ2 + 2µ3

1;
(d) If E X4 < ∞, then κ4 = µ4 − 3µ2

2 − 4µ1µ3 + 12µ2
1µ2 − 6µ4

1.

Exercise 6.1. If the cumulants are known one can derive the moments similarly.
Do that for the first four moments. �

In this connection we state the obvious fact that all odd moments are 0 for
all symmetric distributions (provided the moments exist). A common measure
of (a)symmetry is skewness, which, in the above notation, equals

γ1 =
E(X − µ1)3

σ3 .
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Another measure that relates different distributions, in particular to the
normal one, is the coefficient of excess,

γ2 =
E(X − µ1)4

σ4 − 3.

Note that both measures are normalized to be dimensionless. Moreover, γ1 = 0
for all symmetric distributions, and γ2 = 0 for the normal distribution.

Exercise 6.2. Prove that

γ1 =
κ3

κ
3/2
1

and that γ2 =
κ4

κ2
2
.

Both measures are thus (somewhat) easier expressed in terms of cumulants than in
terms of moments. �

7 The Probability Generating Function

Although, as has been mentioned, characteristic functions always exist for
all random variables on the whole real axis, probability generating functions,
which can be defined for non-negative random variables, are power series which
have the advantage that they require less mathematics (no complex analysis
for example) to be analyzed.

Definition 7.1. Let X be a non-negative, integer valued random variable. The
(probability) generating function of X is

gX(t) = E tX =
∞∑

n=0

tn · P (X = n).
�

The generating function is defined at least for |t| < 1, since it is a power series
with coefficients in [0, 1]. Moreover, gX(1) =

∑∞
n=0 P (X = n) = 1.

Theorem 7.1. (Uniqueness) Let X and Y be non-negative, integer valued
random variables. If gX = gY , then pX = pY (and conversely).

Proof. This follows, in fact, from the uniqueness theorem for power series.
Namely, since power series can be differentiated term-wise strictly within their
radius of convergence, we can do so with any generating function (at least)
for |t| < 1, to obtain

g′
X(t) =

∞∑
n=1

ntn−1P (X = n), (7.1)

g′′
X(t) =

∞∑
n=2

n(n− 1)tn−2P (X = n), (7.2)



7 The Probability Generating Function 187

and, in general, for k = 1, 2, . . . ,

g
(k)
X (t) =

∞∑
n=k

n(n− 1) · · · (n− k + 1)tn−kP (X = n) . (7.3)

Putting t = 0 in the expressions for the derivatives yields

P (X = n) =
g
(n)
X (0)
n!

. (7.4)

Given a generating function we thus have an explicit, unique, way of comput-
ing the probabilities. �

Remark 7.1. Formula (7.4) tells us that the probability generating function
generates the probabilities, which makes the name of the transform most
adequate. �

The multiplication theorem is the natural analog of the corresponding
one for characteristic functions and the proof is the natural analog of the
corresponding proof.

Theorem 7.2. (Multiplication) Let X1, X2, . . . , Xn be independent, non-
negative, integer valued random variables, and set Sn = X1 + X2 + · · ·+ Xn.
Then

gSn(t) =
n∏

k=1

gXk
(t).

If, in addition, X1, X2, . . . , Xn are equidistributed, then

gSn(t) =
(
gX1(t)

)n
.

Exercise 7.1. Prove the theorem.

Exercise 7.2. Compute the generating function of some standard distributions,
such as the binomial, geometric, and Poisson distributions. �

Just as for characteristic functions one can also use generating functions to
compute moments of random variables. These are obtained via the derivatives
evaluated at t = 1. However, this requires a little more care as is seen by the
following example.

Example 7.1. Let X have probability function

p(n) =
6

π2n2 , n = 1, 2, 3, . . . ,

where the constant stems from the fact that
∑∞

n=1 1/n2 = π2/6. The diver-
gence of the harmonic series tells us that the distribution does not have a
finite mean.
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The generating function is

g(t) =
6
π2

∞∑
n=1

tn

n2 , for |t| ≤ 1.

The first derivative equals

g′(t) =
6
π2

∞∑
n=1

tn−1

n
= − 6

π2 ·
log(1− t)

t
↗ +∞ as t ↗ 1.

The point is that the generating function itself exists for t = 1 (they all do).
The derivative, however, exists for all t strictly smaller than 1. But not on
the boundary, t = 1. �

Derivatives at t = 1 are therefore throughout to be interpreted as limits
as t ↗ 1. For simplicity, however, these derivatives will be denoted as g′(1),
g′′(1), and so on.

Here is now the connection between derivatives and moments.

Theorem 7.3. Let k ≥ 1, let X be a non-negative, integer valued random
variable, and suppose that E|X|k < ∞. Then

E X(X − 1) · · · (X − k + 1) = g
(k)
X (1).

In particular, if E|X| < ∞, then

E X = g′
X(1),

and if Var X < ∞, then

Var X = g′′
X(1) + g′

X(1)−
(
g′

X(1)
)2

.

Proof. Letting t ↗ 1 in (7.1)–(7.3) yields

g′(1) = E X,

g′′(1) = E X(X − 1),
...

g(k)(1) = E X(X − 1)(X − 2) · · · (X − k + 1).

This proves the first two assertions. The expression for the variance follows
via

Var X = E X2 − (E X)2 = E X(X − 1) + E X − (E X)2.
�

7.1 Random Vectors

Definition 7.2. Let X = (X1, X2, . . . , Xn)′ be a random vector. The (prob-
ability) generating function of X is

gX1,X2,...,Xn(t1, t2, . . . , tn) = E tX1
1 tX2

2 · · · tXn
n . �

We also note that, for example, gX1,X2...,Xn
(t, t, . . . , t) = gX1+X2+···+Xn

(t).
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8 The Moment Generating Function

This is another real valued transform, which, in contrast to the probability
generating function, can be defined for any distribution. The problem is, how-
ever, that it does not always exist. As we shall see in a minute, a necessary,
but not sufficient, condition for existence is that all moments exist, which,
immediately tells us that the Cauchy distribution does not possess a moment
generating function. Nevertheless, once they exist they allow us to work in a
real, less complex, world.

Definition 8.1. Let X be a random variable. The moment generating func-
tion of X is

ψX(t) = E etX =
∫ ∞

−∞
etx dFX(x),

provided the expectation is finite for |t| < h, for some h > 0. �

Remark 8.1. Moment generating functions are also called two-sided Laplace
transforms, the motivation being that, in analysis, Laplace transforms are
defined for non-negative, real valued functions. Indeed, for a non-negative
random variable X, one may define the Laplace transform

E e−sX , for s ≥ 0,

which, moreover, always exists (why?).

Remark 8.2. For non-negative, integer valued random variables with an exist-
ing moment generating function,

ψ(t) = g(et) for |t| < h. �

Since we have a proviso “provided . . .” let us first present an example (the
Cauchy distribution, of course) for which the transform does not exist.

Example 8.1. Let X be standard Cauchy, that is, let the density be

fX(x) =
1

π(1 + x2)
, −∞ < x < ∞.

The integral
∫∞

−∞ etx|fX(x)|dx is clearly divergent for all t �= 0. Hence, the
moment generating function does not exist. �

Next we prove the uniqueness theorem and the multiplicative property.

Theorem 8.1. (Uniqueness) Let X and Y be random variables. If ψX(t) =
ψY (t) when |t| < h for some h > 0, then X

d= Y . �
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Proof. A moment generating function which, as required, is finite in the inter-
val |t| < h can, according to (well-known) results from the theory of analytic
functions, be extended to a complex function E exp{zX} for |Re(z)| < h.
Putting z = iy, where y is real, yields the characteristic function. Thus, if two
moment generating functions are equal, then so are the corresponding char-
acteristic functions, which, as we already know from Theorem 1.2, uniquely
determines the distribution. �

Theorem 8.2. (Multiplication) Let X1, X2, . . . , Xn be independent random
variables, whose moment generating functions exist for |t| < h for some h > 0,
and set Sn = X1 + X2 + · · ·+ Xn. Then

ψSn
(t) =

n∏
k=1

ψXk
(t) , |t| < h.

If, in addition, X1, X2, . . . , Xn are equidistributed, then

ψSn(t) =
(
ψX1(t)

)n
, |t| < h.

Exercise 8.1. Prove the theorem. �

Exercise 8.2. Compute the moment generating function of some standard distri-
butions, such as the binomial, geometric, Poisson, exponential, gamma, uniform,
and normal distributions. �

Just as the derivatives at 0 of the probability generating function produce the
probabilities (which motivated the name of the transform), the derivatives at
0 of the moment generating function produce the moments (motivating the
name of the transform).

Theorem 8.3. Let X be a random variable whose moment generating func-
tion, ψX(t), exists for |t| < h for some h > 0. Then

(i) E |X|r < ∞ for all r > 0;

(ii) E Xn = ψ
(n)
X (0) for n = 1, 2, . . . ;

(iii) ψX(t) = 1 +
∑∞

n=1
tn

n! E Xn fot |t| < h.

Proof. Let r > 0 and |t| < h be given. Since |x|r/e|tx| → 0 as x → ∞ for all
r > 0, we choose A (depending on r) in such a way that

|x|r ≤ e|tx| whenever |x| > A.

Then

E|X|r = E|X|rI{|X| ≤ A}+ E|X|rI{|X| > A}
≤ Ar + Ee|tX|I{|X| > A} ≤ Ar + Ee|tX| < ∞.
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This proves (i), from which (ii) follows by differentiation (under the integral
sign):

ψ
(n)
X (t) =

∫ ∞

−∞
xnetx dF (x) ,

which yields

ψ
(n)
X (0) =

∫ ∞

−∞
xn dF (x) = E Xn.

Finally, Taylor expansion and (ii) (which identifies the coefficients in the ex-
pansion) prove (iii). �

Remark 8.3. The idea in (i) is simply that the exponential function grows
more rapidly than every polynomial. The proof amounts to translating this
fact into mathematics. �

Remark 8.4. If we know the Taylor expansion of the moment generating func-
tion, then (iii) tells us that we may simply read off the moments; E Xn is the
coefficient of tn

n! , n = 1, 2, . . . , in the expansion. �

Exercise 8.3. Find the mean and variance of the binomial, Poisson, uniform, ex-
ponential, and standard normal distributions. �

8.1 Random Vectors

Definition 8.2. Let X = (X1, X2, . . . , Xn)′ be a random vector. The mo-
ment generating function of X is

ψX1,X2,...,Xn
(t1, . . . , tn) = E et1X1+t2X2+···+tnXn ,

provided there exist h1, h2, . . . , hn > 0 such that the expectation exists for
|tk| < hk, k = 1, 2, . . . , n. �

Remark 8.5. Just as for characteristic functions one can rewrite the definition
in vector notation:

ψX(t) = E et
′X ,

provided there exists h > 0, such that the expectation exists for |t| < h (the
inequalities being interpreted component-wise). �

8.2 Two Boundary Cases

The formulation of Theorem 8.3 suggests that there might exist distributions
with moments of all orders and, yet, the moment generating function does not
exist in any neighborhood of zero. The log-normal distribution is a famous such
example: if X ∈ LN(µ, σ2), then X

d= eY , where Y ∈ N(µ, σ2).
Let r > 0. Then all moments exist, since

E Xr = E erY = ψY (r) = exp{rµ + 1
2σ2r2}.
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However, since ex ≥ xn/n! for any n, it follows, given any t > 0, that

E exp{tX} = E exp{teY } ≥ E
(teY )n

n!
=

tn

n!
E enY

=
tn

n!
ψY (n) =

tn

n!
exp{nµ + 1

2σ2n2}

=
1
n!

exp{n(log t + µ + 1
2σ2n)} → ∞ as n →∞,

since log t + µ + 1
2σ2n ≥ 1

4σ2n as n → ∞, and exp{cn2}/n! → ∞ as n → ∞
for any positive constant c, and any t. The moment generating function thus
does not exist.

Another example is provided by the generalized gamma distributions with
density

f(x) =

{
c · xβ−1e−xα

, for x > 0,

0, otherwise,

where β > 0, 0 < α < 1, and c is a normalizing constant.

Exercise 8.4. Check that these distributions have the desired property (that is,
of lacking a moment generating function). �

Remark 8.6. The moment generating function exists, however, when α ≥ 1.
The case α = 1 corresponds to the gamma distribution, and the case α =
2, β = 1 corresponds to the absolute value of a normal distribution. �

We shall return to these two examples in Section 10 where we shall make
some brief comments on the so-called moment problem, the problem whether
or not a distribution is uniquely determined by its moment sequence.

9 Sums of a Random Number of Random Variables

This was the topic of Section 2.15. The model assumptions there were that
X, X1, X2, . . . are independent, identically distributed random variables with
partial sums Sn, n ≥ 1, and N a non-negative, integer valued random variable
independent of X1, X2, . . . . By the law of total probability, Proposition 1.4.1,
we found that

P (SN ≤ x) =
∞∑

n=1

P (Sn ≤ x) · P (N = n), −∞ < x < ∞,

and, assuming absolute convergence, that

E h(SN ) =
∞∑

n=1

E
(
h(Sn)

)
· P (N = n).

By letting h(x) = eitx in the latter formula we obtain an expression for the
characteristic function of SN .
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Theorem 9.1. Under the above assumptions,

ϕSN
(t) = gN

(
ϕX(t)

)
.

Proof. Recalling (2.15.4), and the fact that E eitSn = ϕSn(t) = (ϕX(t))n, we
have

ϕSN
(t) = E eitSN =

∞∑
n=1

E
(
eitSn

)
· P (N = n)

=
∞∑

n=1

(ϕX(t))n · P (N = n) = gN

(
ϕX(t)

)
.

�

Remark 9.1. In words the statement means that the characteristic function of
SN is obtained by evaluating the (probability) generating function of N at
the point ϕX(t). �

Example 9.1. Let us illustrate Theorem 9.1 with our toy Example 2.15.2. The
assumption there was that the number of customers in a store during one
day was Po(λ)-distributed, and that the probability that a customer buys
something was p. The number of customers that buy something was described
by the random variable SN , where N ∈ Po(λ), and where Xk = 1 if customer
k shops and 0 otherwise. Under the independence assumptions of Theorem
9.1,

ϕSN
(t) = gN (ϕX(t)) = exp{λ(q + peit − 1)} = exp{λp(eit − 1)},

which is the characteristic function of a Po(λp)-distribution, so that SN ∈
Po(λp) by the uniqueness theorem for characteristic functions, Theorem 1.2.

And if the amounts spent by the customers follow some distribution with
characteristic function ϕ, then, by letting {Yk, k ≥ 1} denote these amounts,
the sum SN =

∑N
k=1 Yk describes the total amount spent by the customers

during one day, the characteristic function of which becomes

ϕSN
(t) = exp{λ(ϕ(t)− 1)}. �

In Theorem 4.2 we learned that mean and variance (if they exist) can be
found by differentiation of the characteristic function. By differentiating both
members in the relation ϕSN

(t) = gN (ϕX(t)) we obtain

ϕ′
SN

(t) = g′
N (ϕX(t)) · ϕ′

X(t),

ϕ′′
SN

(t) = g′′
N (ϕX(t)) · (ϕ′

X(t))2 + g′
N (ϕX(t)) · ϕ′′

X(t),

which, upon putting t = 0, and recalling Theorem 7.3, yields

iE SN = ϕ′
SN

(0) = g′
N (ϕX(0)) · ϕ′

X(0) = g′
N (1) · ϕ′

X(0) = E N(iE X),

and
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i2E(SN )2 = ϕ′′
SN

(0) = g′′
N (ϕX(0)) · (ϕ′

X(0))2 + g′
N (ϕX(0)) · ϕ′′

X(0)

= g′′
N (1) · (ϕ′

X(0))2 + g′
N (1) · ϕ′′

X(0)
= E N(N − 1)(iE X)2 + E N(i2E X2),

which, after cleaning up, reproves Theorem 2.15.1, where we found that, under
appropriate assumptions,

E SN = E N · E X, and VarSN = E N ·Var X + (E X)2 ·Var N.

The analogs of Theorem 9.1 for generating functions and moment generating
functions run as follows.

Theorem 9.2. Let X, X1, X2, . . . be independent, identically distributed,
non-negative integer valued random variables with partial sums Sn, n ≥ 1,
and let N be a non-negative, integer valued random variable independent of
X1, X2, . . . . Then

gSN
(t) = gN

(
gX(t)

)
.

Theorem 9.3. Let X, X1, X2, . . . be independent, identically distributed ran-
dom variables whose moment generating function exists for |t| < h for some
h > 0, and let Sn, n ≥ 1, denote their partial sums. Further, let N be a non-
negative, integer valued random variable independent of X1, X2, . . . . Then

ψSN
(t) = gN

(
ψX(t)

)
.

Exercise 9.1. Prove the two theorems. �

10 The Moment Problem

The moment problem concerns the question whether or not a given sequence
of moments, {mn, n ≥ 1}, uniquely determines the associated probability
distribution or random variable. The case when the support of the summands
is the whole real axis is called the Hamburger moment problem. When the
support is the positive half-axis one talks about the Stieltjes moment problem.
So far no conveniently applicable necessary and sufficient condition has been
found.

A trivial sufficient condition is the existence of the moment generating
function, recall Theorem 8.1. All standard distributions possessing moments
of all orders, such as the normal, the Poisson, the binomial, the exponential,
and the geometric distributions are uniquely determined by their moment
sequences.

A more sophisticated sufficient condition is the Carleman condition, [37]
(where the condition appears in the context of quasi-analytic functions), which
states that a distribution is uniquely determined by its moment sequence if
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∞∑
k=1

m
−1/2k
2k = ∞. (10.1)

For non-negative random variables the condition becomes

∞∑
k=1

m
−1/2k
k = ∞. (10.2)

A necessary (but not sufficient) condition in the absolutely continuous case is
due to Krein, [164], who proved that, in order for a distribution to be uniquely
determined by its moment sequence, it is necessary that

KH =
∫ ∞

−∞

− log f(y)
1 + y2 dy = ∞,

in the Hamburger case. The analog for the Stieltjes problem, where the nec-
essary condition is

KS =
∫ ∞

0

− log f(y2)
1 + y2 dy = ∞,

was obtained by Slud; see [228]. In both cases f is the corresponding density.
In order to find a moment sequence that does not uniquely determine the

distribution we must look for distributions with moments of all orders and at
the same time without an existing moment generating function.

Earlier in this chapter, in Subsection 4.8.2, we found that the log-normal
distribution is an example of that kind. Heyde [133] proved that this distri-
bution is not uniquely determined by the moment sequence by exhibiting a
family of distributions having the same moments; see also [222]. Checking the
Krein-Slud integral is an alternative way to prove this: The density of the
log-normal distribution is

f(x) =
1

σ log x
√

2π
exp

{
− (log x− µ)2

2σ2

}
, x > 0,

so that

KS =
∫ ∞

0

C + log(2 log x) + (2 log x−µ)2

2σ2

1 + x2 dx < ∞.

Another example was the generalized gamma distributions. In this case

KS =
∫ ∞

0

C − 2(β − 1) log x + x2α

1 + x2 dx

{
< ∞, when α < 1/2,

= ∞, when α ≥ 1/2.

It follows that the moments do not determine the distribution uniquely when
0 < α < 1/2. For 1/2 ≤ α < 1 the integral diverges, but that is not enough
for uniqueness. One possibility is to check the Carleman condition (10.2):
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E Xk = C

∫ ∞

0
xkxβ−1e−xα

dx = C

∫ ∞

0
y

β+k
α −1e−y dy = CΓ

(β + k

α

)

∼ C
(β + k

eα

)(β+k)/α
√

2π
β + k

α
as k →∞,

which implies that

∞∑
k=1

m
−1/2k
k = C

∞∑
n=1

( eα
β + k

) 1
2α + β

2kα
(
2π

α

β + k

)1/4k

≥ C

∞∑
n=1

( eα
β + k

) 1
2α ≥

∞∑
n=1

1
β + k

= ∞.

The moments thus determine the distribution uniquely when 1/2 ≤ α < 1.
Just to complete the picture, when α ≥ 1 the moment generating function

exists, and the moments (trivially) determine the distribution uniquely.

Remark 10.1. There exists a rather handy condition due to Lin [174], which,
ensures uniqueness when the Krein-Slud integral diverges. �

10.1 The Moment Problem for Random Sums

Let, once again, X, X1, X2, . . . be independent, identically distributed ran-
dom variables with partial sums Sn, n ≥ 1, and suppose that N is a non-
negative, integer valued random variable which is independent of X1, X2, . . . .
(For N = 0 we set SN = S0 = 0.) All random variables are supposed to possess
moments of all orders. The moment problem for geometrically compounded
sums was investigated in [175], where also a number of conjectures concern-
ing the determinacy of SN were raised, such as if X is uniquely determined
by its moments and N is not, then neither is SN . With the aid of Theorem
9.1 it is rather straightforward to verify (a little more than) the truth of this
conjecture.

Theorem 10.1. (i) If N is not uniquely determined by its moment sequence,
then neither is SN .
(ii) If X is not uniquely determined by its moment sequence, then neither is
SN .

Remark 10.2. The content of the theorem thus is that if at least one of X and
N is not uniquely determined by its moment sequence, then neither is SN ,
or equivalently, if SN is uniquely determined by its moment sequence, then,
necessarily, so are X as well as N . �

Proof. (i): Let N1 and N2 be random variables with the same moment se-
quence but with different distributions. Theorem 9.1 then tells us that

ϕSN1
(t) = gN1(ϕX(t)) and ϕSN2

(t) = gN2(ϕX(t)).
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By uniqueness of the transform, SN1 and SN2 have different distributions.
However, by, for example, differentiation, we find that the moments of SN1

and SN2 coincide.
(ii): The proof is the same with X1 and X2 playing the role of N1 and N2,
and N the role of X. �

More on the conjectures can be found in [116].

11 Problems

1. Show, by using characteristic, or moment generating functions, that if

fX(x) =
1
2
e−|x| , −∞ < x < ∞,

then X
d= Y1 − Y2, where Y1 and Y2 are independent, exponentially dis-

tributed random variables.
2. Let X1, X2, . . . , Xn be independent random variables with expectation 0

and finite third moments. Show, with the aid of characteristic functions,
that

E(X1 + X2 + · · ·+ Xn)3 = E X3
1 + E X3

2 + · · ·+ E X3
n.

3. Let X1, X2, . . . , Xn be independent, Exp(1)-distributed random vari-
ables, and set

Vn = max
1≤k≤n

Xk and Wn = X1 + 1
2X2 + 1

3X3 + · · ·+ 1
nXn.

Show that Vn
d= Wn.

4. Suppose that P (X = 1) = P (X = −1) = 1/2, that Y ∈ U(−1, 1) and
that X and Y are independent.
(a) Show, by direct computation, that X + Y ∈ U(−2, 2).
(b) Translate the result to a statement about characteristic functions.
(c) Which well-known trigonometric formula did you discover?

5. Let X and Y be independent random variables and let the superscript s
denote symmetrization (recall Section 3.6). Show that

(X + Y )s d= Xs + Y s.

6. Show that one cannot find independent, identically distributed random
variables X and Y such that X − Y ∈ U(−1, 1).

7. Consider the function

ϕ(t) = (1 + |t|)e−|t|, t ∈ R.

(a) Prove that ϕ is a characteristic function.
(b) Prove that the corresponding distribution is absolutely continuous.
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(c) Prove, departing from ϕ itself, that the distribution has finite mean
and variance.

(d) Prove, without computation, that the mean equals 0.
(e) Compute the density.

8. Suppose that the moments of the random variable X are constant, that
is, suppose that E Xn = c for all n ≥ 1, for some constant c. Find the
distribution of X.

9. Let X be a random variable, such that

E Xn =
2n!
3λn

, n = 1, 2, . . . .

Find the distribution of X. Is it unique?
10. Prove that, if ϕ(t) = 1 + o(t2) as t → 0 is a characteristic function, then

ϕ ≡ 1.
11. Prove or disprove:

(a) If ϕ is a characteristic function, then so is ϕ2;
(b) If ϕ is a non-negative characteristic function, then so is

√
ϕ.

12. Prove that
1
π

∫ ∞

−∞

(cos y)2

1 + y2 dy =
1 + e−2

2
,∫ ∞

−∞

1
(1 + y2)2

dy =
π

2
,

1
π

∫ ∞

−∞

1− cos y

y2 e−|y| dy =
π

2
− log 2 .

13. Invent and prove your own relation.
14. Let ϕ be a characteristic function, and F the distribution function of a

non-negative random variable. Prove that∫ 1

0
ϕ(tu) du ,∫ ∞

−∞
ϕ(tu)e−|u| du ,∫ ∞

−∞

ϕ(tu)
1 + u2 du ,∫ ∞

0
ϕ(tu) dF (u) ,

are characteristic functions, and describe the corresponding random vari-
ables.

15. Recall formula (2.3) – sin t
t =

∏∞
n=1 cos

(
t

2n

)
. Derive Vieta’s formula

2
π

=
√

2
2
·
√

2 +
√

2
2

·

√
2 +

√
2 +

√
2

2
·

√
2 +

√
2 +

√
2 +

√
2

2
· · · · · · .
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16. Let ϕ be a characteristic function. Prove that

|ϕ(t)− ϕ(t + h)|2 ≤ 2(1−Re(ϕ(h)) .

17. Let X be a random variable with characteristic function ϕ. Show that

P (|X| > 1/h) ≤ 7
h

∫ h

0
(1−Re(ϕ(t)) dt.

18. The characteristic function of X equals

ϕ(s, t, u) = exp
{
− s2

2
− t2 − 2u2 − st

2
+

su

2
− tu

2

}
.

Determine the distribution of X.
19. Suppose that the mean vector and the covariance matrix of the three-

dimensional normal random vector X are

µ =

⎛
⎝ 3

4
−3

⎞
⎠ and Λ =

⎛
⎝ 2 1 3

1 4 −2
3 −2 8

⎞
⎠ ,

respectively. Determine the distribution of X1 − 2X2 + 3X3.
20. The random variables X and Y are independent and N(0, 1)-distributed.

Determine
(a) E(X | X > Y );

(b)E(X + Y | X > Y ).
21. Suppose that ϕ is a characteristic function, and let p ∈ (0, 1). Show that

ϕ̃(t) =
p

1− (1− p)ϕ(t)

is a characteristic function.
22. Let N ∈ Bin(n, 1 − e−m), let X, X1, X2, . . . have the same 0-truncated

Poisson distribution,

P (X = x) =
mx

x!
/(em − 1), x = 1, 2, 3, . . . ,

and assume that N, X1, X2, . . . are independent.

(a) Find the distribution of Y =
∑N

k=1 Xk, (where Y = 0 when N = 0).

(b) Compute E Y and VarY without using (a).
23. Consider a branching process (Section 2.14), where, thus, X(n) denotes

the number of individuals in generation n, n ≥ 0, with X(0) = 1, and
where gn = gX(n), with g1 = g.
(a) Prove that g2(t) = g(g(t)), and, generally, that gn(t) = g(gn−1(t)).

(b) Suppose that the mean number of children, m = E X(1) < ∞. Deter-
mine E X(2), and, more generally, E X(n).
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(c) Let Tn =
∑n

k=0 X(k) be the total progeny up to and including gener-
ation number n, and let Gn(t) be the generating function of Tn. Show
that

Gn(t) = t · g
(
Gn−1(t)

)
.

(d) Suppose that m < 1. Argue that the probability of extinction equals 1
(it can be shown that this is, indeed, the case), and find the expected
value of the total progeny.

24. Suppose that the lifetimes, X1, X2, . . . , of the individuals in a tribe are
independent, Exp( 1

a )-distributed random variables, that the number of
individuals, N , in the tribe is Fs(p)-distributed, viz.

P (N = n) = p(1− p)n−1, for n ∈ N,

and that N and X1, X2, . . . are independent. Determine the distribution
of the shortest lifetime.

25. Suppose that the random variables X1, X2, . . . are independent with com-
mon distribution function F (x), and let N be a non-negative, integer val-
ued random variable with generating function g(t). Finally, suppose that
N and X1, X2, . . . are independent. Set

Y = max{X1, X2, . . . , XN}.

Show that
FY (y) = g

(
F (y)

)
.



5

Convergence

From the introductory chapter we remember that the basis of probability the-
ory, the empirical basis upon which the modeling of random phenomena rests,
is the stabilization of the relative frequencies. In statistics a rule of thumb is
to base one’s decisions or conclusions on large samples, if possible, because
large samples have smoothing effects, the more wild randomness that is al-
ways there in small samples has been smeared out. The frequent use of the
normal distribution (less nowadays, since computers can do a lot of numer-
ical work within a reasonable time) is based on the fact that the arithmetic
mean of some measurement in a sample is approximately normal when the
sample is large. And so on. All of this triggers the notion of convergence. Let
X1, X2, . . . be random variables. What can be said about their sum, Sn, as
the number of summands increases (n → ∞)? What can be said about the
largest of them, max{X1, X2, . . . , Xn} as n → ∞? What about the limit of
sums of sequences? About functions of converging sequences? In mathematics
one discusses point-wise convergence and convergence of integrals. When, if at
all, can we assert that the integral of a limit equals the limit of the integrals?
And what do such statements amount to in the context of random variables?

This and a lot more is what we are going to meet in the present chapter.
The following three chapters are then devoted to the three most fundamen-
tal results in probability theory: the law of large numbers, the central limit
theorem, and the law of the iterated logarithm, respectively.

We begin by defining various modes of convergence, prove uniqueness of the
limits, and relate them into a hierarchical system. We then investigate what
additional conditions might ensure implications between the concepts which
are not there from the outset, such as when is the limit of an expectation equal
to the expectation of the limit? Some of this is reminiscent of what we met
in Section 2.5. Another section concerns transforms. In Chapter 4 we found
results relating distributional equalities to equalities between transforms. In
this chapter we relate results about “almost equality” to each other, that is,
we prove convergence theorems. We also provide examples and applications.
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1 Definitions

There are several convergence concepts in probability theory. We shall discuss
five of them here. Let X1, X2, . . . be random variables.

Definition 1.1. Xn converges almost surely (a.s.) to the random variable X
as n →∞ iff

P ({ω : Xn(ω) → X(ω) as n →∞}) = 1.

Notation: Xn
a.s.→ X as n →∞.

Definition 1.2. Xn converges in probability to the random variable X as
n →∞ iff, for every ε > 0,

P (|Xn −X| > ε) → 0 as n →∞.

Notation: Xn
p→ X as n →∞.

Definition 1.3. Xn converges in r-mean to the random variable X as n →∞
iff

E|Xn −X|r → 0 as n →∞.

Notation: Xn
r→ X as n →∞.

Definition 1.4. Let C(FX) = {x : FX(x) is continuous at x} = the conti-
nuity set of FX . Xn converges in distribution to the random variable X as
n →∞ iff

FXn
(x) → FX(x) as n →∞, for all x ∈ C(FX).

Notation: Xn
d→ X as n →∞. �

These are the four traditional, most common, convergence concepts.

Remark 1.1. Almost sure convergence is also called convergence with pro-
bability 1 (w.p.1).

Remark 1.2. Definition 1.3 with r = 2 is called convergence in square mean
to the (or mean-square convergence).

Remark 1.3. Since the random variables in Definition 1.4 are present only in
terms of their distribution functions, they need not be defined on the same
probability space.

Remark 1.4. We shall permit ourselves the convenient abuse of notation such
as Xn

d→ N(0, 1) instead of the formally more correct, but lengthier “Xn
d→ X

as n →∞, where X ∈ N(0, 1)”. �

The following more modern definition of distributional convergence avoids
the mentioning of discontinuity points. The fact that the two definitions are
equivalent will be established in Theorem 6.1.
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Definition 1.5. Xn
d→ X as n →∞ iff, for every h ∈ CB,

E h(Xn) → E h(X) as n →∞. �

Remark 1.5. The definition in terms of expectations is most suitable for ex-
tensions to higher dimensions and to more general function spaces, such as
C[0, 1], the space of continuous functions on the interval [0, 1] endowed with
the uniform topology. Distributional convergence is often called weak conver-
gence in these more general settings. We refer to [20] for an excellent treatment
of this topic. �

We shall also meet a somewhat less common, but very useful convergence
concept, introduced by Hsu and Robbins in [140], which, as we immediately
note from its nature, is closely related to the Borel-Cantelli lemmas.

Definition 1.6. Xn converges completely to the random variable X as n →
∞ iff

∞∑
n=1

P (|Xn −X| > ε) < ∞, for all ε > 0.

Notation: Xn
c.c.→ X as n →∞. �

Remark 1.6. The limiting variable in [140] is supposed to be a constant. We
have extended the definition here for convenience. �

1.1 Continuity Points and Continuity Sets

In the traditional definition of convergence in distribution one has to check
convergence at continuity points of the limiting distribution. To see that this
makes sense, consider the following example.

Example 1.1. Suppose that Xn ∈ δ( 1
n ), that is, Xn is the one-point distribu-

tion with its mass concentrated at the point 1/n. If Definition 1.4 makes sense
one should have Xn

d→ δ(0) as n →∞. Checking the distribution function we
have

FXn
(x) =

{
0, for x < 1

n ,

1, for x ≥ 1
n ,

→
{

0, for x ≤ 0,

1, for x > 0.

Thus, Fn(x) → Fδ(0)(x) as n → ∞ for all x ∈ C(Fδ(0)), but not for every x.
If, on the other hand, Yn ∈ δ(− 1

n ), then

FYn(x) =

{
0, for x < − 1

n ,

1, for x ≥ − 1
n ,

→
{

0, for x < 0,

1, for x ≥ 0,
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so that, in this case we have convergence for all x. Now, since Xn as well as
Yn are “close” to 0 when n is large, it would be awkward if only one of them
would converge to 0. Luckily, the origin does not trouble us since it belongs to
the discontinuity set, so that both sequences converge in distribution to the
δ(0)-distribution as n →∞ according to the definition. �

In this example there was only one discontinuity point. However, since
a distribution function has at most a countable number of discontinuities
(Lemma 2.2.1), the set of discontinuity points has Lebesgue measure 0.

An additional way to illustrate the fact that only continuity points mat-
ter is via the second definition. Namely, one can show that Definition 1.5 is
equivalent to

P (Xn ∈ A) → P (X ∈ A) for every P -continuity set,

that is, for every set A, such that P (∂A) = 0.
With respect to Definition 1.4 we observe that if X is a random variable

with distribution function F , then

x ∈ C(F ) ⇐⇒ P (X = x) = P (X ∈ ∂((−∞, x]) = 0,

that is x is a continuity point precisely when (−∞, x] is a continuity set.
Another example is the number of successes in independent repetitions,

which follows the binomial distributions. These are distributions with support
on the non-negative integers. It is well known (and will be seen again in
Chapter 7) that if Xn counts the number of successes after n repetitions,
then Xn suitably normalized, converges in distribution to a standard normal
distribution, N , say. Now, P (Xn ∈ {0, 1, 2, . . . , n}) = 1, so that, if p is the
success probability and we let

A =
{

j − np√
np(1− p)

: j = 0, 1, . . . , n, n = 1, 2, . . .

}
,

then

P

(
Xn − np√
np(1− p)

∈ A

)
= 1, whereas P (N ∈ A) = 0.

In other words, we do not have convergence on the set A. This is, however,
no problem, because A is not an N -continuity set; ∂A = R.

A more pathological example, typically of mathematics, cannot be resisted.

Example 1.2. Let Xn be uniformly distributed on { 1
n , 2

n , . . . , 1}. Then

Fn(x) =

⎧⎪⎨
⎪⎩

0, for x < 0,
[nx]
n → x, as n →∞, for 0 ≤ x < 1,

1, for x ≥ 1.

In other words, Xn
d→ X ∈ U(0, 1) as n →∞ (which is the natural guess).
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The pathology is explained via the rationals and irrationals as is common-
place in mathematics; remember also Example 2.2.1. We have

P (Xn ∈ Q) = 1, whereas P (X ∈ Q) = 0.

The problem is, of course, no problem, since P (X ∈ ∂Q) = 1, that is, Q is
not an X-continuity set. �

1.2 Measurability

Before we proceed we must check that the convergence concepts make math-
ematical sense, that is, that there are no measurability problems.

Inspecting the definitions we notice that the only one that needs to be
taken care of is almost sure convergence in Definition 1.1, where we consider
every ω ∈ Ω and check whether or not the sequence of real numbers Xn(ω)
converges to the real number X(ω) as n →∞. Almost sure convergence holds
if the ω-set for which there is convergence has probability 1 or, equivalently,
if the ω-set for which we do not have convergence has probability 0. So, we
must prove that the convergence set

{ω : Xn(ω) → X(ω) as n →∞}

is measurable.
Now, this set can be rewritten as

A =
∞⋂

ε>0

∞⋃
m=1

∞⋂
i=m

{
|Xi −X| ≤ ε

}
, (1.1)

which is not necessarily measurable, because an uncountable intersection is
involved. However an equivalent way to express the convergence set is (why?)

A =
∞⋂

n=1

∞⋃
m=1

∞⋂
i=m

{
|Xi −X| ≤ 1

n

}
, (1.2)

which is a measurable set. It thus makes sense to talk about P (A). Moreover,
the following convenient criteria for checking almost sure convergence emerge.

Proposition 1.1. Let X1, X2, . . . be random variables. Then Xn
a.s.→ X as

n →∞ iff

P (A) = P

( ∞⋂
n=1

∞⋃
m=1

∞⋂
i=m

{
|Xi −X| ≤ 1

n

})

= lim
n→∞

P

( ∞⋃
m=1

∞⋂
i=m

{
|Xi −X| ≤ 1

n

})

= lim
n→∞

lim
m→∞

P

( ∞⋂
i=m

{
|Xi −X| ≤ 1

n

})
= 1,
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or, equivalently, iff

P (Ac) = P

( ∞⋃
n=1

∞⋂
m=1

∞⋃
i=m

{
|Xi −X| > 1

n

})

= lim
n→∞

P

( ∞⋂
m=1

∞⋃
i=m

{
|Xi −X| > 1

n

})

= lim
n→∞

lim
m→∞

P

( ∞⋃
i=m

{
|Xi −X| > 1

n

})
= 0.

A minor rewriting of the conditions in Proposition 1.1, taking the equivalence
between (1.1) and (1.2) into account, yields the following equivalent criteria
for almost sure convergence.

Proposition 1.2. Let X1, X2, . . . be random variables. Then Xn
a.s.→ X as

n →∞ iff, for every ε > 0,

P

( ∞⋃
m=1

∞⋂
i=m

{
|Xi −X| ≤ ε

})
= lim

m→∞
P

( ∞⋂
i=m

{
|Xi −X| ≤ ε

})
= 1,

or, equivalently, iff, for every ε > 0,

P

( ∞⋂
m=1

∞⋃
i=m

{
|Xi −X| > ε

})
= lim

m→∞
P

( ∞⋃
i=m

{
|Xi −X| > ε

})
= 0.

Exercise 1.1. Check the details. �

1.3 Some Examples

Before moving onto the theory we present some examples to illustrate the
concepts. As for almost sure convergence we already encountered some cases
in Section 2.18.

Example 1.3. Let Xn ∈ Γ (n, 1
n ). Show that Xn

p→ 1 as n →∞.
We first note that E Xn = 1 and that VarXn = 1

n . An application of
Chebyshev’s inequality shows that, for all ε > 0,

P (|Xn − 1| > ε) ≤ 1
nε2 → 0 as n →∞.

Example 1.4. Let X1, X2, . . . be independent with common density

f(x) =

{
αx−α−1, for x > 1, α > 0,

0, otherwise,

and set Yn = n−1/α ·max1≤k≤n Xk, n ≥ 1. Show that Yn converges in distri-
bution as n →∞, and determine the limit distribution.
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In order to solve this problem, we first compute the distribution function:

F (x) =

{∫ x

1 αy−α−1 dy = 1− x−α, for x > 1,

0, otherwise,

from which it follows that, for any x > 0,

FYn
(x) = P ( max

1≤k≤n
Xk ≤ xn1/α) =

(
F (xn1/α)

)n
=
(
1− 1

nxα

)n

→ e−x−α

as n →∞.

Example 1.5. The law of large numbers. This is a very important result that
will be proved in greater generality in Theorem 6.3.1. The current version is
traditionally proved in a first course in probability.

Let X1, X2, . . . be a sequence of independent, identically distributed ran-
dom variables with mean µ and finite variance σ2, and set Sn = X1 + X2 +
· · ·+ Xn, n ≥ 1. The law of large numbers states that

Sn

n

p→ µ as n →∞.

To prove this statement we let ε be arbitrary, and invoke Chebyshev’s inequal-
ity:

P

(∣∣∣Sn

n
− µ

∣∣∣ > ε

)
≤ σ2

nε2 → 0 as n →∞.

Example 1.6. This example concerns Poisson approximation of the binomial
distribution. For the sake of illustration we assume, for simplicity, that p =
pn = λ/n.

Thus, suppose that Xn ∈ Bin(n, λ
n ). Then

Xn
d→ Po(λ) as n →∞.

The elementary proof involves showing that, for fixed k,(
n

k

)(λ

n

)k(
1− λ

n

)n−k

→ e−λ λk

k!
as n →∞.

We omit the details. �

2 Uniqueness

We begin by proving that convergence is unique – in other words, that
the limiting random variable is uniquely defined in the following sense: If
Xn → X and Xn → Y completely, almost surely, in probability, or in r-
mean, then X = Y almost surely, that is, P (X = Y ) = 1 (or, equivalently,
P ({ω : X(ω) �= Y (ω)}) = 0). For distributional convergence, uniqueness
means FX(x) = FY (x) for all x, that is, X

d= Y .
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Theorem 2.1. Let X1, X2, . . . be a sequence of random variables. If Xn con-
verges completely, almost surely, in probability, in r-mean, or in distribution
as n →∞, then the limiting random variable (distribution) is unique.

Proof. Suppose first that Xn
a.s.→ X and that Xn

a.s.→ Y as n →∞. Let

NX = {ω : Xn(ω) �→ X(ω) as n →∞},

and
NY = {ω : Xn(ω) �→ Y (ω) as n →∞}.

Since NX and NY are null sets, so is their union. The conclusion follows via
the triangle inequality, since, for ω /∈ NX ∪NY ,

|X(ω)− Y (ω)| ≤ |X(ω)−Xn(ω)|+ |Xn(ω)− Y (ω)| → 0 as n →∞,

so that X = Y a.s.
Next suppose that Xn

p→ X and that Xn
p→ Y as n → ∞, and let ε > 0

be arbitrary. Then

P (|X−Y | > ε) ≤ P
(
|X−Xn| >

ε

2

)
+P

(
|Xn−Y | > ε

2

)
→ 0 as n →∞,

so that, once again, P (X = Y ) = 1.
Uniqueness for complete convergence follows by summation;

∞∑
n=1

P (|X − Y | > ε) ≤
∞∑

n=1

P
(
|X −Xn| >

ε

2

)
+

∞∑
n=1

P
(
|Xn − Y | > ε

2

)
< ∞,

for all ε > 0. (Note, in particular, that we have obtained an infinite, conver-
gent, sum of identical terms!)

Now suppose that Xn
r→ X and that Xn

r→ Y as n →∞. The cr-inequality
(Theorem 3.2.2) yield

E|X − Y |r ≤ cr(E|X −Xn|r + E|Xn − Y |r) → 0 as n →∞,

so that E|X − Y |r = 0, in particular X − Y = 0 a.s.
Finally, suppose that Xn

d→ X and that Xn
d→ Y as n → ∞, and let

x ∈ C(FX) ∩ C(FY ); remember that (C(FX) ∩ C(FY ))c contains at most a
countable number of points. Then, once again, by the triangle inequality,

|FX(x)−FY (x)| ≤ |FX(x)−FXn(x)|+ |FXn(x)−FY (x)| → 0 as n →∞,

which shows that FX(x) = FY (x), ∀x ∈ C(FX)∩C(FY ). In view of the right
continuity of distribution functions (Lemma 2.2.3), we finally conclude that
FX(x) = FY (x) for all x. �
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3 Relations Between Convergence Concepts

A natural first problem is to determine the hierarchy between the convergence
concepts.

Theorem 3.1. Let X and X1, X2, . . . be random variables. The following
implications hold as n →∞:

Xn
c.c.→ X =⇒ Xn

a.s.→ X =⇒ Xn
p→ X =⇒ Xn

d→ X

⇑
Xn

r→ X

All implications are strict.

Proof. We proceed via several steps.

I. Xn
c.c.→ X =⇒ Xn

a.s.→ X

Immediate from the Borel-Cantelli lemma; Theorem 2.18.1. Note also that
Xn

c.c.→ X =⇒ Xn
p→ X, since the terms of a convergent sum tend to 0.

II. Xn
a.s.→ X =⇒ Xn

p→ X

This follows from Proposition 1.2, since

lim
m→∞

P (|Xi−X| > ε) ≤ lim
m→∞

P

( ∞⋃
i=m

{|Xi−X| > ε}
)

= 0 for any ε > 0.

III. Xn
r→ X =⇒ Xn

p→ X

This is a consequence of Markov’s inequality, Theorem 3.1.1, since

P (|Xn −X| > ε) ≤ E|Xn −X|r
εr

→ 0 as n →∞ for every ε > 0.

IV. Xn
p→ X =⇒ Xn

d→ X

Let ε > 0. Then

FXn(x) = P (Xn ≤ x) = P ({Xn ≤ x} ∩ {|Xn −X| ≤ ε})
+P ({Xn ≤ x} ∩ {|Xn −X| > ε})

≤ P ({X ≤ x + ε} ∩ {|Xn −X| ≤ ε}) + P (|Xn −X| > ε)
≤ P (X ≤ x + ε) + P (|Xn −X| > ε),
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so that, by exploiting convergence in probability,

lim sup
n→∞

FXn(x) ≤ FX(x + ε).

By switching Xn to X, x to x − ε, X to Xn, and x + ε to x, it follows,
analogously, that

lim inf
n→∞

FXn
≥ FX(x− ε).

The last two relations hold for all x and for all ε > 0. To prove convergence
in distribution, we finally suppose that x ∈ C(FX) and let ε → 0, to conclude
that

FX(x) = FX(x−) ≤ lim inf
n→∞

FXn
(x) ≤ lim sup

n→∞
FXn

(x) ≤ FX(x).

Since x ∈ C(FX) was arbitrary, we are done.

Remark 3.1. If FX has a jump at x, then we can only conclude that

FX(x−) ≤ lim inf
n→∞

FXn(x) ≤ lim sup
n→∞

FXn(x) ≤ FX(x).

Since FX(x)− FX(x−) equals the size of the jump we can never obtain con-
vergence at a jump, which, however, is no problem. �

Looking back we have justified all arrows, and it remains to show that
they are strict, and that there are no other arrows.

The following example will be used for these purposes.

Example 3.1. This is a slight variation of Example 2.5.1.
Let, for α > 0, X1, X2, . . . be independent random variables such that

P (Xn = 0) = 1− 1
nα

and P (Xn = n) =
1

nα
, n ≥ 1.

The following statements hold:

Xn
p→ 0 as n →∞ even without independence,

Xn
a.s.→ 0 as n →∞ iff α > 1,

Xn
c.c.→ 0 as n →∞ iff α > 1,

Xn
r→ 0 as n →∞ iff α > r.

Convergence in probability is a consequence of the fact that

P (|Xn| > ε) = P (Xn = n) =
1

nα
→ 0 as n →∞.

The complete and almost sure facts follows from the Borel-Cantelli lemmas,
since
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∞∑
n=1

P (|Xn| > ε)

{
< +∞ when α > 1,

= +∞ when α ≤ 1.

As for mean convergence,

E|Xn|r = 0r ·
(
1− 1

nα

)
+ nr · 1

nα

= nr−α

⎧⎪⎨
⎪⎩
→ 0, for r < α,

= 1, for r = α,

→ +∞, for r > α.

as n →∞.

Note that E|Xn|r neither converges to 0 nor diverges to infinity when r = α,
but equals (in fact, not even converges to) “the wrong number”, 1. �

We have now made the preparations we need in order to complete the
proof of the theorem.

In order to show that the left-most arrow is strict we confine ourselves at
present to referring to the already cited Example 2.18.2, and repeat that the
proof of that statement will be given in Section 6.11 ahead.

As for the second arrow, we note that for α ≤ 1, we do not have almost
sure convergence to 0. But we cannot have almost sure convergence to any
other limit either. Namely, if Xn

a.s.→ X, say, then Xn
p→ X as well, which is

impossible because of the uniqueness. Consequently, Xn

a.s.

�→ as n →∞, which
establishes the strictness of the second arrow.

That the vertical arrow is strict follows from the fact that E|Xn − X|r
might not even exist. There are, however, cases when Xn

p→ X as n → ∞,
whereas E|Xn − X|r �→ 0 as n → ∞. To see this we can exploit our fa-
vorite Example 3.1 with α < r, because in that case we do not have r-mean
convergence (to 0 and, by arguing as a few lines ago, not to any other limit
either).

Next we note that for 1 < α < r, Xn converges to 0 completely and almost
surely but not in r-mean, and if r < α ≤ 1, then Xn converges to 0 in r-mean
but neither completely nor almost surely.

It remains to find an example where we have convergence in distribution,
but not in probability. As we already have mentioned, distributional conver-
gence does not require jointly distributed random variables, so it is necessarily
the weakest convergence concept. However, the following example provides
jointly distributed random variables that converge in distribution only.

Example 3.2. Toss a symmetric coin, set X = 1 for heads and X = 0 for tails,
and let X2n = X and X2n−1 = 1 −X, n ≥ 1. Since X, X1, X2, . . . all have
the same distribution, it follows, in particular, that Xn

d→ X as n → ∞.

However, Xn

p

�→ X as n →∞, because of the repeated sign change. �

The proof of the theorem, finally, is complete. �
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3.1 Converses

Beyond Theorem 3.1 there exist, under certain additional assumptions, con-
verses to some of the arrows. In the first two cases to follow we require the
limit X to be degenerate, that is, that P (X = c) = 1 for some constant c.

Theorem 3.2. If X1, X2, . . . are independent and c a constant, then

Xn
c.c.→ c ⇐⇒ Xn

a.s.→ c as n →∞.

Proof. Since both statements are equivalent to

∞∑
n=1

P (|Xn − c| > ε) < ∞ for all ε > 0,

the conclusion follows from the Borel-Cantelli lemmas, Theorems 2.18.1 and
2.18.2. �

Remark 3.2. It is vital that the limit is degenerate, because {Xn −X, n ≥ 1}
are not independent random variables (in contrast to {Xn − c, n ≥ 1}), so
that the second Borel-Cantelli lemma is not applicable in the more general
case. �

Theorem 3.3. Let X1, X2, . . . be random variables and c a constant. Then

Xn
d→ δ(c) as n →∞ ⇐⇒ Xn

p→ c as n →∞.

Proof. In view of Theorem 3.1 we only have to prove the converse. Thus,
assume that Xn

d→ δ(c) as n →∞, and let ε > 0. Then

P (|Xn − c| > ε) = 1− P (c− ε ≤ Xn ≤ c + ε)
= 1− FXn(c + ε) + FXn(c− ε)− P (Xn = c− ε)
≤ 1− FXn

(c + ε) + FXn
(c− ε) → 1− 1 + 0

= 0 as n →∞,

since FXn
(c + ε) → FX(c + ε) = 1, FXn

(c − ε) → FX(c − ε) = 0, and c + ε
and c− ε ∈ C(FX) = {x : x �= c}. �

Another kind of partial converse runs as follows.

Theorem 3.4. Let X1, X2, . . . be random variables such that Xn
p→ X as

n → ∞. Then there exists a non-decreasing subsequence {nk, k ≥ 1} of the
positive integers, such that

Xnk

c.c.→ X as n →∞,

in particular,
Xnk

a.s.→ X as n →∞.
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Proof. By assumption there exists a non-decreasing subsequence, {nk, k ≥ 1},
such that

P
(
|Xnk

−X| > 1
2k

)
<

1
2k

.

Consequently,
∞∑

k=1

P
(
|Xnk

−X| > 1
2k

)
< ∞.

Since 1
2k < ε for any ε > 0 whenever k > log(1/ε)/ log 2, it follows that

∞∑
k=1

P (|Xnk
−X| > ε) < ∞,

which proves complete convergence, from which almost sure convergence is
immediate via Theorem 3.1. �

Theorem 3.5. Let X1, X2, . . . be a monotone sequence of random variables,
and suppose that Xn

p→ X as n →∞. Then

Xn
a.s.→ X as n →∞.

Proof. According to the previous result there exists an almost surely con-
vergent subsequence {Xnk

, k ≥ 1}. Suppose w.l.o.g. that X1, X2, . . . are
increasing, and let ω outside the exceptional null set be given. Then, for any
ε > 0, there exists k0(ω), such that

X(ω)−Xnk
(ω) < ε for all k ≥ k0(ω).

The monotonicity now forces

X(ω)−Xn(ω) < ε for all n ≥ k0(ω),

which establishes almost sure convergence. �

There also exists a kind of converse to the implication Xn
a.s.→ X =⇒ Xn

d→
X as n → ∞. The reason we write “a kind of converse” is that the converse
statement (only) is a representation. The details of this result, which is known
as Skorohod’s representation theorem, will be given in Section 5.13.

It is also possible to turn the implication Xn
r→ X =⇒ Xn

p→ X as n →
∞ around under some additional condition, namely, uniform integrability.
The mathematical analog is to switch the order between taking limits and
integrating;

lim
∫

=
∫

lim,

something we remember requires some additional condition such as uniformity
or domination. This is the topic of the following two sections.
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4 Uniform Integrability

Knowing that convergence in probability does not necessarily imply mean
convergence, a natural question is whether there exist conditions that guar-
antee that a sequence that converges in probability (or almost surely or in
distribution) also converges in r-mean. It turns out that uniform integrability
is the adequate concept for this problem.

Definition 4.1. A sequence X1, X2, . . . is called uniformly integrable iff

E|Xn|I{|Xn| > a} → 0 as a →∞ uniformly in n. �

Another, equivalent, way to express uniform integrability is via the distribu-
tion function; X1, X2, . . . is uniformly integrable iff∫

|x|>a

|x|dFXn
(x) → 0 as a →∞ uniformly in n.

Remark 4.1. The assumption that X1, X2, . . . have finite mean, implies that
E|Xn|I{|Xn| > a} → 0 as a →∞ for every n; the tails of convergent integrals
converge to 0. The requirement that the sequence is uniformly integrable
means that the contributions in the tails of the integrals tend to 0 uniformly
for all members of the sequence. �

Since for a uniformly integrable sequence of random variables,

E|Xn| = E|Xn|I{|Xn| ≤ a}+ E|Xn|I{|Xn| > a} ≤ a + 1,

for a large enough, it follows immediately that the moments are uniformly
bounded. However, uniform integrability is more, which is illustrated by the
following theorem.

Theorem 4.1. The random variables X1, X2, . . . are uniformly integrable iff
(i) supn E|Xn| < ∞;
(ii) for any ε > 0 there exists δ > 0, such that for any set A with P (A) < δ,

E|Xn|I{A} < ε uniformly in n.

Proof. Suppose first that X1, X2, . . . is uniformly integrable, let ε be given
and let A be such that P (A) < δ. The uniform boundedness of the moments
has already been verified a few lines ago. As for (ii),

E|Xn|I{A} = E|Xn|I{A ∩ {|Xn| ≤ a}}+ E|Xn|I{A ∩ {|Xn| > a}}
≤ aP (A) + E|Xn|I{|Xn| > a} ≤ aδ + ε/2 < ε,

if we first choose a large enough to make the second term small enough and
then δ small enough in order to ensure that aδ < ε/2.
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If, on the other hand, the conditions of the theorem are fulfilled, we set
An = {|Xn| > a}, and apply Markov’s inequality and (i) to obtain

P (An) ≤ E|Xn|
a

≤ supn E|Xn|
a

< δ uniformly in n,

for a sufficiently large, which, by (ii), shows that

E|Xn|I{|Xn| > a} = E|Xn|I{An} < ε uniformly in n,

thus establishing uniform integrability. �

It may be difficult at times to verify uniform integrability directly. Follow-
ing are some convenient sufficient criteria.

Theorem 4.2. Let X1, X2, . . . be random variables, and suppose that

sup
n

E|Xn|p < ∞ for some p > 1.

Then {Xn, n ≥ 1} is uniformly integrable. In particular this is the case if
{|Xn|p, n ≥ 1} is uniformly integrable for some p > 1.

Proof. We have

E|Xn|I{|Xn| > a} ≤ a1−pE|Xn|pI{|Xn| > a} ≤ a1−pE|Xn|p

≤ a1−p sup
n

E|Xn|p → 0 as a →∞,

independently, hence uniformly, in n.
The particular case is immediate since more is assumed. �

With a little bit more effort one can prove the following generalization.

Theorem 4.3. Let X1, X2, . . . be random variables and g a non-negative in-
creasing function such that g(x)/x →∞ as x →∞. If

sup
n

E g(Xn) < ∞,

then {Xn, n ≥ 1} is uniformly integrable.

Proof. By assumption,

g(x)
x

> b for all x > some a(b) > 0.

Hence, given ε > 0,

E|Xn|I{|Xn| > a} ≤ 1
b
E g(Xn)I{|Xn| > a} ≤ 1

b
sup

n
E g(Xn) < ε,

independently of n if b is large enough, that is, for all a > a(b). �
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Theorem 4.2 corresponds, of course, to the case g(x) = |x|p. However, The-
orem 4.3 also covers situations when no polynomial moment of order strictly
greater than 1 exists. One such example is g(x) = |x| log(1+|x|). The following
kind of “in between” result only presupposes first moments, but in terms of
a dominating random variable. The proof is short, but the assumption about
domination is rather strong. On the other hand, no higher-order moments are
required.

Theorem 4.4. Suppose that X1, X2, . . . are random variables such that

|Xn| ≤ Y a.s. for all n,

where Y is a positive integrable random variable. Then {Xn, n ≥ 1} is uni-
formly integrable.

Proof. This follows by observing that

E|Xn|I{|Xn| > a} ≤ E Y I{Y > a} → 0 as a →∞,

independently of (hence uniformly in) n. �

Corollary 4.1. Let X1, X2, . . . be a sequence of random variables. If

E sup
n
|Xn| < ∞,

then {Xn, n ≥ 1} is uniformly integrable.

Remark 4.2. The converse is not true in general. Namely, let Y1, Y2, . . . are
independent, identically distributed random variables, and let Xn, n ≥ 1,
denote the arithmetic means; Xn = 1

n

∑n
k=1 Yk, n ≥ 1. Then (note that

X1 = Y1)

{Xn, n ≥ 1} is uniformly integrable ⇐⇒ E|X1| < ∞,

E sup
n
|Xn| < ∞ ⇐⇒ E|X1| log+ |X1| < ∞.

Proofs of these fact and a bit more will be given in Subsection 10.16.1. �

An analysis of the proof of Theorem 4.4 reveals that the following stregth-
ening holds.

Theorem 4.5. Let X1, X2, . . . be random variables such that

|Xn| ≤ Yn a.s. for all n,

where Y1, Y2, . . . are positive integrable random variables. If {Yn, n ≥ 1} is
uniformly integrable, then so is {Xn, n ≥ 1}.

Exercise 4.1. Prove Theorem 4.5. �
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In order to prove uniform integrability it may happen that one succeeds
in doing so for all elements in a sequence with an index beyond some number.
The following lemma shows that this is enough for the whole sequence to be
uniformly integrable. This may seem obvious, however, the conclusion is not
necessarily true for families of random variables, the reason being that there
is an uncountable number of variables with an index prior to any given fixed
index in that case.

Lemma 4.1. Let X1, X2, . . . be random variables. If {Xn, n ≥ N > 1} is
uniformly integrable, then so is {Xn, n ≥ 1}.

Proof. By assumption,

sup
n≥N

E|Xn|I{|Xn| > a} < ε for a > a0.

Moreover, for 1 ≤ n < N ,

E|Xn|I{|Xn| > a} < ε for a > an.

Combining these facts we find that

sup
n≥1

E|Xn|I{|Xn| > a} < ε for a > max{a0, a1, a2, . . . , aN−1}. �

Another useful fact is that the sum of two uniformly integrable sequences
is uniformly integrable.

Theorem 4.6. If {Xn, n ≥ 1} and {Yn, n ≥ 1} are uniformly integrable,
then so is {Xn + Yn, n ≥ 1}.

Proof. Let a > 0. Then,

|Xn + Yn|I{|Xn + Yn| > a} ≤ 2 max{|Xn|, |Yn|}I{2 max{|Xn|, |Yn|} > a}
≤ 2|Xn|I{|Xn| > a/2}+ 2|Yn|I{|Yn| > a/2}.

Taking expectations, and letting a →∞ proves the claim. �

Note that this result is not transferable to products, since the product of
two integrable random variables need not even be integrable. Handling prod-
ucts is a different story; recall the Hölder inequality, Theorem 3.2.4. However,
the following holds.

Theorem 4.7. Let p, q > 1, with p−1 + q−1 = 1. If {|Xn|p, n ≥ 1} and
{|Yn|q, n ≥ 1} are uniformly integrable, then so is {Xn · Yn, n ≥ 1}.

Proof. Let a > 0. We have

|Xn ·Yn|I{|Xn ·Yn| > a} ≤ |Xn| · |Yn|I{|Xn| >
√

a}+ |Xn| · |Yn|I{|Yn| >
√

a}.
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Taking expectations, noticing that (I{ · })α = I{ · } for any α > 0, and apply-
ing the Hölder inequality yields

E|Xn · Yn|I{|Xn · Yn| > a} ≤ ‖XnI{|Xn| >
√

a}‖p · ‖Yn||q
+‖Xn‖p · ‖YnI{|Yn| >

√
a}‖q

≤ ‖XnI{|Xn| >
√

a}‖p · sup
n
‖Yn‖q + sup

n
‖Xn‖p · ‖YnI{|Yn| >

√
a}‖q

→ 0 as a →∞ uniformly in n.

The argument for the uniformity is that the individual sequences being uni-
formly integrable implies that the moments of orders p and q, respectively, are
uniformly bounded by Theorem 4.1(i). The other factor in each term converges
uniformly to 0 as n →∞ due to the same uniform integrability. �

5 Convergence of Moments

We are now in the position to show that uniform integrability is the “correct”
concept, that is, that a sequence that converges almost surely, in probability,
or in distribution, and is uniformly integrable, converges in the mean, that
moments converge and that uniform integrability is the minimal additional
assumption for this to happen.

5.1 Almost Sure Convergence

The easiest case is when Xn
a.s.→ X as n →∞. A result that “always holds” is

Fatou’s lemma. Although we have already seen the lemma in connection with
the development of the Lebesgue integral in Chapter 2, we recall it here for
easy reference.

Theorem 5.1. (Fatou’s lemma) Let X and X1, X2, . . . be random variables,
and suppose that Xn

a.s.→ X as n →∞. Then

E|X| ≤ lim inf
n→∞

E|Xn|.

Here is now a convergence theorem that shows the intimate connection
between uniform integrability and moment convergence.

Theorem 5.2. Let X and X1, X2, . . . be random variables, and suppose that
Xn

a.s.→ X as n →∞. Let r > 0. The following are equivalent:

(a) {|Xn|r, n ≥ 1} is uniformly integrable;

(b) Xn
r→ X as n →∞;

(c) E|Xn|r → E|X|r as n →∞.

Moreover, if r ≥ 1 and one of the above holds, then E Xn → E X as n →∞.
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Proof. We proceed via (a) =⇒ (b) =⇒ (c) =⇒ (a).
(a) =⇒ (b). First of all, by Fatou’s lemma and Theorem 4.1(i),

E|X|r ≤ lim inf
n→∞

E|Xn|r ≤ sup
n

E|Xn|r < ∞.

Secondly, we note that, since |Xn − X|r ≤ 2r(|Xn|r + |X|r), it follows from
Theorem 4.6 that {|Xn −X|r, n ≥ 1} is uniformly integrable.

Next, let ε > 0. Then

E|Xn −X|r = E|Xn −X|rI{|Xn −X| ≤ ε}+ E|Xn −X|rI{|Xn −X| > ε}
≤ εr + E|Xn −X|rI{|Xn −X| > ε},

so that
lim sup

n→∞
E|Xn −X|r ≤ εr,

which, due to the arbitrariness of ε proves that implication.
(b) =⇒ (c). Suppose first that 0 < r ≤ 1. By the crinequality, Theorem 3.2.2,∣∣E|Xn|r − E|X|r

∣∣ ≤ E|Xn −X|r → 0 as n →∞.

For r ≥ 1 we use the Minkowski inequality, Theorem 3.2.6 to obtain∣∣‖Xn‖r − ‖X‖r

∣∣ ≤ ‖Xn −X‖r → 0 as n →∞.

(c) =⇒ (a). Set An = {|Xn −X| > 1}. Then

E|Xn|rI{|Xn| > a + 1} = E|Xn|rI{{|Xn| > a + 1} ∩An}
+E|Xn|rI{{|Xn| > a + 1} ∩Ac

n}
≤ E|Xn|rI{An}+ E|Xn|rI{|X| > a}
≤
∣∣E(|Xn|r − |X|r

)
I{An}

∣∣+ E|X|rI{An}+ E|Xn|rI{|X| > a}
≤
∣∣E|Xn|r − E|X|r

∣∣+ E|X|rI{An}+ E|Xn|rI{|X| > a}.

Let ε > 0 be given. The first term converges to 0 as n → ∞ by assumption,
which means that,

sup
n≥n0

∣∣E|Xn|r − E|X|r
∣∣ < ε for some n0. (5.1)

The second term converges to 0 as a →∞ (independently of n) by Proposition
2.6.3(ii), since, by assumption, P (An) → 0 as n →∞. As for the third one,

E|X|rI{|X| ≤ a} ≤ lim inf
n→∞

E|Xn|rI{|X| ≤ a},

by Fatou’s lemma, (since |Xn|I{|X| ≤ a} a.s.→ |X|I{|X| ≤ a} as n → ∞), so
that
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lim sup
n→∞

E|Xn|rI{|X| > a} = lim sup
n→∞

(
E|Xn|r − E|Xn|rI{|X| ≤ a}

)
≤ E|X|r − lim inf

n→∞
E|Xn|rI{|X| ≤ a}

≤ E|X|r − E|X|rI{|X| ≤ a} = E|X|rI{|X| > a}.

Thus,
sup

n≥n1

E|Xn|rI{|X| > a} < ε for some n1,

provided a is sufficiently large, since E|X|rI{|X| > a} → 0 as a →∞.
Combining the above estimates for the three terms, it follows that

sup
n≥max{n0,n1}

E|Xn|rI{|X| > a} < ε,

for a sufficiently large, which means that the sequence{
|Xn|r, n ≥ max{n0, n1}

}
is uniformly integrable.

Uniform integrability of the whole sequence follows from Lemma 4.1.
Convergence of the expected values, finally, follows via the triangle in-

equality (and Lyapounov’s inequality, Theorem 3.2.5). �

5.2 Convergence in Probability

We begin with Fatou’s lemma assuming only convergence in probability. But
first an auxiliary result.

Lemma 5.1. Let {cn, n ≥ 1} be a sequence of real numbers. If for every
subsequence there exists a further subsequence with a limit superior that does
not exceed some number, a, say, then lim supn→∞ cn ≤ a. Similarly, if for
every subsequence there exists a further subsequence with a limit inferior that
exceeds some number, b, say, then lim infn→∞ cn ≥ b.

This kind of result is well known for convergence of real numbers. The present
variation is maybe less known.

Exercise 5.1. Prove the lemma. �

Theorem 5.3. Let X and X1, X2, . . . be random variables, and suppose that
Xn

p→ X as n →∞. Then

E|X| ≤ lim inf
n→∞

E|Xn|.

Proof. By Theorem 3.4 we know that there exists an almost surely convergent
subsequence. Exploiting this fact, we can, for every subsequence {Xnk

, k ≥ 1}
(which also converges in probability to X as n → ∞) find an almost surely
convergent subsequence {Xnkj

, j ≥ 1} to which we can apply Theorem 5.1,
to obtain

E|X| ≤ lim inf
j→∞

E|Xnkj
|.

An application of Lemma 5.1 finishes the proof. �
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Theorem 5.4. Let X and X1, X2, . . . be random variables, suppose that
Xn

p→ X as n →∞, and let r > 0. The following are equivalent:

(a) {|Xn|r, n ≥ 1} is uniformly integrable;

(b) Xn
r→ X as n →∞;

(c) E|Xn|r → E|X|r as n →∞.

Moreover, if r ≥ 1 and one of the above holds, then E Xn → E X as n →∞.

Proof. With Theorem 5.3 replacing Theorem 5.1, the proof of Theorem 5.2
goes through unchanged. �

Exercise 5.2. Check that this is true. �

In the last part of the proof of Theorem 5.2 we showed, in a somewhat
lengthy way, that

lim sup
n→∞

E|Xn|rI{|X| > a} ≤ E|X|rI{|X| > a}.

If we had applied Fatou’s lemma directly to the upper tail we would have
obtained

E|X|rI{|X| > a} ≤ lim inf
n→∞

E|Xn|rI{|X| > a}.

By combining the two we have shown that if Xn
a.s.→ X and E|Xn|r → E|X|r

as n → ∞, then E|Xn|rI{|X| > a} → E|X|rI{|X| > a} as n → ∞ (and
likewise, by subtraction, for E|Xn|rI{|X| ≤ a}).

The conclusion is intuitively reasonable, since |Xn|rI{|X| > a} converges
almost surely and is dominated by |Xn|r, the expectations of which are conver-
gent. However, the domination is not by a single, integrable random variable,
but by a sequence whose moments converge. The legitimacy of this procedure
is the following (version of the) strengthening of the Lebesgue dominated
convergence theorem, called Pratt’s lemma; see [202].

Theorem 5.5. Let X and X1, X2, . . . be random variables. Suppose that
Xn

a.s.→ X as n →∞, and that

|Xn| ≤ Yn for all n, Yn
a.s.→ Y, E Yn → E Y as n →∞.

Then

Xn → X in L1 and E Xn → E X as n →∞.

The theorem remains true with almost sure convergence replaced by conver-
gence in probability.

Remark 5.1. Note that the special case Yn = Y for all n is the dominated
convergence theorem. �
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Exercise 5.3. Prove Pratt’s lemma by suitably modifying the arguments preced-
ing the statement of the theorem.

Exercise 5.4. Use Pratt’s lemma to check that if Xn
a.s.→ X and E Xn → E X as

n → ∞, then, for any measurable set A, XnI{A} a.s.→ XI{A}, and E XnI{A} →
E XI{A} as n → ∞. This is then, for example, true for the set A = I{|X| > a},
where a is some positive number. �

Next we return for a moment to Example 3.1 (with α = 1), in which
P (Xn = 0) = 1 − 1

n , and P (Xn = n) = 1
n , n ≥ 1, so that Xn

p→ 0 and
E|Xn| = E Xn = 1 �= 0 as n →∞. In other words,

lim
n→∞

E Xn �= E lim
n→∞

Xn.

This implies that X1, X2, . . . cannot be uniformly integrable. Indeed, it fol-
lows from the definition that (for a > 1)

E|Xn|I{|Xn| > a} =

{
n · 1

n = 1 for a ≤ n,

0 for a > n,

so that supn E|Xn|I{|Xn| > a} = 1 for all a.

5.3 Convergence in Distribution

As the assumptions get weaker we need more and more preparations before
we can really take off. We begin with two limit theorems that, in addition,
will be used to prove equivalence between the two definitions of distributional
convergence that were given in Section 5.1, after which we provide a Fatou
lemma adapted to the setup of this section.

Theorem 5.6. Let X1, X2, . . . be a sequence of random variables and sup-
pose that Xn

d→ X as n → ∞. If h is a real valued or complex valued, con-
tinuous function defined on the bounded interval [a, b], where a, b ∈ C(FX),
then

E h(Xn) → E h(X) as n →∞.

Proof. The complex case follows from the real valued case by considering real
and imaginary parts separately and adding them, so we only have to prove
the latter one.

We shall exploit Lemma A.9.3. Let A ⊂ C(FX) ⊂ R be a countable dense
set (such a set exists; why?). If h(x) = I{(c,d]}(x), the indicator of the interval
(c, d], for some c, d ∈ A, a ≤ c < d ≤ b, the statement of the theorem reduces
to P (c < Xn ≤ d) → P (c < X ≤ d) which holds by assumption. By linearity,
the conclusion holds for simple functions whose “steps” have their endpoints
in A. Now, let h ∈ C[a, b], and let g be an approximating simple function as
provided by Lemma A.9.3. Then,
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|E h(Xn)− E h(X)| ≤ |E h(Xn)− E g(Xn)|+ |E g(Xn)− E g(X)|
+|E g(X)− E h(X)|

≤ E|h(Xn)− g(Xn)|+ |E g(Xn)− E g(X)|
+E|g(X)− h(X)|

≤ ε + |E g(Xn)− E g(X)|+ ε.

Since, by what has already been shown for simple functions, the middle term
converges to 0 as n →∞, we obtain

lim sup
n→∞

|E h(Xn)− E h(X)| < 2ε,

which, due to the arbitrariness of ε, proves the theorem. �

In Theorem 5.6 the interval was bounded but not necessarily the function.
In the following theorem it is the other way around; the function is bounded
but not the interval.

Theorem 5.7. Let X1, X2, . . . be a sequence of random variables and sup-
pose that Xn

d→ X as n →∞. If h is a real valued or complex valued, bounded,
continuous function, then

E h(Xn) → E h(X) as n →∞.

Proof. With |h| ≤ M , say,

|E h(Xn)− E h(X)| ≤ |E h(Xn)I{|Xn| ≤ A} − E h(X)I{|X| ≤ A}|
+|Eh(Xn)I{|Xn| > A}|+ |E h(X)I{|X| > A}|

≤ |E h(Xn)I{|Xn| ≤ A} − E h(X)I{|X| ≤ A}|
+E|h(Xn)|I{|Xn| > A}+ E|h(X)|I{|X| > A}

≤ |E h(Xn)I{|Xn| ≤ A} − E h(X)I{|X| ≤ A}|
+MP (|Xn| > A) + MP (|X| > A).

Let ε > 0, and choose A ∈ C(FX) so large that 2MP (|X| > A) < ε. Exploiting
Theorem 5.6 on the first term and distributional convergence on the two other
ones, we find that

lim sup
n→∞

|E h(Xn)− E h(X)| < 2MP (|X| > A) < ε. �

Theorem 5.8. Let X and X1, X2, . . . be random variables, and suppose that
Xn

d→ X as n →∞. Then

E|X| ≤ lim inf
n→∞

E|Xn|.
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Proof. Let A ∈ C(FX) be a positive number. Theorem 5.6 then tells us that

lim inf
n→∞

E|Xn| ≥ lim
n→∞

E|Xn|I{|Xn| ≤ A} = E|X|I{|X| ≤ A}.

The conclusion now follows by letting A tend to infinity through continuity
points of FX (do not forget Theorem 2.2.1(iii)). �

Remark 5.2. Notice that, since convergence in probability implies convergence
in distribution the proof of this version of Fatou’s lemma also works for The-
orem 5.3 where convergence in probability was assumed. �

Here is, finally, the promised result. However, we do not have equivalences as
in Theorems 5.2 and 5.4.

Theorem 5.9. Let X and X1, X2, . . . be random variables, and suppose that
Xn

d→ X as n →∞.
(i) If, for some r > 0, {|Xn|r, n ≥ 1} is uniformly integrable, then

E|Xn|r → E|X|r as n →∞.

(ii) For r ≥ 1 we also have E Xn → E X as n →∞.

Proof. By uniform integrability and the distributional version of Fatou’s
lemma, we first note that

E|X|r ≤ lim inf
n→∞

E|Xn|r ≤ sup
n

E|Xn|r < ∞.

In order to apply Theorem 5.7 we must separate the tails from the center
again:

|E|Xn|r − E|X|r| ≤
∣∣E|Xn|rI{|Xn| ≤ A} − E|X|rI{|X| ≤ A}

∣∣
+E|Xn|rI{|Xn| > A}+ E|X|rI{|X| > A}

≤
∣∣E|Xn|rI{|Xn| ≤ A} − E|X|rI{|X| ≤ A}

∣∣
+ sup

n
E|Xn|rI{|Xn| > A}+ E|X|rI{|X| > A}.

Let ε > 0. Since E|X|r < ∞ we may choose A1 ∈ C(FX) so large that
E|X|rI{|X| > A1} < ε. The uniform integrability assumption implies that
supn E|Xn|rI{|Xn| > A2} < ε whenever A2 is sufficiently large. This, together
with Theorem 5.7 applied to the first term, proves that, for A ∈ C(FX),
A > max{A1, A2}, we have

lim sup
n→∞

∣∣E|Xn|r − E|X|r
∣∣ < 2ε,

which concludes the proof of (i), from which (ii) follows as in Theorems 5.2
and 5.4. �
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Remark 5.3. Note how very nicely the proof illustrates the role of uniform
integrability in that it is precisely what is needed in order for the proof to
go through. Namely, the first term is taken care of by Theorem 5.7, and the
last one is a consequence of the integrability of X. It remains to take care of
supn E|Xn|rI{|Xn| > A}, and this is exactly what uniform integrability does
for us.

Remark 5.4. We also mention, without proof, that if, in addition, X and
X1, X2, . . . are non-negative and integrable then convergence of the expecta-
tions implies uniform integrability; see [20], Section 3. �

6 Distributional Convergence Revisited

Let, again, {Xn, n ≥ 1} be random variables with distribution functions
{Fn, n ≥ 1}. In Theorem 5.7 we proved that, if Xn

d→ X as n → ∞ and
h ∈ CB , then

E h(Xn) → E h(X) as n →∞.

However, this coincides with the alternative Definition 1.5 of distributional
convergence. So, as a logical next task, we prove the converse, thereby estab-
lishing the equivalence of the two definitions.

Theorem 6.1. Definitions 1.4 and 1.5 are equivalent.

Proof. Let a, b ∈ C(F ), −∞ < a < b < ∞, set

hk(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, for x < a− δk,
x−(a−δk)

δk
, for x ∈ [a− δk, a],

1, for x ∈ [a, b],
b+δk−x

δk
, for x ∈ [b, b + δk],

0, for x > b + δk,

with δk ↓ 0 as k → ∞, and suppose that Xn
d→ X as n → ∞ in the sense

of Definition 1.5. Theorem 5.7 and the monotonicity of distribution functions
then tell us that

Fn((a, b]) =
∫ b

a

dFn(x) ≤ E hk(Xn) → E hk(X) as n →∞.

In other words,

lim sup
n→∞

Fn((a, b]) ≤ E hk(X) = F ([a− δk, b + δk]).

Since k was arbitrary, δk → 0 as k → ∞, hk(x) ↓ I[a, b] as k → ∞, and a, b
are continuity points of F , we further conclude that



226 5 Convergence

lim sup
n→∞

Fn((a, b]) ≤ F ((a, b]).

If, instead

hk(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, for x < a,
x−a
δk

, for x ∈ [a, a + δk],
1, for x ∈ [a + δk, b− δk],
b−x
δk

, for x ∈ [b− δk, b],
0, for x > b + δk,

the same arguments yield

lim inf
n→∞

Fn((a, b]) ≥ F ([a + δk, b− δk]),

and, since, this time, hk(x) ↑ I(a, b), finally,

lim inf
n→∞

Fn((a, b]) ≥ F ((a, b]).

By joining the inequalities for limsup and liminf we have shown that Xn
d→ X

as n →∞ in the sense of Definition 1.4. �

As a corollary, or special case, we obtain the following uniqueness theorem.

Theorem 6.2. Let X and Y be random variables. Then

X
d= Y ⇐⇒ E h(X) = E h(Y ) for every h ∈ CB .

Proof. The conclusion is immediate upon setting Xn ≡ Y for all n. �

Remark 6.1. The logical treatment if one departs from the alternative defini-
tion of distributional convergence is of course to start with uniqueness and
move on to convergence. The converse order here is due to our entering the
alternative viewpoint through the back door. �

Exercise 6.1. Use the corollary to reprove the uniqueness theorem for distribu-
tional convergence.

Exercise 6.2. Prove that a sequence that convergences in probability also con-
verges in distribution by showing that Definition 1.5 is satisfied. �

6.1 Scheffé’s Lemma

So far we have studied the problem of whether or not convergence implies
convergence of moments, that is, of integrals. A related question is to what
extent, if at all, convergence in distribution and convergence of densities, that
is, of derivatives in the absolutely continuous case, imply each other.
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Example 6.1. Let X1, X2, . . . be random variables with densities

fXn
(x) =

{
1− cos(2πnx), for 0 ≤ x ≤ 1,

0, otherwise.

Clearly,

FXn
(x) =

⎧⎪⎨
⎪⎩

0, for x ≤ 0,

x− sin(2πnx)
2πn → x, for 0 ≤ x ≤ 1,

1, for x ≥ 1,

which tells us that Xn
d→ U(0, 1) as n →∞. However, the density is oscillating

and, hence, cannot converge. �

The following result provides a criterion for when densities do converge, but
first a definition and an auxiliary result.

Definition 6.1. (i) The variational distance between the distribution func-
tions F and G is

d(F, G) = sup
A∈R

|F (A)−G(A)|.

Associating the random variables X and Y with F and G, respectively, the
definition is equivalent to

d(X, Y ) = sup
A∈R

|P (X ∈ A)− P (Y ∈ A)|.

(ii) If X, X1, X2, . . . are random variables such that

d(Xn, X) → 0 as n →∞,

we say that Xn converges to X in total variation as n →∞. �

The second part of the definition introduces another convergence concept.
How does it relate to those already defined?

Since the sets (−∞, x] are Borel sets for any given x, it is clear that

|P (Xn ≤ x)− P (X ≤ x)| ≤ sup
A∈R

|P (Xn ∈ A)− P (X ∈ A)|,

which establishes the following hierarchy.

Lemma 6.1. Let X1, X2, . . . be random variables. If Xn → X in total vari-
ation as n →∞, then Xn

d→ X as n →∞.

Here is now Scheffé’s result.

Theorem 6.3. (Scheffé’s lemma) Suppose that X, X1, X2, . . . are absolutely
continuous random variables. Then
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sup
A∈R

|P (Xn ∈ A)− P (X ∈ A)| ≤
∫

R

|fXn(x)− fX(x)|dx, (6.1)

and if fXn
(x) → fX(x) almost everywhere as n →∞, then

d(Xn, X) → 0 as n →∞,

in particular, Xn
d→ X as n →∞.

Proof. Let A ∈ R. By the triangle inequality,

|P (Xn ∈ A)− P (X ∈ A)| =
∣∣∣ ∫

A

fXn(x) dx−
∫

A

fX(x) dx
∣∣∣

≤
∫

A

|fXn(x)− fX(x)|dx ≤
∫

R

|fXn(x)− fX(x)|dx,

which proves (6.1).
To prove convergence, we first observe that∫

R

(fX(x)− fXn
(x)) dx = 1− 1 = 0,

so that ∫
R

(fX(x)− fXn(x))+dx =
∫

R

(fX(x)− fXn(x))−dx.

Moreover, fX(x)− fXn(x) → 0 a.e. as n →∞, and 0 ≤ (fX(x)− fXn(x))+ ≤
fX(x), which, via dominated convergence, yields∫

R

|fX(x)− fXn
(x)|dx = 2

∫
R

(fX(x)− fXn
(x))+dx → 0 as n →∞.

This proves convergence in total variation, from which distributional conver-
gence follows from Lemma 6.1. �

A discrete version runs as follows.

Theorem 6.4. Suppose that X, X1, X2, . . . are integer valued random vari-
ables. Then

sup
A∈R

|P (Xn ∈ A)− P (X ∈ A)| ≤
∑

k

|P (Xn = k)− P (X = k)|,

and if P (Xn = k) → P (X = k) as n →∞ for all k, then

d(Xn, X) → 0 as n →∞,

in particular, Xn
d→ X as n →∞.

The proof amounts, essentially, to a translation of the previous one. We leave
the details as an exercise.
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Remark 6.2. With some additional effort one can show that

d(Xn, X) =
1
2

∫
R

|fXn
(x)− fX(x)|dx,

and
d(Xn, X) =

1
2

∑
k

|P (Xn = k)− P (X = k)|. �

7 A Subsequence Principle

It is well known that a sequence of reals converges if and only if every subse-
quence contains a convergent subsequence. It is natural to ask whether or not
such a principle holds for the various modes of convergence. More precisely,
given a sequence X1, X2, . . . of random variables and a mode of convergence,
is it true that Xn → X as n → ∞ in that mode if and only if every subse-
quence contains a subsequence that converges to X as n → ∞ in that very
mode?

Complete Convergence

The answer is negative since the subsequence principle does not hold for sums
of reals; consider, for example, the harmonic series.

Almost Sure Convergence

The answer is negative as is shown with the aid of the following modification
of our favorite Example 3.1. Namely, let

P (Xn = 0) = 1− 1
n

and P (Xn = 1) =
1
n

, n ≥ 1,

be independent random variables. Once again, Xn
p→ 0 but Xn

a.s.

�→ 0 as
n → ∞. Nevertheless, for any subsequence it is easy to construct a further
subsequence that is almost surely convergent.

Convergence in Probability

The negative answer for almost sure convergence shows that this concept can-
not be defined via a metric in a metric space (since the subsequence principle
holds in such spaces). Convergence in probability, on the other hand, is a
metrizable concept. This is the content of the following proposition; recall, by
the way, Section 3.4.
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Proposition 7.1. Let X and X1, X2, . . . be random variables. Then

Xn
p→ X as n →∞ ⇐⇒ E

( |Xn −X|
1 + |Xn −X|

)
→ 0 as n →∞.

Proof. Since the function |x|
1+|x| is bounded (by 1), Theorem 5.4 tells us that

|Xn −X|
1 + |Xn −X|

p→ 0 as n →∞ ⇐⇒ E
( |Xn −X|

1 + |Xn −X|

)
→ 0 as n →∞,

and since

P
( |Xn −X|

1 + |Xn −X| > ε
)
≤ P (|Xn −X| > ε) ≤ P

( |Xn −X|
1 + |Xn −X| >

ε

1 + ε

)
,

it follows that

|Xn −X|
1 + |Xn −X|

p→ 0 as n →∞ ⇐⇒ Xn −X
p→ 0 as n →∞,

and we are done (since the latter is equivalent to Xn
p→ X as n →∞). �

The content of the proposition thus is that Xn
p→ X as n → ∞ if and

only if E |Xn−X|
1+|Xn−X| → 0 as n →∞, which, in turn, holds iff every subsequence

of the expectations contains a further subsequence that is convergent. And,
in view of the proposition, this holds iff every subsequence of Xn contains a
subsequence that converges in probability.

Mean Convergence

There is nothing to prove, since the definition is in terms of sequences of real
numbers; the answer is positive.

Distributional Convergence

Once again the definition is in terms of real numbers that belong to the
continuity set of the limit distribution, the complement of which is a Lebesgue
null set, so that the answer is positive here as well.

8 Vague Convergence; Helly’s Theorem

We have seen in Theorem 3.4 that if a sequence of random variables con-
verges in a weak sense, then a stronger kind of convergence may hold along
subsequences. In this section we first present a famous theorem of that kind,
Helly’s selection theorem. However, in order to describe this result we in-
troduce a mode of convergence which is slightly weaker than convergence in
distribution.
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8.1 Vague Convergence

The distinction between vague convergence and distributional convergence is
that the limiting random variable is not (need not be) proper in the former
case, that is, probability mass may escape to infinity. We therefore state the
definition in terms of distribution functions. Although a limiting proper ran-
dom variable does not necessarily exist, it is, however, sometimes convenient
to call the limit distribution a pseudo-distribution, or sub-probability distribu-
tion, and such “random variables” improper.

Definition 8.1. A sequence of distribution functions {Fn, n ≥ 1} converges
vaguely to the pseudo-distribution function H if, for every finite interval I =
(a, b] ⊂ R, where a, b ∈ C(H),

Fn(I) → H(I) as n →∞.

Notation: Fn
v→ H as n →∞. �

Once again, the distinction to distributional convergence is that the total mass
of H is at most equal to 1.

Example 8.1. Suppose that P (Xn = n) = P (Xn = −n) = 1/2. Then

Fn(x) =

⎧⎪⎨
⎪⎩

0, for x < −n,
1
2 , for − n ≤ x < n,

1, for x ≥ n,

so that, for all x ∈ R,

Fn(x) → H(x) =
1
2

as n →∞.

Clearly H has all properties of a distribution function except that the limits
at −∞ and +∞ are not 0 and 1, respectively.

Example 8.2. Let Xn ∈ U(−n, n), n ≥ 1. The distribution function equals

FXn
(x) =

⎧⎪⎨
⎪⎩

0, for x < −n,
x+n
2n , for − n ≤ x < n,

1, for x ≥ n,

and converges to

H(x) =
1
2

as n →∞ for all x ∈ R.

Once again we have an improper distribution in the limit. �
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If Xn
d→ X as n → ∞, then, by definition, FXn

(x) → FX(x) as n → ∞
for x ∈ C(FX), from which it is immediate that, for any bounded interval
I = (a, b], such that a, b ∈ C(FX),

FXn(I) = FXn(b)− FXn(a) → FX(b)− FX(a) = FX(I) as n →∞,

so that convergence in distribution always implies vague convergence; distribu-
tional convergence is a stronger mode of convergence than vague convergence.

A necessary and sufficient condition for the converse is that the tails of the
distribution functions are uniformly small. We shall soon prove a theorem to
that effect. However, we have to wait a moment until we have some necessary
tools at our disposal.

8.2 Helly’s Selection Principle

The first one is Helly’s theorem that tells us that vague convergence always
holds along some subsequence.

Theorem 8.1. (Helly’s selection principle)
Let {Fn, n ≥ 1} be be a sequence of distribution functions. Then there exists
a non-decreasing subsequence, {nk, k ≥ 1}, such that

Fnk

v→ H as k →∞,

for some pseudo-distribution function H.

Proof. The proof uses the diagonal method. Let {rk, k ≥ 1} be an enumera-
tion of Q. Since the sequence {Fn(r1), n ≥ 1} is bounded, it follows from the
Bolzano-Weierstrass theorem that there exists an accumulation point j1 and
a subsequence {Fk,1(r1), k ≥ 1}, such that

Fk,1(r1) → j1 as k →∞,

where, of course, 0 ≤ j1 ≤ 1. The same argument applied to the subsequence
{Fk,1(r2), k ≥ 1} produces an accumulation point j2, and a subsubsequence
{Fk,2(r2), k ≥ 1}, such that

Fk,2(r2) → j2 as k →∞,

where 0 ≤ j2 ≤ 1, and so on. Moreover the subsubsequence also converges for
x = r1, since it is a subsequence of the subsequence. Continuing this procedure
leads to the following as k →∞:

Fk,1(r1) → j1,

Fk,2(ri) → ji for i = 1, 2,

Fk,3(ri) → ji for i = 1, 2, 3,

. . . . . . . . . . . . . . . . . . . . . . . .

Fk,m(ri) → ji for i = 1, 2, . . . , m,

. . . . . . . . . . . . . . . . . . . . . . . . . . .
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The trick now is to consider the infinite diagonal, {Fk,k, k ≥ 1}, which, apart
from a finite number of terms in the beginning, is a subsequence of every
horizontal subsequence, and therefore converges on all of Q.

We have thus exhibited a countable, dense set of values for which the
sequence converges.

Next we define a function H as follows: Set

H(ri) = ji, for ri ∈ Q.

Recalling that 0 ≤ ji ≤ 1 for all i, it follows automatically that

0 ≤ H(ri) ≤ 1 for ri ∈ Q.

Moreover, if r < s, r, s ∈ Q, then

0 ≤ Fk,k(s)− Fk,k(r) → H(s)−H(r) as k →∞,

which shows that H is non-decreasing on Q.
Next, let x ∈ R be arbitrary, and choose s, r ∈ Q, such that r < x < s.

Then, since Fk,k(r) ≤ Fk,k(x) ≤ Fk,k(s), it follows, upon taking limits, that

H(r) ≤ lim inf
k→∞

Fk,k(x) ≤ lim sup
k→∞

Fk,k(x) ≤ H(s),

and since r as well as s may be chosen arbitrarily close to x, that

H(x− 0) ≤ lim inf
k→∞

Fk,k(x) ≤ lim sup
k→∞

Fk,k(x) ≤ H(x + 0).

This proves that there always exists a subsequence that converges to a non-
decreasing function H taking its values in [0, 1] at the continuity points of H.
In order to “make” H right-continuous we complete the definition of H by
setting

H(x) = lim
ri↓x

H(ri) for x ∈ R.

This means that we “choose” the right-continuous version of H.
The proof of the theorem is complete. �

Exercise 8.1. Prove that H as defined is, indeed, right-continuous. �

Remark 8.1. In books where distribution functions are defined to be left-
continuous one would extend H by defining it as the limit as ri ↑ x. �

The second auxiliary result is an extension of Theorem 5.6.

Theorem 8.2. Let Fn, n ≥ 1, be distribution functions, and suppose that
Fn

v→ H for some pseudo-distribution function H as n → ∞. If h is a real
valued or complex valued, continuous function, defined on the bounded interval
[a, b], where a, b ∈ C(H), then∫ b

a

h(x) dFn(x) →
∫ b

a

h(x) dH(x) as n →∞.
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Proof. The proof of Theorem 5.6 carries over without changes, because we
only deal with finite intervals (please check). �

Theorem 5.7 on the other hand, does not carry over to vague convergence,
as the function h(x) ≡ 1 easily illustrates. However the theorem remains true
if we add the assumption that h vanishes at the infinities.

Theorem 8.3. Let {Fn, n ≥ 1} be a sequence of distribution functions, and
suppose that Fn

v→ H as n → ∞. If h is a real valued or complex valued,
continuous function, such that |h(x)| → 0 as x → ±∞, then∫ ∞

−∞
h(x) dFn(x) →

∫ ∞

−∞
h(x) dH(x) as n →∞.

Proof. The proof is almost the same as that of Theorem 5.7. The problem
is that the terms involving the tails no longer have to be small. In order to
“make” them small in the present case, we use the assumption about the
vanishing at infinity to conclude that, for any ε > 0 there exists A0, such that
|h(x)| ≤ ε, whenever A > A0. By selecting A ∈ C(H) exceeding A0, the proof
of Theorem 5.7 modifies into∣∣∣ ∫ ∞

−∞
h(x) dFn(x)−

∫ ∞

−∞
h(x) dH(x)

∣∣∣
≤
∫

|x|>A

|h(x)|dFn(x) +
∣∣∣ ∫

|x|≤A

h(x) dFn(x)−
∫

|x|≤A

h(x) dH(x)
∣∣∣

+
∫

|x|>A

|h(x)|dH(x)

≤ ε · 1 +
∣∣∣ ∫

|x|≤A

h(x) dFXn
(x)−

∫
|x|≤A

h(x) dH(x)
∣∣∣+ ε · 1,

where 1 is the upper bound of the probability mass in the tails, which is at
most equal to 1 also for H whether it is a pseudo-distribution function or not.

Since the central term converges to 0 as n → ∞ by Theorem 8.2 – note
that h, being continuous, is bounded for |x| ≤ A – we have shown that

lim sup
n→∞

∣∣∣ ∫ ∞

−∞
h(x) dFn(x)−

∫ ∞

−∞
h(x) dH(x)

∣∣∣ < 2ε,

and the conclusion follows. �

Remark 8.2. The last two results have been formulated in terms of integrals
rather than expectations, the reason being that the limit H need not be a
proper distribution function. �

8.3 Vague Convergence and Tightness

We are now ready to provide a connection between vague and distributional
convergence.
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Theorem 8.4. Let {Fn, n ≥ 1} be distribution functions. In order for every
vaguely convergent subsequence to converge in distribution, that is, in order
for the limit to be a proper distribution function, it is necessary and sufficient
that ∫

|x|>a

dFn(x) → 0 as a →∞ uniformly in n. (8.1)

Proof of the sufficiency. Suppose that Fnk

v→ H for some pseudo-distribution
function H as n →∞, and that (8.1) is satisfied. Since H has finite total mass
it follows that, for any ε > 0,∫

|x|>a

dH(x) < ε for a > aH .

By assumption we also have

sup
n

∫
|x|>a

dFn(x) < ε for a > aF .

Thus, for a > max{aH , aF }, it therefore follows that, for every k,

1−
∫ ∞

−∞
dH(x) =

∫ ∞

−∞
dFnk

(x)−
∫ ∞

−∞
dH(x)

≤
∫

|x|>a

dFnk
(x) +

∣∣∣ ∫ a

−a

dFnk
(x)−

∫ a

−a

dH(x)
∣∣∣+ ∫

|x|>a

dH(x)

≤ ε +
∣∣∣ ∫ a

−a

dFn(x)−
∫ a

−a

dH(x)
∣∣∣+ ε

so that, by Theorem 8.2,

1−
∫ ∞

−∞
dH(x) < 2ε,

which, due to the arbitrariness of ε, forces H to have total mass equal to 1,
and thus to be a proper distribution function.
Proof of the necessity. We now know that Fn

v→ H and that Fn
d→ H as

n →∞, so that H is proper, and we wish to show that (8.1) is satisfied.
Suppose that (8.1) is violated. Then, given ε, there exist increasing subse-

quences {nk, k ≥ 1} and {ak, k ≥ 1}, such that∫
|x|>ak

dFnk
(x) > 2ε.

Moreover, ∫
|x|>a

dH(x) < ε for a > aH ,
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as before. In addition, since a countable number of distributions are involved,
and a distribution function has at most a countable number of discontinu-
ities (Lemma 2.2.1), we may, without restriction, assume that a and {ak} are
continuity points of every distribution function involved.

Now, for any a > aH , there exists k0, such that ak > a for k > k0. Let a
and k > k0 be given. Combining our facts yields

1−
∫ ∞

−∞
dH(x) =

∫ ∞

−∞
dFnk

(x)−
∫ ∞

−∞
dH(x)

=
∫

|x|>a

dFnk
(x)−

∫
|x|>a

dH(x) +
(∫ a

−a

dFnk
(x)−

∫ a

−a

dH(x)
)

> 2ε− ε +
(∫ a

−a

dFnk
(x)−

∫ a

−a

dH(x)
)
,

so that, by Theorem 8.2,

1−
∫ ∞

−∞
dH(x) > ε,

that is, H is not a proper distribution function. The assumption that (8.1)
is violated thus leads to a contradiction, and the proof of the theorem is
complete. �

A sequence of distributions satisfying (8.1) does not allow any mass to
escape to infinity because of the uniformity in n; all distributions have uni-
formly small masses outside sufficiently large intervals. A sequence of distri-
butions satisfying this condition is called tight . If {Xn, n ≥ 1} are random
variables associated with a tight sequence of distribution functions we say that
{Xn, n ≥ 1} is tight. Notice also that if, for a moment, we call a sequence
of random variables {Xn, n ≥ 1}, such that {|Xn|r, n ≥ 1} is uniformly in-
tegrable for some r > 0 “uniformly integrable of order r”, then, by rewriting
Condition (8.1) as

E I{|Xn| > a} → 0 as a →∞ uniformly in n,

we may say that tightness corresponds to the sequence being “uniformly in-
tegrable of order 0”.

With this interpretation, and Theorem 4.2 in mind, we notice that, for
any p > 0,

P (|Xn| > a) ≤ 1
ap

E|Xn|pI{|X| > a} ≤ 1
ap

sup
n

E|Xn|p,

from which we obtain the first part of the following corollary. The proof of
the second half is similar; please check this.

Corollary 8.1. (i) Let p > 0. An Lp-bounded sequence is tight. In particular,
uniformly integrable sequences are tight.
(ii) Let g be a non-negative function increasing to +∞, and suppose that
supn E g(Xn) < ∞. Then {Xn, n ≥ 1} is tight.
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Exercise 8.2. Show that (a) if supn E log+ |Xn| < ∞, then {Xn, n ≥ 1} is tight.
(b): if Xn ∈ U(−n, n), n ≥ 1, then {Xn, n ≥ 1} is not tight. �

By an obvious modification of the proof of Lemma 4.1 it follows that a se-
quence of random variables that is tight remains so if a finite number of
random variables are added to the sequence.

Lemma 8.1. Let X1, X2, . . . be random variables. If {Xn, n ≥ N > 1} is
tight, then so is {Xn, n ≥ 1}.

Exercise 8.3. Prove the lemma. �

With the aid of Theorem 8.4 we can prove the following, useful, subsequence
principle for distributional convergence.

Theorem 8.5. Suppose that X1, X2, . . . is tight. Then Xn
d→ X as n → ∞

iff every subsequence contains a subsequence that converges vaguely to X.

Proof. The assumptions imply, in view of Theorem 8.4, that the vaguely con-
vergent subsequences, in fact, converge in distribution. The conclusion there-
fore follows via the subsequence principle for distributional convergence; recall
Section 5.7. �

8.4 The Method of Moments

In Section 4.10 we discussed criteria for when a sequence of moments uniquely
determines the corresponding distribution, the so-called moment problem. A
reasonable extension of this problem would be a result that tells us that if
the moments of a sequence of random variables converge to those of some
random variable X, then one has convergence in distribution. Provided the
limiting sequence uniquely determines the distribution of X. The following
result provides a positive answer to this suggestion.

Theorem 8.6. Let X and X1, X2, . . . be random variables with finite mo-
ments of all orders, and suppose that

E|Xn|k → E|X|k as n →∞, for k = 1, 2, . . . .

If the moments of X determine the distribution of X uniquely, then

Xn
d→ X as n →∞.

Proof. Since the moments converge they are uniformly bounded, which shows
that {Xn, n ≥ 1} is tight (Corollary 8.1) and, moreover, that {|Xn|p, n ≥ 1} is
uniformly integrable for every p > 0 (Theorem 4.2). Therefore, every vaguely
convergent sequence is distributionally convergent by Theorem 8.4; note that
such sequences do exist due to Helly’s theorem, Theorem 8.1.
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Now, suppose that {Xnj
, j ≥ 1} is such a sequence and that Y is the

limiting variable, that is, suppose that Xnj

v→, and, hence, d→ Y as j → ∞.
It then follows from Theorem 5.9 that the moments converge, that is, that

E|Xnj |p → E|Y |p as j →∞, for every p > 0.

However, since, by assumption, the moments converge to those of X, the
distribution of which was uniquely determined by its moments, we must have
X

d= Y . An appeal to Theorem 8.5 finishes the proof. �

9 Continuity Theorems

Transforms are, as we have seen, very useful for determining distributions of
new random variables, particularly for sums of independent random variables.
One essential feature that made this successful was the uniqueness theorems,
which stated that if two transforms are equal then so are the associated distri-
butions. It is then not far-fetched to guess that if two transforms are almost
equal, then so are the associated distributions. Mathematically, one would
translate this idea into the statement that if a sequence of transforms con-
verges, then so do the associated distributions or random variables. In this
section we shall see that this is indeed the case. Theorems of this kind are
called continuity theorems.

9.1 The Characteristic Function

This is the most useful transform, since it exists for all random variables.

Theorem 9.1. Let X, X1, X2, . . . be random variables. Then

ϕXn
(t) → ϕX(t) as n →∞ for all t,

if and only if
Xn

d→ X as n →∞.

Proof of the necessity. This is the easy half. Namely, if Xn
d→ X as n → ∞,

then, since |eitx| = 1, Theorem 5.7 (the complex version) tells us that

E eitXn → E eitX as n →∞,

that is, that the sequence of characteristic functions converges.
Proof of the sufficiency. The first step is to prove that the sequence is tight.
We state this fact as a separate lemma.

Lemma 9.1. Let X, X1, X2, . . . be random variables. If ϕXn(t) → ϕX(t) as
n →∞ for all t, then {Xn, n ≥ 1} is tight.
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Proof of Lemma 9.1. Let ε > 0. Since ϕX is continuous and equals 1 at the
origin, it follows that there exists h0 > 0, such that

1
h

∫
|t|<h

(1− ϕX(t)) dt < ε for h < h0.

Moreover, by assumption, 1 − ϕXn(t) → 1 − ϕX(t) as n → ∞, so that, by
Lemma A.6.3,

1
h

∫
|t|<h

(1− ϕXn(t)) dt → 1
h

∫
|t|<h

(1− ϕX(t)) dt as n →∞,

which means that there exists n0, such that

sup
n>n0

1
h

∫
|t|<h

(1− ϕXn
(t)) dt < 2ε.

Recalling from Lemma 4.4.1 that

P (|Xn| > 2/h) ≤ 1
h

∫
|t|<h

(1− ϕXn(t)) dt ,

we finally obtain, upon replacing 2/h by a, that

sup
n>n0

P (|Xn| > a) < 2ε for all a > a0.

Invoking Corollary 8.1 this establishes the tightness of {Xn, n > n0}, which,
in view of Lemma 8.1 proves tightness of the whole sequence. �

Proof of the sufficiency (continued). By the necessity part of the theorem and
the uniqueness theorem for characteristic functions, Theorem 4.1.2, it follows
that every vaguely convergent subsequence (remember that Helly’s theorem
guarantees their existence) must converge to X, so that an application of
Theorem 8.5 tells us that Xn

d→ X as n →∞. �

In case the characteristic functions converge to “some” function one should
be able to draw the conclusion that Xn converges in distribution to “some”
random variable.

Theorem 9.2. Let X1, X2, . . . be random variables, and suppose that

ϕXn(t) → ϕ(t) as n →∞, for −∞ < t < ∞,

where ϕ(t) is continuous at t = 0. Then there exists a random variable X with
characteristic function ϕ, such that

Xn
d→ X as n →∞.
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Proof. The proof is the same as the proof of Theorem 9.1 with one exception.
There we knew that the characteristic functions converges to the character-
istic function of some random variable, that is, we knew that the limiting
characteristic function indeed was continuous at 0. Here we only know that
the characteristic functions converge, which forces us to assume continuity at
0. But once that has been done the previous proof works fine. �

Example 9.1. Remember Example 8.2, which was used to illustrate the differ-
ence between vague convergence and distributional convergence.

Let Xn ∈ U(−n, n) for n ≥ 1. Then

ϕXn(t) =
sin nt

nt
→
{

1, when t = 0,

0, when t �= 0.

The limit is not continuous at t = 0. �

A particular case of interest is when the limiting random variable X is
degenerate, since in that case convergence in probability is equivalent to dis-
tributional convergence; cf. Theorem 5.3.3. The following result is a useful
consequence of this fact.

Corollary 9.1. Let X1, X2, . . . be random variables, and suppose that, for
some real number c,

ϕXn(t) → eitc as n →∞, for −∞ < t < ∞.

Then
Xn

p→ c as n →∞.

Exercise 9.1. Prove the corollary. �

Example 9.2. Here is a solution of Example 1.3 based on characteristic func-
tions. Admittedly the proof is more clumsy than the elementary one. The only
reason for presenting it here is to illustrate a method.

The characteristic function of the Γ (p, a)-distribution equals (1 − ait)−p,
so that with p = n and a = 1/n we obtain,

ϕXn(t) =
(
1− it

n

)−n

→ 1
e−it = eit = ϕδ(1)(t) as n →∞,

which, in view of Corollary 9.1, shows that Xn
p→ 1 as n →∞. �

9.2 The Cumulant Generating Function

Since the logarithmic function is strictly increasing, this one is easy.

Theorem 9.3. Let X, X1, X2, . . . be random variables, and suppose that

κXn(t) → κX(t) as n →∞.

Then
Xn

d→ X as n →∞.

Exercise 9.2. Isn’t it? �
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9.3 The (Probability) Generating Function

Theorem 9.4. Let X, X1, X2, . . . be non-negative, integer valued random
variables, and suppose that

gXn(t) → gX(t) as n →∞.

Then
Xn

d→ X as n →∞.

Proof. This should be (is?) a well-known fact for a power series. Nevertheless,
we thus know that

∞∑
k=0

P (Xn = k)tk →
∞∑

k=0

P (X = k)tk as n →∞,

which, putting an,k = P (Xn = k)− P (X = k) is the same as

hn(t) :=
∞∑

k=0

an,ktk → 0 as n →∞,

where, in addition, we know that |an,k| ≤ 1 for all k and n and that the series
is absolutely convergent for |t| < 1. We wish to show that an,k → 0 as n →∞
for every k.

Let 0 < t < ε < 1/2. Then

|hn(t)− an,0| ≤
∞∑

k=1

|an,k|tk ≤
∞∑

k=1

tk =
t

1− t
< 2ε,

so that, by the triangle inequality,

|an,0| < 2ε + |hn(t)|,

which tells us that
lim sup

n→∞
|an,0| < 2ε,

which, due to our assumption and the arbitrariness of ε proves that an,0 → 0
as n →∞.

We now repeat the argument:

t−1|hn(t)− an,0 − an,1t| ≤
∞∑

k=2

|an,k|tk−1 < 2ε,

which proves that
|an,1| < 2ε + t−1|hn(t)− an,0|,

so that
lim sup

n→∞
|an,1| < 2ε.

Iterating this procedure (formally, by induction), we find that an,k → 0 as
n →∞ for every k. �
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Remark 9.1. Note that this approach can be used to provide a (slightly) differ-
ent proof of the uniqueness theorem for generating functions, Theorem 4.7.1.
Namely, the modification amounts to showing that if

∞∑
k=0

aktk = 0,

for t in a neighborhood of 0, then ak = 0 for all k. �

Exercise 9.3. Write down the details. �

Let us illustrate the theorem by proving the Poisson approximation of the
binomial distribution in the simplest case (this can, of course, also be done
directly via the probability function as was pointed out in Example 1.6).

Example 9.3. Let Xn ∈ Bin(n, λ
n ). We wish to show that Xn

d→ Po(λ) as
n →∞.

To achieve this, we compute the generating function of Xn:

gXn
(t) =

(
1− λ

n
+

λ

n
t
)n

=
(
1 +

λ(t− 1)
n

)n

→ eλ(t−1) = gPo(λ)(t),

as n →∞, and the conclusion follows from Theorem 9.4. �

Exercise 9.4. Prove, more generally, that, if Xn ∈ Bin(n, pn), and n → ∞ in such
a way that pn → 0 and npn → λ as n → ∞, then Xn

d→ Po(λ). �

9.4 The Moment Generating Function

Theorem 9.5. Let X1, X2, . . . be random variables such that ψXn(t) exists
for |t| < h, for some h > 0, and for all n. Suppose further that X is a random
variable whose moment generating function, ψX(t), exists for |t| ≤ h1 < h for
some h1 > 0, and that

ψXn
(t) → ψX(t) as n →∞, for |t| < h1.

Then
Xn

d→ X as n →∞.

Moreover, {|Xn|r n ≥ 1} is uniformly integrable, and

E|Xn|r → E|X|r as n →∞, for all r > 0.

Proof. The convergence of the moment generating functions implies their uni-
form boundedness, which, in particular, implies that {Xn, n ≥ 1} is tight;
recall Corollary 8.1(ii) (or note that uniform boundedness of the moment
generating function implies the same for the moments and apply the first part
of the same corollary).
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Moreover, by the uniqueness theorem, the limit X is unique, so that every
vaguely convergent subsequence must converge to X, from which the first
conclusion follows by an appeal to Theorem 8.5.

For the remaining statements we recall that convergence of the moment
generating functions implies their uniform boundedness, so that Theorem 4.3
implies uniform integrability of {|Xn|r, n ≥ 1} for all r > 0, after which
Theorem 5.9 yields moment convergence.

Alternatively, one may appeal to the theory of analytic functions, as in the
proof of Theorem 4.8.1, and extend the moment generating function analyti-
cally to the strip |Re(z)| < h1 < h. Putting z = iy, where y is real, then takes
us to the realm of characteristic functions, so that the conclusion follows from
Theorem 9.1. �

Exercise 9.5. Solve Example 1.3 using moment generating functions.

Exercise 9.6. Re-prove the results of Example 9.3 and the accompanying exercise
with the aid of moment generating functions. �

Let us pause for a moment and summarize. In the proofs of Theorems
8.6, 9.5, and 9.1 the common denominator was to establish (i) tightness and
(ii) that every vague limit must be the unique limiting random variable, after
which an application of Theorem 8.5 finished the proof.

In the first case the assumption was that all moments converge to those of
a random variable that was uniquely determined by its moments. So, we had
to prove tightness. In the second case we used characteristic functions to prove
tightness, and the necessity part for uniqueness. Note that there is no necessity
part for moment generating functions since they do not always exist. In the
third case, convergence of the moment generating functions implied tightness
as well as uniqueness of the limit.

We close this section by pointing out, once again, that, surely, certain
results are more easily accessible with transforms than with a pedestrian ap-
proach. However, one must not forget that behind these more elegant solutions
or derivations there are sophisticated continuity theorems. So, starting out at
a higher level there is obviously a shorter route to go than if we start at a low
level.

10 Convergence of Functions of Random Variables

Suppose that X1, X2, . . . is a sequence of random variables that converges in
some sense to the random variable X and that h is a real valued function. Is
it true that the sequence h(X1), h(X2), . . . converges (in the same sense)? If
so, does the limiting random variable equal h(X)?

We begin with the simplest case, almost sure convergence.
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Theorem 10.1. Let X, X1, X2, . . . be random variables such that

Xn
a.s.→ X as n →∞,

and suppose that h is a continuous function. Then

h(Xn) a.s.→ h(X) as n →∞.

Proof. The definition of continuity implies that,{
ω : Xn(ω) → X(ω)

}
⊂
{
ω : h(Xn(ω)) → h(X(ω))

}
,

and since the former set has probability 1, so has the latter. �

Next we turn to convergence in probability.

Theorem 10.2. Let X1, X2, . . . be random variables such that

Xn
p→ a as n →∞,

and suppose that h is a function that is continuous at a. Then

h(Xn)
p→ h(a) as n →∞.

Proof. The assumption is that

P (|Xn − a| > δ) → 0 as n →∞ for all δ > 0,

and we wish to prove that

P (|h(Xn)− h(a)| > ε) → 0 as n →∞ for all ε > 0.

The continuity of h at a implies that

∀ ε > 0 ∃ δ > 0, such that |x− a| < δ =⇒ |h(x)− h(a)| < ε,

or, equivalently, that

∀ ε > 0 ∃ δ > 0, such that |h(x)− h(a)| > ε =⇒ |x− a| > δ,

which implies that{
ω : |h(Xn(ω))− h(a)| > ε

}
⊂
{
ω : |Xn(ω)− a| > δ

}
,

that is, ∀ ε > 0 ∃ δ > 0 such that

P (|h(Xn)− h(a)| > ε) ≤ P (|Xn − a| > δ).

Since the latter probability tends to 0 for all δ, this is particularly true for
the δ corresponding to the arbitrary ε > 0 of our choice. �
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What if Xn
p→ X as n → ∞, where X is some (non-degenerate) random

variable?

Exercise 10.1. Why does the above proof not carry over as it is? �

Answer: The inclusion{
ω : |h(Xn(ω))− h(X(ω))| > ε

}
⊂
{
ω : |Xn(ω)−X(ω)| > δ

}
, (10.1)

requires that h be uniformly continuous; the point X(ω) varies as ω varies.
This means that the theorem remains true as is provided we strengthen h to
be uniformly continuous. However, the result remains true also without this
stronger assumption. Namely, let ε > 0 and η > 0 be given, and choose A so
large that

P (|X| > A) < η/2.

Since h is uniformly continuous on [−A, A], and we can apply (10.1) precisely
as in the proof of Theorem 10.2, and it follows that

P (|h(Xn)− h(X)| > ε) = P ({|h(Xn)− h(X)| > ε} ∩ {|X| ≤ A})
+P ({|h(Xn)− h(X)| > ε} ∩ {|X| > A})

≤ P (|Xn −X| > δ) + P (|X| > A) ≤ η

2
+

η

2
= η,

for all δ as soon as n is large enough, that is, in particular for the δ corre-
sponding to our ε > 0.

This establishes the following extension of Theorem 10.2

Theorem 10.3. Let X, X1, X2, . . . be random variables such that

Xn
p→ X as n →∞,

and suppose that h is a continuous function. Then

h(Xn)
p→ h(X) as n →∞.

Remark 10.1. The proof above is interesting because it stresses the difference
between continuity and uniform continuity. Another proof of the theorem is
obtained by an appeal to Theorems 3.4 and 10.1, and Proposition 7.1. �

Exercise 10.2. Carry out the proof as indicated in the remark. �

10.1 The Continuous Mapping Theorem

The analog for distributional convergence has this special name. We shall
provide two proofs here. One via characteristic functions, and one via Defini-
tion 1.5. A third proof with the aid of the so-called Skorohod representation
theorem will be given at the end of Section 5.13.

For notational reasons we prefer to use the letter g rather than h in the
present section.
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Theorem 10.4. (The continuous mapping theorem)
Let X, X1, X2, . . . be random variables, and suppose that

Xn
d→ X as n →∞.

If g is continuous, then

g(Xn) d→ g(X) as n →∞.

First proof. An application of Theorem 5.7 (the complex version) shows that

ϕg(Xn)(t) = E exp{itg(Xn)} → E exp{itg(X)} = ϕg(X)(t) as n →∞,

after which the continuity theorem for characteristic functions, Theorem 9.1,
does the rest.
Second proof. Let h ∈ CB . Since h(g(x)) ∈ CB it follows from Theorem 5.7
that E h(g(Xn)) → E h(g(X)) as n → ∞, and since this is true for any
h ∈ CB , the conclusion follows via an appeal to Definition 1.5. �

Remark 10.2. With a little additional work one can show that the theorem
remains true also if g is measurable and the discontinuity set of g has Lebesgue
measure 0; see [20], Theorem 2.7. Alternatively, try Problem 8.24 first. �

A very useful application of this result is the so-called Cramér-Wold device.
The content is that a sequence of random vectors converges in distribution if
and only if every linear combination of its components does so. For the proof
we rely on some facts about random vectors that only have been demonstrated
here for real valued random variables. We apologize for this.

Theorem 10.5. Let X and Xn, n ≥ 1, be k-dimensional random vectors.
Then

Xn
d→ X as n →∞ ⇐⇒ t′ ·Xn

d→ t′ ·X as n →∞ for all t.

Proof. Suppose that all linear combinations converge. Then, by Theorem 5.7,

ϕt′·Xn
(u) → ϕt′·X(u) as n →∞.

In particular, rewriting this for u = 1, we have

E exp{it′ ·Xn} → E exp{it′ ·X} as n →∞,

which is the same as

ϕXn
(t) → ϕX(t) as n →∞.

An application of the continuity theorem for characteristic functions (the vec-
tor valued version that we have not proved here) shows that Xn

d→ X as
n →∞.

The converse follows from (a vector valued version of) the Theorem 10.4,
since the function g(x) = t′ · x is continuous. �
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Remark 10.3. Note that the convergence criterion of the theorem is an “almost
equal version” of the definition of the multivariate distribution in Chapter 2:
a random vector is normal iff every linear combination of its components is
(one-dimensional) normal. �

11 Convergence of Sums of Sequences

Let X1, X2, . . . and Y1, Y2, . . . be sequences of random variables. Suppose
that Xn → X and that Yn → Y as n →∞ in some sense. To what extent can
we conclude that Xn + Yn → X + Y as n →∞?

Theorem 11.1. Let X1, X2, . . . and Y1, Y2, . . . be sequences of random vari-
ables such that

Xn → X and Yn → Y as n →∞,

completely, almost surely, in probability or in r-mean, respectively. Then

Xn + Yn → X + Y as n →∞,

completely, almost surely, in probability or in r-mean, respectively.

Proof. With NX and NY being the null sets in Theorem 2.1 it follows that
Xn(ω) → X(ω) and Yn(ω) → Y (ω) as n →∞, and, hence, that

Xn(ω) + Yn(ω) → X(ω) + Yn(ω) as n →∞,

for all ω ∈ (NX ∪NY )c.
For complete convergence and convergence in probability it suffices to ob-

serve that{
|Xn + Yn − (X + Y )| > ε

}
⊂
{
|Xn −X)| > ε/2

}
∪
{
|Yn − Y )| > ε/2

}
,

and for convergence in r-mean the conclusion follows by an application of the
cr-inequality; Theorem 3.2.2. �

As for convergence in distribution, a little more care is needed, in that
some additional assumption is required.

Theorem 11.2. Let X1, X2, . . . and Y1, Y2, . . . be sequences of random
variables such that

Xn
d→ X and Yn

d→ Y as n →∞.

Suppose that Xn and Yn are independent for all n and that X and Y are
independent. Then

Xn + Yn
d→ X + Y as n →∞.
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Proof. The independence assumption suggests the use of transforms. In view
of Theorem 4.1.8 we have

ϕXn+Yn
(t) = ϕXn

(t) · ϕYn
(t) → ϕX(t) · ϕY (t) = ϕX+Y (t) as n →∞,

which, via the continuity theorem, Theorem 9.1, proves the conclusion. �

If one does not like the independence assumption one can avoid it, provided
it is compensated by the assumption that one of the limits is degenerate.

Theorem 11.3. Let X1, X2, . . . and Y1, Y2, . . . be sequences of random vari-
ables such that

Xn
d→ X and Yn

p→ a as n →∞,

where a is some constant. Then

Xn + Yn
d→ X + a as n →∞.

Proof. The proof is similar to that of Step IV in the proof of Theorem 3.1.
Let ε > 0 be given. Then

FXn+Yn
(x) = P

(
{Xn + Yn ≤ x} ∩ {|Yn − a| ≤ ε}

)
+P
(
{Xn + Yn ≤ x} ∩ {|Yn − a| > ε}

)
≤ P

(
{Xn ≤ x− a + ε} ∩ {|Yn − a| ≤ ε}

)
+ P (|Yn − a| > ε)

≤ P (Xn ≤ x− a + ε) + P (|Yn − a| > ε)
= FXn(x− a + ε) + P (|Yn − a| > ε) ,

from which it follows that

lim sup
n→∞

FXn+Yn
(x) ≤ FX(x− a + ε) for x− a + ε ∈ C(FX).

A similar argument shows that

lim inf
n→∞

FXn+Yn
(x) ≥ FX(x− a− ε) for x− a− ε ∈ C(FX).

Since ε > 0 may be arbitrarily small (and since FX has only at most a
countable number of discontinuity points – Lemma 2.2.1), we finally conclude
that

FXn+Yn(x) → FX(x− a) = FX+a(x) as n →∞,

for x− a ∈ C(FX), that is, for x ∈ C(FX+a). �

Theorems 11.1 and 11.3 also hold for differences, products, and ratios. We
confine ourselves to formulating the counterpart of Theorem 11.3.
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Theorem 11.4. Let X1, X2, . . . and Y1, Y2, . . . be sequences of random vari-
ables. Suppose that

Xn
d→ X and Yn

p→ a as n →∞,

where a is some constant. Then

Xn + Yn
d→ X + a,

Xn − Yn
d→ X − a,

Xn · Yn
d→ X · a,

Xn

Yn

d→ X

a
, for a �= 0,

as n →∞.

Remark 11.1. Theorem 11.4 is called Cramér’s theorem or Slutsky’s theorem
(depending on from which part of the world one originates). �

Exercise 11.1. Prove Theorem 11.4. �

11.1 Applications

To illustrate the usefulness and efficiency of Cramér’s theorem we first review
the use of the normal quantiles instead of the more exact quantiles in the
upper and lower bounds for confidence intervals based on large samples, after
which we re-prove some results for characteristic functions that were earlier
proved in a more purely analytical fashion.

Confidence Intervals

From statistics we know that in order to obtain confidence intervals for µ
when σ is unknown in the normal distribution one uses the t-statistic, and also
that one approximates the t-quantile with the corresponding quantile of the
standard normal distribution when the number of degrees of freedom is large.
As a nice application of Cramér’s theorem we show that this is reasonable
in the sense that for the t(n)-distribution, that is, the t-distribution with n

degrees of freedom, we have t(n) d→ N(0, 1) as n →∞. This is not exactly the
same as replacing quantiles by quantiles, but since the normal distribution is
absolutely continuous, this is no problem.

Example 11.1. Let Zn ∈ N(0, 1) and Vn ∈ χ2(n) be independent random
variables, and set

Tn =
Zn√

Vn

n

, n = 1, 2, . . . .
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The numerator, Zn, is always standard normal, in particular, asymptotically
so. As for the denominator, E Vn = n and VarVn = 2n, so that

Vn

n

p→ 1 as n →∞,

by Chebyshev’s inequality. Since the function h(x) =
√

x is continuous at
x = 1, it further follows, from Theorem 10.2, that√

Vn

n

p→ 1 as n →∞.

An application of Cramér’s theorem finishes the proof. �

Remark 11.2. The result as such does not require independence of Zn and Vn.
We assumed independence here only because this is part of the definition of
the t-distribution. �

In the following exercise the reader is asked to prove the analog for Bernoulli
trials or coin-tossing experiments when the success probability is unknown.

Exercise 11.2. Let X1, X2, . . . , Xn be independent, Be(p)-distributed random
variables, 0 < p < 1, and set Yn = 1

n

∑n
k=1 Xk. The interval

Yn ± λα/2

√
Yn(1 − Yn)/n,

where λα is the α-quantile of the standard normal distribution (Φ(λα) = 1 − α), is
commonly used as an approximative confidence interval for p on the confidence level
1 − α for n large. Show that this is acceptable in the sense that

Yn − p√
Yn(1 − Yn)/n

d→ N(0, 1) as n → ∞. �

The Uniqueness Theorem for Characteristic Functions

One can also use Cramér’s theorem to provide another proof of the uniqueness
theorem for characteristic functions, Theorem 4.1.2, as follows:

We thus wish to prove that the characteristic function uniquely determines
the distribution. The proof is based on the smoothing technique discussed in
Section 4.3, which amounted to adding an independent normal random vari-
able, thereby producing a sum which is absolutely continuous; recall Section
2.19. In the final step one lets some suitable parameter converge to 0 or infinity
to obtain the desired conclusion.

Thus, let X be our random variable under investigation and let Ya be
normal with mean 0 and variance 1/a2. The point is that the density and
the characteristic function of the standard normal distribution look the same
(except for the factor 1/

√
2π), so that the switching from density to charac-

teristic function which is the essence of Parseval’s relation (Subsection 4.2.5)
can be interpreted more freely if one of the distributions is normal.
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With our choice we thus have

fYa(y) =
a√
2π

exp
{
− 1

2
a2y2

}
and γ(s) = exp

{
− s2

2a2

}
.

Inserting this into Parseval’s relation yields∫ ∞

−∞
e−iuyϕ(y)

a√
2π

exp
{
− 1

2
a2y2

}
dy =

∫ ∞

−∞
exp

{
− (x− u)2

2a2

}
dF (x).(11.1)

Recalling the convolution formula, this can be reformulated as

fX+Ya(u) =
1
2π

∫ ∞

−∞
e−iuyϕ(y)e−a2y2/2 dy . (11.2)

Integrating from −∞ to x produces an expression for the distribution function
of X + Ya:

FX+Ya(x) =
1
2π

∫ x

−∞

∫ ∞

−∞
e−iuyϕ(y)e−a2y2/2 dy du.

By Cramér’s theorem we know that X + Ya
d→ X as a → ∞, since Ya

p→ 0
as a →∞. The right-hand side therefore provides a unique way of computing
the distribution function of X, namely, for all x ∈ C(FX), we have

FX(x) = lim
a→∞

1
2π

∫ x

−∞

∫ ∞

−∞
e−ityϕ(y)e−a2y2/2 dy du. (11.3)

This (re)establishes the uniqueness theorem for characteristic functions.

The Continuity Theorem for Characteristic Functions

Suppose that X1, X2, . . . is a sequence of random variables, and that we know
that ϕXn(t) → ϕ(t) as n →∞, where ϕ is continuous at 0.

By Helly’s selection theorem, Theorem 8.1, there exists a vaguely conver-
gent subsequence, {Xnk

, k ≥ 1}; Fnk

v→ F as k →∞, where F is a, possibly
degenerate, distribution function. Applying (11.1) to the subsequence yields∫ ∞

−∞
e−iuyϕXnk

(y)
a√
2π

exp
{
−1

2
a2y2

}
dy =

∫ ∞

−∞
exp

{
− (x− u)2

2a2

}
dFXnk

(x).

Let k → ∞. The right-hand side then converges to the integral with respect
to F by Theorem 8.3, and the left-hand side converges to the same integral
with respect to ϕ instead of ϕXnk

, by bounded convergence, since ϕXnk
→ ϕ

as k →∞. Thus,∫ ∞

−∞
e−iuyϕ(y)

a√
2π

exp
{
− 1

2
a2y2

}
dy =

∫ ∞

−∞
exp

{
− (x− u)2

2a2

}
dF (x).
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Next, let a →∞. A rewriting into probabilistic language of the integral in the
left-hand side is

E
(
exp{−iuYa}ϕ(Ya)

)
, where Ya ∈ N(0, 1/a2).

Now, since Ya
p→ 0 as a →∞, the left-hand side converges to exp{−iu0}ϕ(0) =

1 as a →∞ by Theorem 10.2. The right-hand side converges to the total mass
of F as a → ∞ by Theorem 8.3, since the exponential converges to 1. This
forces F to have total mass 1. We have thus shown that Fnk

d→ F as k →∞.
Finally: This procedure can be applied to any vaguely convergent sub-

sequence of any subsequence. Since the limit law is unique, recall (11.3), it
follows from the subsequence principle (Section 5.7) that Fn

d→ F as n →∞,
that is, that Xn converges in distribution as n →∞, to a random variable X
whose distribution function equals F .

This concludes the proof of the continuity theorem.

The Inversion Formula for Densities

It is also possible to (re)prove the inversion formula for densities given in
Theorem 4.1.4 with the present approach. Namely, suppose that ϕ ∈ L1 and
consider the density fX+Ya

in (11.2). By bounded convergence,

fX+Ya(u) → f(u) =
1
2π

∫ ∞

−∞
e−iuyϕ(y) dy as a →∞.

The right-hand side thus is the density we are aiming at for the limit X. It
remains to show that the density is, indeed, the density we are looking for.
To see this, let c, d ∈ C(FX), −∞ < c < d < ∞. Then

∫ d

c

fX+Ya(u) du →
{∫ d

c
f(u) du,

FX(d)− FX(c),
as a →∞.

Since c, d are arbitrary it follows that f must be the density of X.

11.2 Converses

In Chapter 3 we proved results such as “if X and Y are integrable, then so
is their sum”. We also found that a converse need not be true. In Section
5.10 we studied to what extent sums of sequences converge if the individual
ones do. In this section we shall look for converses, that is, if X1, X2, . . . and
Y1, Y2, . . . are sequences of random variables such that Xn + Yn converges in
some mode of convergence, is it then true that Xn and Yn converge?

The guess is that it cannot always be true, and that a degenerate example
illustrates this.
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Example 11.2. Suppose that P (Xn = n) = P (Yn = −n) = 1 for n ≥ 1.
Then Xn + Yn = 0 with probability 1, in particular, the sum converges in all
convergence modes. However, the individual sequences diverge.

Note also that being degenerate, Xn and Yn are independent for all n, so
that an independence assumption only, will not be of any help. �

The problem is that even though the sum is small, the individual “centers”,
that is, the medians, drift off to infinity. And this happens in such a way that
the drifts “happen to” cancel when the sequences are added. This suggests
two solutions, namely, that assuming that

• one of the sequences is well behaved, or
• symmetry

might make things work out all right.

Theorem 11.5. Let a, b ∈ R, let X1, X2, . . . and Y1, Y2, . . . be two sequences
of random variables.
(i) Suppose that Xn and Yn are independent for all n ≥ 1. If Xn +Yn

c.c.→ a+b

and Yn
p→ b as n →∞, then

Xn
c.c.→ a and Yn

c.c.→ b as n →∞.

(ii) Suppose that X1, X2, . . . , Xn and Yn are independent for all n ≥ 1. If
Xn + Yn

a.s.→ a + b and Yn
p→ b as n →∞, then

Xn
a.s.→ a and Yn

a.s.→ b as n →∞.

(iii) Suppose that Xn and Yn are independent for all n ≥ 1. If Xn+Yn
p→ a+b

and Yn
p→ b as n →∞, then

Xn
p→ a as n →∞.

Proof. We assume, without restriction, that a = b = 0 during the proof.
Our first observation is that

{|Xn + Yn| > ε} ⊃ {|Xn| > 2ε} ∩ {|Yn| < ε}. (11.4)

For all ε > 0, there exists, by assumption, n0(ε), such that

P (|Yn| > ε) <
1
2

for n > n0(ε), (11.5)

which, in view (11.4) and independence, shows that, given any such ε,

P (|Xn + Yn| > ε) ≥ P (|Xn| > 2ε) · P (|Yn| < ε) ≥ 1
2
P (|Xn| > 2ε),

for n > n0(ε). Therefore, under the assumption of (i), we have
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∞ >
∑

n>n0(ε)

P (|Xn + Yn| > ε) ≥ 1
2

∑
n>n0(ε)

P (|Xn| > 2ε),

which proves that Xn
c.c.→ 0 as n → ∞. The same then follows for Yn via

Theorem 11.1.
In order to prove (ii), we first note that, by Theorem 1.3.1,

0 = P (|Xn + Yn| > ε i.o.) = P

( ∞⋂
m=1

∞⋃
n=m

{|Xn + Yn| > ε}
)

= lim
m→∞

P
( ∞⋃

n=m

{|Xn + Yn| > ε}
)
. (11.6)

Next, let ε be given, set, for n ≥ m ≥ n0(ε),

A(m)
n = { max

m≤k≤n−1
|Xk| ≤ 2ε, |Xn| > 2ε},

and note that, for a fixed m, the sets A
(m)
n , are disjoint for n ≥ m, (11.4).

This fact, independence, and (11.5), together yield

P
( ∞⋃

n=m

{|Xn + Yn| > ε}
)
≥ P

( ∞⋃
n=m

A(m)
n ∩ {|Yn| < ε}

)

=
∞∑

n=m

P
(
A(m)

n ∩ {|Yn| < ε}
)

=
∞∑

n=m

P (A(m)
n ) · P (|Yn| < ε)

≥ 1
2

∞∑
n=m

P (A(m)
n ) =

1
2
P
( ∞⋃

n=m

A(m)
n

)

Joining this with (11.6) shows that

P

( ∞⋂
n=1

∞⋃
n=m

A(m)
n

)
= lim

m→∞
P

( ∞⋃
m=1

A(m)
n

)
= 0,

which, together with the fact that at most one of the events A
(m)
n , n ≥ m, can

occur for every fixed m, shows that P (|Xn| > 2ε i.o.) = 0, and, hence, that
Xn

a.s.→ 0 as n →∞. The same then follows for Yn by Theorem 11.1.
The final assertion is contained in Theorem 11.1. �

The conclusion of the theorem is that the first suggestion, that one of
the sequences is well behaved, is in order (under additional independence as-
sumptions). Let us check the second one. Note that the symmetry assumption
forces the limits a and b to be equal to 0.

Exercise 11.3. Check the last claim, that is, prove that, if X1, X2, . . . are sym-
metric random variables such that Xn → a for some constant a, completely, almost
surely, or in probability as n → ∞, then a = 0. �
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Theorem 11.6. Let X1, X2, . . . and Y1, Y2, . . . be sequences of symmetric
random variables.
(i) If Xn and Yn are independent for all n ≥ 1, then

Xn + Yn
c.c.→ 0 as n →∞ =⇒ Xn

c.c.→ 0 and Yn
c.c.→ 0 as n →∞.

(ii) If X1, X2, . . . , Xn and Yn are independent for all n ≥ 1, then

Xn + Yn
a.s.→ 0 as n →∞ =⇒ Xn

a.s.→ 0 and Yn
a.s.→ 0 as n →∞.

(iii) If Xn and Yn are independent for all n ≥ 1, then

Xn + Yn
p→ 0 as n →∞ =⇒ Xn

p→ 0 and Yn
p→ 0 as n →∞.

Proof. In this setup the proof follows (almost) immediately via Corollary
3.7.1, since

P (|Xn| > ε) ≤ 2P (|Xn + Yn| > ε).

Complete convergence for the sum therefore implies complete convergence for
each of the individual sequences. Similarly for convergence in probability.

Finally, if the sum converges almost surely it also converges in probability,
so that each of the sequences does so too. An application of Theorem 11.5(ii)
completes the proof. �

11.3 Symmetrization and Desymmetrization

Let us make the statement concerning the “centers” prior to Theorem 11.5 a
little more precise. As we have already mentioned (and shall see in Chapter 6),
a common way to prove limit theorems is to consider the symmetric case first,
and then to “desymmetrize”. The symmetrization inequalities, Propositions
3.6.2 and 3.6.3, then tell us that the asymptotics of the medians are the
crucial issue. The following two propositions shed some light on that. Recall
that med (X) is a median of the random variable X.

Proposition 11.1. Let X1, X2, . . . be random variables, let {Xs
k, k ≥ 1} be

the symmetrized sequence, and let an ∈ R, n ≥ 1. Then,

Xn − an
p→ 0 =⇒ Xs

n
p→ 0 =⇒ Xn −med (Xn)

p→ 0

=⇒ med (Xn)− an → 0 as n →∞.

In particular,

Xn
p→ 0 =⇒ med (Xn) → 0 as n →∞.

Proposition 11.2. Let X1, X2, . . . be random variables, let {Xs
k, k ≥ 1} be

the symmetrized sequence, and let an ∈ R, n ≥ 1. Then,
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Xn − an
a.s.→ 0 =⇒ Xs

n
a.s.→ 0 =⇒ Xn −med (Xn) a.s.→ 0

=⇒ med (Xn)− an → 0 as n →∞.

In particular,

Xn
a.s.→ 0 =⇒ med (Xn) → 0 as n →∞.

Exercise 11.4. Review the symmetrization inequalities and prove the proposi-
tions. �

Remark 11.3. The converses are obvious, that is, if Xn → X almost surely or
in probability as n →∞, then Xs

n converge too (Theorem 11.1). �

12 Cauchy Convergence

For a sequence of real numbers it is well known that convergence is equivalent
to Cauchy convergence, viz., for a sequence {an, n ≥ 1} of reals,

an → a as n →∞ ⇐⇒ an − am → 0 as n, m →∞.

The fancy terminology is that (R,R), that is, the space of reals, together with
its σ-algebra of Borel sets is complete.

In this subsection we check possible completeness for (most of) our modes
of convergence.

We begin by noticing that convergence always implies Cauchy convergence
via some kind of triangle inequality, together with the results in Section 5.11.
For example, if Xn

p→ X as n →∞, then

|Xn −Xm| ≤ |Xn −X|+ |X −Xm|
p→ 0 as n, m →∞,

by Theorem 11.1, and for distributional convergence,

|FXn
(x)− FXm

(x)| ≤ |FXn(x)− FX(x)|+ |FX(x)− FXm(x)|
→ 0 as n, m →∞, for x ∈ C(FX).

Now, let us turn to the converses. We thus assume that our sequence is
Cauchy convergent.

Almost Sure Convergence

For a.s. convergence this follows from the corresponding result for real num-
bers, since the assumption is that {Xn(ω), n ≥ 1} is Cauchy convergent for
almost all ω.
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Convergence in Probability

By modifying the proof of Theorem 3.4 one shows that there exists a subse-
quence, {Xnk

, k ≥ 1}, that is almost surely Cauchy convergent, from which
we conclude that there exists a limiting random variable X. This tells us that
Xnk

converges almost surely, and, hence, in probability to X as n →∞, from
which the conclusion follows via the triangle inequality,

|Xn −X| ≤ |Xn −Xnk
|+ |Xnk

−X|,

and Theorem 11.1.

Exercise 12.1. Prove the modification of Theorem 3.4 referred to. �

Exercise 12.2. An alternative proof would be to exploit Proposition 7.1. Verify
this. �

Mean Convergence

Given {Xn, n ≥ 1}, we thus assume that the sequence {E|Xn|r, n ≥ 1} is
Cauchy convergent for some r > 0. By Markov’s inequality, Theorem 3.1.1,

P (|Xm −Xn| > ε) ≤ E|Xn −Xm|r
εr

→ 0 as n →∞,

that is, {Xn, n ≥ 1} is Cauchy convergent in probability, so that there exists
a limiting random variable, X, such that Xn

p→ X as n →∞.
Moreover, by Theorem 3.4, there exists a subsequence, {Xnk

, k ≥ 1}, such
that

Xnk

a.s.→ X as n →∞,

so that, for m fixed,

Xm −Xnk

a.s.→ 0 as k →∞.

An application of Fatou’s lemma then shows that

E|Xm −X|r ≤ lim inf
k→∞

E|Xm −Xnk
|r,

from which it follows that

lim
m→∞

E|Xm −X|r ≤ lim
m→∞

lim inf
k→∞

E|Xm −Xnk
|r = 0.

This proves that Xn
r→ X as n →∞.

Note that we thereby have fulfilled our promise in Section 3.4 to show that
the Lp-spaces equipped with the norm ‖ · ‖p are complete for p ≥ 1.
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Distributional Convergence

This case is immediate, since distribution functions are real valued; if

Fn(x)− Fm(x) → 0 as n →∞,

then there exists a limiting value, F (x), say, such that Fn(x) → F (x) as
n →∞.

13 Skorohod’s Representation Theorem

In Theorem 3.1 we established a hierarchy between the various modes of
convergence. Later we have established some converses, and encountered some
cases where additional assumptions ensured a converse. In this section we
shall prove a theorem due to Skorohod [224], according to which, given that
Xn

d→ X as n →∞ there exists a “parallel” sequence which converges almost
surely. The usefulness, and beauty, of the result is that it provides easy proofs
of theorems such as the continuous mapping theorem, Theorem 10.4.

Theorem 13.1. (Skorohod’s representation theorem)
Let {Xn, n ≥ 1} be random variables such that

Xn
d→ X as n →∞.

Then there exist random variables X ′ and {X ′
n, ≥ 1} defined on the Lebesgue

probability space, such that

X ′
n

d= Xn for n ≥ 1, X ′ d= X, and X ′
n

a.s.→ X ′ as n →∞.

Remark 13.1. In probabilistic language the Lebesgue probability space corre-
sponds to a U(0, 1)-distributed random variable. �

Proof. Let Fn, be the distribution function of Xn, n ≥ 1, F that of X, and
set

X ′
n(ω) = inf{ω : Fn(x) ≥ ω}, n ≥ 1, and X ′(ω) = inf{ω : F (x) ≥ ω} ,

so that

{Fn(x) ≥ ω} = {X ′
n(ω) ≤ x}, n ≥ 1, and {F (x) ≥ ω} = {X ′(ω) ≤ x} ,

which implies that

F ′
n(x) = P ′(X ′

n ≤ x) = P ′({ω : ω ∈ (0, Fn(x)]}
)

= F (x), n ≥ 1,

F ′(x) = P ′(X ′ ≤ x) = P ′({ω : ω ∈ (0, F (x)]}
)

= F (x).
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So far we have found random variables with the correct distributions. In order
to prove convergence, let ω ∈ (0, 1) and ε > 0 be given and select x ∈ C(F ),
such that

F (x) < ω ≤ F (x + ε).

Since, by assumption, Fn(x) → F (x) as n →∞, there exists n0, such that

Fn(x) < ω ≤ F (x + ε) for all n ≥ n0.

In view of the inverse relationships this can, equivalently, be rewritten as

X ′(ω)− ε ≤ x < X ′
n(ω) for all n ≥ n0.

Due to the arbitrary choices of ω and ε it follows that

lim inf
n→∞

X ′
n(ω) ≥ X ′(ω) for all ω. (13.1)

Next, let ω∗ ∈ (ω, 1), ε > 0 and choose x ∈ C(F ), such that

F (x− ε) < ω∗ ≤ F (x).

By arguing as in the previous portion of the proof we first have

F (x− ε) < ω∗ < Fn(x) for all n ≥ n0,

which is the same as

X ′
n(ω∗) < x < X ′(ω∗) + ε for all n ≥ n0.

Moreover, the fact that ω < ω∗, forces

X ′
n(ω) < x < X ′(ω∗) + ε for all n ≥ n0,

so that

lim sup
n→∞

X ′
n(ω) ≤ X ′(ω∗) for all ω∗ > ω. (13.2)

Joining (13.1) with (13.2), and noticing that the choice of ω∗ was arbitrary (as
long as it exceeded ω), shows that Xn(ω) → X(ω) as n →∞ for all ω ∈ C(X).
However, X as a function of ω belongs to D+, so that the complement of C(X)
is at most countable by Lemma A.9.1(i). Thus,

Xn(ω) → X(ω) as n →∞, for all ω outside a null set,

which is exactly what was to be demonstrated. �

Having the representation theorem at our disposal, let us illustrate its
usefulness by re-proving the continuous mapping theorem, Theorem 10.4.
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We are thus given a sequence X1, X2, . . . , where Xn
d→ X as n → ∞,

and a function g ∈ C. The Skorohod representation theorem provides us with
a sequence X ′

1, X
′
2, . . ., and a random variable X ′, such that X ′

n
a.s.→ X ′ as

n →∞. Theorem 10.1 then tells us that

g(X ′
n) a.s.→ g(X ′) as n →∞.

Since almost sure convergence implies distributional convergence, it follows
that

g(X ′
n) d→ g(X ′) as n →∞,

and, finally, since every primed random variable has the same distribution as
the original, unprimed, one, we also have

g(Xn) d→ g(X) as n →∞,

which is the conclusion of the continuous mapping theorem.
Once again, this is a pretty and easy proof, BUT it relies on a very so-

phisticated prerequisite. In other words, we do not get anything for free.

Exercise 13.1. Prove the Fatou lemmas, i.e., Theorems 5.3 and 5.8, via Skorohod
representation.

Exercise 13.2. Prove Theorem 5.7 with the aid of Skorohod’s result.

14 Problems

1. Let {Xn, n ≥ 1} be a sequence of independent random variables with
common density

f(x) =

{
e−(x−a), for x ≥ a,

0, for x < a.

Set Zn = min{X1, X2, . . . , Xn}. Show that

Zn
p→ a as n →∞.

2. Suppose that Xk ∈ Γ (3, k), that is, that

fXk
(x) =

{
x2

2k3 e−x/k, for x > 0,

0, otherwise.

Show that
n∑

k=1

1
Xk

− 1
2

log n converges in probability as n →∞.

♠ Remember that
∑n

k=1
1
k

− log n → γ as n → ∞, where γ = 0.5772 . . . is
Euler’s constant.
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3. Suppose that Xn ∈ Ge( λ
n+λ ), n = 1, 2, . . . , where λ is a positive constant.

Show that Xn/n converges in distribution to an exponential distribution
as n →∞, and determine the parameter of the limit distribution.

4. Suppose that Xn ∈ Ge(pn), n ≥ 1. Show that
(a) if pn → p > 0, then Xn

d→ Ge(p) as n →∞.

(b) if pn → 0 and npn → λ > 0, then Xn/n
d→ Exp(1/λ) as n →∞.

5. Let X, X1, X2, . . . be independent, identically distributed random vari-
ables, such that sup{x : F (x) < 1} = +∞, and let

τ(t) = min{n : Xn > t}, t > 0,

that is, τ(t) is the index of the first X-variable that exceeds the level t.
Show that

ptτ(t) d→ Exp(1) as t →∞,

where pt = P (X > t).
♣ In a typical application we would consider τ(t) as the number of “shocks”

until the failure of a system and Xτ(t) as the size of the fatal “shock”.
6. Suppose that X ∈ N(µ, σ2), and that Xn ∈ N(µn, σ2

n), n ≥ 1. Prove that

Xn
d→ X as n →∞ ⇐⇒ µn → µ and σn → σ as n →∞.

7. Suppose that X ∈ Po(λ), and that Xn ∈ Po(λn), n ≥ 1. Prove that

Xn
d→ X as n →∞ ⇐⇒ λn → λ as n →∞.

8. Let X1, X2, . . . be independent random variables with common charac-
teristic function

ϕ(t) =

{
1−

√
|t|(2− |t|), for |t| ≤ 1,

0, otherwise,

and let {Sn, n ≥ 1} denote the partial sums. Show that Sn

n2 converges in
distribution as n →∞ and determine the limit.

9. Can you find a sequence of absolutely continuous random variables that
converges distribution to a discrete random variable? Can you find a se-
quence of discrete random variables with an absolutely continuous limit?

10. Let X1, X2, . . . be random variables, and suppose that

P (Xn < a i.o. and xn > b i.o.) = 0 for all a < b.

Prove that Xn converges a.s. as n →∞.
♠ Do not forget the rationals, Q.

11. Show that, if X1, X2, . . . are independent, identically distributed random
variables, then

P (Xn converges) = 0.
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12. Let Xn1, Xn2, . . . , Xnn be independent random variables, with a common
distribution given as follows:

P (Xnk = 0) = 1− 1
n −

1
n2 , P (Xnk = 1) = 1

n , P (Xnk = 2) = 1
n2 ,

where k = 1, 2, . . . , n and n = 1, 2, . . .. Set

Sn = Xn1 + Xn2 + · · ·+ Xnn, n ≥ 1.

Show that
Sn

d→ Po(1) as n →∞.

13. Let X1, X2, . . . be independent, standard Cauchy-distributed random
variables, and ak, k ≥ 1, real numbers. Prove that

∑n
k=1 akXk converges

in distribution if and only if

∞∑
n=1

|cn| < ∞.

14. Suppose that Xn ∈ N(µn, σ2
n), n ≥ 1. When is {Xn, n ≥ 1} uniformly

integrable?
15. Suppose that Xn ∈ Exp(λn), n ≥ 1. When is {Xn, n ≥ 1} uniformly

integrable?
16. Pólya’s theorem. The aim of this problem is to prove the following result:

Theorem 14.1. Suppose that ϕ is a continuous, even function on R, that
ϕ(0) = 0, that ϕ(t) → 0 as t → ±∞, and that ϕ is convex on R+. Then
ϕ is a characteristic function.

To prove this we begin by recalling, from Section 4.3, that the function

ϕ(t) =

{
1− |t|, for |t| < 1,

0, otherwise,

is a characteristic function (corresponding to a random variable with den-
sity (1− cos x)/(πx2)).
(a) Let, for 1 ≤ k ≤ n, n ≥ 1, pk,n, be positive numbers that add to 1,

and {ak,n, 1 ≤ k ≤ n}, a sequence of positive, strictly increasing reals.
Prove that

ϕn(t) =
n∑

k=1

pk,nϕ(t/ak,n)

is a characteristic function.
♣ Note that ϕ̃ in Section 4.3 is of this kind.
(b) Let n → ∞ and use a suitable approximation result relating convex

functions and polygons to finish the proof.
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17. Suppose that ϕ(t, u) is a characteristic function as a function of t for every
fixed u, and continuous as a function of u for every fixed t, and that G is
the distribution function of some random variable. Prove that

ϕ̃(t) = exp
{∫

R

(ϕ(t, u) dG(u)
}

is a characteristic function.
18. Let a > 0, suppose that X1, X2, . . . are independent random variables

with common density

fX(x) =
1
2a

e−|x|/a , −∞ < x < ∞,

and let N ∈ Po(m) be independent of X1, X2, . . . . Determine the limit
distribution of SN = X1 + X2 + · · ·+ XN (where S0 = 0) as m →∞ and
a → 0 in such a way that m · a2 → 1.

19. Let Xk ∈ Exp(k!), k = 1, 2, . . ., and suppose that X1, X2, . . . are inde-
pendent. Set Sn =

∑n
k=1 Xk, n ≥ 1. Show that

Sn

n!
d→ Exp(1) as n →∞.

♠ What is the distribution of Xn/n! ?
20. Let X1, X2, . . . be U(−1, 1)-distributed random variables, and set

Yn =

{
Xn, for |Xn| ≤ 1− 1

n ,

n, otherwise.

(a) Show that Yn converges in distribution as n →∞, and determine the
limit distribution.

(b) Let Y denote the limiting random variable. Consider the statements
E Yn → E Y and VarYn → Var Y as n →∞. Are they true or false?

21. Let X ∈ N(0, 1), let X1, X2, . . . be random variables defined by

P (Xn = 1) = 1− 1
n

and P (Xn = n) =
1
n

, n ≥ 1,

and suppose that all random variables are independent. Set

Yn = X ·Xn, n ≥ 1.

Show that

Yn
d→ N(0, 1) as n →∞,

E Yn = 0,

Var Yn → +∞ as n →∞.
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22. Let d ≥ 2, and let Xn = (X(1)
n , X

(2)
n , . . . , X

(d)
n ), n ≥ 1, be random vectors.

We say that Xn
p→ X as n →∞ iff

‖Xn −X‖ p→ 0 as n →∞,

where ‖ · ‖ is the Euclidean norm; ‖x‖ =
√∑d

k=1 x2
k for x ∈ Rd.

(a) Prove that

Xn
p→ X ⇐⇒ X(k)

n → X(k) for k = 1, 2, . . . , d as n →∞.

(b) Suppose that h : Rd → Rd′
is continuous. Prove that

Xn
p→ X as n →∞ =⇒ h(Xn) → h(X) as n →∞.

♣ This generalizes Theorem 10.3 to d dimensions.
23. Suppose that {Un, n ≥ 1} and {Vn, n ≥ 1} are sequences of random

variables, such that

Un
d→ U and Vn

p→ a as n →∞,

for some random variable U , and finite constant a. Prove that

max{Un, Vn} d→ max{U, a} as n →∞,

min{Un, Vn} d→ min{U, a} as n →∞.

♣ This is a kind of Cramér theorem for the maximum and the minimum.
24. Let X1, X2, . . . be random variables, such that Xn

d→ X as n → ∞, let
g : R → R, and set E = {x : g is discontinuous at x}. Show that

P (X ∈ E) = 0 =⇒ g(Xn) d→ g(X) as n →∞.

♣ This extends Theorem 10.4.
25. Let X and Y be random variables. The Lévy distance between X and Y

is

dL(X, Y ) = inf{ε > 0 : FY (x− ε)− ε ≤ FX(x) ≤ FY (x + ε) + ε for all x}.

Show that, if X, X1, X2, . . . are random variables, then

Xn
d→ X as n →∞ ⇐⇒ dL(Xn, X) → 0 as n →∞.



6

The Law of Large Numbers

We have mentioned (more than once) that the basis for probabilistic model-
ing is the stabilization of the relative frequencies. Mathematically this phe-
nomenon can be formulated as follows: Suppose that we perform independent
repetitions of an experiment, and let Xk = 1 if round k is successful and
0 otherwise, k ≥ 1. The relative frequency of successes is described by the
arithmetic mean, 1

n

∑n
k=1 Xk, and the stabilization of the relative frequencies

corresponds to
1
n

n∑
k=1

Xk → p as n →∞,

where p = P (X1 = 1) is the success probability.
Note that the convergence arrow is a plain arrow! The reason for this is

that the first thing to wonder about is: Convergence in what sense?
The basis for the probability model was the observation that whenever

such a random experiment is performed the relative frequencies stabilize. The
word “whenever” indicates that the interpretation must be “almost sure con-
vergence”. The stabilization thus is translated into

1
n

n∑
k=1

Xk
a.s.→ p as n →∞.

This, in turn, means that the validation of the Ansatz is that a theorem to
that effect must be contained in our theory. The strong law of large numbers,
which is due to Kolmogorov, is a more general statement to the effect that
if X1, X2, . . . are arbitrary independent, identically distributed random vari-
ables with finite mean, µ, then the arithmetic mean converges almost surely
to µ. Moreover, finite mean is necessary for the conclusion to hold. If, in par-
ticular, the summands are indicators, the result reduces to the almost sure
formulation of the stabilization of the relative frequencies.

There also exist weak laws, which means convergence in probability.
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Other questions concern (i) moment convergence, which means questions
related to uniform integrability (recall Section 5.4), (ii) whether other limit
theorems can be obtained by other normalizations under suitable conditions,
and (iii) laws of large numbers for randomly indexed sequences. We shall also
prove a fact that has been announced before, namely that complete conver-
gence requires more than almost sure convergence.

Applications to normal numbers, the Glivenko-Cantelli theorem, renewal
theory, and records will be given, which for the latter two means a continuation
of earlier visits to those topics.

The final section, entitled “Some Additional Results and Remarks”, pre-
ceding the problem section, contains different aspects of convergence rates.
This section may be considered as less “hot” (for the non-specialist) and can
therefore be skipped, or skimmed through, at a first reading.

1 Preliminaries

A common technique is to use what is called truncation, which means that one
creates a new sequence of random variables which is asymptotically equivalent
to the sequence of interest, and easier to deal with than the original one.

1.1 Convergence Equivalence

The first thing thus is to find criteria for two sequences of random variables
to be equivalent.

Definition 1.1. The sequences X1, X2, . . . and Y1, Y2, . . . of random vari-
ables are said to be convergence equivalent if

∞∑
n=1

P (Xn �= Yn) < ∞.
�

The first Borel-Cantelli lemma, Theorem 2.18.1, immediately tells us the fol-
lowing.

Theorem 1.1. If X1, X2, . . . and Y1, Y2, . . . are convergence equivalent,
then

(i) P (Xn �= Yn i.o.) = 0;

(ii)
∑∞

n=1(Xn − Yn) converges a.s.;

(iii) if bn ∈ R, n ≥ 1, bn ↑ ∞ as n →∞, then

1
bn

n∑
k=1

(Xk − Yk) a.s.→ 0 as n →∞.
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Proof. The first statement follows from Theorem 2.18.1. The significance is
that Xn and Yn differ only a finite number of times, that is, there exists a
random index n(ω) after which Xn and Yn are equal, so that the sum in (ii)
contains only a finite (but random) number of terms for almost all ω. The
last claim follows by the same argument, together with the fact that bn ↑ ∞
as n →∞. �

Example 1.1. If X1, X2, . . . is such that
∑∞

n=1 P (|Xn| > a) < ∞, then we
obtain a convergence equivalent sequence by introducing the random variables
Yn = XnI{|Xn| ≤ a}. �

Another example follows after the following useful tool.

Proposition 1.1. Suppose that X, X1, X2, . . . are independent, identically
distributed random variables, and let r > 0. The following are equivalent:

(i) E|X|r < ∞;

(ii)
∑∞

n=1 P (|Xn| > n1/rε) < ∞ for all ε > 0;

(iii) P (|Xn| > n1/rε i.o.) = 0 for all ε > 0;

(iv) Xn

n1/r

a.s.→ 0 as n →∞.

Proof. We know from Theorem 2.12.1, scaling, and equidistribution that

(i) ⇐⇒
∞∑

n=1

P (|X|r > n) < ∞ ⇐⇒
∞∑

n=1

P (|Xn| > n1/rε) < ∞.

This proves that (i) and (ii) are equivalent. The equivalence with (iii) and (iv)
is a consequence of the Borel-Cantelli lemmas and the definition of almost
sure convergence. As for (iv) one may also review Corollary 2.18.1. �

Proposition 1.1 will be frequently used in the sequel as follows.

Proposition 1.2. Suppose that X, X1, X2, . . . are independent, identically
distributed random variables, such that E|X|r < ∞ for some r > 0, and set

Yn = XnI{|Xn| ≤ n1/r}, n ≥ 1.

Then X1, X2, . . . and Y1, Y2, . . . are convergence equivalent.

Exercise 1.1. Although the proof is fairly immediate it is a healthy exercise to
put it on paper. �

1.2 Distributional Equivalence

This is a weaker equivalence concept, in the same way as convergence in
distribution is weaker than almost sure convergence.
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Definition 1.2. The sequences X1, X2, . . . and Y1, Y2, . . . of random vari-
ables are said to be distributionally equivalent if

P (Xn �= Yn) → 0 as n →∞. �

Since the terms of a convergent series tend to 0 it follows immediately that:

Proposition 1.3. If X1, X2, . . . and Y1, Y2, . . . are convergence equivalent
then they are also distributionally equivalent.

Following are some elementary facts concerning distributional equivalence, the
second of which explains the name of the equivalence concept.

Theorem 1.2. If X1, X2, . . . and Y1, Y2, . . . are distributionally equivalent,
then

(i) Xn − Yn
p→ 0 as n →∞;

(ii) if Yn
d→ Y as n →∞, then Xn

d→ Y as n →∞.

Proof. To prove (i) we simply note that, for any ε > 0,

P (|Xn − Yn| > ε) ≤ P (Xn �= Yn) → 0 as n →∞,

after which (ii) follows from (i) and Cramér’s theorem, Theorem 5.11.3. �

1.3 Sums and Maxima

As a further preparation we point out a relation between sums of symmetric
random variables and their partial maxima.

Proposition 1.4. Let X1, X2, . . . be independent, symmetric random vari-
ables, and set Yn = max1≤k≤n |Xk|, and Sn =

∑n
k=1 Xk, n ≥ 1. Then,

P (Yn > 2x) ≤ P ( max
1≤k≤n

|Sk| > x) ≤ 2P (|Sn| > x), x > 0.

Proof. Since |Xn| ≤ |Sn|+ |Sn−1| it follows that Yn ≤ 2 max1≤k≤n |Sk|. Now
apply the Lévy inequalities, Theorem 3.7.1. �

1.4 Moments and Tails

In this subsection we collect some facts that will be used several times later.
It is, maybe, a bit pathetic to collect them in a proposition, but (a) some of
the facts are easily overlooked, and (b) it is convenient for reference.

Proposition 1.5. (i) Let r > 0. Suppose that X is a non-negative random
variable. Then

E Xr < ∞ =⇒ xrP (X > x) → 0 as x →∞,

but not necessarily conversely.
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(ii) Suppose that X, X1, X2, . . . are independent, identically distributed ran-
dom variables with mean 0. Then, for any a > 0,

E XI{|X| ≤ a} = −E XI{|X| > a},

and ∣∣∣∣E
n∑

k=1

XkI{|Xk| ≤ a}
∣∣∣∣ ≤ nE|X|I{|X| > a}.

(iii) Let a > 0. If X is a random variable with mean 0, then Y = XI{|X| ≤ a}
does not in general have mean 0. However, if X is symmetric, then E Y = 0.

Proof. (i): We have

xrP (X > x) = xr

∫ ∞

x

dF (y) ≤
∫ ∞

x

yr dF (y) → 0 as x →∞,

being the tail of a convergent integral.
If, on the other hand, X is a random variable with density

f(x) =

{
c

xr+1 log x , for x > e,
0, otherwise,

say, where c is a normalizing constant, then

xrP (X > x) ∼ Cxr 1
xr log x

=
C

log x
→ 0 as x →∞

via partial integration, but

E Xr = c

∫ ∞

e

dx

x log x
= +∞.

(ii): The first result follows from the fact that the mean is zero;

0 = E X = E XI{|X| ≤ a}+ E XI{|X| > a}.

The second result follows from the first one and the triangle inequality.
(iii): Once the statement has been made (but not always before) the conclusion
is “trivial”. After all, a skew random variable with mean 0 that is truncated
symmetrically certainly does not retain mean 0.

If, on the other hand, we truncate a symmetric random variable symmet-
rically, the resulting variable is symmetric again, and has mean 0. Notice that
any truncated symmetric random variable X has mean 0, whether the original
mean exists or not. �

2 A Weak Law for Partial Maxima

Before we enter the discussion of weak laws of large numbers we squeeze a
weak law for partial maxima into the text. Partly because the law is of interest
in its own right, but also for later use.
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Theorem 2.1. Let X, X1, X2, . . . be independent, identically distributed ran-
dom variables, and set Yn = max1≤k≤n |Xk|, n ≥ 1. If {bn, n ≥ 1} is a
sequence of non-decreasing positive reals, then

Yn

bn

p→ 0 as n →∞ ⇐⇒ nP (|X| > bnε) → 0 for all ε as n →∞.

In particular, for r > 0,

Yn

n1/r

p→ 0 as n →∞ ⇐⇒ nP (|X| > n1/r) → 0 as n →∞.

Proof. The proof is based on the double inequality

1
2

nP (|X| > bnε) ≤ P (Yn > bnε) ≤ nP (|X| > bnε), for n large. (2.1)

The upper inequality is immediate, since {Yn > bnε} ⊂
⋃n

k=1{|Xk| > bnε}.
As for the lower bound, we have

P (Yn > bnε) = 1−
(
P (|X| ≤ bnε)

)n = 1−
(
1− P (|X| > bnε)

)n
.

so that, for n sufficiently large, the inequality follows via an application of
Lemma A.4.2 with δ = 1/2. �

Remark 2.1. A sufficient condition in the particular case is E|X|r < ∞ (cf.
Proposition 1.5). �

Exercise 2.1. Check that the “obvious” one-sided analog holds similarly, that is,
show that

max1≤k≤n Xk

bn

p→ 0 as n → ∞ ⇐⇒ nP (X > bnε) → 0 for all ε as n → ∞.

Exercise 2.2. Suppose that X1, X2, . . . are independent random variables, with
Yn = max1≤k≤n |Xk|, n ≥ 1, and let {bn, n ≥ 1} be a sequence of non-decreasing
positive reals as in the theorem. Prove (e.g., by extending Lemma A.4.2) that

Yn

bn

p→ 0 as n → ∞ ⇐⇒
n∑

k=1

P (|Xk| > bnε) → 0 for all ε as n → ∞,

and correspondingly for the one-sided analog. �

3 The Weak Law of Large Numbers

Here is a first, easily accessible, result.

Theorem 3.1. Let X, X1, X2, . . . be independent, identically distributed ran-
dom variables with finite mean, µ, and let Sn, n ≥ 1, denote their partial sums.
Then

Sn

n

p→ µ as n →∞.
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Proof. The essential tool to prove this is the truncated Chebyshev inequality,
Theorem 3.1.5. By centering it is no restriction to assume that µ = 0 in the
proof.

Let ε > 0, and set, for k = 1, 2, . . . , n, n ≥ 1,

Yk,n = XkI{|Xk| ≤ nε3}, and S′
n =

n∑
k=1

Yk,n.

Using the cited inequality, we have

P (|Sn − E S′
n| > nε) ≤ 1

nε2 Var Y1,n + nP (|X| > nε3)

≤ 1
nε2 E Y 2

1,n + nP (|X| > nε3)

=
1

nε2 E(X2I{|X| ≤ nε3}) + nP (|X| > nε3)

≤ εE|X|I{|X| ≤ nε3}+ nP (|X| > nε3)
≤ εE|X|+ nP (|X| > nε3).

Thus, by Proposition 1.5(i),

lim sup
n→∞

P (|Sn − E S′
n| > nε) ≤ εE|X|,

so that, ε being arbitrary, we have asserted that

Sn − E S′
n

n

p→ 0 as n →∞.

To finish off we note that, the mean being 0, it follows from Proposition 1.5(ii)
that

|E S′
n| = |nE XI{|X| ≤ nε3}| ≤ nE|X|I{|X| > nε3},

so that
E S′

n

n
→ 0 as n →∞,

and the conclusion follows (via Theorem 5.11.1).
As an alternative we may use characteristic functions and Corollary 5.9.1,

according to which the conclusion follows if we can show that

ϕX̄n
(t) → eitµ as n →∞, for −∞ < t < ∞.

Now, by Theorems 4.1.10 and 4.1.8,

ϕX̄n
(t) = ϕSn(t/n) = (ϕX(t/n)

)n
,

which, together with Theorem 4.4.2, yields

ϕX̄n
(t) =

(
1 + i

t

n
µ + o

( t

n

))n

→ eitµ as n →∞, for all t.

Admittedly, this proof is shorter. However, we must keep in mind that we rest
on Theorem 3.3 and a deep continuity theorem! �
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The following example pertains to a sequence of random variables whose
mean does not exist.

Example 3.1. Let X1, X2, . . . be independent, standard Cauchy-distributed
random variables. The characteristic function is ϕ(t) = e−|t|, and computa-
tions as above yield

ϕX̄n
(t) = (ϕ

(
t/n)

)n =
(
e−|t/n|)n = e−|t| = ϕ(t),

which, in view of the uniqueness theorem for characteristic functions shows
that

X̄n
d= X1, for all n.

The arithmetic mean of any number of observations thus has the same distri-
bution as a single observation. This is most counterintuitive, since any “rea-
sonable” model implies that arithmetic means have a “better precision” than
individual observations. The counter-intuitiveness is explained by the fact that
the law of large numbers does not hold, which, in turn is no contradiction,
since the mean of the Cauchy distribution does not exist. �

The weak law of large numbers, assuming finite mean and a normalization
by n, can be generalized to distributions with a finite moment of any order
between 0 and 2, and with a normalizing sequence that is a suitable power of
n as follows.

Theorem 3.2. (The Marcinkiewicz-Zygmund weak law)
Let 0 < r < 2. Suppose that X, X1, X2, . . . are independent, identically
distributed random variables, such that E|X|r < ∞, and let Sn, n ≥ 1, denote
their partial sums. We also suppose, without restriction, that E X = 0 when
1 ≤ r < 2. Then

Sn

n1/r

p→ 0 as n →∞.

Proof. The main difference compared to the previous proof is that we are
facing a bit more technical trouble at the end in order to take care of the
truncated means. In addition, since the mean does not exist when 0 < r < 1,
we shall solve the two cases 0 < r < 1 and 1 < r < 2 differently (the case
r = 1 is Theorem 3.1).

We begin by considering the case 1 < r < 2. Let ε > 0, and set, for
k = 1, 2, . . . , n, n ≥ 1,

Yk,n = XkI{|Xk| ≤ n1/rε
3

2−r }, and S′
n =

n∑
k=1

Yk,n.

By proceeding exactly as in the proof of Theorem 3.1, we arrive at

P (|Sn − E S′
n| > n1/rε) ≤ 1

n(2/r)−1ε2 Var Y1,n + nP (|X| > n1/rε
3

2−r )

≤ εE|X|r + nP (|X| > n1/rε
3

2−r ),
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which, via Proposition 1.5(i), shows that

lim sup
n→∞

P (|Sn − E S′
n| > n1/rε) ≤ εE|X|r.

It remains to show that E S′
n = o(n1/r) as n →∞, after which the conclusion

follows (via Theorem 5.11.1). We proceed basically as in the previous proof:

|E S′
n| = |nE XI{|X| ≤ n1/rε

3
2−r }| ≤ nE|X|I{|X| > n1/rε

3
2−r }

≤ n(n1/rε
3

2−r )1−rE|X|rI{|X| > n1/rε
3

2−r }

= ε
3(1−r)
2−r n1/rE|X|rI{|X| > n1/rε

3
2−r } = o(n1/r) as n →∞,

since E|X|r < ∞.
Now let 0 < r < 1. In this case we shall, in fact, show that convergence

holds in Lr, from which it follows that it also holds in probability (Theorem
5.3.1).

Toward this end, let M > 0 be so large that E|X|rI{|X| > M} < ε. This
is possible for any ε > 0, since E|X|r < ∞. Set

Yk = XkI{|Xk| ≤ M} and Zk = XkI{|Xk| > M}, k = 1, 2, . . . .

Then, by the cr-inequality,

E|Sn|r ≤ E
∣∣∣ n∑

k=1

Yk

∣∣∣r + E
∣∣∣ n∑

k=1

Zk

∣∣∣r ≤ (nM)r + nE|Z1|r

= (nM)r + nE|X|rI{|X| > M} ≤ (nM)r + nε,

so that

lim sup
n→∞

E|Sn|r
n

≤ ε.

This proves that Sn

n1/r → 0 in r-mean as n →∞. �

Remark 3.1. Convergence in Lr also holds when 1 ≤ r < 2, but that is a bit
harder to prove. We shall return to this problem in Section 6.10. �

Example 3.2. Let X1, X2, . . . have a symmetric stable distribution with index
α ∈ (0, 2), that is, suppose that, for some c > 0,

ϕXn
(t) = e−c|t|α , −∞ < t < ∞,

and let, as always, Sn, n ≥ 1, denote the partial sums. By arguing as in
Example 3.1 – please check – we find that

Sn

n1/α

d= X1,

so that, with r = α we find that the Marcinkiewicz-Zygmund weak law does
not hold. Which is no contradiction, since stable distributions with index in
(0, 2) have finite moments of order strictly smaller than α, whereas moments
of higher order do not exist (as we shall find out in Chapter 9). �
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By inspecting the proof of Theorem 3.1 more closely, and by modifying it
appropriately the following result emerges.

Theorem 3.3. Let X1, X2, . . . be independent random variables with par-
tial sums {Sn, n ≥ 1}, and let {bn, n ≥ 1} be a sequence of positive reals,
increasing to +∞. Further, set, for k = 1, 2, . . . , n, n ≥ 1,

Yk,n = XkI{|Xk| ≤ bn}, S′
n =

n∑
k=1

Yk,n, and µn = E S′
n.

If
n∑

k=1

P (|Xk| > bn) → 0, as n →∞ (3.1)

and

1
b2
n

n∑
k=1

Var Yk,n → 0 as n →∞, (3.2)

then
Sn − µn

bn

p→ 0 as n →∞. (3.3)

If, in addition,
µn

bn
→ 0 as n →∞,

then
Sn

bn

p→ 0 as n →∞. (3.4)

Conversely, if the weak law (3.3) holds, then so do (3.1) and (3.2).

Proof of the sufficiency. An application of the truncated Chebyshev inequality,
Theorem 3.1.5, tells us that

P (|Sn − µn| > bnε) ≤ 1
b2
nε2

n∑
k=1

Var Yk,n +
n∑

k=1

P (|Xk| > bn),

upon which we observe that the assumptions are tailor made for (3.3) to hold.
The rest is immediate.
Proof of the necessity. Suppose that (3.3) holds. Due to Proposition 5.11.1 we
know that

Ss
n

bn

p→ 0 as n →∞.

Joining this with Proposition 1.4 we obtain a weak law for the partial maxima;

max1≤k≤n |Xs
k|

bn

p→ 0 as n →∞,



3 The Weak Law of Large Numbers 275

which, by invoking (the exercise following) Theorem 2.1 shows that (3.1) is
satisfied in the symmetric case.

To verify (3.2), likewise in the symmetric case, we wish to show that
n∑

k=1

Var
(Y s

k,n

bn

)
→ 0 as n →∞.

First of all, since we now know that (3.1) holds, it follows that

P

( n∑
k=1

Y s
k,n �=

n∑
k=1

Xs
k

)
≤

n∑
k=1

P (|Xs
k| > bn) → 0 as n →∞, (3.5)

which means that, by distributional equivalence, the weak law also holds for
the truncated sequence; recall, e.g., Theorem 1.2.

In order to return to the sum of variances, let n0 be so large that

P

(∣∣∣ n∑
k=1

Y s
k,n

bn

∣∣∣ > ε

)
< δ < 1/2 for n > n0,

let n > n0, and note that {Y s
k,n/bn, 1 ≤ k ≤ n} are uniformly bounded

(by 2) random variables. Applying the corollary to “the other Kolmogorov
inequality”, Corollary 3.1.1, and the Lévy inequality (and the monotonicity
of the function x/(1− x) for 0 < x < 1), yields

n∑
k=1

Var
(

Y s
k,n

bn

)
≤ ε2 + (ε + 2)2 ·

P
(
max1≤k≤n

∣∣∣∑k
j=1

Y s
j,n

bn

∣∣∣ > ε
)

1− P
(
max1≤k≤n

∣∣∣∑k
j=1

Y s
j,n

bn

∣∣∣ > ε
)

≤ ε2 + (ε + 2)2 ·
2P
(∣∣∣∑n

k=1
Y s

k,n

bn

∣∣∣ > ε
)

1− 2P
(∣∣∣∑n

k=1
Y s

k,n

bn

∣∣∣ > ε
) ,

so that, remembering that the weak law (also) holds for the truncated random
variables, we conclude that

lim sup
n→∞

n∑
k=1

Var
(

Y s
k,n

bn

)
≤ ε2.

The arbitrariness of ε closes the case, and it remains to desymmetrize.
The weak symmetrization inequalities, Proposition 3.6.2, applied to (3.5)

show that
n∑

k=1

P (|Xk −med (Xk)| > bn) → 0 as n →∞,

and, since Xn/bn
p→ 0 as n →∞, an application of Proposition 5.11.1 shows

that med (Xn/bn) → 0 as n →∞, so that, finally, (3.1) is also satisfied in the
general case.
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The desymmetrization of the truncated variances is an easier job, since
n∑

k=1

Var
(

Yk,n

bn

)
=

1
2

n∑
k=1

Var
(

Y s
k,n

bn

)
.

The proof is complete. �

Remark 3.2. Since the truncated Chebyshev inequality remains valid under
the assumption that X1, X2, . . . are (only) pair-wise independent (Remark
3.1.2), the same holds true for the sufficiency. �

3.1 Two Applications

Before we proceed to some weak laws in the i.i.d. case, in which the moment
assumptions can be slightly relaxed, we pause for two pleasant illustrations.

Empirical Distributions

Let X1, X2, . . . , Xn be a sample from the (typically unknown) distribution
F . We define the empirical distribution function Fn(x) as follows:

Fn(x) =
1
n

n∑
k=1

I{Xk ≤ x},

that is, nFn(x) equals the number of observations among the first n that are
at most equal to x. Suppose we wish to estimate the distribution function
(at x). Since the indicator functions are independent, identically distributed
random variables with mean F (x), the weak law of large numbers tells us that

Fn(x)
p→ F (x) as n →∞.

This means that if, in a “large” sample, we check the relative number of
observations with a value at most equal to x, we should obtain a number
“close” to the true value, F (x).

But, how large is “large”? How close is “close”? And how much do the
answers to these questions depend on x?

Here are some answers. Since nFn(x) ∈ Bin(n, F (x)), we know that

E(Fn(x)) = F (x) and that Var (Fn(x)) =
F (x)(1− F (x))

n
≤ 1

4n
,

(since y(1− y) ≤ 1/4 for 0 < y < 1) so that by Chebyshev’s inequality,

P (|Fn(x)− F (x)| > ε) ≤ 1
4nε2 → 0 as n →∞ uniformly in n.

This implies, in particular, that if we desire, or need, a given precision, Cheby-
shev’s inequality provides a lower bound for the sample size, which, although
crude, is independent of the value x.
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The Weierstrass Approximation Theorem

The message of the Weierstrass approximation theorem is that every contin-
uous function on the unit interval (on a finite interval) can be approximated
by a polynomial with a uniform precision. The closeness of the approximation
and the degree of the polynomial are of course linked together. This is an im-
portant theorem, but it lacks one thing. Namely, we are informed about the
existence of a polynomial. For somebody in the real world it is more important
to know the polynomial.

The weak law together with Chebyshev’s inequality provide an answer.
Suppose that u is a continuous function on [0, 1] – and, thus, uniformly con-
tinuous and bounded, by M , say. Our approximating polynomial of degree n
is the Bernstein polynomial

un(x) =
n∑

k=0

u
(k

n

)(n

k

)
xk(1− x)n−k.

In order to see this, let X, X1, X2, . . . be independent, identically distributed,
Bernoulli variables; P (X = 1) = 1−P (X = 0) = x, and let Yn = 1

n

∑n
k=1 Xk,

n ≥ 1. Since E u(Yn) = un(x), our task is to show that E u(Yn) ≈ u(x) for n
large (in a mathematically more precise manner).

By the weak law of large numbers, Yn
p→ x as n → ∞, and due to the

continuity and boundedness of the function u it follows, by Theorems 5.10.2
and 5.5.4, that

u(Yn)
p→ u(x) and un(x) = E u(Yn) → u(x) as n →∞.

Thus, un(x) ≈ u(x) for every x when n is large. To prove uniformity we
compute the mean and split it into the regions where k/n is “close” to x and
where not.

By the uniform continuity we can, for any given ε > 0 choose δ such that
|u(x)−u(y)| < ε whenever |x− y| < δ. Let one such ε be given with its fellow
δ. Then

|un(x)− u(x)| = |E u(Yn)− u(x)| =
∣∣∣∣

n∑
k=0

(
u
(k

n

)
− u(x)

)(n

k

)
xk(1− x)n−k

∣∣∣∣
≤

∑
{k:| k

n −x|≤δ}

∣∣∣u(k

n

)
− u(x)

∣∣∣(n

k

)
xk(1− x)n−k

+
∑

{k:| k
n −x|>δ}

∣∣∣u(k

n

)
− u(x)

∣∣∣(n

k

)
xk(1− x)n−k

≤
∑

{k:| k
n −x|≤δ}

ε

(
n

k

)
xk(1− x)n−k +

∑
{k:| k

n −x|>δ}

2M

(
n

k

)
xk(1− x)n−k

≤ ε · 1 + 2MP (|Yn − x| > δ) ≤ ε +
M

2nδ2 ,
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where we used Chebyshev’s inequality (and the fact that Var Yn ≤ 1/4n) in
the last step. Note that the bound is uniform in x, since it does not involve x.

We have thus shown that if we know the values of a function at the points
k/n, k = 0, 1, 2, . . . , n, then we can approximate it throughout the whole inter-
val uniformly well. Suppose, for example, that we are interested in obtaining
a given precision η. In order to achieve this we may (for example) choose
ε < η/2, and then n > M/(δ2η).

4 A Weak Law Without Finite Mean

Theorem 3.1 concerned an independent sequence with finite mean. The proof
was a fairly immediate consequence of the truncated Chebyshev inequality,
and was also the basis for the general weak law of large numbers. A natural
question is whether or not finite mean is necessary for a weak law.

Typical counter-examples in the area involve Pareto-like densities, that is,
densities where the tails drop off like a negative power of x, possibly multiplied
by (a power of) a logarithm. It is also frequently easier to consider a symmetric
distribution, mainly since truncated means are (remain, if they exist) equal
to 0. So, let’s try:

Example 4.1. Suppose that X, X1, X2, . . . are independent random variables
with common density

f(x) =

{
c

x2 log |x| , for |x| > 2,

0, otherwise,

where c is a normalizing constant (without importance).
We begin by verifying that the mean does not exist;∫

|x|>2

c|x|
x2 log |x| dx = 2c

∫ ∞

2

1
x log x

dx = +∞.

With bn = n in Theorem 3.3 – the natural guess for a law of large numbers –
the first condition becomes

nP (|X| > n) = 2n
∫ ∞

n

c

x2 log x
dx ∼ n

C

n log n
=

C

log n
→ 0 as n →∞,

and the second one becomes

1
n2 nE|X|2I{|X| ≤ n} =

2
n

∫ n

2
x2 c

x2 log x
dx =

2c

n

∫ n

2

1
log x

dx ∼ C

n

n

log n

=
C

log n
→ 0 as n →∞,

so that both conditions are satisfied, and, hence, the weak law holds. �
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We have thus exhibited an example where the weak law holds, and where
the mean does not exist. Note also that the estimate for (3.2) coincides with
that of (3.1).

So, is this the general story? In the i.i.d. case? The Kolmogorov-Feller law
of large numbers, see [160, 162] and [88], Section VII.7, tells us that, yes, this
is, indeed, the general case. The proof amounts to showing precisely that if
we assume (3.1), then (3.2) holds automatically.

Theorem 4.1. Suppose that X, X1, X2, . . . are independent, identically dis-
tributed random variables with partial sums Sn, n ≥ 1. Then

Sn − nE XI{|X| ≤ n}
n

p→ 0 as n →∞,

if and only if

nP (|X| > n) → 0 as n →∞. (4.1)

Proof. As explained above, the proof of the sufficiency amounts to verifying
(3.1) and (3.2).

The first one is precisely (4.1), and the second one reduces (as in the exam-
ple) to 1

nE X2I{|X| ≤ n}, which is estimated with the aid of a standard “slic-
ing” device. Roughly speaking, we thereby improve the trivial O(1)-estimate
E|X| to an o(1)-estimate.

1
n2 nE X2I{|X| ≤ n} =

1
n

E X2I{|X| ≤ n}

=
1
n

n∑
k=1

E X2I{k − 1 < |X| ≤ k} ≤ 1
n

n∑
k=1

k2P (k − 1 < |X| ≤ k)

≤ 1
n

n∑
k=1

( k∑
j=1

2j
)
P (k − 1 < |X| ≤ k) =

1
n

n∑
j=1

2j

n∑
k=j

P (k − 1 < |X| ≤ k)

=
2
n

n∑
j=1

jP (j − 1 < |X| ≤ n) ≤ 2
n

n∑
j=1

jP (j − 1 < |X|)

=
2
n

n−1∑
j=0

(j + 1)P (j < |X|) ≤ 4
n

n−1∑
j=0

jP (|X| > j) → 0 as n →∞.

The convergence to 0 is justified by Lemma A.6.1, since we are faced with
(four times) an arithmetic mean of objects that converge to 0.

As for the necessity, we can copy the arguments from the proof of the
necessity of (3.1) in the proof of Theorem 3.3.

Exercise 4.1. Check the details of the proof of the necessity. �

Example 4.2. Consider, as in Example 3.1, standard Cauchy-distributed ran-
dom variables, X, X1, X2, . . . . We already know from there that the weak
law does not hold. It follows from Theorem 4.1 that condition (4.1) does not
(should not) hold.
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Now, the density equals

f(x) =
1
π
· 1
1 + x2 , −∞ < x < ∞,

so that

xP (|X| > x) = x
2
π

(π

2
− arctanx

)
=

2x

π
arctan

1
x
→ 2

π
as x →∞,

and condition (4.1) does not hold – as expected. �

Consider the following variation:

Example 4.3. Suppose that X, X1, X2, . . . are independent random variables
with common density

f(x) =

{
1

2x2 , for |x| > 1,

0, otherwise.

One readily checks that the mean does not exist.
The first condition with bn = n becomes

nP (|X| > n) = n

∫ ∞

n

1
x2 dx = 1,

so that the Kolmogorov-Feller law does not hold. However, inspecting the
conditions in Theorem 3.3 with bn = n log n instead, we find, for the first one,
that

nP (|X| > n log n) = n

∫ ∞

n log n

1
x2 dx =

1
log n

→ 0 as n →∞,

and for the second one that

1
(n log n)2

nE X2I{|X| ≤ n log n} =
1

n(log n)2

∫ n log n

1
1 dx

≤ 1
log n

→ 0 as n →∞.

By Theorem 3.3 we therefore conclude that

Sn

n log n

p→ 0 as n →∞.

We have thus obtained a weak law, albeit with a different normalization. �

A second look at the example reveals that, once again, the two conditions
in the theorem coincide, and one can ask again, was this an exceptional case
or is there a general result around?

The following result, taken from [117], provides an extension of Theorem
4.1 to more general normalizing sequences. It involves regularly varying func-
tions for which we refer to Section A.7 for a short background and some
references.
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Theorem 4.2. Suppose that X, X1, X2, . . . are independent, identically dis-
tributed random variables with partial sums Sn, n ≥ 1. Further, let, for x > 0,
b ∈ RV (1/ρ) for some ρ ∈ (0, 1], that is, let b(x) = x1/ρ�(x), where � ∈ SV.
Finally, set bn = b(n), n ≥ 1. Then

Sn − nE XI{|X| ≤ bn}
bn

p→ 0 as n →∞,

if and only if

nP (|X| > bn) → 0 as n →∞. (4.2)

In particular, for 0 < r ≤ 1, we have

Sn − nE XI{|X| ≤ n1/r}
n1/r

p→ 0 as n →∞,

if and only if

nP (|X| > n1/r) → 0 as n →∞. (4.3)

Proof. The proof amounts to minor modifications of the proof of Theorem
4.1.

The first condition, (3.1), is precisely our assumption (4.2). As for the
second one,

n

b2
n

E X2I{|X| ≤ bn} =
n

b2
n

n∑
k=1

E X2I{bk−1 < |X| ≤ bk}

≤ n

b2
n

n∑
k=1

b2
kP (bk−1 < |X| ≤ bk)

=
n

b2
n

n∑
k=1

k2/ρ(�(k))2P (bk−1 < |X| ≤ bk)

≤ C
n

b2
n

n∑
k=1

( k∑
j=1

j(2/ρ)−1(�(j))2
)

P (bk−1 < |X| ≤ bk)

= C
n

b2
n

n∑
j=1

j(2/ρ)−1(�(j))2
n∑

k=j

P (bk−1 < |X| ≤ bk)

= C
n

b2
n

n∑
j=1

j(2/ρ)−1(�(j))2P (bj−1 < |X| ≤ bn)

≤ C
n

b2
n

n∑
j=1

j(2/ρ)−1(�(j))2P (|X| > bj−1)

≤ C
1

n(2/ρ)−1(�(n))2

n−1∑
j=0

{
j(2/ρ)−2(�(j))2

}
jP (|X| > bj),
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which converges to 0 as n →∞. Once again, the convergence to 0 is justified
by Lemma A.6.1, but by the second half. Namely, we are faced with a weighted
average of quantities that converge to 0. The weights are j(2/ρ)−2(�(j))2, the
sum of which (Lemma A.7.3) behaves like

n∑
j=1

j(2/ρ)−2(�(j))2 ∼ ρ

2− ρ
n(2/ρ)−1(�(n))2 as n →∞.

This finishes the proof of the sufficiency.
The necessity, follows, once again, by the arguments leading to (3.1) in

the proof of Theorem 3.3: symmetrize to obtain a weak law for the partial
maxima, apply Theorem 2.1, and desymmetrize.

The particular case is immediate upon putting r = ρ and �(x) ≡ 1. �

A pleasant application of Theorem 4.2 is the classical St. Petersburg game
that we present in a separate subsection following the model examples based
on (two-sided) Pareto distributions.

Example 4.4. Let 0 < ρ ≤ 1, and suppose that X, X1, X2, . . . are independent
random variables with common density

f(x) =

{
ρ

2|x|1+ρ , for |x| > 1,

0, otherwise.

An analysis of condition (4.2) yields

Sn

(n log n)1/ρ

p→ 0 as n →∞.

The normalizing sequence is bn = (n log n)1/ρ ∈ RV (1/ρ) as should be. �

In the same way as Theorem 3.2 with r = 1 coincides with the classical
weak law, Theorem 4.2 with ρ = 1 and �(x) ≡ 1 reduces to Theorem 4.1.
For 0 < r = ρ < 1 and �(x) ≡ 1 the theorem relates to the Marcinkiewicz-
Zygmund weak law, Theorem 3.2, in the same way as the Kolmogorov-Feller
law relates to the classical weak law. Let us, accordingly, extend Example 3.2
as follows.

Example 4.5. Let, again, X1, X2, . . . have a symmetric stable distribution
with index α ∈ (0, 1). We found, in Example 3.2, that Sn

n1/α

d= X1, so that,
with r = α, the Marcinkiewicz-Zygmund weak law does not hold.

Unfortunately, since there only exist explicit expressions for stable densi-
ties for α = 1/2 and α = 1 (the Cauchy distribution), we have to resort to
the fact that one can show that, if X is symmetric stable with index α, then,
for some constant C,

xαP (|X| > x) → C
2− α

α
as x →∞;
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see [88], Theorem XVII.5.1. With r = α as before, this is equivalent to the
statement

xP (|X| > x1/r) → C
2− r

r
as x →∞,

that is, condition (4.3) is not satisfied (as expected). �

We shall soon see that finiteness of the adequate moment is necessary as
well as sufficient in the corresponding strong law. The results of this section
thus tell us that a slightly weaker requirement suffices for weak laws of large
numbers in the i.i.d. case.

Exercise 4.2. Let 0 < ρ ≤ 1, and suppose that X, X1, X2, . . . are independent
random variables with common density

f(x) =

{
c

|x|1+ρ(log |x|)β , for |x| > 2,

0, otherwise,

where −∞ < β < ∞, and c is a normalizing constant. State and prove a weak law
for the partial maxima and a weak law of large numbers.

Exercise 4.3. Let 0 < ρ ≤ 1, and suppose that X, X1, X2, . . . are independent,
positive, random variables with common probability function

p(k) =

{
c

k1+ρ(log k)β , for k = 2, 3, . . . ,

0, otherwise,

where −∞ < β < ∞, and c is a normalizing constant. State and prove a weak law
for the partial maxima and a weak law of large numbers. �

4.1 The St. Petersburg Game

This game was called a paradox, because when it was “invented” the formalism
to handle random variables with infinite expectation seemed paradoxical. The
game is defined as follows: I toss a fair coin repeatedly until heads appears. If
this happens at trial number n you receive 2n Euros. The problem is what a
fair price would be for you to participate in this game.

A natural fair price would be the expected value, since this would imply
that, in the long run, you would neither win nor lose. However, the random
variable X behind the game is

P (X = 2n) =
1
2n

, n = 1, 2, . . . ,

which has infinite mean – E X =
∑∞

n=1 2n 1
2n =

∑∞
n=1 1 = +∞. A fair price

thus seems impossible.
One variant of the game is to set a maximal number of trials, and you win

nothing if head never appears. This is obviously less favorable to you. The
solution is to set the fee as a function of the number of games, as bn, where
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bn is defined so that a weak law of large numbers holds, in the sense that
if X, X1, X2, . . . are independent, identically distributed random variables,
and Sn =

∑n
k=1 Xk, n ≥ 1, then

Sn

bn

p→ 1 as n →∞. (4.4)

As it turns out, such a weak law follows from Theorem 4.2. Namely, let log2
denote the logarithm relative to base 2. Noticing that

P (X > 2n) =
∞∑

k=n+1

1
2k

=
1
2n

,

and that x log2 x = 2log2(x log2 x), we obtain

xP (X > x log2 x) = x
(1

2

)[log2(x log2 x)]
≤ 2x

1
x log2 x

=
2

log2 x
→ 0 as x →∞.

Theorem 4.2 therefore tells us that

Sn − nE I{|X| ≤ n log2 n}
n log2 n

p→ 0 as n →∞.

This, and the fact that

nE I{|X| ≤ n log2 n} = n

[log2(n log2 n)]∑
k=1

2k 1
2k

= n[log2(n log2 n)] ∼ n log2 n,

as n →∞, shows that the desired weak law, (4.4), holds.
For more on this, see [87], Chapter X, and [88], Chapter VII, and further

references given there.

5 Convergence of Series

Apart from having an interest as such, the convergence of sums of independent
random variables has important connections with almost sure convergence, in
particular, with strong laws. More precisely, the convergence of

∑∞
k=1

Xk

k ,
together with the Kronecker lemma, Lemma A.6.2, will imply a strong law.
The following, what might be called a random Kronecker lemma, provides the
link.

Lemma 5.1. Suppose that {Xn, n ≥ 1} are random variables, set a0 = 0,
and let {an, n ≥ 1} be positive numbers increasing to +∞. Then

∞∑
k=1

Xk

ak
converges a.s. =⇒ 1

an

n∑
k=1

Xk
a.s.→ 0 as n →∞.
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Proof. Let

A =
{

ω :
∞∑

k=1

Xk(ω)
ak

converges
}

, and

B =
{

ω :
1
an

n∑
k=1

Xk(ω) → 0 as n →∞
}

.

Then P (A) = 1 by assumption, and the Kronecker lemma tells us that A ⊂ B,
so that P (B) = 1. �

Thus: if we wish to prove a strong law, Sn

n

a.s.→ 0, then this can be achieved
by finding conditions under which

∑∞
k=1

Xk

k converges almost surely. We there-
fore first turn our attention to facts about the convergence of sums of inde-
pendent random variables.

One can obviously talk about the probability that a given sum of inde-
pendent random variables converges. As a consequence of the Kolmogorov
zero-one law, Theorem 2.10.6, this probability can only assume the two val-
ues 0 and 1. However, in the particular case of the present section this can,
as we shall see, be proved directly.

As a first rather elementary result we prove the following lemma on L2-
convergence.

Lemma 5.2. (L2-lemma) Let X1, X2, . . . be independent random variables
with partial sums Sn, n ≥ 1. Then

∞∑
n=1

Var Xn < ∞ ⇐⇒
∞∑

n=1

(Xn − E Xn) converges in L2.

Proof. The sum of the variances converges if and only if it is Cauchy-
convergent, in which case

m∑
k=n+1

Var Xk → 0 as m, n →∞,

which, due to independence, is the same as

Var (Sm − Sn) = E
(
(Sm − E Sm)− (Sn − E Sn)

)2 → 0 as m, n →∞,

which is the same as {Sn − E Sn, n ≥ 1} being L2-Cauchy-convergent, and,
hence, L2-convergent. �

As an immediate corollary it follows that, if X1, X2, . . . are independent
and identically distributed random variables, then the sum cannot converge
in square mean.

But a weighted sum can:
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Theorem 5.1. Let X1, X2, . . . be independent, identically distributed ran-
dom variables with mean 0 and finite variance, and let {an, n ≥ 1} be real
numbers. Then

∞∑
n=1

anXn converges in L2 ⇐⇒
∞∑

n=1

a2
n < ∞.

Exercise 5.1. Prove the theorem. �

Remark 5.1. The essence of the L2-lemma is, in fact, not really the indepen-
dence, rather a kind of orthogonality; note that uncorrelatedness – which is a
kind of orthogonality – suffices for the lemma to hold. �

5.1 The Kolmogorov Convergence Criterion

This is a most useful criterion for determining whether or not a series is
convergent. As a first step toward that result we prove

Theorem 5.2. (The Kolmogorov convergence criterion)
Let X1, X2, . . . be independent random variables with partial sums Sn, n ≥ 1.
Then ∞∑

n=1

Var Xn < ∞ =⇒
∞∑

n=1

(Xn − E Xn) converges a.s.

If, in addition,
∞∑

n=1

E Xn converges,

then ∞∑
n=1

Xn converges a.s.

Proof. Let ε > 0, suppose that the sum of the variances converges, let n < m,
and consider a Cauchy sequence. By the Kolmogorov inequality, Theorem
3.1.6, we then obtain

P ( max
n≤k≤m

|(Sk − E Sk)− (Sn − E Sn)| > ε)

= P

(
max

n≤k≤m

∣∣∣ k∑
j=n+1

(Xj − E Xj)
∣∣∣ > ε

)
≤
∑m

k=n+1 Var Xk

ε2

≤
∑∞

k=n+1 Var Xk

ε2 .

Since the left-hand side does not depend on m, it follows that, for any ε > 0,

P (sup
k≥n

|(Sk−E Sk)−(Sn−E Sn)| > ε) ≤
∑∞

k=n+1 Var Xk

ε2 → 0 as n →∞,
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which, in view of Proposition 5.1.2, proves almost sure convergence of the
centered sum.

The second statement follows, of course, from the fact that

Xn = (Xn − E Xn) + E Xn. �

For independent, uniformly bounded, random variables there is also a con-
verse, thanks to “the other Kolmogorov inequality”, Theorem 3.1.7.

Theorem 5.3. Let X1, X2, . . . be independent, uniformly bounded random
variables. Then

∞∑
n=1

(Xn − E Xn) converges a.s. ⇐⇒
∞∑

n=1

Var Xn < ∞.

Indeed,

P

( ∞∑
n=1

(Xn − E Xn) converges
)

=

{
1, if

∑∞
n=1 Var Xn < ∞

0, if
∑∞

n=1 Var Xn = ∞.

If, in addition,
∞∑

n=1

E Xn converges,

then

P

( ∞∑
n=1

Xn converges
)

=

{
1, if

∑∞
n=1 Var Xn < ∞

0, if
∑∞

n=1 Var Xn = ∞.

Proof. Suppose that supn |Xn| ≤ A for some A > 0, so that, consequently,
supn |Xn − E Xn| ≤ 2A, and that the sum of the variances diverges. Then

P ( max
n≤k≤m

|(Sk − E Sk)− (Sn − E Sn)| > ε) ≥ 1− (ε + 2A)2∑m
k=n+1 Var Xk

,

which, upon letting m →∞ in the left-hand side, and then in the right-hand
side, shows that

P
(
sup
k≥n

|(Sk − E Sk)− (Sn − E Sn)| > ε
)
≥ 1,

so that almost sure convergence fails.
But it more than fails. Namely, we have just shown that, in fact, the

convergence set is a null set.
The last statement follows as in Theorem 5.2. �

A fascinating and somewhat frustrating example is the harmonic series
with random signs.
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Example 5.1. Consider the series
∞∑

n=1

± 1
n

,

more formally, let X, X1, X2, . . . be independent coin-tossing random vari-
ables, i.e., P (X = 1) = P (X = −1) = 1/2, and consider the series

∞∑
n=1

Xn

n
.

Since E X = 0 and VarX = 1, an application of the Kolmogorov convergence
criterion shows that the sum is almost surely convergent. And, yet, the har-
monic series, which causes mathematicians so much trouble and pain, but also
excitement and pleasure, is divergent!

Note also that the harmonic series corresponds to all X’s being equal to
+1, which occurs with probability 0 in view of the Borel-Cantelli lemma (as
we have already seen in Section 2.18). As a contrast, the alternating series

∞∑
n=1

(−1)n

n

is well known to be convergent. According to the law of large numbers one
should expect equally many positive and negative terms, so, in this sense, the
convergence of the alternating series is as expected. �

5.2 A Preliminary Strong Law

Although the ultimate goal is to prove a strong law under the necessary and
sufficient condition of finite mean, it is hard to resist the temptation to pro-
vide the following weaker variant which, given the Kolmogorov convergence
criterion, comes for free.

Theorem 5.4. (The Kolmogorov sufficient condition)
Let X1, X2, . . . be independent random variables with mean 0 and finite vari-
ances, σ2

n, n ≥ 1, and set Sn =
∑n

k=1 Xk, n ≥ 1. Then
∞∑

n=1

σ2
n

n2 < ∞ =⇒ Sn

n

a.s.→ 0 as n →∞.

Proof. The Kolmogorov convergence criterion shows that
∑∞

k=1
Xk

k is a.s. con-
vergent. The random Kronecker lemma, Lemma 5.1 does the rest. �

Corollary 5.1. Suppose that X1, X2, . . . are independent, identically dis-
tributed random variables with mean µ and finite variance. Then

1
n

n∑
k=1

Xk
a.s.→ µ as n →∞.
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5.3 The Kolmogorov Three-series Theorem

So far we have shown, based on the Kolmogorov convergence criterion, that
a strong law in the i.i.d. case holds if the variance of the summands is finite.
In order to remove the assumption of finite variance, we shall, via trunca-
tion, exhibit a more well behaved convergence equivalent sequence for which
the Kolmogorov convergence criterion applies. Recall that X1, X2, . . . and
Y1, Y2, . . . are convergence equivalent if

∞∑
n=1

P (Xn �= Yn) < ∞.

With this as a motivating background, here is now a celebrated result, that
provides necessary and sufficient conditions for a series to converge.

Theorem 5.5. (The Kolmogorov three-series theorem)
Let A > 0. Suppose that X1, X2, . . . are independent random variables and
set, for k ≥ 1,

Yk =

{
Xk, when |Xk| ≤ A,

0, otherwise.

Then ∞∑
k=1

Xk converges almost surely as n →∞,

if and only if

(i)
∑∞

k=1 P (Xk �= Yk) =
∑∞

k=1 P (|Xk| > A) < ∞;

(ii)
∑∞

k=1 E Yk converges;

(iii)
∑∞

k=1 Var Yk < ∞.

Proof. If the variables are uniformly bounded, then, by choosing A larger than
the bound, the first two sums vanish, and we know, from Theorem 5.3, that
a.s. convergence holds if and only if the third sum converges.

Next, suppose that X1, X2, . . . are symmetric. Then Y1, Y2, . . . are sym-
metric too, and the second sum vanishes. The convergence of the first sum
implies that X1, X2, . . . and Y1, Y2, . . . are convergence equivalent, and since
the latter sum is a.s. convergent, so is the former.

Conversely, if
∑∞

n=1 Xn is a.s. convergent, then Xn
a.s.→ 0 as n →∞, so that

P (|Xn| > A i.o.) = 0, which, by the second Borel-Cantelli lemma, Theorem
2.18.2, implies that the first sum converges. By convergence equivalence it
therefore follows that

∑∞
n=1 Yn is a.s. convergent, and, hence, by Theorem

5.3, that the third sum converges.
It remains to consider the general case. Convergence of the last two sums

implies, by Theorem 5.3, that
∑∞

n=1 Yn is a.s. convergent, which, in view of
(i), proves that

∑∞
n=1 Xn is a.s. convergent.
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Conversely, if
∑∞

n=1 Xn is a.s. convergent, then so is the symmetrized
series

∑∞
n=1 Xs

n. Mimicking the arguments a few lines back we conclude that
Xs

n
a.s.→ 0 as n → ∞, that

∑∞
n=1 P (|Xs

n| > A) < ∞, that
∑∞

n=1 Y s
n is a.s.

convergent, and that
∑∞

n=1 Var Y s
n < ∞.

The latter fact first implies that
∑∞

n=1 Var Yn = 1
2

∑∞
n=1 Var Y s

n < ∞, and
secondly, by Theorem 5.3, that

∑∞
n=1(Yn − E Yn) is a.s. convergent. Finally,

(ii) follows from the fact that

E Yn = Yn − (Yn − E Yn). �

As the reader has, hopefully, noticed, the difficulty in the proof lies in
keeping track of the different steps, in how one successively approaches the
final result. One way to memorize this is that for bounded random variables
the first and second sum vanish, and the rest is taken care of by Theorem 5.3.
For symmetric random variables the second sum vanishes, and one truncates
to reduce the problem to the bounded case. The general case is partly resolved
by symmetrization.

Note also that the final step was to take care of the second sum. And that’s
the general story: the second sum is usually the hardest one to verify. Recall
that even if the original summands have mean 0, this is not so in general for
the truncated ones.

Let us, in this connection, mention that the final step in the proof of
the strong law of large numbers in the following section, to take care of the
truncated means, appears after Lemma 5.1 has been applied, and that this
does not amount to verifying (ii).

In the bounded case, Theorem 5.3, we found that the probability that the
(centered) series is convergent is 0 or 1. This remains true also in the general
case.

Corollary 5.2. Let X1, X2, . . . be independent random variables. Then

P

( ∞∑
k=1

Xk converges
)

= 0 or 1.

Proof. If Theorem 5.5(i) is satisfied, the conclusion holds by convergence

equivalence and Theorem 5.3. If the first sum is divergent, then Xn

a.s.

�→ 0
as n →∞, so that the probability that the first sum converges is 0. �

As has been mentioned before, and just seen again, symmetrization plays
a central role in many proofs. For sequences it was easy to see (as it is for
sums) that convergence implies convergence of the symmetrized sequence. The
problem was the converse. The following result is a sum analog to Proposi-
tion 5.11.1, and shows that if the sum of the symmetrized random variables
converges, then the original sum properly centered converges too.



5 Convergence of Series 291

Theorem 5.6. Let A > 0. Suppose that X1, X2, . . . are independent random
variables. If

∑∞
n=1 Xs

n converges almost surely as n →∞, then

∞∑
n=1

(
Xn −med (Xn)− E[(Xn −med (Xn))I{|Xn −med (Xn)| ≤ A}]

)
converges almost surely as n →∞.

Proof. Since the symmetrized sum converges almost surely, we know from the
three-series theorem that the sums (i) and (iii) converge for the symmetrized
random variables (and that the sum in (ii) vanishes).

Set Yn = Xn−med (Xn), n ≥ 1. By the weak symmetrization inequalities,
Proposition 3.6.2,

∞∑
n=1

P (|Yn| > A) ≤ 2
∞∑

n=1

P (|Xs
n| > A) < ∞,

so that the sum in (i) converges for {Yn, n ≥ 1}.
By partial integration and the weak symmetrization inequalities, cf. also

the proof of Theorem 2.12.1,

Var
(
YnI{|Yn| ≤ A}

)
≤ E Y 2

n I{|Yn| ≤ A}

= −A2P (|Yn| > A) + 2
∫ A

0
xP (|Yn| > x) dx ≤ 4

∫ A

0
xP (|Xs

n| > x) dx

= 2Var (Xs
nI{|Xs

n| ≤ A}) + 2A2P (|Xs
n| > A),

which shows that ∞∑
n=1

Var
(
YnI{|Yn| ≤ A}

)
< ∞.

This proves the finiteness of the third sum for the Y -sequence.
Since the second one is a troublemaker, we center to make it 0, and since

centering does not change the variance and only doubles the first sum (at
most) we have shown that

∞∑
n=1

(
YnI{|Yn| ≤ A} − E(YnI{|Yn| ≤ A})

)
converges almost surely as n →∞.

Finally, since, once again, the sum in (i) converges we know, by convergence
equivalence, that also

∞∑
n=1

(
Yn − E(YnI{|Yn| ≤ A}

)
converges almost surely as n →∞, which, recalling that Yn = Xn−med (Xn),
is precisely the claim. �
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5.4 Lévy’s Theorem on the Convergence of Series

The results of this subsection on the convergence of series are not immediately
connected with the law of large numbers. The first one is a famous theorem
due to Lévy.

Theorem 5.7. Let X1, X2, . . . be independent random variables. Then

∞∑
n=1

Xn converges in probability ⇐⇒
∞∑

n=1

Xn converges almost surely.

Proof. Since almost sure convergence always implies convergence in probabil-
ity, only the opposite implication has to be proved.

The first observation is that there is no assumption about the existence
of moments, which means that probabilities of maxima, which are bound to
enter, have to be estimated by “individual” probabilities. The inequality that
does it for us is Skorohod’s, or Ottaviani’s, inequality, Theorem 3.7.7.

Since the sum converges in probability it is also Cauchy-convergent in
probability, which implies that, given 0 < ε < 1/2, there exists n0, such that,
for all n, m, with n0 < n < m, P (|Sm − Sn| > ε) < ε, in particular,

β = max
n≤k≤m

P (|Sm − Sk| > ε) < ε, for n0 < n < m,

which, inserted into Theorem 3.7.7 yields

P ( max
n≤k≤m

|Sk − Sn| > 2ε) ≤ 1
1− β

P (|Sm − Sn| > ε) ≤ 1
1− ε

· ε < 2ε.

An appeal to Proposition 5.1.1 establishes almost sure convergence. �

With the aid of characteristic functions it is, in fact, possible to prove
that the weaker assumption of convergence in distribution implies almost sure
convergence.

Theorem 5.8. Let X1, X2, . . . be independent random variables. Then

∞∑
n=1

Xn converges in distribution ⇐⇒
∞∑

n=1

Xn converges almost surely.

Proof. Since almost sure convergence always implies convergence in distribu-
tion, we only have to prove the opposite implication.

We thus assume that
∑∞

n=1 Xn converges in distribution as n → ∞. By
Theorem 5.9.1 we then know that

n∏
k=1

ϕXk
(t) → ϕ(t) as n →∞,
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for all t, where ϕ is some characteristic function. By considering the sym-
metrized random variables we also have

n∏
k=1

|ϕXs
k
(t)|2 → |ϕ(t)|2 as n →∞, (5.1)

for all t; note, in particular, that |ϕ(t)|2 is real valued, and, moreover, positive
in some neighborhood of 0, |t| < h, say, for some h > 0.

Our next task is to prove that the Kolmogorov three-series theorem, The-
orem 5.5, applies.

Lemma 4.4.1, the fact that 1−x < e−x for x > 0, and (5.1), together show
that

∞∑
n=1

P (|Xs
n| > 2/h) ≤

∞∑
n=1

1
h

∫
|t|<h

(1− |ϕXs
n
(t)|2) dt

=
1
h

∫
|t|<h

( ∞∑
n=1

(1− |ϕXs
n
(t)|2)

)
dt ≤ 1

h

∫
|t|<h

∞∑
n=1

exp{−|ϕXs
n
(t)|2}dt

=
1
h

∫
|t|<h

exp
{
−

∞∏
n=1

|ϕXs
n
(t)|2

}
dt =

1
h

∫
|t|<h

exp{−|ϕ(t)|2}dt < ∞.

This proves that the first sum in Theorem 5.5 converges.
The second sum vanishes since we consider symmetric random variables.
For the third sum we exploit (the second half of) Lemma 4.4.2 to obtain

∞∑
n=1

E|Xs
n|2I{|Xs

n| < 2/h} ≤
∞∑

n=1

3
(
1− ϕXs

n
(h)
)
≤ 3

∞∑
n=1

exp{−|ϕXs
n
(h)|2}

≤ 3 exp
{
−

∞∏
n=1

|ϕXs
n
(h)|2

}
= 3 exp{−|ϕ(h)|2} < ∞.

All sums being convergent, the three-series theorem now tells us that

∞∑
n=1

Xs
n converges almost surely as n →∞,

and the proof is complete for symmetric random variables.
For the general case, we set

an = med (Xn) + E
(
(Xn −med (Xn))I{|Xn −med (Xn)| ≤ 2/h}

)
.

Theorem 5.6 (with A = 2/h) then tells us that

∞∑
n=1

(
Xn − an) converges almost surely as n →∞,
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so that, by Theorem 5.9.1,

n∏
k=1

ϕ(Xk−ak)(t) = exp
{
− it

n∑
k=1

ak

} n∏
k=1

ϕXk
(t) → ϕ̃(t), say, as n →∞.

However, for t sufficiently close to 0 the characteristic functions ϕ and ϕ̃ both
are close to 1 by continuity; in particular, they are non-zero. This shows that,
for t sufficiently small,

exp
{
− it

n∑
k=1

ak

}
→ ϕ(t)

ϕ̃(t)
�= 0 as n →∞.

It follows that
∑n

k=1 ak converges as n → ∞ or moves around along periods
of multiples of 2π/t. However, since the arguments are valid for all t in a
neighborhood of 0, only convergence is possible. This, finally, establishes, via
Theorem 5.11.1, that

n∑
k=1

Xk =
n∑

k=1

(Xk − ak) +
n∑

k=1

ak converges almost surely as n →∞.
�

Exercise 5.2. In the notation of Theorem 5.1, extend the L2-convergence result
there to ∞∑

n=1

anXn < ∞ converges a.s. ⇐⇒
∞∑

n=1

a2
n < ∞. �

6 The Strong Law of Large Numbers

There are many important and profound results in probability theory. One of
them is the strong law of large numbers that we are finally ready to meet.

However, in order not to disturb the flow of the proof we shall prove the
following technical lemma as a prelude.

Lemma 6.1. Let 0 < r < 2. Suppose that X, X1, X2, . . . are independent,
identically distributed random variables, and set

Yn = XnI{|Xn| ≤ n1/r}, n ≥ 1.

If E|X|r < ∞, then

∞∑
n=1

Var
( Yn

n1/r

)
=

∞∑
n=1

Var Yn

n2/r
< ∞.

Proof. We shall provide two proofs. The first, more elegant one, is based on
the interchange of expectation and summation (and Lemma A.3.1).
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∞∑
n=1

Var
( Yn

n1/r

)
≤

∞∑
n=1

E Y 2
n

n2/r
=

∞∑
n=1

E(X2I{|X| ≤ n1/r})
n2/r

= E X2
( ∞∑

n=1

I{|X| ≤ n1/r}
n2/r

)
= E X2

( ∑
n≥|X|r∨1

1
n2/r

)

= E X2
( ∑

n≥|X|r

1
n2/r

)(
I{1 ≤ |X| < 21/r}+ I{|X| ≥ 21/r}

)

≤ 22/r
∞∑

n=1

1
n2/r

+
2(2/r)−1

(2/r)− 1
E X2 1

(|X|r)(2/r)−1 = C + CE|X|r.

The second, traditional proof, is based on the slicing technique. Via Lemma
A.3.1 we obtain

∞∑
n=1

Var
( Yn

n1/r

)
≤

∞∑
n=1

E Y 2
n

n2/r
=

∞∑
n=1

E(X2I{|X| ≤ n1/r})
n2/r

=
∞∑

n=1

1
n2/r

n∑
k=1

E
(
X2I{(k − 1)1/r < |X| ≤ k1/r}

)

=
∞∑

n=1

1
n2/r

E(X2I{|X| ≤ 1})

+
∞∑

k=2

( ∞∑
n=k

1
n2/r

)
E
(
X2I{(k − 1)1/r < |X| ≤ k1/r}

)

≤ C +
2(2/r)−1

(2/r)− 1

∞∑
k=2

1
k(2/r)−1 E

(
X2I{(k − 1)1/r < |X| ≤ k1/r}

)

≤ C + C

∞∑
k=1

1
k(2/r)−1 · (k

1/r)2−rE
(
|X|rI{(k − 1)1/r < |X| ≤ k1/r}

)

= C + C

∞∑
k=1

E|X|rI{k − 1 < |X|r ≤ k} = C + CE|X|r < ∞. �

Here is now the strong law.

Theorem 6.1. (The Kolmogorov strong law)

(a) If E|X| < ∞ and E X = µ, then

Sn

n

a.s.→ µ as n →∞.

(b) If Sn

n

a.s.→ c for some constant c, as n →∞, then

E|X| < ∞ and c = E X.
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(c) If E|X| = ∞, then

lim sup
n→∞

Sn

n
= +∞.

Remark 6.1. Strictly speaking, we presuppose in (b) that the limit can only be
a constant. That this is indeed the case follows from the Kolmogorov zero-one
law. Considering this, (c) is somewhat more general than (b). �

Proof of (a). Set

Yn = XnI{|Xn| ≤ n} =

{
Xn, if |Xn| ≤ n,

0, otherwise.

Then X1, X2, . . . and Y1, Y2, . . . are convergence equivalent by Proposition
1.2. Spelled out this means that

∞∑
n=1

P

(∣∣∣Xn

n

∣∣∣ > 1
)

< ∞,

so that the first sum in the Kolmogorov three-series theorem, Theorem 5.5, is
convergent (with A = 1).

Next, Lemma 6.1 (with r = 1) tells us that

∞∑
n=1

Var
(Yn

n

)
< ∞,

so that the third sum in the three-series theorem is convergent. An application
of the Kolmogorov convergence criterion, Theorem 5.2, therefore yields

∞∑
n=1

Yn − E Yn

n
converges a.s.,

so that, by the random Kronecker lemma, Lemma 5.1,

1
n

n∑
k=1

(Yk − E Yk) a.s.→ 0 as n →∞.

Finally,

E Yn = E XnI{|Xn| ≤ n} = E XI{|X| ≤ n} → E X = µ as n →∞,

so that, by Lemma A.6.1,

1
n

n∑
k=1

E Yk → µ as n →∞,

which implies that
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1
n

n∑
k=1

Yk
a.s.→ µ as n →∞,

which, due to the convergence equivalence noted above, proves the strong law.
Proof of (b). Given the strong law, we have (Theorem 5.11.1),

Xn

n
=

Sn

n
− n− 1

n
· Sn

n

a.s.→ c− 1 · c = 0 as n →∞,

and the mean is finite (Proposition 1.1). An application of the sufficiency part
shows that c = E X.
Proof of (c). If E|X| = ∞, Proposition 1.1 and the second Borel-Cantelli
lemma, Theorem 2.18.2, tell us that

P (|Xn| > nc i.o.) = 1 for every c > 0,

and, hence, since |Xn| ≤ |Sn|+ |Sn−1|, that

P (|Sn| > nc/2 i.o.) = 1 for every c > 0,

which is equivalent to our claim. �

Remark 6.2. Note that in the proof of the weak law we studied Sn for a fixed
n and truncated Xk at n (or nε3) for every k = 1, 2, . . . , n, in other words,
for every fixed n the truncation level was the same for all summands with
index less than or equal to n. Here we treat all summands and partial sums
simultaneously, and each X has its own truncation level.

Remark 6.3. Etemadi [82] has shown that pair-wise independence is enough
for the strong law of large numbers to hold. �

Since the strong law requires finite mean, Example 4.1 illustrates that
there are cases when the weak law holds but the strong law does not – the
laws are not equivalent.

We complete the discussion by exploiting Example 4.1 a bit further and
show that, in fact, the two non-trivial sums related to the Kolmogorov three-
series theorem do not converge for any truncation level (due to the symmetry
the sum of the expectations of the truncated variables vanishes). As a corol-
lary,

∑∞
k=1

Xk

k diverges almost surely (the divergence of one of the two sums
is of course enough for that conclusion).

Let us recall the situation: X1, X2, . . . are independent random variables
with common density

f(x) =

{
c

x2 log |x| , for |x| > 2,

0, otherwise,

where c is some normalizing constant.
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Let A > 0, set Sn =
∑n

k=1 Xk, n ≥ 1, and

Yk =

{
Xk

k , when |Xk

k | ≤ A,

0, otherwise,
k = 1, 2, . . . .

Then (stealing from Example 4.1),

P (|Yk| > A) = P (|Xk| > kA) = 2c
∫ ∞

kA

dx

x2 log x
= O

( 1
k log k

)
as k →∞,

and

Var Yk = E
(X

k

)2
I{|X| ≤ kA} =

2c

k2

∫ kA

2

dx

log x
= O

( 1
k log k

)
as k →∞,

so that both sums diverge for all A as claimed.

7 The Marcinkiewicz-Zygmund Strong Law

Just as we met a generalization of the weak law of large numbers in Theorem
3.2, there exists a strong law generalizing Theorem 3.2 – the Marcinkiewicz-
Zygmund strong law – which first appeared in their 1937 paper [180].

Theorem 7.1. (The Marcinkiewicz-Zygmund strong law)
Let 0 < r < 2. Suppose that X, X1, X2, . . . are independent, identically dis-
tributed random variables. If E|X|r < ∞, and E X = 0 when 1 ≤ r < 2,
then

Sn

n1/r

a.s.→ 0 as n →∞.

Conversely, if almost sure convergence holds as stated, then E|X|r < ∞, and
E X = 0 when 1 ≤ r < 2.

Proof of the sufficiency 1. The first part of the proof is essentially the same
as that for the strong law. The difference enters in the getting rid of the
truncated means. We therefore reduce the details somewhat in the first part.

Set

Yn = XnI{|Xn| ≤ n1/r} =

{
Xn, if |Xn| ≤ n1/r,

0, otherwise.

Then X1, X2, . . . and Y1, Y2, . . . are convergence equivalent, spelled out,

∞∑
n=1

P

(∣∣∣ Xn

n1/r

∣∣∣ > 1
)

< ∞.

Lemma 6.1 now tells us that
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∞∑
n=1

Var
( Yn

n1/r

)
< ∞,

the Kolmogorov convergence criterion yields
∞∑

n=1

Yn

n1/r
converges a.s.,

and the random Kronecker lemma,

1
n1/r

n∑
k=1

(Yk − E Yk) a.s.→ 0 as n →∞.

Next we wish to show that

1
n1/r

n∑
k=1

E Yk → µ as n →∞, (7.1)

in order to conclude that

1
n

n∑
k=1

Yk
a.s.→ µ as n →∞,

after which the convergence equivalence finishes the proof.
Since the truncation in this proof differs from that of the corresponding

weak law, Theorem 3.2, we have to argue somewhat differently.
First, let 0 < r < 1. Then

|E S′
n| ≤

n∑
k=1

E|Xk|I{|Xk| ≤ k1/r}

=
n∑

k=1

E|Xk|I{|Xk| ≤ k1/(2r)}+
n∑

k=1

E|Xk|I{k1/(2r) < |Xk| ≤ k1/r}

≤
n∑

k=1

(k1/(2r))1−rE|X|rI{|X| ≤ k1/(2r)}

+
n∑

k=1

(k1/r)1−rE|X|rI{k1/(2r) < |X| ≤ k1/r}

≤
n∑

k=1

k(1−r)/(2r)E|X|r +
n∑

k=1

k(1/r)−1E|X|rI{|X| > k1/(2r)}

≤ Cn(1+r)/(2r)E|X|r +
n∑

k=1

k(1/r)−1E|X|rI{|X| > k1/(2r)},

where, in the last inequality, we glanced at Lemma A.3.1 without specifying
the constant. Thus,
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|E S′
n|

n1/r
≤ n(1/2)−(1/r) · E|X|r +

1
n1/r

n∑
k=1

k(1/r)−1E|X|rI{|X| > k1/(2r)},

which converges to 0 as n → ∞, since the first term in the right-hand side
converges to 0 (the exponent is negative), and the second term is a weighted
average of terms tending to 0 (Lemma A.6.1).

Next, let 1 < r < 2. Then

|E S′
n| =

∣∣∣∣
n∑

k=1

E XkI{|Xk| ≤ k1/r}
∣∣∣∣ ≤

n∑
k=1

E|Xk|I{|X| > k1/r}

≤
n∑

k=1

(k1/r)1−rE|X|rI{|X| > k1/r}

=
n∑

k=1

k(1/r)−1E|X|rI{|X| > k1/r},

which means that

|E S′
n|

n1/r
≤ 1

n1/r

n∑
k=1

k(1/r)−1E|X|rI{|X| > k1/r} → 0 as n →∞,

since the right-hand side is a weighted average of objects converging to 0;
Lemma A.6.1 again. This proves (7.1) for that case.
Proof of the sufficiency 2. Another way to prove this is to proceed as in the
first half of the proof, but to start with the symmetric case. This procedure
has the advantage that (7.1) is void.

Assuming that E|X|r < ∞, it follows, by the cr-inequality, Theorem 3.2.2,
that also E|Xs|r < ∞, so that, by arguing as in the first proof via convergence
equivalence, the Kolmogorov convergence criterion, the random Kronecker
lemma, we conclude that

Ss
n

n1/r

a.s.→ 0 as n →∞.

In order to desymmetrize, we apply the strong symmetrization inequalities,
Theorem 3.6.3, to obtain

Sn −med (Sn)
n1/r

a.s.→ 0 as n →∞.

To get rid of the median we combine this with the weak Marcinkiewicz-
Zygmund law, Theorems 3.2, to obtain

med (Sn)
n1/r

→ 0 as n →∞,

and the conclusion follows.
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Proof of the necessity. We argue as in the proof of the strong law, Theorem
6.1(b):

Xn

n1/r
=

Sn

n1/r
−
(n− 1

n

)1/r

· Sn

n1/r

a.s.→ 0− 1 · 0 = 0 as n →∞,

so that E|X|r < ∞ by Proposition 1.1.
If 1 < r < 2 the strong law, Theorem 6.1, holds. In particular, the mean

is finite. But
Sn

n
= n(1/r)−1 Sn

n1/r

a.s.→ 0 as n →∞,

so that E X = 0 by the converse of the strong law.
If 0 < r < 1 there is nothing more to prove.
This finishes the proof of the necessity and, hence, of the theorem. �

Remark 7.1. In the first proof the last part amounted to “get rid of” the
truncated mean. In the second proof the final part was to “get rid of” the
medians. These are the standard patterns in these two approaches. Moreover,
means are truncated means, whereas medians are medians.

Remark 7.2. Note that in order to take care of the truncated mean in the
sufficiency part for 0 < r < 1, we had to do some extra work, since we could
not turn around the inequality in the indicator, which, in turn, was due to the
fact that the mean does not exist in that case. Going straight along the lines
of the first part would have resulted in a weighted average of objects tending
to E|X|r and not to 0.

Remark 7.3. Another alternative for the truncated means is the slicing tech-
nique. �

Exercise 7.1. Check the statements in the last two remarks.

Exercise 7.2. Formulate and prove a Marcinkiewicz-Zygmund analog to Theorem
6.1(c).

Exercise 7.3. Modify the computations at the end of Section 6.6 concerning Ex-
ample 4.1 in order to exhibit an example where the weak Marcinkiewicz-Zygmund
law holds but the strong one does not. �

8 Randomly Indexed Sequences

Traditional limit theorems concern asymptotics “as n →∞”, that is, when a
fixed index tends to infinity. In the law of large numbers we have met above
we considered the arithmetic mean as the fixed number of terms increased.
In many applications, however, one studies some process during a fixed period
of time, which means that the number of observations is random. A law of
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large numbers in such a situation would involve the arithmetic mean of a
random number of terms as this random number increases, which it does if
time increases.

To make things a bit more precise, and at the same time more general,
suppose that Y1, Y2, . . . are random variables, such that

Yn → Y in some sense as n →∞,

and let {N(t), t ≥ 0} be a family of positive, integer valued random variables,
such that

N(t) →∞ in some sense as t →∞.

Can we, or when can we, or can we not, conclude that

YN(t) → Y in some sense as t →∞ ?

A reasonable guess is that the easiest case should be almost sure convergence.

Theorem 8.1. Suppose that Y1, Y2, . . . are random variables, such that

Yn
a.s.→ Y as n →∞,

and that {N(t), t ≥ 0} is a family of positive, integer valued random variables,
such that

N(t) a.s.→ ∞ as t →∞.

Then
YN(t)

a.s.→ Y as t →∞.

Proof. Let A = {ω : Yn(ω) �→ Y } as n → ∞, B = {ω : N(t, ω) �→ ∞} as
t →∞, and C = {ω : YN(t,ω)(ω) �→ Y } as t →∞.

Then C ⊂ A ∪B, so that

P (C) ≤ P (A ∪B) ≤ P (A) + P (B) = 0. �

With the aid of this result the following law of large numbers is within
easy reach.

Theorem 8.2. Let X, X1, X2, . . . be independent, identically distributed ran-
dom variables, set Sn =

∑n
k=1 Xk, n ≥ 1, and suppose that {N(t), t ≥ 0} is

a family of positive, integer valued random variables, such that

N(t) a.s.→ ∞ as t →∞.

(i) Let r > 0. If E|X|r < ∞, then

XN(t)

(N(t))1/r

a.s.→ 0 as t →∞.
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(ii) Let 0 < r < 2. If E|X|r < ∞, and E X = 0 when 1 ≤ r < 2, then

SN(t)

(N(t))1/r

a.s.→ 0 as t →∞.

(iii) If E X = µ, then

SN(t)

N(t)
a.s.→ µ as t →∞.

(iv) If, in addition, N(t)
t

a.s.→ θ, for some θ ∈ (0,∞), then, in addition,

XN(t)

t1/r

a.s.→ 0,
SN(t)

t1/r

a.s.→ 0, and
SN(t)

t

a.s.→ µθ, respectively.

Proof. Combining Theorem 8.1 with Proposition 1.1 yields (i), combining it
with Theorems 7.1 and 6.1 proves (ii) and (iii), respectively. Finally, (iv) fol-
lows from the fact that the product of two almost surely convergent sequences
(or families) converges almost surely, recall Theorem 5.11.1, or note, as in the
previous proof, that the union of two null sets is a null set. �

The first variation of these results is when one of the convergences is
almost sure, and the other one is in probability. There are two possible setups;
Yn

a.s.→ Y and N(t)
p→ ∞, and Yn

p→ Y and N(t) a.s.→ ∞, respectively. One is
true, the other one is false.

Exercise 8.1. Which is true, which is not? �

Theorem 8.3. Suppose that Y1, Y2, . . . are random variables, such that

Yn
a.s.→ Y as n →∞,

and that {N(t), t ≥ 0} is a family of positive, integer valued random variables,
such that

N(t)
p→∞ as t →∞.

Then
YN(t)

p→ Y as t →∞.

Proof. We apply the subsequence principle (Section 5.7) according to which we
must prove that every subsequence of {YN(t)} contains a further subsequence
that converges almost surely as t →∞, and, thus, also in probability.

Since N(t)
p→ ∞ as t → ∞, this is also true for every subsequence, from

which we can select a further subsequence that converges almost surely, ac-
cording to Theorem 5.3.4. In other words, for every subsequence {tk, k ≥ 1}
there exists a subsubsequence {tkj

, j ≥ 1}, such that N(tkj
) a.s.→ ∞ as j →∞.

An application of Theorem 8.1 then shows that YN(tkj
) → ∞ almost surely

and, hence, also in probability as j →∞. �
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The conclusion here is convergence in probability. Intuitively it is not to
expect that the convergence mode in the conclusion should be stronger than
the weakest of those in the assumptions. A simple example, given to me by
Svante Janson, shows that this is, indeed, the case.

Example 8.1. Let Y1, Y2, . . . be random variables such that P (Yn = 1/n) = 1.
Obviously, Yn

a.s.→ 0 as n →∞. But no matter which family {N(t), t ≥ 0} we
pick we always have P (YN(t) = 1/N(t)) = 1, which converges (if at all) in the
same convergence mode as N(t) does. �

We also present an example from [209] because of its connection with the
following one, which, in turn, is a counter-example to “the other variation”
mentioned above.

Example 8.2. Let Ω = [0, 1], with F the corresponding σ-algebra, and P
Lebesgue measure. Set

Yn(ω) =

{
1

m+1 , for j
2m ≤ ω < j+1

2m ,

0, otherwise,

where n = 2m + j, 0 ≤ j ≤ 2m − 1, and let

N(t, ω) =

{
1, for s

2r ≤ ω < s+1
2r ,

min{k ≥ 2t : Yk(ω) > 0}, otherwise,

where t = 2r + s, 0 ≤ s ≤ 2r − 1.
In this setup, Yn

a.s.→ 0 as n →∞, and N(t)
p→∞ as t →∞. However,

YN(t,ω) =

{
1, for s

2r ≤ ω < s+1
2r ,

1
t+1 , otherwise,

where, again, t = 2r + s, 0 ≤ s ≤ 2r − 1.
Clearly, YN(t)

p→ 0 as t → ∞, but, since P (YN(t) = 1 i.o.) = 1, YN(t)
cannot converge almost surely to 1. �

Next we provide the counter-example, also from [209], that we promised half
a page ago.

Example 8.3. Let the probability space be the same as in Example 8.2, set

Yn(ω) =

{
1, for j

2m ≤ ω < j+1
2m ,

0, otherwise,

where n = 2m + j, 0 ≤ j ≤ 2m − 1, and let

N(t) = min{k ≥ 2t : Yk(ω) > 0}.

In this setup Yn
p→ 0 as n →∞, but not almost surely. Moreover, N(t) a.s.→ ∞

as t →∞. However,

YN(t) = 1 a.s. for all t. �
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Remark 8.1. The crux in the counter-example is that Yn does not converge
along sample paths to 0 (only in probability), and that N(t) is designed to
pick the “evil” points. �

9 Applications

9.1 Normal Numbers

In his celebrated paper [26] Borel proved that almost all real numbers are
normal. This result, which is a purely mathematical statement, can be derived
as a corollary of the strong law as follows.

A number is normal with respect to base 10 if the relative frequency of
every decimal converges to 1/10. Analogously for any base. For reasons of
uniqueness we identify any non-terminating expansion with its terminating
equivalent. For example, the number 0, 39999 . . . is identified with 0.4. It suf-
fices to consider the interval [0, 1], since the number of intervals of unit length
is countable, and a countable union of sets of measure 0 has measure 0.

Theorem 9.1. Almost all numbers in [0, 1] are normal with respect to all
bases.

Proof. Consider a given base k ≥ 1 with decimals j = 0, 1, . . . , k − 1. Pick
a number according to the U(0, 1)-distribution. One readily checks that the
decimals in the k-ary expansion are equidistributed and independent. Thus,
if Xi is the ith decimal of the given number, then

P (Xi = j) =
1
k

for j = 0, 1, . . . , k − 1 and all i,

and {Xi, i ≥ 1} are independent. An application of the strong law of large
numbers thus tells us that

1
n

n∑
i=1

Xi
a.s.→ 1

k
as n →∞,

which shows that the number is normal relative to base k.
Now, let

Bk = {x ∈ [0, 1] : x is not normal with respect to base k}.
We have just shown that P (Bk) = 0 for any given k. Consequently,

P

( ∞⋃
k=1

Bk

)
≤

∞∑
k=1

P (Bk) = 0. �

Exercise 9.1. Write down a normal number.

Exercise 9.2. Write down another one. �

Remark 9.1. It is not known whether such famous numbers as π or e are
normal or not (as far as I know). �
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9.2 The Glivenko-Cantelli Theorem

Let X1, X2, . . . , Xn be a sample from the distribution F . In Subsection 6.3.1
we proved that the empirical distribution function

Fn(x) =
1
n

n∑
k=1

I{Xk ≤ x}

was uniformly close to the true distribution function in probability. In this
subsection we prove the Glivenko-Cantelli theorem which states that the al-
most sure closeness is uniform in x.

The strong law immediately tells us that, for all x

Fn(x) a.s.→ F (x) as n →∞. (9.1)

Theorem 9.2. Under the above setup,

sup
x
|Fn(x)− F (x)| a.s.→ 0 as n →∞.

Proof. The proof of the theorem thus amounts to showing uniformity in x.
Let JF be the countable (Proposition 2.2.1) set of jumps of F , and let

Jn(x) and J(x) denote the jumps of Fn and F , respectively, at x. In addition
to (9.1), which we exploit at continuity points of F , another application of
the strong law tells us that

Jn(x) a.s.→ J(x) for all x ∈ JF .

The conclusion now follows via Lemma A.9.2(iii). �

Remark 9.2. If, in particular, F is continuous, the proof is a little easier (cf.
Lemma A.9.2). �

For more about empirical distributions, cf., e.g., [200, 221, 248].

9.3 Renewal Theory for Random Walks

We recall the setup from Subsection 2.16.3, that is, X, X1, X2, . . . are inde-
pendent, identically distributed random variables, with positive, finite, mean
E X = µ, partial sums Sn =

∑n
k=1 Xk, n ≥ 1, and first passage times

τ(t) = min{n : Sn > t}, t ≥ 0.

Here is a strong law for first passage times.

Theorem 9.3. In the above setup,

τ(t)
t

a.s.→ 1
µ

as t →∞.
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Proof. First of all, τ(t)
p→ ∞ as t → ∞ (why?), and since τ(t) is non-

decreasing, an application of Theorem 5.3.5 shows that τ(t) a.s.→ ∞ as t →∞,
which, by the “random index strong law”, Theorem 8.2, tells us that

Sτ(t)

τ(t)
a.s.→ µ and that

Xτ(t)

τ(t)
a.s.→ 0 as t →∞. (9.2)

Moreover, by construction,

t < Sτ(t) = Sτ(t)−1 + Xτ(t) ≤ t + Xτ(t), (9.3)

so that
t

τ(t)
<

Sτ(t)

τ(t)
≤ t

τ(t)
+

Xτ(t)

τ(t)
.

Joining the two numbered formulas (and Theorem 5.11.1), finally, yields

lim sup
t→∞

t

τ(t)
< µ ≤ lim inf

t→∞

t

τ(t)
+ 0,

which implies the statement of the theorem. �

Exercise 9.3. Modify the proof in order to prove the analogous Marcinkiewicz-
Zygmund law: If E|X|r < ∞, 1 < r < 2, then

τ(t) − t
µ

t1/r

a.s.→ 0 as t → ∞,

([103], Theorem 2.8; also [110], Theorem III.4.4). �

9.4 Records

The model as described in Subsection 2.17.2 was a sequence X1, X2, . . . of
independent, identically distributed, continuous random variables, with record
times L(1) = 1 and, recursively,

L(n) = min{k : Xk > XL(n−1)}, n ≥ 2.

The associated counting process, {µ(n), n ≥ 1}, was defined by

µ(n) = # records among X1, X2, . . . , Xn = max{k : L(k) ≤ n} =
n∑

k=1

Ik,

where Ik = 1 when Xk is a record, and Ik = 0 otherwise. Moreover, the
indicators are independent, and Ik ∈ Be(1/k), k ≥ 1.

In the present subsection we prove strong laws of large numbers for the
record times and the counting process.

We have seen that the counting process is described by a sum of indepen-
dent, but not identically distributed random variables. This is on the one hand
a complication compared to the i.i.d. case. On the other hand, the summands
are indicators, and, hence, bounded, which is a simplification; all moments
exist, and so on.



308 6 The Law of Large Numbers

Theorem 9.4. We have
µ(n)
log n

a.s.→ 1 as n →∞;

log L(n)
n

a.s.→ 1 as n →∞.

Proof. The conclusion for the counting process follows from the Kolmogorov
three-series theorem, Theorem 5.3, or rather, from the Kolmogorov conver-
gence criterion, Theorem 5.2, because of the boundedness of the summands.

Namely, Ik − 1/k, k ≥ 1, are independent, uniformly bounded random
variables with mean 0 and variance 1

k (1− 1
k ). Therefore, since

∞∑
k=1

Var
(Ik − 1

k

log k

)
=

∞∑
k=1

1
k (1− 1

k )
(log k)2

≤
∞∑

k=1

1
k(log k)2

< ∞,

it follows that ∞∑
k=1

Ik − 1
k

log k
converges a.s.,

so that, by the random Kronecker lemma, Lemma 5.1,

1
log n

n∑
k=1

(
Ik −

1
k

)
a.s.→ 0 as n →∞.

The desired limiting result now follows from Lemma A.3.1(iii) (and Theorem
5.11.1).

Next we turn our attention to record times. Rényi’s proof in [205] was
based on inversion;

{L(n) ≥ k} = {µ(k) ≤ n}.
Inspired by the corresponding proof for the first passage times for random
walks it is a natural hope that a similar approach would work here too. And,
indeed, it works ([111]), in fact, more easily, since, in the present context, the
boundary is hit exactly, by which we mean that

µ(L(n)) = n.

After all, the number of records obtained at the moment of occurrence of
record number n clearly must be equal to n.

Now, since L(n) a.s.→ ∞ as n →∞ (please check), we obtain

µ(L(n))
log L(n)

a.s.→ 1 as n →∞,

via Theorem 8.2, so that
n

log L(n)
a.s.→ 1 as n →∞,

which is our claim turned upside down. �
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10 Uniform Integrability; Moment Convergence

In order to prove moment convergence we first have to prove uniform integra-
bility, and then join this with Theorem 5.5.2.

We begin with the Kolmogorov strong law, Theorem 6.1.

Theorem 10.1. Suppose that X, X1, X2, . . . are independent, identically
distributed random variables with finite mean, µ, and set Sn =

∑n
k=1 Xk,

n ≥ 1. Then
Sn

n
→ µ in L1 as n →∞.

Proof. In view of the strong law and Theorem 5.5.2 we have to prove that the
sequence of arithmetic means is uniformly integrable, and in order to achieve
this we lean on Theorem 4.1. We thus wish to show that

sup
n

E
∣∣∣Sn

n

∣∣∣ < ∞,

and that for any ε > 0 there exists δ > 0, such that for any set A with
P (A) < δ,

E
∣∣∣Sn

n

∣∣∣I{A} < ε.

The first relation follows via the triangle inequality:

E
∣∣∣Sn

n

∣∣∣ ≤ 1
n

n∑
k=1

E|Xk| = E|X|.

Similarly for the second one. Namely, for every ε > 0 there exists δ > 0 such
that E|X|I{A} < ε whenever P (A) < δ; cf. Proposition 2.6.3. Thus, if A is
one such set, then

E
∣∣∣Sn

n

∣∣∣I{A} ≤ 1
n

n∑
k=1

E|Xk|I{A} = E|X|I{A} < ε.

Alternatively, we may verify that the definition of uniform integrability is
satisfied directly. Set Bn = {|Sn

n | > ε}. We then know that P (Bn) → 0 as
n →∞, so that, for n0 sufficiently large,

E|X|I{Bn} < ε for n > n0.

As above it then follows that, for n > n0

E
∣∣∣Sn

n

∣∣∣I{Bn} ≤
1
n

n∑
k=1

E|Xk|I{Bn} = E|X|I{Bn} < ε,

which proves that {Sn

n , n ≥ n0} is uniformly integrable. Since adding a finite
number of random variables to the sequence preserves uniform integrability
(Lemma 5.4.1) we have completed a second proof.
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For a third proof, let a > 0. A direct computation, a small trick, and
Markov’s inequality yield

E
∣∣∣Sn

n

∣∣∣I{∣∣∣Sn

n

∣∣∣ > a
}
≤ 1

n

n∑
k=1

E|Xk|I
{∣∣∣Sn

n

∣∣∣ > a
}

= E|X|I
{∣∣∣Sn

n

∣∣∣ > a
}

= E|X|I
{{∣∣∣Sn

n

∣∣∣ > a
}
∩ {|X| ≤

√
a}
}

+E|X|I
{{∣∣∣Sn

n

∣∣∣ > a
}
∩ {|X| >

√
a}
}

≤
√

aP
( ∣∣∣Sn

n

∣∣∣ > a
)

+ E|X|I{|X| >
√

a}

≤
√

a
E|X|

a
+ E|X|I{|X| >

√
a} → 0 as a →∞,

independently of (and hence uniformly in) n. �

Remark 10.1. A fourth proof will be given in Subsection 10.16.1. �

If higher-order moments exist can prove convergence in r-mean by exploit-
ing the convexity of the function |x|r for r ≥ 1 as follows:

Theorem 10.2. Let r ≥ 1. Suppose that X, X1, X2, . . . are independent,
identically distributed random variables with finite mean, µ, and set Sn =∑n

k=1 Xk, n ≥ 1. If E|X|r < ∞, then

Sn

n
→ µ in Lr and E

∣∣∣Sn

n

∣∣∣r → µr as n →∞.

Proof. We wish to prove that {|Sn

n |r, n ≥ 1} is uniformly integrable. To check
the conditions of Theorem 5.4.1, let x1, x2, . . . , xn are positive reals. Then, by
convexity, ( 1

n

n∑
k=1

xk

)r

≤ 1
n

n∑
k=1

(xk)r,

so that, (via the triangle inequality),

E
∣∣∣Sn

n

∣∣∣r ≤ E
( 1

n

n∑
k=1

|Xk|
)r

≤ 1
n

n∑
k=1

E|Xk|r = E|X|r < ∞.

Similarly, given ε, δ, and A as required,

E
∣∣∣Sn

n

∣∣∣rI{A} ≤ E|X|rI{A} < ε,

since now E|X|rI{A} < ε whenever P (A) < δ. �

For an analogous result for the Marcinkiewicz-Zygmund strong law we
profit from the following result due to Pyke and Root [203]. Their proof,
however, differs from ours.
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Theorem 10.3. Let 0 < r < 2. Suppose that X, X1, X2, . . . are independent,
identically distributed random variables, and set Sn =

∑n
k=1 Xk, n ≥ 1. If

E|X|r < ∞, and E X = 0 when 1 ≤ r < 2, then

E
∣∣∣ Sn

n1/r

∣∣∣r = E
|Sn|r

n
→ 0 as n →∞.

Proof. Let 1 ≤ r < 2. As in the proof of the weak Marcinkiewicz-Zygmund
law, Theorem 3.2, we let, for a given, arbitrary ε > 0, M > 0 be so large that
E|X|rI{|X| > M} < ε, and set

Yk = XkI{|Xk| ≤ M} and Zk = XkI{|Xk| > M}, k = 1, 2, . . . .

By the Marcinkiewicz-Zygmund inequalities, Theorem 3.8.1, followed by two
applications of the cr-inequality (note that r/2 < 1), we obtain

E|Sn|r ≤ BrE
∣∣∣ n∑

k=1

X2
k

∣∣∣r/2
≤ BrE

∣∣∣ n∑
k=1

Y 2
k

∣∣∣r/2
+ BrE

∣∣∣ n∑
k=1

Z2
k

∣∣∣r/2

≤ Br(nM2)r/2 + BrnE
(
(Z2

1 )r/2) = Brn
r/2Mr + BrnE|Z1|r

≤ Brn
r/2Mr + Brnε,

so that

lim sup
n→∞

E
|Sn|r

n
≤ Brε.

The conclusion follows.
The case 0 < r < 1 was actually already proved as part of the proof of the

weak Marcinkiewicz-Zygmund law. Let us, however, for convenience, quickly
recall that, using the cr-inequality directly, one obtains

E|Sn|r ≤ (nM)r + nE|X|rI{|X| > M} ≤ (nM)r + nε,

after which the conclusion follows as for the case 1 < r < 2. �

Exercise 10.1. Had we known the Pyke-Root theorem before the Marcinkiewicz
strong law, an alternative for the latter would have been to provide a proof for sym-
metric random variables, to desymmetrize via the strong symmetrization inequalities
and, finally, to use Theorem 10.3 to take care of the median. Check the details of
this plan. �

11 Complete Convergence

As mentioned in Chapter 5, the concept complete convergence was intro-
duced in 1947 by Hsu and Robbins [140], who proved that the sequence of
arithmetic means of independent, identically distributed random variables
converges completely to the expected value of the variables, provided their
variance is finite. The necessity was proved somewhat later by Erdős [74, 75].

We begin, however, with a result on the maximum of a sequence of inde-
pendent, identically distributed random variables paralleling Theorem 2.1.
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Theorem 11.1. Let β > 0, and suppose that X, X1, X2, . . . are independent,
identically distributed random variables. Further, let bn, n ≥ 1, be a sequence
of positive reals, increasing to +∞, and set Yn = max1≤k≤n |Xk|, n ≥ 1. Then

∞∑
n=1

nβ−2P (Yn > bn) < ∞ ⇐⇒
∞∑

n=1

nβ−1P (|X| > bn) < ∞.

In particular, for r > 0,
∞∑

n=1

nβ−2P (Yn > n1/r) < ∞ ⇐⇒ E|X|rβ < ∞,

and
Yn

n1/r

c.c.→ 0 ⇐⇒ E|X|2r < ∞.

Proof. The first part is immediate from relation (2.1), viz.,

1
2

nP (|X| > bnε) ≤ P (Yn > bnε) ≤ nP (|X| > bnε),

for n sufficiently large (and ε > 0).
To prove the second statement, set bn = n1/r. The first part of the theorem

then tells us that
∞∑

n=1

nβ−2P (Yn > n1/r) < ∞ ⇐⇒
∞∑

n=1

nβ−1P (|X| > n1/r) < ∞,

which, in turn, holds if and only if E
(
(|X|r)β

)
< ∞ (Theorem 2.12.1), that

is, if and only if E|X|rβ < ∞.
Finally, let ε > 0. Putting bn = n1/rε and β = 2, we conclude from our

findings so far that if E|X|2r < ∞, then E|X/ε|2r < ∞, so that
∞∑

n=1

P (Yn > n1/rε) < ∞ for all ε > 0.

Conversely, if the sum converges for some ε > 0, then E|X/ε|2r < ∞, and
E|X|2r < ∞. �

11.1 The Hsu-Robbins-Erdős Strong Law

Theorem 11.2. Let X, X1, X2, . . . be independent, identically distributed
random variables, and set Sn =

∑n
k=1 Xk, n ≥ 1. If E X = 0 and E X2 < ∞,

then ∞∑
n=1

P (|Sn| > nε) < ∞ for all ε > 0.

Conversely, if the sum is finite for some ε > 0, then E X = 0, E X2 < ∞,
and the sum is finite for all ε > 0.
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Proof of the sufficiency. The first obvious attempt is to try Chebyshev’s in-
equality. However

∞∑
n=1

P (|Sn| > nε) ≤ ε−2σ2
∞∑

n=1

1
n

= +∞.

So that attempt fails.
The classical proof of the sufficiency runs, essentially, as follows. Let 2i ≤

n < 2i+1 and set

A(1)
n =

{
|Xk| > 2i−2 for at least one k ≤ n

}
,

A(2)
n =

{
|Xk1 | > nγ , |Xk2 | > nγ for at least two ki ≤ n

}
,

A(3)
n =

{
|
∑ ′

Xk| > 2i−2},
where γ is “suitably” chosen at a later time, and where

∑′
denotes summation

over those indices which are not among the first two sets. After this one
observes that

{|Sn| > nε} ⊂ A(1)
n ∪A(2)

n ∪A(3)
n .

A fair amount of computations yield the desired result.
A more efficient way to prove the result is to symmetrize and desym-

metrize as described in Subsection 5.11.3, and to exploit the Kahane-Hoff-
mann-Jørgensen inequality, Theorem 3.7.5.

Therefore, suppose first that the random variables are symmetric. Then,
by the KHJ-inequality, Chebyshev’s inequality, and Theorem 2.12.1,

∞∑
n=1

P (|Sn| > 3nε) ≤
∞∑

n=1

nP (|X| > nε) + 4
(
P (|Sn| > nε)

)2

≤ E(X/ε)2 + 4
∞∑

n=1

( σ2

nε2

)2
=

E X2

ε2 + 4
σ4

ε4

π2

6
.

The beauty of this attack is the squaring of the original probability, in that∑∞
n=1 n−1 (which is divergent) is replaced by

∑∞
n=1 n−2 (which is convergent).

To desymmetrize, let X, X1, X2, . . . be the original sequence. Then,
Var Xs = 2 VarX, so that we know that the theorem holds for the sym-
metrized sequence. By the weak symmetrization inequalities (Proposition
3.6.2) we therefore also know that

∞∑
n=1

P (|Sn −med (Sn)| > nε) < ∞ for all ε > 0.

This implies, in particular, that

Sn −med (Sn)
n

p→ 0 as n →∞,
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which, in view of the weak law of large numbers (and Theorem 5.11.1) shows
that

med (Sn)
n

=
Sn

n
− Sn −med (Sn)

n

p→ 0 as n →∞,

that is med (Sn)
n → 0 as n →∞. Thus, given ε > 0, there exists n0, such that

|med (Sn)|
n

<
ε

2
for n > n0,

so that
∞∑

n=n0+1

P (|Sn| > nε) ≤
∞∑

n=n0+1

P (|Sn −med (Sn)| > nε/2) < ∞.

Proof of the necessity. Once again we begin with the symmetric case.
Set, for n ≥ 1, Yn = max1≤k≤n |Xk|. Recalling Proposition 1.4 we know

that
P (Yn > 2nε) ≤ P ( max

1≤k≤n
|Sk| > nε) ≤ 2P (|Sn| > nε).

Combining this with the fact that the Borel-Cantelli sum is finite (for some
ε), we conclude that

∞∑
n=1

P (|Yn| > 2nε) < ∞ for that very ε > 0.

An application of Theorem 11.1 then tells us that
∞∑

n=1

nP (|X/2| > nε) < ∞,

which proves that E(X/(2ε))2 < ∞, and therefore also that E X2 < ∞.
To desymmetrize we use the weak symmetrization inequalities to conclude

that if the sum is finite for the original random variables, then it is also finite
for the symmetrized ones, so that E(Xs)2 < ∞. But

Var X =
1
2
Var Xs =

1
2
E(Xs)2 < ∞.

Moreover, since the variance is finite, the mean must be finite, so that the
strong law of large numbers holds, which, in turn, forces the mean to equal 0.

Finally, knowing this we can apply the sufficiency part of the theorem,
according to which the Borel-Cantelli sum converges for all ε > 0.

The proof of the theorem is complete. �

11.2 Complete Convergence and the Strong Law

Now is the time to return to Example 2.18.2 and our promise made in con-
nection with the second Borel-Cantelli lemma, of a Borel-Cantelli sum that
diverges, and, yet, the probability of infinitely many events occurring is 0.
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Namely, if the mean is finite and the variance is infinite, then Theorem
11.2 states that the Borel-Cantelli sum is divergent. But the strong law of
large numbers, Theorem 6.1, holds, so that

∞∑
n=1

P (|Sn| > nε) = ∞ and (but) P (|Sn| > nε i.o.) = 0 for all ε > 0.

A simple examples is provided by the two-sided Pareto distribution with
density

f(x) =

{
β

2|x|β+1 , for |x| > 1,

0, otherwise.

with β ∈ (1, 2], for which E|X|r < ∞ for r < β, E X = 0, and E|X|r = ∞
for r ≥ β, in particular, the variance is infinite.

Another way to illustrate this discrepancy is via the counting variable:
Let, for ε > 0,

N(ε) =
∞∑

n=1

I{|Sn| > nε} = Card {n : |Sn| > nε},

that is, we count the number of times the value of the arithmetic mean falls
outside the strip ±ε. The strong law of large numbers states that this number
is (a.s.) finite if and only if the mean of the summands is 0;

P (N(ε) < ∞) = 1 ⇐⇒ E X = 0.

The Hsu-Robbins-Erdős law tells us that the expected number of exceedances
is finite if and only if the variance is finite and the mean is 0;

E N(ε) =
∞∑

n=1

P (|Sn| > nε) < ∞ ⇐⇒ E X = 0 and E X2 < ∞.

This means that if the mean is finite, but the variance is infinite, then the
number of times the arithmetic mean falls outside any strip is a.s. finite, but
the expected number of times this happens is infinite.

12 Some Additional Results and Remarks

Much more can be said about the law of large numbers, but one has to stop
somewhere. In this section we collect a few additional pieces that are inter-
esting and illuminating, but less central.

12.1 Convergence Rates

Whereas convergence is a qualitative result in the sense that it tells us that
convergence holds, a rate result is a quantitative result in the sense that it
tells us how fast convergence is obtained, and how large a sample must be for
a certain precision.
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In addition to being a result on another kind of convergence, Theorem
11.2 can be viewed as a result on the rate of convergence in the law of large
numbers. Namely, not only do the terms P (|Sn| > εn) have to tend to 0, the
sum of them has to converge, which is a little more.

This idea can be pursued further. Following is a more general result linking
integrability of the summands to the rate of convergence in the law of large
numbers. However, the proof is more technical, since dealing with moment
inequalities for sums of an arbitrary order is much more messy than adding
variances.

Theorem 12.1. Let p, r > 0, r ≥ p, p < 2. Suppose that X, X1, X2, . . .
are independent, identically distributed random variables with partial sums
Sn =

∑n
i=1 Xk, n ≥ 1. If

E|X|r < ∞ and, if r ≥ 1, E X = 0, (12.1)

then
∞∑

n=1

n(r/p)−2P (|Sn| > n1/pε) < ∞ for all ε > 0; (12.2)

∞∑
n=1

n(r/p)−2P ( max
1≤k≤n

|Sk| > n1/pε) < ∞ for all ε > 0. (12.3)

If r > p we also have

∞∑
n=1

n(r/p)−2P (sup
k≥n

|Sk/k1/p| > ε) < ∞ for all ε > 0. (12.4)

Conversely, if one of the sums is finite for some ε > 0, then so are the others
(for appropriate values of r and p), E|X|r < ∞ and, if r ≥ 1, E X = 0.

Remark 12.1. Theorem 12.1 has a long history. For r = 1, p = 1 the equiv-
alence between (12.1) and (12.2) is a famous result due to Spitzer [232]; see
also [234]. For r = 2, p = 1 the equivalence between (12.1) and (12.2) is pre-
cisely Theorem 11.2. Departing from these, Katz, and later Baum and Katz,
proved the equivalence between (12.1), (12.2), and (12.4) [153, 13]; and Chow
established equivalence between (12.1) and (12.3) [44]. For a generalization to
random variables with multi-dimensional indices we refer to [104], which we
mention because several parts of the proof below are taken from there. For an
extension to Banach space valued random variables, see [146]. �

Proof. The proof proceeds in steps.
Until further notice we consider symmetric random variables.

Proof of (12.1) =⇒ (12.2), r = p.
We first note that, necessarily, r < 2. Set, for n ≥ 1,
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Yk,n = XkI{|Xk| ≤ n1/r}, k = 1, 2, . . . , n, and S′
n =

n∑
k=1

Yk,n.

By the truncated Chebyshev inequality, Theorem 3.1.5,

P (|Sn| > n1/rε) ≤ Var Y1,n

n(2/r)−1ε2 + nP (|X| > n1/r),

so that (remember that r = p)
∞∑

n=1

n(r/p)−2P (|Sn| > n1/pε) =
∞∑

n=1

1
n

P (|Sn| > n1/rε)

≤ 1
ε2

∞∑
n=1

Var Y1,n

n2/r
+

∞∑
n=1

P (|X| > n1/r) < ∞,

by Lemma 6.1, and Proposition 1.1, respectively.
Proof of (12.1) =⇒ (12.2), r > p, r ≤ 1.
Applying, successively, the KHJ-inequality, Theorem 3.7.5, Markov’s inequal-
ity, Theorem 3.1.1, and the cr-inequality, Theorem 3.2.2, yields

∞∑
n=1

n(r/p)−2P (|Sn| > 3n1/pε)

≤
∞∑

n=1

n(r/p)−1P (|X| > n1/pε) + 4
∞∑

n=1

n(r/p)−2
( E|Sn|r

(n1/pε)r

)2

≤
∞∑

n=1

n(r/p)−1P (|X| > n1/pε) + 4
∞∑

n=1

n(r/p)−2
( nE|X|r

(n1/pε)r

)2

=
∞∑

n=1

n(r/p)−1P (|X| > n1/pε) +
4(E|X|r)2

ε2r

∞∑
n=1

1
nr/p

< ∞.

The finiteness of the first term follows from Theorem 2.12.1(iv), and that of
the last one because r > p.
Proof of (12.1) =⇒ (12.2), r > p, 1 < r < 2.
The same procedure with the crinequality replaced by Corollary 3.8.2 yields

∞∑
n=1

n(r/p)−2P (|Sn| > 3n1/pε)

≤
∞∑

n=1

n(r/p)−1P (|X| > n1/pε) + 4
∞∑

n=1

n(r/p)−2
( E|Sn|r

(n1/pε)r

)2

≤
∞∑

n=1

n(r/p)−1P (|X| > n1/pε) + 4
∞∑

n=1

n(r/p)−2
(BrnE|X|r

(n1/pε)r

)2

=
∞∑

n=1

n(r/p)−1P (|X| > n1/pε) +
4(BrE|X|r)2

ε2r

∞∑
n=1

1
nr/p

< ∞.
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Proof of (12.1) =⇒ (12.2), r ≥ 2.
This time we use the iterated Kahane-Hoffman-Jørgensen inequality. Let j > 1
to be specified later.

∞∑
n=1

n(r/p)−2P (|Sn| > 3jn1/pε)

≤ Cj

∞∑
n=1

n(r/p)−1P (|X| > n1/pε) + Dj

∞∑
n=1

n(r/p)−2
( E|Sn|r

(n1/pε)r

)2j

≤ Cj

∞∑
n=1

n(r/p)−1P (|X| > n1/pε) + Dj

∞∑
n=1

n(r/p)−2
(Brn

r/2E|X|r
(n1/pε)r

)2j

= Cj

∞∑
n=1

n(r/p)−1P (|X| > n1/pε) + Dj

(BrE|X|r
εr

)2j ∞∑
n=1

nβ ,

where

β = (r/p)− 2 + (r/2)2j − (r/p)2j = (r/p)− 2 +
r(p− 2)

p
2j−1.

The first sum converges as in the previous steps. The second sum converges
because β < −1, provided j is chosen sufficiently large.
Proof of (12.2) ⇐⇒ (12.3).
This one is easy for a change. Namely,

P (|Sn| > n1/pε) ≤ P ( max
1≤k≤n

|Sk| > n1/pε) ≤ 2P (|Sn| > n1/pε).

The first inequality is trivial, and the second one is a consequence of the Lévy
inequalities, Theorem 3.7.1.
Proof of (12.2) =⇒ (12.4).
The idea is to divide the supremum into slices along powers of 2. Let j ≥ 1,
and let 2j−1 ≤ k < 2j .

Via an application of the Lévy inequality at the end, we have

P ( max
2j−1≤k<2j

|Sk/k1/p| > ε) ≤ P ( max
2j−1≤k<2j

|Sk| > 2(j−1)/pε)

≤ P ( max
1≤k≤2j

|Sk| > 2(j−1)/pε) ≤ 2P (|S2j | > 2(j−1)/pε).

Next, set C(r, p) = 2(r/p)−2 if r > 2p and = 1 otherwise. Inserting the previous
estimate at third inequality below, and applying Corollary 3.7.1 at the last
one, yields

∞∑
n=1

n(r/p)−2P (sup
k≥n

|Sk/k1/p| > 22/pε)

=
∞∑

i=0

2i+1−1∑
j=2i

j(r/p)−2P (sup
k≥j

|Sk/k1/p| > 22/pε)



12 Some Additional Results and Remarks 319

≤
∞∑

i=0

2iC(r, p) 2i((r/p)−2)P ( sup
k≥2i

|Sk/k1/p| > 22/pε)

≤ C(r, p)
∞∑

i=0

2i((r/p)−1)
∞∑

j=i+1

P ( max
2j−1≤k<2j

|Sk/k1/p| > 22/pε)

≤ C(r, p)
∞∑

i=0

2i((r/p)−1)
∞∑

j=i+1

2P (|S2j | > 2(j+1)/pε)

= 2C(r, p)
∞∑

j=0

( j−1∑
i=0

(2i((r/p)−1)
)
P (|S2j | > 2(j+1)/pε)

≤ 2C(r, p)
∞∑

j=0

2j((r/p)−1)P (|S2j | > 2(j+1)/pε)

= 2C(r, p)
∞∑

j=0

2j+1−1∑
i=2j

2j((r/p)−2)P (|S2j | > 2(j+1)/pε)

≤ 2C(r, p)
∞∑

j=0

2j+1−1∑
i=2j

C(r, p) i(r/p)−22P (|Si| > i1/pε)

= 4(C(r, p))2
∞∑

j=0

j(r/p)−2P (|Sj | > j1/pε) < ∞.

So far we have shown that (12.1) =⇒ (12.2) ⇐⇒ (12.3), and that (12.2) =⇒
(12.4) for symmetric random variables.
Desymmetrization
This is achieved the usual way. If E|X|r < ∞, then E|Xs|r < ∞ as well, so
that (12.2) holds for the symmetrized random variables. By the weak sym-
metrization inequalities, Proposition 3.6.2, this implies that

∞∑
n=1

n(r/p)−2P (|Sn −med (Sn)| > n1/pε) < ∞ for all ε > 0,

from which (12.2) follows in the general case, since med (Sn)/n1/r → 0 as
n →∞.

The procedure for (12.3) and (12.4) are the same, however, with the strong
symmetrization inequalities, Proposition 3.6.3, instead of the weak ones. We
leave the details to the reader.
Proof of (12.4) =⇒ (12.2).
Trivial.
Proof of (12.2) =⇒ (12.1).
This is the last step. We follow the proof of the necessity in Theorem 11.2.

Suppose first that (12.2) holds in the symmetric case, that is, that the sum
is convergent for some ε > 0. Leaning onto Proposition 1.4 we conclude that
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∞∑
n=1

n(r/p)−2P ( max
1≤k≤n

|Xk| > n1/pε) < ∞,

and, via Theorem 11.1, that
∞∑

n=1

n(r/p)−1P (|X| > n1/pε) < ∞,

which is equivalent to E|(X/ε)p|r/p < ∞, and therefore to E|X|r < ∞.
Now, suppose that (12.2) holds for some ε > 0 in the general case. Then

it also does so for the symmetrized variables (with ε/2). Hence, E|Xs|r < ∞,
from which we conclude that E|X|r < ∞ too (Theorem 3.2.3). Moreover, for
r ≥ 1 we know that the strong law holds, which necessitates E X = 0.

And now there is nothing more around to prove. �

The Pareto distributions are often suitable for illustrations as we have
already seen. Partly, of course, since they are easy to handle, more importantly
because by choosing the parameter carefully one can exhibit a distribution
that has moments of every order strictly less than some prescribed level, and
none above that level.

Example 12.1. Let α > 0, and suppose that X, X1, X2, . . . are independent
random variables with common density

f(x) =

{
α

2|x|α+1 , for |x| > 1,

0, otherwise.

By joining (2.1) and Proposition 1.4 (note that the distribution is symmetric),
we have, for 0 < δ < 1 and n large,

(1− δ)n
1

(2x)α
≤ 2P (|Sn| > x), x > 0, (12.5)

where Sn, n ≥ 1, as always, denotes partial sums.
For the specific parameter choice α = p we have E|X|r < ∞ for r < p and

E|X|r = ∞ for r ≥ p. Moreover, setting x = n1/pε in (12.5) yields

2P (|Sn| > n1/pε) ≥ (1− δ)n
1

n(2ε)p
=

1− δ

(2ε)p
,

so that the sum in (12.2) diverges for every r ≥ p (as expected). �

12.2 Counting Variables

In connection with Theorem 11.2 we introduced the counting variable

N(ε) =
∞∑

n=1

I{|Sn| > εn1/p} = Card {n : |Sn| > εn1/p},

for p = 1, and showed that finite mean is equivalent to N(ε) being a.s. fi-
nite, and finite variance is equivalent to N(ε) having finite mean (throughout
E X = 0).
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In this subsection we shall connect the counting variable to Theorem 12.1,
but, more so, we shall connect the theorem to

L(ε) = sup{n : |Sn| > εn1/p},

that is to the last time the sequence of normalized normalized partial sums
leaves the strip ±ε.

We note immediately that N(ε) ≤ L(ε), but an intuitive guess is that
these quantities should not differ all that much.

Since
{L(ε) ≥ n} = {sup

k≥n
|Sk/k1/p| > ε),

the following corollary emerges immediately by combining Theorems 12.1 and
3.12.1. The result for the counting variable was proved in [226] for the case
p = 1.

Corollary 12.1. Let p, r > 0, r > p, p < 2. Suppose that X, X1, X2, . . .
are independent, identically distributed random variables with partial sums
Sn =

∑n
k=1 Xk, n ≥ 1, and let the counting variable N(ε) and last exit time

L(ε) be defined as above. Then, for all ε > 0,

E|X|r < ∞ and, if r ≥ 1, E X = 0 =⇒ E L(ε)(r/p)−1 < ∞,

E|X|r < ∞ and, if r ≥ 1, E X = 0 =⇒ E N(ε)(r/p)−1 < ∞.

Conversely, if E L(ε)(r/p)−1 < ∞ for some ε > 0, then E|X|r < ∞ and, if
r ≥ 1, E X = 0.

Remark 12.2. We also remark that, although there is no equivalence in the
second statement, the Pareto example 12.1, shows that there is no general
improvement available. �

12.3 The Case r = p Revisited

The case r = p was not allowed in (12.4) in Theorem 12.1 (because of the
divergence of the harmonic series). There exists a variant of the theorem when
r = p, however, with slight alterations in the first three conditions. We confine
ourselves to formulating the result and refer to the various sources that were
collected in Remark 12.1.

Theorem 12.2. Let 0 < r < 2. Suppose that X, X1, X2, . . . are independent,
identically distributed random variables with partial sums Sn =

∑n
k=1 Xk,

n ≥ 1, and let L(ε) be the last exit time. If

E|X|r log+ |X| < ∞ and, if r ≥ 1, E X = 0, (12.6)

then
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∞∑
n=1

log n

n
P (|Sn| > n1/rε) < ∞ for all ε > 0; (12.7)

∞∑
n=1

log n

n
P ( max

1≤k≤n
|Sk| > n1/rε) < ∞ for all ε > 0; (12.8)

∞∑
n=1

1
n

P (sup
k≥n

|Sk/k1/r| > ε) < ∞ for all ε > 0; (12.9)

E log L(ε) < ∞ for all ε > 0. (12.10)

Conversely, if one of (12.7)–(12.10) holds for some ε > 0, then so do the
others, E|X|r < ∞ and, if r ≥ 1, E X = 0.

12.4 Random Indices

In this subsection we present some random index extensions of convergence
rate results. We confine ourselves to statements, and refer to the relevant
literature for proofs.

Randomly Indexed Sums

Here is an extension of Theorem 12.1.

Theorem 12.3. Let p, r > 0, r ≥ p, p < 2, let X, X1, X2, . . . be independent,
identically distributed random variables with partial sums Sn =

∑n
k=1 Xk,

n ≥ 1, and let {Nn, n ≥ 1} be non-negative, integer valued random variables.
Suppose that E|X|r < ∞, and that E X = 0 when r ≥ 1. If, for some θ ∈
(0,∞) and some δ ∈ (0,∞),

∞∑
n=1

n(r/p)−2P (|Nn − nθ| > nδ) < ∞,

then ∞∑
n=1

n(r/p)−2P (|SNn
| > Nn

1/pε) < ∞ for all ε > 0,

and ∞∑
n=1

n(r/p)−2P (|SNn | > n1/pε) < ∞ for all ε > 0.

The proof of the first claim is based on the decomposition

P (|SNn | > Nn
1/pε) = P

(
{|SNn | > Nn

1/pε} ∩ {|Nn − nθ| ≤ nδ}
)

+P
(
{|SNn | > Nn

1/pε} ∩ {|Nn − nθ| > nδ}
)
,

after which the first term in the decomposition is taken care of by Theorem
12.1, and the second one by the rate assumption on the index sequence. For
the details we refer to [107].
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First Passage Times For Random Walks

For a proof of the following result we refer to [107].

Theorem 12.4. Let r ≥ 1, 1 ≤ p < 2, and r ≥ p. Let X, X1, X2, . . . be
independent, identically distributed random variables with mean µ > 0, and
partial sums Sn =

∑n
k=1 Xk, n ≥ 1, and let τ(t) = min{n : Sn > t}, t ≥ 0. If

E|X|r < ∞, then

∞∑
n=1

n(r/p)−2P

(∣∣∣τ(n)− n

µ

∣∣∣ > n1/pδ

)
< ∞ for all δ > 0.

Results of this kind have been proved for record times {L(n), n ≥ 1} and the
counting process {µ(n), n ≥ 1} in [112].

We finally mention that one can also investigate at which rate probabilities,
such as P (|Sn| > εn) tend to 1 as ε ↘ 0. For example, ε2 multiplied by the
Borel-Cantelli sum of Theorem 11.2 converges to the second moment of the
summands; see [136]. We shall (briefly) discuss such results in Subsection
7.7.8.

13 Problems

1. Let X1, X2, . . . be independent, identically distributed random variables.
Suppose that x∞ = sup{x : F (x) < 1} < ∞, and set Yn = max1≤k≤n Xk,
n ≥ 1.
(a) Prove that

Yn
p→ x∞ as n →∞.

(b) Prove that Yn
a.s.→ x∞ as n →∞.

Suppose, in addition, that x−∞ = inf{x : F (x) > 0} > −∞, and set
Zn = min1≤k≤n Xk, n ≥ 1.

(c) Prove that
Yn

Zn

p→ x∞
x−∞

as n →∞.

(d) Prove that
Yn

Zn

a.s.→ x∞
x−∞

as n →∞.

2. Let X1, X2, . . . be independent, identically distributed random variables
with mean µ and finite variance σ2. Show that

X1 + X2 + · · ·+ Xn

X2
1 + X2

2 + · · ·+ X2
n

a.s.→ µ

σ2 + µ2 as n →∞.
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3. Let (Xk, Yk)′, 1 ≤ k ≤ n be a sample from a two-dimensional distribution
with mean vector and covariance matrix

µ =
(

µx

µy

)
, Λ =

(
σ2

x ρ
ρ σ2

y

)
,

respectively, and let

X̄n =
1
n

n∑
k=1

Xk, s2
n,x =

1
n− 1

n∑
k=1

(Xk − X̄n)2,

Ȳn =
1
n

n∑
k=1

Yk, s2
n,y =

1
n− 1

n∑
k=1

(Yk − Ȳn)2,

denote arithmetic means and sample variances.
(a) Prove that

s2
n,x

a.s.→ σ2
x and s2

n,y
a.s.→ σ2

y as n →∞.

(b) The empirical correlation coefficient is defined as

rn =
∑n

k=1(Xk − X̄n)(Yk − Ȳn)√∑n
k=1(Xk − X̄n)2

∑n
k=1(Yk − Ȳn)2

.

Prove that
rn

a.s.→ ρ as n →∞.

4. Let X1, X2, . . . be independent U(0, 1)-distributed random variables, and
set Yn = min1≤k≤n Xk, n ≥ 1. Show that

Vn =
∑n

k=1 Yk

log n

p→ 1 as n →∞.

♠ Compute E Vn and Var Vn.
5. We are given m boxes into which balls are thrown independently, and

uniformly, that is, the probability of a ball falling into a given box is 1/m
for all boxes. Let Nn denote the number of empty boxes after n balls have
been distributed.
(a) Compute E Nn and VarNn.
(b) Let n, m →∞ in such a way that n/m → λ. Prove that

Nn

n

p→ c,

and determine the constant c.
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6. Suppose that X and {Xk, k ≥ 1} are independent, identically distributed
random variables, such that

P (X = n) =
1

n(n− 1)
, n = 2, 3, . . . .

Can you prove a strong law of large numbers? A weak law?
7. Suppose that {Xk, k ≥ 1} are independent random variables, such that

P (Xk = −k2) =
1
k2 , P (Xk = −k3) =

1
k3 , P (Xk = 2) = 1− 1

k2 −
1
k3 .

Prove that
∑n

k=1 Xk
a.s.→ +∞ as n →∞.

8. Let {an ∈ R+, n ≥ 1}, and suppose that {Xk, k ≥ 1} are independent
random variables, such that

P (Xn = −3) = 1− pn, P (Xn = an) = pn, n ≥ 1.

Prove that
∞∑

n=1

pn < ∞ =⇒
n∑

k=1

Xk
a.s.→ −∞ as n →∞.

What about a converse?
9. Let X1, X2, . . . be independent, identically distributed random variables.

Show that
(a)
∑∞

n=1 Xn does not converge almost surely;

(b)P (
∑∞

n=1 Xn converges) = 0.
10. Let X1, X2, . . . be independent, identically distributed random variables

with mean µ > 0. Show that
n∑

k=1

Xk
a.s.→ +∞ as n →∞.

♣ If the mean is negative the sum converges almost surely to −∞. If the mean
equals 0 one can show that the sum, almost surely, oscillates between the
infinities.

11. Let X1, X2, . . . be random variables with partial sums Sn, n ≥ 1. Prove
that
(a) Xn

a.s.→ 0 =⇒ Sn

n

a.s.→ 0 as n →∞;

(b)Xn
a.s.→ 0 =⇒ 1

log n

∑n
k=1

Xk

k

a.s.→ 0 as n →∞;

(c) Xn
a.s.→ 0 =⇒ 1

log log n

∑n
k=1

Xk

k log k

a.s.→ 0 as n →∞;

(d)Xn
r→ 0 =⇒ Sn

n

r→ 0 as n →∞, (r ≥ 1);

(e) Xn
p→ 0 �=⇒ Sn

n

p→ 0 as n →∞.

♠ Try P (Xn = 0) = 1 − 1
n

and P (Xn = 2n) = 1
n
, n ≥ 1.
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12. Suppose that X1, X2, . . . are independent random variables, such that
Xn ∈ N(µn, σ2

n), n ≥ 1.
(a) Prove that

∞∑
n=1

Xn converges a.s ⇐⇒
∞∑

n=1

µn converges and
∞∑

n=1

σ2
n < ∞.

(b) Which of the following three statements are true?
∞∑

n=1

Xn ∈ N

( ∞∑
n=1

µn,

∞∑
n=1

σ2
n

)
?

E

( ∞∑
n=1

Xn

)
=

∞∑
n=1

µn ?

Var
( ∞∑

n=1

Xn

)
=

∞∑
n=1

σ2
n ?

13. Suppose that Xn ∈ Ge(pn), n ≥ 1, and that X1, X2, . . . are independent.
State and prove the analog of the previous problem.

14. Let X1, X2, . . . be independent, standard Cauchy-distributed random
variables, and ak, k ≥ 1, be real numbers. Prove that

∞∑
n=1

anXn converges a.s. ⇐⇒
∞∑

n=1

|an| < ∞,

and determine the distribution of the limiting random variable.
15. Prove the following weaker strong law: Let X, X1, X2, . . . be independent,

identically distributed random with partial sums Sn, n ≥ 1. Suppose that
E X = 0, and that E X4 < ∞.
(a) Prove that E(Sn)4 ≤ An2 + Bn, and determine A and B.

(b) Prove that
Sn2

n2
a.s.→ 0 as n →∞.

(c) Set Tn = maxn2≤k≤(n+1)2 |Sk − Sn2 |. Prove that

P (Tn > n2ε i.o.) = 0 for all ε > 0.

(d) Alternatively, set Vn = maxn2≤k≤(n+1)2
|Sk|

k , and prove that

P (Vn > ε i.o.) = 0 for all ε > 0.

(e) Prove that
Sn

n

a.s.→ 0 as n →∞.

♣ It obviously suffices to solve (c) or (d) in order to solve the problem; it is,
however, not forbidden to solve both.
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16. Let X1, X2, . . . be uncorrelated random variables with partial sums Sn,
n ≥ 1. Suppose that E X = 0, and that supn E(Xn)4 = M < ∞. Prove
that

Sn

n

a.s.→ 0 as n →∞.

♣ Review your proof from the previous problem and modify where necessary.
17. Numerical integration. Suppose that g is a non-negative, continuous func-

tion on the unit interval, and that supx g(x) ≤ 1. The following procedure
aims at approximating the integral of g over the unit interval. Pick n points
uniformly in the unit square, and let Un equal the number of points falling
below the curve y = g(x). Prove that

Un

n

a.s.→
∫ 1

0
g(x) dx as n →∞.

18. A stick of length 1 is randomly broken, which means that the remaining
piece is U(0, 1)-distributed. The remaining piece is broken similarly, and
so on.
(a) Let Xn be the length of the piece that remains after the stick has been

broken n times. Describe Xn as a product.
(b) Prove that

log Xn

n

a.s.→ as n →∞,

and determine the limit.
(c) Find the distribution of the length of the first piece that was thrown

away – don’t compute, think! Then compute.
19. Let X be a random variable with mean 0 and variance 1, and suppose

that X1, X2, . . . are independent random variables, such that Xk
d= kX

for all k, and set Sn =
∑n

k=1 Xk, n ≥ 1. Show that

(a) Sn

n2
p→ 0 as n →∞;

(b) Sn

n2
a.s.→ 0 as n →∞.

20. Find the appropriate moment condition and normalization if we assume
that, for some β > 0, Xk

d= kβX for all k in the previous problem, and
prove the corresponding laws of large numbers.

21. Let X1, X2, . . . be independent, identically distributed random variables
with mean 0, and {an, n ≥ 1} a sequence of bounded reals; supn |an| ≤
A < ∞. Prove that
(a) 1

n

∑n
k=1 akXk

p→ 0 as n →∞;

(b) 1
n

∑n
k=1 akXk

a.s.→ 0 as n →∞.
22. Let X1, X2, . . . be independent, identically distributed random variables,

such that E X �= 0, set Sn =
∑n

k=1 Xk and Yk = max1≤k≤n Xk. Prove
that

Yn

Sn

a.s.→ 0 as n →∞.



7

The Central Limit Theorem

The law of large numbers states that the arithmetic mean of independent,
identically distributed random variables converges to the expected value. One
interpretation of the central limit theorem is as a (distributional) rate re-
sult. Technically, let X, X1, X2, . . . be independent, identically distributed
random variables with mean µ. The weak and strong laws of large numbers
state that 1

n

∑n
k=1 Xk → µ in probability and almost surely, respectively, as

n →∞. A distributional rate result deals with the question of how one should
properly “blow up” the difference 1

n

∑n
k=1 Xk−µ in order for the limit to have

a non-trivial limit as n tends to infinity. The corresponding theorem was first
stated by Laplace. The first general version with a rigorous proof is due to
Lyapounov [178, 179].

It turns out that if, in addition, the variance exists, then a multiplication
by

√
n yields a normal distribution in the limit. Our first result is a proof of

this fact. We also prove the Lindeberg-Lévy-Feller theorem which deals with
the same problem under the assumption that the summands are independent,
but not identically distributed, and Lyapounov’s version. Another variant is
Anscombe’s theorem, a special case of which is the central limit theorem for
randomly indexed sums of random variables.

After this we turn our attention to the celebrated Berry-Esseen theorem,
which is a convergence rate result for the central limit theorem, in that it
provides an upper bound for the difference between the distribution functions
of the standardized arithmetic mean and the normal distribution, under the
additional assumption of a finite third moment.

The remaining part of the chapter (except for the problems) might be
considered as somewhat more peripheral for the non-specialist. It contains
various rate results for tail probabilities, applications to our companions re-
newal theory and records, some remarks on so-called local limit theorems for
discrete random variables, and a mention of the concept of large deviations.

There also exist limit theorems when the variance does not exist and/or
when the summands are not independent. An introduction to these topics will
be given in Chapter 9.
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1 The i.i.d. Case

In order to illustrate the procedure, we begin with the following warm-up; the
i.i.d. case.

Theorem 1.1. Let X, X1, X2, . . . be independent, identically distributed ran-
dom variables with finite expectation µ, and positive, finite variance σ2, and
set Sn = X1 + X2 + · · ·+ Xn, n ≥ 1. Then

Sn − nµ

σ
√

n

d→ N(0, 1) as n →∞.

Proof. In view of the continuity theorem for characteristic functions (Theorem
5.9.1), it suffices to prove that

ϕSn−nµ
σ

√
n

(t) → e−t2/2 as n →∞, for −∞ < t < ∞.

Since (Sn − nµ)/σ
√

n =
(∑n

k=1(Xk − µ)/σ
)
/
√

n, we may assume w.l.o.g.
throughout the proof, that µ = 0 and σ = 1. With the aid of Theorems
4.1.10, 4.1.8, and 4.4.2, we then obtain

ϕSn−nµ
σ

√
n

(t) = ϕ Sn√
n
(t) = ϕSn

( t√
n

)
=
(
ϕX

( t√
n

))n

=
(
1− t2

2n
+ o
( t2

n

))n

→ e−t2/2 as n →∞. �

2 The Lindeberg-Lévy-Feller Theorem

Let X1, X2, . . . be independent random variables with finite variances, and
set, for k ≥ 1, E Xk = µk, VarXk = σ2

k, and, for n ≥ 1, Sn =
∑n

k=1 Xk,
and s2

n =
∑n

k=1 σ2
k. We disregard throughout the degenerate case that all

variances are equal to zero.
The two fundamental conditions involved in the general form of the central

limit theorem are the so-called Lindeberg conditions

L1(n) = max
1≤k≤n

σ2
k

s2
n

→ 0 as n →∞, (2.1)

and

L2(n) =
1
s2

n

n∑
k=1

E|Xk − µk|2I{|Xk − µk| > εsn} → 0 as n →∞. (2.2)

Here is now the legendary result.
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Theorem 2.1. (Lindeberg-Lévy-Feller) Let X1, X2, . . . be given as above.
(i) If (2.2) is satisfied, then so is (2.1), and

1
sn

n∑
k=1

(Xk − µk) d→ N(0, 1) as n →∞. (2.3)

(ii) If (2.1) and (2.3) are satisfied, then so is (2.2).

Remark 2.1. Lindeberg proved the sufficiency by replacing one summand after
the other with a normal one; see [176]. Lévy gave a proof based on character-
istic functions; cf. his book [170], pp. 242. Feller [83] proved the necessity; see
also [171], Théorème VI, and [172], Théorème 35. �

We first prove that if (2.1) holds, then

s2
n →∞ as n →∞, (2.4)

and that (2.2) =⇒ (2.1), after which we provide two proofs of the sufficiency
via characteristic functions – the more classical one and a more recent varia-
tion, and then another proof by the replacement method. We conclude with
a proof of the necessity.

We assume, without restriction, that µk = 0 throughout the proof.

Proof of the Implication (2.1) =⇒ (2.4)

Since we have excluded the case when all variances are equal to zero, there
exists m, such that σ2

m > 0. For n > m it then follows that

σ2
m

s2
n

≤ L1(n) → 0 as n →∞,

from which the conclusion follows.

Proof of the Implication (2.2) =⇒ (2.1)

For any ε > 0,

L1(n) ≤ max
1≤k≤n

1
s2

n

EX2
kI{|Xk| ≤ εsn}+ max

1≤k≤n

1
s2

n

EX2
kI{|Xk| > εsn}

≤ ε2 + L2(n),

so that
lim sup

n→∞
L1(n) ≤ ε2,

which proves the assertion. �
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Proof of the Sufficiency; Characteristic Functions 1

The traditional method is to write a product as an exponential of sums of
logarithms, use Taylor expansion, and then the refined estimate for charac-
teristic functions given in Theorem 4.4.1(i), where the cruder estimate is used
outside the interval [−εsn, εsn] and the finer estimate inside the same inter-
val. In order to indicate the procedure we begin with a rougher preliminary
version – note that 1− ϕXk

(t/sn) is “small” when n is “large”:

ϕSn/sn
(t) = ϕSn

(t/sn) =
n∏

k=1

ϕXk
(t/sn) = exp

{ n∑
k=1

log ϕXk
(t/sn)

}

≈ exp
{
−

n∑
k=1

(
1− ϕXk

(t/sn)
)}

≈ exp
{
−

n∑
k=1

(
1−

(
1 +

it
sn

· 0 +
(it)2

2s2
n

· σ2
k

))}

= exp
{
−

n∑
k=1

(
1−

(
1− t2

2s2
n

· σ2
k

))}

= exp
{
− t2

2s2
n

n∑
k=1

σ2
k

}
= exp{−t2/2} = ϕN(0,1)(t),

after which an application of the continuity theorem for characteristic func-
tions, Theorem 5.9.1, would finish the proof.

Let us now straighten out the ≈ into = in order to make this rigorous.
This amounts to proving that

∣∣∣ n∑
k=1

(
log ϕXk

(t/sn) +
(
1− ϕXk

(t/sn)
))∣∣∣ → 0 as n →∞, (2.5)

and that

∣∣∣ n∑
k=1

(
ϕXk

(t/sn)−
(
1− σ2

kt2

2s2
n

))∣∣∣ → 0 as n →∞. (2.6)

The key estimates from Theorem 4.4.1(i) are:

∣∣ϕXk
(t/sn)− 1

∣∣ ≤ E min
{2|tX|

sn
,
t2X2

k

2s2
n

}
, (2.7)

∣∣∣ϕXk
(t/sn)−

(
1− t2σ2

k

2s2
n

)∣∣∣ ≤ E min
{ t2X2

k

2s2
n

,
|t|3|Xk|3

6s3
n

}
. (2.8)
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Since

|1− ϕXk
(t/sn)| ≤ E

t2X2
k

2s2
n

≤ t2

2
L1(n) → 0 as n →∞, (2.9)

uniformly for k = 1, 2, . . . , n, formula (A.A.5) with z = 1−ϕXk
(t/sn) tells us

that, for n sufficiently large,∣∣∣ n∑
k=1

(
log ϕXk

(t/sn) +
(
1− ϕXk

(t/sn)
))∣∣∣

≤
n∑

k=1

∣∣ log
(
1− (1− ϕXk

(t/sn))
)

+
(
1− ϕXk

(t/sn)
)∣∣

≤
n∑

k=1

∣∣1− ϕXk
(t/sn)

∣∣2 ≤ max
1≤k≤n

∣∣1− ϕXk
(t/sn)

∣∣ n∑
k=1

∣∣1− ϕXk
(t/sn)

∣∣
≤ t2

2
L1(n)

n∑
k=1

E
t2X2

k

2s2
n

=
t4

4
L1(n) → 0 as n →∞.

This justifies the first approximation, (2.5).
As for the second one, applying (2.8) and splitting at ±εsn, yield∣∣∣ n∑

k=1

(
ϕXk

(t/sn)−
(
1− σ2

kt2

2s2
n

))∣∣∣ ≤ n∑
k=1

∣∣∣ϕXk
(t/sn)−

(
1− σ2

kt2

2s2
n

)∣∣∣
≤

n∑
k=1

E min
{ t2X2

k

s2
n

,
|t|3|Xk|3

6s3
n

}

≤
n∑

k=1

E
|t|3|Xk|3

6s3
n

I{|Xk| ≤ εsn}+
n∑

k=1

E
t2X2

k

s2
n

I{|Xk| > εsn}

≤
n∑

k=1

|t|3εsn

6s3
n

E|Xk|2I{|Xk| ≤ εsn}+ t2L2(n) ≤ |t|3ε
6

+ t2L2(n).

Consequently,

lim sup
n→∞

∣∣∣ n∑
k=1

ϕXk
(t/sn)−

(
1− σ2

kt2

2s2
n

)∣∣∣
≤ lim sup

n→∞

n∑
k=1

∣∣∣ϕXk
(t/sn)−

(
1− σ2

kt2

2s2
n

)∣∣∣ ≤ |t|3ε
6

, (2.10)

which, due to the arbitrariness of ε, proves (2.6). �

Proof of the Sufficiency; Characteristic Functions 2

This proof starts off a little differently. Instead of the ϕ = exp{log ϕ} device,
one uses the following lemma, which leads to a slightly slicker, more elegant,
proof.
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Lemma 2.1. Suppose that {zk, 1 ≤ k ≤ n} and {wk, 1 ≤ k ≤ n} are complex
numbers, such that |zk| ≤ 1 and |wk| ≤ 1 for all k. Then∣∣∣∣

n∏
j=1

zj −
n∏

j=1

wj

∣∣∣∣ ≤
n∑

k=1

|zk − wk|.

Proof. The proof proceeds by induction. The claim is obviously true for n = 1.
For the induction step we set z∗

n =
∏n

j=1 zj , and w∗
n =

∏n
j=1 wj . Then

z∗
n − w∗

n = (zn − wn)z∗
n−1 + wn(z∗

n−1 − w∗
n−1),

so that

|z∗
n − w∗

n| ≤ |zn − wn| · |z∗
n−1|+ |wn| · |z∗

n−1 − w∗
n−1|

≤ |zn − wn|+ |z∗
n−1 − w∗

n−1|. �

The plan now is to exploit the lemma in proving that

|ϕSn/sn
(t)− e−t2/2| → 0 as n →∞.

Via a glance at the beginning of the “approximative proof” above, and the
identity

e−t2/2 =
n∏

k=1

exp
{
− σ2

kt2

2s2
n

}
,

this is the same as proving that

∣∣∣ n∏
k=1

ϕXk
(t/sn)−

n∏
k=1

exp
{
− σ2

kt2

2s2
n

}∣∣∣→ 0 as n →∞.

However, for this it suffices, in view Lemma 2.1, to show that
n∑

k=1

∣∣∣ϕXk
(t/sn)− exp

{
− σ2

kt2

2s2
n

}∣∣∣→ 0 as n →∞.

Now, since the first two terms in the Taylor expansions of the characteristic
function and the exponential coincide, we can add and subtract them, so that,
by the triangle inequality, we are done if we can show that

n∑
k=1

∣∣∣ϕXk
(t/sn)−

(
1− σ2

kt2

2s2
n

)∣∣∣ → 0 as n →∞, (2.11)

n∑
k=1

∣∣∣ exp
{
− σ2

kt2

2s2
n

}
−
(
1− σ2

kt2

2s2
n

)∣∣∣ → 0 as n →∞. (2.12)

However, since (2.12) actually is a particular case of (2.11), namely, the case
when Xk ∈ N(0, σ2

k) for all k, our task finally reduces to proving (2.11) only.
This, however, coincides with (2.10) from the preceding proof. �
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Proof of the Sufficiency; Replacement

In addition to our original sequence X1, X2, . . . we introduce a sequence of
independent random variables Yk ∈ N(0, σ2

k), k ≥ 1, with partial sums Zn,
n ≥ 1. We also assume that the two sequences are independent. The idea is to
estimate the difference between the partial sums successively by exchanging
one Xk for one Yk at a time. For this we shall exploit the following slight
variation of Definition 5.1.5:

X
d= Y ⇐⇒ E h(X) = E h(Y ) for every h ∈ CB , (2.13)

with three bounded continuous derivatives.
Accepting this, our object is to show that, for any such h,

E h(Sn/sn) → E h(N(0, 1)) as n →∞. (2.14)

By Taylor expansion and the mean value theorem,

h(x + u) = h(x) + uh′(x) +
u2

2
h′′(x) + r0(u), (2.15)

where |r0(u)| ≤ C min{u2, |u|3} for some fixed constant C.
Set, for 1 ≤ j ≤ n, n ≥ 1,

S(j)
n = Y1 + Y2 + · · ·+ Yj−1 + Xj+1 + Xj+2 + · · ·+ Xn,

and note, in particular, that X1 + S
(1)
n = Sn, that S

(n)
n + Yn = Zn, and that

S
(j)
n , Xj , and Yj are independent random variables. Inserting this into (2.15)

with x = S
(j)
n /sn, for j = 1, 2, . . . , n, and noticing that the terms h(S(j)

n /sn)
cancel for all j as we pass the second inequality sign, yields

|E h(Sn/sn)− E h(N(0, 1))| = |E h(Sn/sn)− E h(Zn/sn)|

≤
n∑

j=1

∣∣∣E(h((S(j)
n + Xk)/sn

)
− h
(
(S(j)

n + Yj)/sn

))∣∣∣
≤

n∑
j=1

∣∣∣E((Xj − Yj)/sn

)
· h′(S(j)

n /sn)
∣∣∣

+
n∑

j=1

∣∣∣E((X2
j − Y 2

j )/2s2
n

)
· h′′(S(j)

n /sn)
∣∣∣+ n∑

j=1

E
(
r0(Xj) + r0(Yj)

)

=
n∑

j=1

∣∣∣E((Xj − Yj)/sn

)
· E h′(S(j)

n /sn)
∣∣∣

+
n∑

j=1

∣∣∣E((X2
j − Y 2

j )/2s2
n

)
E h′′(S(j)

n /sn)
∣∣∣+ n∑

j=1

E
(
r0(Xj) + r0(Yj)

)

=
n∑

j=1

E
(
r0(Xj) + r0(Yj)

)
,
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where the last equality is a consquence of the fact that all variables have mean
0 and that the variances of Xj and Yj coincide for all j.

It remains to investigate the remainders. Since

r0(Xj) + r0(Yj) ≤ C min{(Xj/sn)2, |Xj/sn|3}+ C min{(Yj/sn)2, |Yj/sn|3},

our task is to show that
n∑

j=1

E min{(Xj/sn)2, |Xj/sn|3} → 0 as n →∞, (2.16)

n∑
j=1

E min{(Yj/sn)2, |Yj/sn|3} → 0 as n →∞. (2.17)

Before doing so we note that (2.17) is a particular case of (2.16), namely,
the case when we consider normal distributions. However, remember that we
assume that X1, X2, . . . satisfy (2.2), so that what we really have to prove is
that (2.16) holds and that Y1, Y2, . . . satisfy (2.2).

To prove (2.16) we split, as before, at ±εsn.

n∑
j=1

E min{(Xj/sn)2, |Xj/sn|3}

≤ 1
s3

n

n∑
j=1

E|Xj |3I{|Xj | ≤ εsn}+
1
s2

n

n∑
j=1

E X2
j I{|Xj | > εsn}

≤ ε
1
s2

n

n∑
j=1

E|Xj |2I{|Xj | ≤ εsn}+ L2(n) ≤ ε + L2(n),

which proves that

lim sup
n→∞

n∑
j=1

E min{(Xj/sn)2, |Xj/sn|3} ≤ ε,

and, hence, (2.16), in view of the arbitrariness of ε.
Finally, to verify (2.2) for the normal random variables we can exploit the

fact that higher moments exist:

1
s2

n

n∑
j=1

E Y 2
j I{|Yj | > εsn} ≤

1
ε2s4

n

n∑
j=1

E Y 4
j I{|Yj | > εsn} ≤

1
ε2s4

n

n∑
j=1

E Y 4
j

=
1

ε2s4
n

n∑
j=1

3σ4
j ≤

3
ε2s2

n

max
1≤j≤n

σ2
j

s2
n

n∑
j=1

σ2
j =

3
ε2 L1(n) → 0 as n →∞,

by assumption. �
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Proof of the Necessity

We thus assume that (2.1) is satisfied and that Sn/sn
d→ N(0, 1) as n → ∞,

which, by Theorem 5.9.1, implies that

ϕSn/sn
(t) =

n∏
k=1

ϕXk
(t/sn) → e−t2/2 as n →∞. (2.18)

From the justification of (2.5), which only exploited (2.1), we can recycle

n∑
k=1

∣∣1− ϕXk
(t/sn)

∣∣2 ≤ t4

4
L1(n) → 0 as n →∞. (2.19)

Set z = ϕXk
(t/sn)− 1. Then |z| ≤ 1/2 for n large, which, by (A.A.4) tells us

that |ez − 1− z| ≤ |z|2, so that∣∣ exp{ϕXk
(t/sn)− 1} − 1

∣∣ ≤ ∣∣ exp{ϕXk
(t/sn)− 1} − ϕXk

(t/sn)
∣∣

+|ϕXk
(t/sn)− 1|

≤ |ϕXk
(t/sn)− 1|2 + |ϕXk

(t/sn)− 1| ≤ 3
4
,

so that, by Lemma 2.1 with z = ϕXk
(t/sn) and w = exp{ϕXk

(t/sn)− 1}, we
obtain, recalling (2.19),

∣∣∣ n∏
k=1

ϕXk
(t/sn)−

n∏
k=1

exp{ϕXk
(t/sn)− 1}

∣∣∣
≤

n∑
k=1

∣∣ϕXk
(t/sn)− exp{ϕXk

(t/sn)− 1}
∣∣

=
n∑

k=1

∣∣ exp{ϕXk
(t/sn)− 1} − 1− (ϕXk

(t/sn)− 1)
∣∣

≤
n∑

k=1

∣∣1− ϕXk
(t/sn)

∣∣2 → 0 as n →∞.

By the triangle inequality and (2.18), this entails that

n∏
k=1

exp{ϕXk
(t/sn)− 1} → e−t2/2 → 0 as n →∞,

which is the same as

exp
{ n∑

k=1

(
ϕXk

(t/sn)− 1 +
σ2

kt2

2s2
n

)}
→ 1 as n →∞.
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However, the limit being real, the real part of the left-hand side must also
converge to 1. Therefore, the real part of the exponent must converge to 0,
viz.,

n∑
k=1

(
E cos(Xkt/sn)− 1 +

σ2
kt2

2s2
n

)
→ 0 as n →∞.

Since the integrand is non-negative (cos x − 1 + x2/2 ≥ 0), the expectation
restricted to any subset also converges to 0 as n →∞, so that, i.a.,

E

n∑
k=1

(
cos(Xkt/sn)− 1 +

σ2
kt2

2s2
n

)
I{|Xk| > εsn} → 0 as n →∞,

which is the same as

t2

2
L2(n)−

n∑
k=1

E
(
1− cos(Xkt/sn)

)
I{|Xk| > εsn} → 0 as n →∞.

Finally, the fact that |1−cos y| ≤ 2 for all y, and Markov’s inequality, together
yield

n∑
k=1

E
(
1− cos(Xkt/sn)

)
I{|Xk| > εsn} ≤

n∑
k=1

2P (|Xk| > εsn)

≤ 2
n∑

k=1

σ2
k

(εsn)2
=

2
ε2 ,

so that
0 ≤ lim sup

n→∞
L2(n) ≤ 4

t2ε2 ,

which can be made arbitrarily small by choosing t sufficiently large, and (2.2)
follows. �

Exercise 2.1. Check the Lindeberg conditions for the i.i.d. case, and reconfirm
the validity of Theorem 1.1.

Exercise 2.2. Reprove Theorem 1.1 with the second proof, that is, with the aid
of Lemma 2.1. �

Remark 2.2. For the converse it is, in fact, possible to replace the assumption
(2.1) with the weaker

max
1≤k≤n

P (|Xk/sn| > ε) → 0 as n →∞.

Namely, one then uses the inequality
∣∣ϕXk

(t/sn)−1
∣∣ ≤ E min

{
2, |tX|}

}
from

Theorem 5.4.1, and splits the right-hand side at ±εsn to prove that

max
1≤k≤n

|1− ϕXk
(t/Sn)| → 0 as n →∞,
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and then (2.8) to prove that

n∑
k=1

∣∣1− ϕXk
(t/Sn)

∣∣2 → 0 as n →∞,

after which the proof proceeds as above. �

Exercise 2.3. Write out the details. �

2.1 Lyapounov’s Condition

The Lindeberg condition may be a bit unpleasant to verify. A slightly stronger
sufficient condition is the Lyapounov condition [178, 179].

Theorem 2.2. Let X1, X2, . . . be given as before, and assume, in addition,
that E|Xk|r < ∞ for all k. If, for some r > 2,

β(n, r) =
∑n

k=1 E|Xk − µk|r
sr

n

→ 0 as n →∞, (2.20)

then (2.3) – the central limit theorem – holds.

Proof. In view of Theorem 2.1 it suffices to show that (2.20) =⇒ (2.2).
Toward this end, let ε > 0. Assuming, once again, w.l.o.g., that the means

are equal to 0, we obtain

1
s2

n

n∑
k=1

E X2
kI{|Xk| > εsn} ≤

1
s2

n

n∑
k=1

1
(εsn)r−2 E|Xk|rI{|Xk| > εsn}

≤ 1
εr−2sr

n

n∑
k=1

E|Xk|r =
1

εr−2 β(n, r),

which converges to 0 as n →∞ for any ε > 0. �

From the formulation it is clear that there should exist cases where Lya-
pounov’s condition is not applicable, that is, when the variance is finite, but
higher-order moments are infinite.

Example 2.1. The “natural” example is, as often before, a Pareto-type distri-
bution, in this case, given by the density

f(x) =

{
c

|x|3(log |x|)2 , for |x| > 2,

0, otherwise,

where c is a normalizing constant.
If X, X1, X2, . . . are independent random variables with this density, then

σ2 = VarX = 2c
∫∞
2

dx
x(log x)2 < ∞, whereas E|X|r = ∞ for all r > 2, so that

there is no Lyapounov condition.
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In this case we know, of course, already from Theorem 1.1 that the central
limit theorem holds. Nevertheless, condition (2.2) becomes

2c

σ2

∫ ∞

εσ
√

n

dx

x(log x)2
∼ C

1
log(ε

√
n)

→ 0 as n →∞,

so that (2.2) is satisfied. This is no news, since the condition is always satisfied
in the i.i.d. case (cf. the exercise 2 pages ago). Alternatively, since (2.1) and
the central limit theorem hold, we know from Feller’s converse that (2.2) must
hold too. �

Exercise 2.4. The i.i.d. case is the least exciting case in this context. Suppose
therefore that X1, X2, . . . are independent random variables, such that Xk

d= akX

for all k, where X has the above density, and ak ∈ R. Provide conditions on the
coefficients in order to exhibit a more general example than the previous one. �

2.2 Remarks and Complements

In this subsection we collect some remarks and exercises around the central
limit theorem.

Remark 2.3. There also exists an operator method due to Trotter [246], which
is somewhat reminiscent of the exchange method above. See also [88], Chapters
VIII and IX.

Remark 2.4. A consequence of the Lindeberg condition (2.2) is that

P ( max
1≤k≤n

|Xk − µk| > εsn) ≤ P

( n⋃
k=1

{|Xk − µk| > εsn}
)

≤
n∑

k=1

P (|Xk − µk| > εsn) ≤ 1
(εsn)2

n∑
k=1

E|Xk − µk|2I{|Xk − µk| > εsn}

=
1
ε2 L2(n).

The second Lindeberg condition therefore tells us that no individual summand
may dominate any other one. The summands are, what is called uniformly
asymptotically negligible.

Remark 2.5. The first analysis of the assumptions lead to the conclusion (2.4),
that the sum of the variances diverges. Suppose therefore, on the contrary, that

s2
n ↗ s2 < ∞ as n →∞.

Then, for n > m

E(Sn − Sm)2 =
n∑

k=m+1

σ2
k → 0 as n, m →∞,
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which means that Sn converges in quadratic mean, and, hence, in distribution
as n →∞, in addition, without normalization.

This implies, by the following famous theorem due to Cramér [54] that
every summand must be normal, that is, every partial sum is normal from
the beginning, which implies that there is nothing to prove.

Theorem 2.3. If X and Y are independent, non-degenerate random vari-
ables and X + Y is normal, then X and Y are both normal.

We do not prove the theorem here, merely provide an outline of the arguments.
Supposing that the sum is standard normal, which is no restriction, the

assumption implies that

ϕX(t) · ϕY (t) = e−t2/2.

One then concludes that ϕX and ϕY are entire functions of order at most 2,
which, according to a theorem of Hadamard, implies that they are of the form
exp{g(t)}, where g is a polynomial of degree at most equal to 2. Comparing
means and variances finally proves that ϕX and ϕY must be of the desired
form.

Returning to our problem, we have shown that Sn converges in distribution
to S, say. The same argument applied to Sn(j) =

∑n
k=1,k �=j Xk shows that

Sn(j) converges in distribution to S(j), say, which means that

S(j) + Xj
d= S.

An application of Cramér’s result then shows that if the limit S is normal,
then Xj must be normal, and since j is arbitrary, every summand must be
normal.

The conclusion is that s2
n ↗∞ is necessary in order to obtain a non-trivial

result.

Remark 2.6. The normal distribution can be used for further comments. If,
once again, s2

n ↗ s2 < ∞ as n → ∞ and the summands are normal with
mean 0, then, as we have seen, Sn/sn ∈ N(0, 1) for all n, in particular, in the
limit. But

L2(n) =
1
s2

n

n∑
k=1

E X2
kI{|Xk| > εsn} ≥

1
s2

n

E X2
1I{|X1| > εsn}

≥ 1
s2 E X2

1I{|X1| > εs} > 0,

that is, (2.2) is not satisfied.
Moreover, if, say, σ2

k = 1
2k , for all k, then s2

n = 1− 1
2n , so that

L1(n) = max
1≤k≤n

σ2
k

s2
n

=
1

1− (1/2)n
→ 1 �= 0 as n →∞,

that is, (2.1) does not hold either.
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The problem is (of course) that the summands are not uniformly asymp-
totically negligible.

Alternatively, if X1, X2, . . . are independent random variables, where
Xn ∈ Po(1/2n) for n ≥ 1, then

∑∞
n=1 Xk ∈ Po(1), that is, the sum con-

verges without normalization. And not to a normal distribution.
For another example, suppose that Xn is the n th decimal of the dyadic

expansion of Y ∈ U(0, 1). Then P (Y ≤ 1/2) = P (X1 = 1) = 1/2, which tells
us that X1, the first decimal alone, decides in which half of the unit interval
Y will end up.

Remark 2.7. If, instead of decreasing rapidly, the variances increase very
rapidly one obtains another kind of exception. Namely, suppose that the vari-
ances increase rapidly enough to ensure that

σ2
n

s2
n

→ 1 as n →∞,

or, equivalently, that
s2

n−1

s2
n

→ 0 as n →∞.

Such examples appear if the variances grow faster than exponentially, for
example, σ2

k = kk or σ2
k = 22k

. Then, for any ε > 0 (assuming zero means),

P

(∣∣∣Sn−1

sn

∣∣∣ > ε

)
≤

s2
n−1

ε2s2
n

→ 0 as n →∞,

so that
Sn−1

sn

p→ 0 as n →∞,

which, by Cramér’s theorem, Theorem 5.11.3, shows that Xn/sn and Sn/sn

have the same limit distribution (if any). Thus, assuming that the sum is
asymptotically standard normal, this must also be the case for Xn/sn, which,
in turn, implies that

Xn

σn

d→ N(0, 1) as n →∞.

One specific example is obtained by letting Xn = Z · Yn for all n, where

Z ∈ N(0, 1), and P (Yn = 1) = 1− 1/n, P (Yn = cn) = 1/n, n ≥ 1,

with cn growing rapidly, and by assuming that all variables are independent
– please, check the details for cn = nn or 22n

.
This shows that asymptotic normality is possible without (2.1). And since

(2.1) does not hold neither can (2.2).
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Remark 2.8. Another anomaly is when asymptotic normality holds and (2.1)
is satisfied, but (2.2) is not. This may appear as a contradiction, but the
catch is that the asymptotic distribution is not the standard normal one; the
variance is not “the correct” one.

To see that this may happen, let Y1, Y2, . . . be independent, identically
distributed random variables with mean 0 and variance 1, and let Z1, Z2, . . .
be independent random variables, defined by

P (Zk = k2) = P (Zk = −k2) =
1

2k2 , P (Zk = 0) = 1− 1
2k2 , k ≥ 1.

Then Zk also has mean 0 and variance 1 for each k. Finally, assume that
the two sequences are independent and set, for k ≥ 1, Xk = Yk + Zk, and
Sn =

∑n
k=1 Xk, n ≥ 1.

Then, ∑n
k=1 Yk√

n

d→ N(0, 1) as n →∞,

and ∞∑
n=1

P (|Zn| > ε) =
∞∑

n=1

1
n2 < ∞,

so that, by the Borel-Cantelli lemma, Theorem 2.18.1, P (Zn �= 0 i.o) = 0,
which (i.a.) implies that∑n

k=1 Zk√
n

a.s.→ 0 as n →∞.

Combining the limits of the individual sequences with Cramér’s theorem, The-
orem 5.11.4, we find that

Sn√
n

d→ N(0, 1) as n →∞.

On the other hand, Xk all have mean 0 and variance 2 (two!), so

Sn

sn
=

Sn√
2n

d→ N(0, 1/2) as n →∞.

In this case L1(n) = 2
2n , so that (2.1) holds trivially. Since Theorem 2.1 does

not hold as stated, it follows from Feller’s converse that (2.2) must be violated,
which shows that asymptotic normality may hold without (2.2). �

2.3 Pair-wise Independence

In Chapter 1 we presented an example showing that pair-wise independence
was a weaker concept than independence. In Chapter 2 we proved the same for
random variables. We have also found that the variance of the sum of random
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variables equals the sum of the variances of the summands also for pair-
wise independent random variables, in fact, even for uncorrelated ones, and
(Remark 6.3.2) that the law of large numbers remains valid if the independence
assumption is replaced by pair-wise independence.

The corresponding weakening of the assumption of independence is, how-
ever, not possible in the central limit theorem! In fact, Janson [149] provides
examples of sequences of equidistributed, pair-wise independent random vari-
ables with finite (non-zero) variance that do not “properly” obey the central
limit theorem.

More precisely, he presents a sequence X1, X2, . . . of equidistributed, pair-
wise independent random variables with mean 0 and variance σ2 ∈ (0,∞),
such that

Sn =
n∑

k=1

Xk
d→ S as n →∞,

where S is a non-normal, non-degenerate distribution. This implies, in partic-
ular, that

Sn

σ
√

n

p→ 0 as n →∞.

In other words, the non-normalized sequence converges in distribution, and
the properly normalized one is asymptotically degenerate.

One can also find examples in [149], such that

Sn

σ
√

n

d→ V as n →∞,

where V is neither normal nor degenerate.

2.4 The Central Limit Theorem for Arrays

A useful extension is to consider (triangular) arrays of random variables in-
stead of sequences.

X1,1 ;
X2,1, X2,2 ;
X3,1, X3,2, X3,3 ;

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Xn,1, Xn,2 . . . . . . . . . . . . . . . Xn,n;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 7.1. A triangular array of random variables

Thus, instead of investigating X1, X2, . . . we define, for each n, sequences
of random variables Xn,j , 1 ≤ j ≤ n, and consider the sums Sn =

∑n
k=1 Xn,j ,

n ≥ 1.
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In the standard case the random variables in each row are independent
(and identically) distributed. The distributions in different rows typically are
not the same and the rows are not independent. Moreover, nothing prevents
the size of the rows to be some function of the row number, n.

The simplest example in which the distributions in different rows differ,
and where there is dependence between the rows, is obtained by considering a
sequence X1, X2, . . . of independent, identically distributed random variables
with mean 0 and finite variance, σ2, and by putting

Xn,j =
Xj

σ
√

n
, 1 ≤ j ≤ n, and Sn =

n∑
j=1

Xn,j , n ≥ 1.

Following is a restatement, or extension, of the sufficiency part of Theo-
rem 2.1. The proof amounts to reviewing the former proof and modifying it
appropriately.

Theorem 2.4. Let {(Xn,j , 1 ≤ j ≤ n), n ≥ 1} be a triangular array of row-
wise independent random variables, set Sn =

∑n
j=1 Xn,j, s2

n =
∑n

j=1 σ2
n,j,

n ≥ 1, where σ2
n,j = VarXn,j, 1 ≤ j ≤ n, and suppose, without restriction,

that

E Xn,j = 0 for 1 ≤ j ≤ n, n ≥ 1, and that s2
n = 1 for all n. (2.21)

If every row satisfies the Lindeberg condition (2.2), then

Sn

sn

d→ N(0, 1) as n →∞.

3 Anscombe’s Theorem

We have already pointed out several times that, in practice, it is frequently
more natural to study random processes during fixed time intervals, which
means that the number of observations is random. Following is a central limit
theorem for randomly indexed partial sums of independent, identically dis-
tributed random variables. But first, the more general result, due to Anscombe
[5], which was only established in 1952.

Theorem 3.1. Suppose that Y1, Y2, . . . are random variables, such that

Yn
d→ Y as n →∞,

and that {N(t), t ≥ 0} is a family of positive, integer valued random variables,
such that, for some family of positive reals {b(t), t ≥ 0}, where b(t) ↗ ∞ as
t →∞,

N(t)
b(t)

p→ 1 as t →∞. (3.1)
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Finally, suppose that, given ε > 0, there exist η > 0 and n0, such that, for all
n > n0,

P
(

max
{k:|k−n|<nδ}

|Yk − Yn| > ε
)

< η. (3.2)

Then
YN(t)

d→ Y as t →∞.

Remark 3.1. Condition (3.2) is called the Anscombe condition. In his paper
Anscombe labels the condition as uniform continuity in probability.

Remark 3.2. The important feature of Anscombe’s theorem is that nothing is
assumed about independence between the summands and the index family.

Remark 3.3. Note also that the limit 1 in (3.1) is no restriction, since any
other constant can be absorbed in the normalizing sequence.

Remark 3.4. The constant 1 can be replaced by a positive random variable;
see, e.g., [24] and [253]. �

For a proof we refer to the original paper. The special case that concerns us
here is the following version, which was first given with a direct proof by Rényi
[204]. The essence is that, instead of verifying the Anscombe condition, Rényi
provides a direct proof (which essentially amounts to the same work).

Theorem 3.2. Let X, X1, X2, . . . be independent, identically distributed ran-
dom variables with mean 0 and positive, finite, variance σ2, and set Sn =∑n

k=1 Xk, n ≥ 1. Suppose that {N(t), t ≥ 0} is a family of positive, integer
valued random variables, such that, for some 0 < θ < ∞,

N(t)
t

p→ θ as t →∞. (3.3)

Then

SN(t)

σ
√

N(t)
d→ N(0, 1) as t →∞,

SN(t)

σ
√

θt

d→ N(0, 1) as t →∞.

Proof. We assume w.l.o.g. that σ2 = θ = 1 throughout the proof. With n0 =
[nt] we then obtain

SN(t)√
N(t)

=
( Sn0√

n0
+

SN(t) − Sn0√
n0

)√ n0

N(t)
.

Now, by assumption,
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Sn0√
n0

d→ N(0, 1) and
N(t)
n0

p→ 1 as t →∞,

so that, in view of Theorem 5.10.2, and Cramér’s theorem 5.11.4 (twice), it
remains to prove that

SN(t) − Sn0√
n0

p→ 0 as t →∞

for the first claim, after which another application of Cramér’s theorem yields
the second one.

Let ε ∈ (0, 1/3) be given and set n1 = [n0(1−ε3)]+1 and n2 = [n0(1+ε3)].
Then, by the Kolmogorov inequality, Theorem 3.1.6,

P (|SN(t) − Sn0 | > ε
√

n0) = P
(
{|SN(t) − Sn0 | > ε

√
n0} ∩ {N(t) ∈ [n1, n2]}

)
+P
(
{|SN(t) − Sn0 | > ε

√
n0} ∩ {N(t) /∈ [n1, n2]}

)
≤ P ( max

n1≤k≤n0
|Sk − Sn0 | > ε

√
n0) + P ( max

n0≤k≤n2
|Sk − Sn0 | > ε

√
n0)

+P (N(t) /∈ [n1, n2])

≤ n0 − n1

ε2n0
+

n2 − n0

ε2n0
+ P (N(t) /∈ [n1, n2])

=
n0 − [n0(1− ε3)]− 1

ε2n0
+

[n0[1 + ε3)]− n0

ε2n0
+ P (N(t) /∈ [n1, n2]),

so that, recalling (3.3),

lim sup
t→∞

P (|SN(t) − Sn0 | > ε
√

n0) < 2ε,

which, due to the arbitrariness of ε proves the conclusion. �

Exercise 3.1. Prove the theorem via a direct verification of the Anscombe condi-
tion (3.2). �

For the law of large numbers it was sufficient that N(t) a.s.→ +∞ as t →∞.
That this is not enough for a “random-sum central limit theorem” can be seen
as follows.

Example 3.1. Let X, X1, X2, . . . be independent coin-tossing random vari-
ables; P (X = 1) = P (X = −1) = 1/2. Let Sn, n ≥ 1, be the partial sums and
let N(n), n ≥ 1, be the index of Sn at the time of the nth visit to 0. It follows
from random walk theory (recall Subsection 2.18.4) that P (Sn = 0 i.o.) = 1,
so that N(n) a.s.→ ∞ as n →∞. However

SN(n)√
N(n)

= 0 for all n,

which is far from asymptotic normality. Thus, something more than N(t) a.s.→
+∞ as t →∞ is necessary. �
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There also exists a version for sums of non-identically distributed random
variables based on the Lindeberg conditions. For this we need the following
generalized Anscombe condition: A sequence Y1, Y2, . . . satisfies the gener-
alized Anscombe condition with norming sequence {kn, n ≥ 1} if, for every
ε > 0, there exists δ > 0, such that

lim sup
n→∞

P ( max
{j:|k2

j −k2
n|≤δk2

n}
|Yj − Yn| > ε) < ε). (3.4)

Theorem 3.3. Let X1, X2, . . . be independent random variables with finite
variances, and set, for k ≥ 1, E Xk = µk, Var Xk = σ2

k, and, for n ≥ 1, Sn =∑n
k=1 Xk, and s2

n =
∑n

k=1 σ2
k. Suppose that the Lindeberg conditions (2.1) and

(2.2) are satisfied, that {(Sn −
∑n

k=1 µk)/sn, n ≥ 1} satisfies the generalized
Anscombe condition for some normalizing sequence {kn, n ≥ 1}, and that
{Nn, n ≥ 1} is a sequence of positive, integer valued random variables, such
that

kN(n)

kan

p→ 1 as n →∞, (3.5)

for some sequence {an, n ≥ 1} of positive integers increasing to +∞. Then,

SNn
−
∑Nn

k=1 µk

sNn

d→ N(0, 1) as n →∞.

The formulation looks more technical and involved than it really is. We first
assume that enough is satisfied in order for Theorem 2.1 to apply. Moreover,
the set of indices {j : |j − n| < δn} must be modified into some kind of non-
uniformity, due to fact that the summands are non-identically distributed (in
the same way as nσ2 is modified into s2

n). Note that in the i.i.d.-case, we may
choose kn = n and an = n or θn (apart from the fact that it should be an
integer).

For more, see [57, 58] and references given there.

Exercise 3.2. Prove the theorem. �

Remark 3.5. For an application to record times, see Subsection 7.4.4. �

4 Applications

In this subsection we provide proofs of the asymptotic normality of the first
passage times of a random walk across a horizontal boundary, and of the
record times and the associated counting process. In both cases the random
index technique that was used in connection with the law of large numbers in
the previous chapter will be exploited. Another application is a nice proof of
Stirling’s formula, due to Khan [157]. But first, a presentation of the so-called
Delta method.
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4.1 The Delta Method

This is a method to prove convergence of functions of arithmetic means of
independent, identically distributed random variables.

Suppose that X1, X2, . . . are independent, identically distributed random
variables with mean µ and variance σ2, and set Sn =

∑n
k=1 Xk, n ≥ 1.

Further, suppose that g is a real valued, continuously differentiable function,
such that

g′(µ) �= 0.

Then, by Taylor expansion and the mean value theorem,

g
(Sn

n

)
= g(µ) +

(Sn

n
− µ

)
g′(θn)

where |θn − Sn

n | ≤ |µ− Sn

n |. This can be rewritten as

√
n
(
g
(Sn

n

)
− g(µ)

)
=
√

n
(Sn

n
− µ

)
g′(θn).

Since
√

n
(

Sn

n − µ
) d→ N(0, σ2), and g′(θn) a.s.→ g′(µ) as n → ∞, we conclude,

via Cramér’s theorem, Theorem 5.11.3, that
√

n
(
g
(Sn

n

)
− g(µ)

)
d→ N

(
0, σ2(g′(µ))2

)
as n →∞. (4.1)

If, on the other hand, g′(µ) = 0, g is twice continuously differentiable, and

g′′(µ) �= 0,

then, adding one term in the Taylor expansion, yields

g
(Sn

n

)
= g(µ) +

(Sn

n
− µ

)
g′(µ) +

1
2

(Sn

n
− µ

)2
g′′(θn)

= g(µ) +
1
2

(Sn

n
− µ

)2
g′′(θn),

where, again, |θn − Sn

n | ≤ |µ− Sn

n |. In this case this is the same as

n
(
g
(Sn

n

)
− g(µ)

)
=
(Sn − nµ

σ
√

n

)2
· σ2g′′(θn).

Since g(x) = x2 is continuous it follows that
(

Sn−nµ
σ

√
n

)2 d→ χ2(1) as n → ∞,
so that

n
(
g
(Sn

n

)
− g(µ)

)
d→ σ2g′′(µ)χ2(1) as n →∞. (4.2)

Exercise 4.1. These proofs lean on the central limit theorem and Cramér’s the-
orem. An alternative would be to exploit the deeper Skorohod representation from
Section 5.13. Re-prove the results with this approach.

Exercise 4.2. Let X1, X2, . . . be independent, identically distributed random
variables with finite variance, and set Sn =

∑n
k=1 Xk, n ≥ 1. Prove that S2

n, appro-
priately normalized, converges in distribution as n → ∞. �
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4.2 Stirling’s Formula

There exist many more-or-less complicated integrals, sums, or other expres-
sions that a mathematician has to encounter. As probabilists we often recog-
nize such objects as being equal to 1 or to the expected value of some random
variable, and so on. A beautiful example was the relation sin t

t =
∏∞

k=1 cos
(

t
2k

)
in Subsection 4.2.2.

The following lines provide an outline of a probabilistic proof of Stirling’s
formula via convergence in distribution and moment convergence. Namely, let
X1, X2, . . . be independent standard exponential random variables, and set
Sn =

∑n
k=1, n ≥ 1. The central limit theorem tells us that

Un =
Sn − n√

n

d→ N(0, 1) as n →∞,

and, since, for example, E U2
n = 1 for all n (so that the second moments are

uniformly bounded), it follows from Theorem 5.4.2 that all lower powers are
uniformly integrable, and (Theorem 5.5.9) that moments of lower order con-
verge to those of the standard normal distribution. This implies, in particular,
that

lim
n→∞

E|Un| = E|N(0, 1)| =
√

2
π

.

Since Un is a scaled gamma distribution we can spell out the limit relation
exactly: ∫ ∞

0

∣∣∣x− n√
n

∣∣∣ 1
Γ (n)

xn−1e−x dx →
√

2
π

as n →∞.

Splitting the integral into two at x = n, and a change of variable, u = x/n,
followed by some additional computations finally lead to Stirling’s formula

lim
n→∞

(
n
e

)n√
2nπ

n!
= 1.

Exercise 4.3. For details, see [157] or, better still, carry out the program. �

4.3 Renewal Theory for Random Walks

This topic was introduced in Subsection 2.16.3: Let X, X1, X2, . . . be inde-
pendent, identically distributed random variables with positive, finite, mean µ,
partial sums Sn, n ≥ 1, and the associated first passage process, {τ(t), t ≥ 0},
defined by

τ(t) = min{n : Sn > t}, t ≥ 0.

In Subsection 6.9.3 we proved a strong law – τ(t)
t

a.s.→ 1
µ as t →∞. Here is the

corresponding central limit theorem.



4 Applications 351

Theorem 4.1. If, in addition Var X = σ2 < ∞, then

τ(t)− t/µ√
σ2t
µ3

d→ N(0, 1) as t →∞.

Proof. The central limit theorem and Anscombe’s theorem together yield

Sτ(t) − µτ(t)√
σ2τ(t)

d→ N(0, 1) as t →∞.

By Theorem 6.8.2(i), the sandwich formula t < Sτ(t) ≤ t + Xτ(t), (recall
(6.9.3)), and Cramér’s theorem, Theorem 5.11.3, we next obtain

t− µτ(t)√
σ2τ(t)

d→ N(0, 1) as t →∞.

The strong law, Theorem 6.9.3, another application of Cramér’s theorem, and
the symmetry of the normal distribution finish the proof. �

Exercise 4.4. Spell out the details. �

If the summands are positive, we remember from (2.16.1) that {Sn, n ≥ 1}
and the counting process {N(t), t ≥ 0} are inverses of each other, and in this
case, asymptotic normality was originally proved in [85, 241] in the lattice
case and the continuous case, respectively, by exploiting this relationship.
The advantage with the above proof is that it works, not only for both cases
simultaneously, but also, as we have just seen, for random walks.

4.4 Records

Let X1, X2, . . . be independent, identically distributed, continuous random
variables. From Subsection 2.18.3 we recall that the record times are L(1) = 1
and, recursively,

L(n) = min{k : Xk > XL(n−1)}, n ≥ 2,

and that the associated counting process {µ(n), n ≥ 1} was defined by

µ(n) = # records among X1, X2, . . . , Xn = max{k : L(k) ≤ n}.

In the previous chapter we proved a strong law for the record times and the
counting processes. Now we are ready for the central limit theorem.

Theorem 4.2. We have

µ(n)− log n√
log n

d→ N(0, 1) as n →∞.
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Proof. One way to prove the theorem is to check the Lyapounov condition,
another proof can be obtained via characteristic functions or moment gener-
ating functions; note, in particular, that the random variables |Ik− 1

k |, k ≥ 1,
are uniformly bounded. �

Exercise 4.5. Carry out the details. �

The corresponding result for the sequence of record times, originally due to
Rényi [205], and proved via inversion, runs as follows.

Theorem 4.3. We have

log L(n)− n√
n

d→ N(0, 1) as n →∞.

Proof. The proof follows the same pattern as the proof of Theorem 4.1. The
main difference is that here we need the more general Anscombe theorem,
Theorem 3.3.

In view of Theorems 4.2 and 3.3, it follows that

µ
(
L(n)

)
− log L(n)√

log L(n)
d→ N(0, 1) as n →∞,

(where we leave the verification of the generalized Anscombe condition (3.4)
to the reader).

From Subsection 6.9.4 we then remember that µ(L(n)) = n, which, implies
that

n− log L(n)√
log L(n)

d→ N(0, 1) as n →∞.

The strong law for record times, Theorem 6.9.4, the symmetry of the normal
distribution, and an application of Cramér’s theorem, Theorem 5.11.3 finish
the proof. �

5 Uniform Integrability; Moment Convergence

In Section 5.5 we presented some results on moment convergence, and showed
that uniformly integrable sequences that converge almost surely, in probabil-
ity, or in distribution also converge in L1. In Subsection 7.4.2 we made use of
such results in order to provide a probabilistic proof of Stirling’s formula. In
this subsection we prove the optimal result in the i.i.d. case, namely that if
the summands of a sequence of independent, identically distributed random
variables have a finite moment of order at least 2, then we also have moment
convergence of the same order in the central limit theorem. Since uniformly
bounded moments of some order always imply convergence of moments of
lower order, the optimality lies in the fact that existence of moments of a
given order implies uniform integrability of the same order.



5 Uniform Integrability; Moment Convergence 353

Theorem 5.1. Let X, X1, X2, . . . be independent identically distributed ran-
dom variables, and set Sn = X1 + X2 + · · · + Xn, n ≥ 1. Suppose that
E|X|r < ∞ for some r ≥ 2, and set E X = µ, and Var X = σ2. Then

Sn − nµ

σ
√

n

r→ N(0, 1) as n →∞,

E
∣∣∣Sn − nµ

σ
√

n

∣∣∣r → E|N(0, 1)|r as n →∞.

Remark 5.1. Before turning our attention to the proof, we remark that if
E|X|r < ∞, then supn E|Sn−nµ√

n
|r < ∞ by the corollary to the Marcinkiewicz-

Zygmund inequalities, Corollary 3.8.2. The proof thus amounts to improving
our knowledge from uniform boundedness to uniform integrability. �

Proof. Once again we assume w.l.o.g. that µ = 0 and that σ2 = 1. In view of
Theorem 5.5.9 we must (and it suffices to) show that

{∣∣∣ Sn√
n

∣∣∣r, n ≥ 1
}

is uniformly integrable.

Let ε > 0, choose A large enough to ensure that

E|X|rI{|X| > A} < ε, (5.1)

set

X ′
k = XkI{|X| ≤ A} − E(XkI{|X| ≤ A}), and S′

n =
n∑

k=1

X ′
k,

X ′′
k = XkI{|X| > A} − E(XkI{|X| > A}), and S′′

n =
n∑

k=1

X ′′
k ,

and note that E X ′
k = E X ′′

k = 0, that X ′
k +X ′′

k = Xk, and that S′
n +S′′

n = Sn.
Let a > 0. To take care of S′

n we note that

E
∣∣∣ S′

n√
n

∣∣∣rI{∣∣∣ S′
n√
n

∣∣∣ > a
}
≤ 1

ar
E
∣∣∣ S′

n√
n

∣∣∣2r

I
{∣∣∣ S′

n√
n

∣∣∣ > a
}
≤ 1

ar
E
∣∣∣ S′

n√
n

∣∣∣2r

≤ 1
(na)r

B2rn
rE|X ′

1|2r ≤ B2r(2A)2r

ar
, (5.2)

where we have used Corollary 3.8.2 in the second-last inequality, and the
uniform boundedness of the primed summands in the last one.

As for S′′
n, the same Marcinkiewicz-Zygmund inequality and (5.1) yield

E
∣∣∣ S′′

n√
n

∣∣∣rI{∣∣∣ S′′
n√
n

∣∣∣ > a
}
≤ E

∣∣∣ S′′
n√
n

∣∣∣r ≤ Brn
r/2E|X ′′

1 |r
nr/2 ≤ Br2rε, (5.3)
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where the factor 2r follows from an application of the cr-inequalities, Theorem
3.2.2:

E|X ′′
1 |r = E|X1I{|X1| > A} − E(X1I{|X1| > A})|r

≤ 2r−12E|X1I{|X1| > A}|r < 2rε.

By joining (5.2) and (5.3) we obtain, via a glance at the proof of Theorem
5.4.6, that

E
∣∣∣ Sn√

n

∣∣∣rI{∣∣∣ Sn√
n

∣∣∣ > 2a
}
≤ E

(∣∣∣ S′
n√
n

∣∣∣+ ∣∣∣ S′
n√
n

∣∣∣)r

I
{∣∣∣ S′

n√
n

∣∣∣+ ∣∣∣ S′′
n√
n

∣∣∣ > 2a
}

≤ 2rE
∣∣∣ S′

n√
n

∣∣∣rI{∣∣∣ S′
n√
n

∣∣∣ > a
}

+ 2rE
∣∣∣ S′′

n√
n

∣∣∣rI{∣∣∣ S′′
n√
n

∣∣∣ > a
}

≤ 2rB2rM
2r

ar
+ 22rBrε.

It follows that

lim sup
a→∞

E
∣∣∣ Sn√

n

∣∣∣rI{∣∣∣ Sn√
n

∣∣∣ > 2a
}
≤ 22rBrε,

independently of, and hence, uniformly in, n, which, due to the arbitrariness
of ε, proves the desired uniform integrability, and the proof is complete. �

Returning for a second to the applications to renewal theory and records,
we mention that there exist uniform integrability results and theorems on
moment convergence.

In the case of renewal theory for random walks the results were first proved
in [46]; see also [110], Chapter III.

For the record counting process the result is immediate, since the mo-
ment generating function of µ(n)−log n√

log n
converges – Theorem 5.9.5 – and for

the record times the prettiest way is to apply a beautiful result due to
Williams [251], according to which the record times can be approximated
by Γ -distributed random variables, and then apply Theorem 5.1. For details,
see [111]. Williams’ theorem can also be used to prove many other results for
record times, such as the strong law and the asymptotic normality we have
proved via “SN -sums”.

6 Remainder Term Estimates

Let X1, X2, . . . be independent, identically distributed random variables with
finite expectation µ and finite variance σ2, and set Sn = X1 + X2 + · · ·+ Xn,
n ≥ 1. The message of the (weak) law of large numbers is that X̄n

p→ µ as n →
∞ for any ε > 0, which means that X̄n −µ is “small” (with high probability)
when n is “large”. The central limit theorem tells us that σ−1√n(X̄n−µ) d→ N
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as n →∞, where N ∈ N(0, 1), which means that “X̄n − µ ≈ Nσ/
√

n” when
n is “large”. The central limit theorem thus provides information on the rate
of convergence in the law of large numbers.

A natural next step concerns the closeness between the distribution of
X̄n − µ and the appropriate normal distribution, which means asking for the
rate of convergence in the central limit theorem. This is the topic of the
present section. Some references are the original works by Berry [17] and
Esseen [76, 77], and the books [88, 98, 194, 195].

6.1 The Berry-Esseen Theorem

The following result was proved independently by Berry [17] and Esseen [76].
The reason that the authors were unaware of each other is that this was during
the Second World War when journals were not free to travel.

Theorem 6.1. Let X, X1, X2, . . . be independent, identically distributed ran-
dom variables with partial sums {Sn, n ≥ 1}, set µ = E X, σ2 = VarX, and
suppose that γ3 = E|X|3 < ∞. Then

sup
x
|FSn−nµ

σ
√

n
(x)− Φ(x)| ≤ C · γ3

σ3
√

n
,

where C is a purely numerical constant.

Much work has been devoted to the search for an exact value of the con-
stant. The current best upper bounds are 0.7975 [14] and 0.7655 [220]. Recent
bounds depending on n have been proved in [40]. For n ≥ 65 the bound is
smaller that 0.7655, and approaches 0.7164 as n →∞.

The other half of the competition is devoted to lower bounds. Toward
that end, Esseen [78] first noticed that if X puts mass 1/2 at ±1/2, and
X, X1, X2, . . . are independent, identically distributed random variables,
then

lim
n→∞

√
n sup

x
|FSn−nµ

σ
√

n
(x)− Φ(x)| = lim

n→∞

√
n sup

x
|F Sn

1
2

√
n

(x)− Φ(x)| = 1√
2π

,

and, after a further analysis, that the modified two-point distribution

P (X = −[(4−
√

10)/2]h) =
√

10− 2
2

, P (X = [(
√

10− 2)/2]h) =
4−

√
10

2
,

where h > 0 is some parameter, yields

lim
n→∞

√
n sup

x
|FSn−nµ

σ
√

n
(x)− Φ(x)| =

√
10 + 3
6
√

2π
≈ 0.4097.

This means that currently (June 2004)

0.4097 ≤ C ≤ 0.7655.
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Since the proof of the theorem is very much the same as the analog for inde-
pendent, not necessarily identically distributed summands, we only prove the
latter, which is stated next. The proof will be given in Subsection 7.6.2, after
some additional remarks.

Theorem 6.2. Let X1, X2, . . . be independent random variables with zero
mean and with partial sums {Sn, n ≥ 1}. Suppose that γ3

k = E|Xk|3 < ∞ for
all k, and set σ2

k = VarXk, s2
n =

∑n
k=1 σ2

k, and β3
n =

∑n
k=1 γ3

k. Then

sup
x
|FSn

sn

(x)− Φ(x)| ≤ C · β3
n

s3
n

,

where C is a purely numerical constant. �

Remark 6.1. We shall not aim at finding best constants, merely establish their
existence. The proof below produces a constant slightly smaller than 36. The
upper bound 0.7915 in Theorem 6.2 is given in [220]. �

Before proving anything we quote some extensions to moments of order
2 + δ for some δ ∈ (0, 1); [154, 193] and [195], Theorem 5.6, p. 151.

Theorem 6.3. Let X1, X2, . . . be independent, with zero mean, and set Sn =∑n
k=1 Xk, and s2

n =
∑n

k=1 Var X2
k , n ≥ 1. Further, let G denote the class of

functions on R, which are non-negative, even, and such that x/g(x) and g(x)
are non-decreasing on R+. If, for some function g ∈ G,

E X2
kg(Xk) < ∞ for all k,

then

sup
x
|FSn

sn

(x)− Φ(x)| ≤ C ·
∑n

k=1 E X2
kg(Xk)

s2
ng(sn)

,

where C is a purely numerical constant.
In particular, if X, X1, X2, . . . , in addition, are identically distributed

with common variance 1, then

sup
x
|F Sn√

n
(x)− Φ(x)| ≤ C · E X2g(X)

g(
√

n)
.

The ultimate goal would be to move down to nothing more than second mo-
ments, but this is not feasible, since finite variances only yield existence of
the limit. More has to be assumed in order to obtain a rate result. How-
ever, in [81] existence of higher-order moments is replaced by assumptions on
truncated moments.

Theorem 6.4. Let X1, X2, . . . be independent random variables with zero
mean and partial sums {Sn, n ≥ 1}. Set σ2

k = VarXk, s2
n =

∑n
k=1 σ2

k, and

ρk = sup
x>0

(
E|Xk|3I{|X| ≤ x}+ xE|Xk|2I{|X| ≥ x}

)
, k = 1, 2, . . . , n.
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Then

sup
x
|FSn

sn

(x)− Φ(x)| ≤ C ·
∑n

k=1 ρk

s3
n

,

where C is a purely numerical constant.

6.2 Proof of the Berry-Esseen Theorem 6.2

We are thus given independent random variables X1, X2, . . . with partial
sums {Sn, n ≥ 1}. As for notation, recall that

σ2
k = VarXk, s2

n =
n∑

k=1

σ2
k, γ3

k = E|Xk|3 < ∞, β3
n =

n∑
k=1

γ3
k.

Moreover, by Lyapounov’s inequality, Theorem 3.2.5,

σk ≤ γk for all k.

The proof is based on characteristic functions. Just as a continuity theorem
translates or inverts convergence to distributional convergence, the essential
tool here is a result that translates (inverts) distance between characteristic
functions to distance between distributions. The following Esseen’s lemma,
[76], Theorem 1, and [77], Theorem 2a, does that for us.

Lemma 6.1. Let U and V be random variables, and suppose that

sup
x∈R

F ′
V (x) ≤ A. (6.1)

Then

sup
x
|FU (x)− FV (x)| ≤ 1

π

∫ T

−T

∣∣∣ϕU (t)− ϕV (t)
t

∣∣∣(1− |t|
T

)
dt +

24A

πT

≤ 1
π

∫ T

−T

∣∣∣ϕU (t)− ϕV (t)
t

∣∣∣ dt +
24A

πT
.

Proof. From the early examples in Chapter 4 and scaling (Theorem 4.1.10) it
follows that a U(−T, T )-distributed random variable has density (1−|x/T |)/T

for |x| ≤ T , and 0 otherwise, and characteristic function
(
sin(tT/2)/(tT/2)

)2.
The inversion formula, Theorem 4.1.4, therefore tells us that

1
T

(
1− |x|

T

)
=

1
2π

∫ ∞

−∞
e−itx 4 sin2(tT/2)

(tT )2
dt,

so that, by symmetry, and by letting x and t switch roles,

1− |t|
T

=
∫ ∞

−∞
eixt 2 sin2(xT/2)

π(xT )2
dx =

∫ ∞

−∞
eixt 1− cos xT

πTx2 dx.
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Let ZT be a random variable with density 1−cos xT
πTx2 and characteristic function

1− |t|
T , |t| ≤ T .

We are now all set for the details of the proof. First of all we may assume
that ∫ T

−T

∣∣∣ϕU (t)− ϕV (t)
t

∣∣∣ dt < ∞,

since otherwise there is nothing to prove.
Set

∆(x) = FU (x)− FV (x),

∆T (x) =
∫ ∞

−∞
∆(x− y)fZT

(y) dy = FU+ZT
(x)− FV +ZT

(x),

∆∗ = sup
x∈R

|∆(x)| and ∆∗
T = sup

x∈R

|∆T (x)|.

Since U + ZT and V + ZT are absolutely continuous random variables (recall
Subsection 4.2.2) it follows that the “characteristic function” corresponding
to ∆T (x) equals

ϕU (t)ϕZT
(t)− ϕV (t)ϕZT

(t) =
(
ϕU (t)− ϕV (t)

)
ϕZT

(t), |t| ≤ T,

and 0 otherwise. The quotation marks are there because the transform is a
difference between the characteristic functions of U + ZT and V + ZT . Note
also that ϕZT

(t) → 1 as T → ∞, so that ZT
p→ 0 as T → ∞, which, by

Cramér’s theorem, implies that U + ZT
p→ U and V + ZT

p→ V as T → ∞,
and, hence, that

∆T (x) → ∆(x) as T →∞ for all x, (6.2)

since ∆T (x) is continuous.
The plan now is to estimate ∆∗

T , and, from there, ∆∗.
Being absolutely integrable, the inversion theorem for densities implies

that

fU+ZT
(x)− fV +ZT

(x) =
1
2π

∫ T

−T

e−itx(ϕU (t)− ϕV (t)
)
ϕZT

(t) dt,

which, after integration with respect to x, yields

∆T (x) =
1
2π

∫ T

−T

e−itx ϕU (t)− ϕV (t))
−it

ϕZT
(t) dt.

Note that we have integrated the difference between two densities. However,
since all distribution functions agree at −∞ and +∞, no additional constant
appears. This provides the following estimate(s) for ∆∗

T , namely,

∆∗
T ≤ 1

2π

∫ T

−T

∣∣∣ϕU (t)− ϕV (t))
t

∣∣∣(1− |t|
T

)
dt ≤ 1

2π

∫ T

−T

∣∣∣ϕU (t)− ϕV (t))
t

∣∣∣ dt.
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The proof of the lemma thus will be completed by showing that

∆∗ ≤ 2∆∗
T +

24A

πT
. (6.3)

In order to show this, we note that ∆(−∞) = ∆(+∞) = 0, and, being the
difference of two distribution functions, it is right-continuous with left-hand
limits. This implies that

∆∗ = |∆(x0)| or ∆∗ = |∆(x0−)| for some x0,

which produces four possibilities. We choose to treat the case when ∆∗ =
∆(x0), the others being similar.

By (6.1),
∆(x0 + s) ≥ ∆∗ −As for s > 0,

in particular,

∆
(
x0 +

∆∗

2A
+ y
)
≥ ∆∗ −A

(∆∗

2A
+ y
)

=
∆∗

2
−Ay, for |y| ≤ ∆∗

2A
.

With this estimate when |y| ≤ ∆∗/2A, and the estimate ∆(x0+∆∗
2A +y) ≥ −∆∗

for |y| > ∆∗/2A, we obtain, recalling the definition, and noticing that the
distribution of ZT is symmetric,

∆T

(
x0 +

∆∗

2A

)
=
∫ ∞

−∞
∆
(
x0 +

∆∗

2A
− y
)
fZT

(y) dy

=
∫

|y|≤∆∗/2A

∆
(
x0 +

∆∗

2A
− y
)
fZT

(y) dy

+
∫

|y|>∆∗/2A

∆
(
x0 +

∆∗

2A
− y
)
fZT

(y) dy

≥
∫

|y|≤∆∗/2A

(∆∗

2
−Ay

)
fZT

(y) dy −∆∗
∫

|y|>∆∗/2A

fZT
(y) dy

=
∆∗

2
P
(
|ZT | ≤

∆∗

2A

)
−∆∗P

(
|ZT | >

∆∗

2A

)
=

∆∗

2

(
1− 3P

(
|ZT | >

∆∗

2A

))
,

which shows that

∆∗ ≤ 2∆∗
T + 3∆∗P

(
|ZT | >

∆∗

2A

)
.

It thus remains to prove that

P
(
|ZT | >

∆∗

2A

)
≤ 8A

π∆∗T
.

Now, by symmetry and a change of variables,
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P
(
|ZT | >

∆∗

2A

)
=
∫

|x|>∆∗/2A

1− cos xT

πTx2 dx = 2
∫ ∞

∆∗/2A

1− cos xT

πTx2 dx

=
∫ ∞

∆∗T/4A

1− cos 2y

πy2 dy =
2
π

∫ ∞

∆∗T/4A

sin2 y

y2 dy

≤ 2
π

∫ ∞

∆∗T/4A

1
y2 dy =

8A

π∆∗T
. �

Exercise 6.1. Check the three other cases connected with the proof of (6.3). �

In order to apply the lemma to our setting we need an estimate between
the difference of the characteristic functions of

U = Un =
Sn

sn
and V ∈ N(0, 1).

Lemma 6.2. With the above notation,∣∣ϕSn/sn
(t)− e−t2/2

∣∣ ≤ 16
β3

n

s3
n

|t|3e−t2/3 for |t| ≤ s3
n

4β3
n

.

Proof. The proof proceeds in steps. Set ϕn(t) = ϕSn/sn
(t).

I. |ϕn(t)| ≤ e−t2/3 for |t| ≤ s3
n

4β3
n
.

To prove this it is tempting to use (4.4.1) and the triangle inequality. How-
ever, this is not convenient since ϕn is complex valued. We therefore resort
to the symmetrized random variables {Xs

k, k ≥ 1}, which are independent,
identically distributed random variables, such that, for all k,

E Xs
k = 0, Var Xs

k = 2σ2
k, E|Xs

k|3 ≤ 8γ3
k,

where the inequality is due to the cr-inequalities, Theorem 3.2.2.
The main feature is that ϕXs

k
(t) = |ϕXk

(t)|2 is real valued. Applying (4.4.1)
to the symmetrized random variables yields

|ϕXs
k
(t)− (1− t2σ2

k)| ≤ E min
{
t2(Xs

k)2,
|tXs

k|3
6

}
≤ |t|38γ3

k

6
,

so that, by the triangle inequality,

|ϕXk/sn
(t)|2 = ϕXs

k/sn
(t) ≤ 1− t2σ2

k

s2
n

+
4|t|3γ3

k

3s3
n

≤ exp
{
− t2σ2

k

s2
n

+
4|t|3γ3

k

3s3
n

}
.

It follows, taking the upper bound on t into account, that

|ϕn(t)|2 = ϕSs
n/sn

(t) =
n∏

k=1

ϕXs
k/sn

(t) ≤
n∏

k=1

exp
{
− t2σ2

k

s2
n

+
4|t|3γ3

k

3s3
n

}

= exp
{
−

n∑
k=1

( t2σ2
k

s2
n

+
4|t|3γ3

k

3s3
n

)}
≤ exp

{
− t2 + 4t2

s3
n

4β3
n

n∑
k=1

γ3
k

3s3
n

}

= exp
{
− t2 +

t2

3

}
= exp

{
− 2t2

3

}
,

which, upon taking the square root, proves the first assertion.
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II. The lemma holds for sn

2βn
≤ |t| ≤ s3

n

4β3
n
.

The lower bound for t implies that

1 ≤ 2|t|βn

sn
≤ 8|t|3β3

n

s3
n

.

This, together with the inequality established in the first step and the triangle
inequality, therefore yields∣∣ϕn(t)− e−t2/2

∣∣ ≤ |ϕn(t)|+ e−t2/2 ≤ e−t2/3 + e−t2/2 ≤ 2e−t2/3

≤ 8|t|3β3
n

s3
n

2e−t2/3 =
16|t|3β3

n

s3
n

e−t2/3.

III. The lemma holds for |t| < sn

2βn
, in fact (which is more than we need),

∣∣ϕn(t)− e−t2/2
∣∣ ≤ 0.5

|t|3β3
n

s3
n

e−t2/2 ≤ 0.5
|t|3β3

n

s3
n

e−t2/3 for |t| < sn

2βn
.

As a preparation for Taylor expansion of the characteristic function (Theorem
4.4.1) and then of the logarithm (Lemma A.1.1), we note that, by Lyapounov’s
inequality and the bound on t,

σk

sn
|t| ≤ γk

sn
|t| ≤ βn

sn
|t| < 1

2
, (6.4)

uniformly in k, and, hence, also that
∣∣∣− σ2

kt2

2s2
n

+
γ3

k|t|3
6s3

n

∣∣∣ ≤ σ2
kt2

2s2
n

+
γ3

k|t|3
6s3

n

≤ 1
2
· 1
4

+
1
6
· 1
8

=
7
48

<
1
2
.

The announced expansions therefore yield

ϕXk/sn
(t) = ϕXk

( t

sn

)
= 1− t2σ2

k

2s2
n

+ r′
n,

log ϕXk/sn
(t) = − t2σ2

k

2s2
n

+ r′
n + r′′

n,

where, for some |θ′
n| ≤ 1,

|r′
k| =

∣∣∣θ′
n

γ3
k|t|3
6s3

n

∣∣∣ ≤ γ3
k|t|3
6s3

n

≤ 1
48

,

and where, by the cr-inequalities and (6.4),

|r′′
k | ≤

∣∣∣− t2σ2
k

2s2
n

+ r′
k

∣∣∣2 ≤ 2
∣∣∣ t2σ2

k

2s2
n

∣∣∣2 + 2|r′
k|2 ≤ 2

∣∣∣ t2σ2
k

2s2
n

∣∣∣2 + 2
∣∣∣γ3

k|t|3
6s3

n

∣∣∣2
=

1
2

σ3
k|t|3
s3

n

σk|t|
sn

+
1
18

(γ3
k|t|3
s3

n

)2
≤ 1

2
γ3

k|t|3
s3

n

1
2

+
1
18

γ3
k|t|3
s3

n

1
8

=
37
144

γ3
k|t|3
s3

n

.
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Adding the individual logarithms we find that

log ϕn(t) =
n∑

k=1

log ϕXk/sn
(t) = −

n∑
k=1

t2σ2
k

2s2
n

+ rn = − t2

2
+ rn,

where

|rn| ≤
n∑

k=1

(r′
k +r′′

k) ≤
n∑

k=1

(γ3
k|t|3
6s3

n

+
37
144

γ3
k|t|3
s3

n

)
≤ 61

144
· β

3
n|t|3
s3

n

≤ 61
144

· 1
8

<
1
18

,

the second to last inequality being a consequence of (6.4).
Finally, since |ez − 1| ≤ |z|e|z| for z ∈ C (Lemma A.1.1) we find, using the

estimates on rn, that

|ϕn(t)− e−t2/2| = |e−t2/2+rn − e−t2/2| = e−t2/2|ern − 1|

≤ e−t2/2|rn|e|rn| ≤ e−t2/2 61
144

· β3
n|t|3
s3

n

e5/144 < 0.5
β3

n|t|3
s3

n

e−t2/2. �

To prove the theorem we finally join the two lemmas with A = 1/
√

2π
(the upper bound of the standard normal density), T = Tn = s3

n/4β3
n, and

the fact that
∫∞

−∞ t2e−t2/3 dt = 3
2

√
3π, to obtain,

sup
x
|FSn−nµ

σ
√

n
(x)− Φ(x)| ≤ 16

π

β3
n

s3
n

∫ βn/s3
n

−β3
n/s3

n

t2e−t2/3 dt +
96β3

n

π
√

2πs3
n

≤
(

24
√

3√
π

+
96

π
√

2π

)
β3

n

s3
n

≤ 36
β3

n

s3
n

.

The proof of the theorem is complete. �

7 Some Additional Results and Remarks

In this supplementary section we collect some results and applications related
to the central limit theorem, which are somewhat less central to the main-
stream.

7.1 Rates of Rates

We have interpreted the central limit theorem as a convergence rate result
with respect to the law of large numbers. Similarly, the Berry-Esseen theorem
is a rate result with respect to the central limit theorem. This search for
more detailed precision can be continued. The general solution to this kind
of problems is that, under the assumption of the existence of successively
higher moments, one can continue to replace approximations with rates, that
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is, results about “closeness” with results about “how close”. Such additional
results are grouped under the heading of Edgeworth expansions . Here we shall
state one such result, namely [76], Theorem 3; see also [77], Theorem 2, p. 49,
and refer to the specialized literature, such as the books [88, 98, 194, 195] for
more.

Theorem 7.1. Let X, X1, X2, . . . be a sequence of independent, identically,
non-lattice distributed random variables with partial sums Sn, n ≥ 1. Suppose
that E|X|3 < ∞, that E X = 0, and set σ2 = VarX (> 0), and α3 = E X3.
Then

F Sn
σ

√
n
(x) = Φ(x) +

α3

6σ3
√

2πn
(1− x2)e−x2/2 + o

( 1√
n

)
as n →∞.

The series can be further developed under the assumption of higher moments.
The polynomials that appear as coefficients are Hermite polynomials.

7.2 Non-uniform Estimates

Another aspect is that the remainder term estimates so far have been uniform
in x. As a glimpse into the area of estimates that depend on x we state two
results, and refer to the literature for proofs and more. The first one is [77],
Theorem 1, p. 70.

Theorem 7.2. Let X, X1, X2, . . . be a sequence of independent, random
variables with partial sums Sn, n ≥ 1, E Xk = 0, and σ2

k = VarXk < ∞.
Set s2

n =
∑n

k=1 σ2
k, and

∆n = sup
x
|FSn

sn

(x)− Φ(x)|, n ≥ 1.

If ∆n ≤ 1/2 for n > n0, then there exists a constant C, such that, for n > n0,

|FSn
sn

(x)− Φ(x)| ≤ min
{

∆n, C
∆n log(1/∆n)

1 + x2

}
for all x.

The first part of the following result, for which we refer to (e.g.) [194], Theorem
14, [195], Theorem 5.16, provides a non-uniform estimate which is valid for
all x. The other two parts, which are reduced versions of [77], Theorem 2,
p. 73, and Theorem 3, p. 75, respectively, provide estimates for x above and
below

√
(1 + δ) log n, respectively. The

√
log n boundary is natural since the

function e−x2/2 reduces to a negative power of
√

n for x =
√

log n.

Theorem 7.3. Under the assumptions of Theorem 7.1,

|F Sn
σ

√
n
(x)− Φ(x)| ≤ C

γ3

σ3

1
(1 + |x|3)

√
n

for all x ∈ R,

|F Sn
σ

√
n
(x)− Φ(x)| ≤ C(δ, γ)

(1 + |x|3)
√

n
for |x| ≥

√
(1 + δ) log n,

|F Sn
σ

√
n
(x)− Φ(x)| ≤ C(δ, γ)√

n

(
(1 + |x|3)e−x2/2 + 1

)
for |x| ≤

√
(1 + δ) log n,
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where C(δ, γ) is a constant depending only on δ ∈ (0, 1) and γ3.

For analogs when higher-order moments are assumed to exist we refer to the
above sources.

7.3 Renewal Theory

Using inversion, Englund [72] has proved the following Berry-Esseen theorem
for the counting process of a renewal process.

Theorem 7.4. Suppose that X, X1, X2, . . . are independent, non-negative,
identically distributed random variables, set µ = E X, σ2 = VarX, and let
{Sn, n ≥ 1} and {N(t), t ≥ 0} be the associated renewal and renewal counting
processes, respectively. If γ3 = E|X|3 < ∞, then

sup
n

∣∣∣P (N(t) < n)− Φ
( (nµ− t)

√
µ

σ
√

t

)∣∣∣ ≤ 4
γ3√µ

σ3
√

t
.

7.4 Records

Suppose that X1, X2, . . . are independent, identically distributed, continuous
random variables, and let {Ln, n ≥ 1} and {µ(n), n ≥ 1} be the record times
and the counting process, respectively. The following Berry-Esseen theorem
for these processes was obtained in [111] via Englund’s technique from [72].

Theorem 7.5. For k ≥ 2,

sup
n

∣∣∣P (µ(k) ≤ n)− Φ
(n− log k√

log k

)∣∣∣ ≤ 1.9√
log k

,

sup
k

∣∣∣P (L(n) ≥ k)− Φ
(n− log k√

n

)∣∣∣ ≤ 4.3√
n

.

Remark 7.1. Since records are rather rare events one might imagine that a
Poisson approximation is more natural, as well as sharper, for the counting
process. That this is indeed the case will be hinted at in Chapter 9, where we
shall provide material enough to conclude that, if Vk ∈ Po(E(µk)), then

sup
A⊂Z+

|P (µ(k) ∈ A)− P (Vk ∈ A)| ≤ π2

6 log k
.

Remark 7.2. The rate in the Poisson approximation should be compared with
the rate O( 1√

log k
) in the normal approximation. The discrepancy stems from

the fact that the approximation from Poisson to normal is of the order
O( 1√

log k
) (due to the central limit theorem; recall the Berry-Esseen theorem

Theorem 6.2). �
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7.5 Local Limit Theorems

In a first course in probability theory one learns that the binomial distribution
may be approximated by the normal distribution with the aid of a “half-
correction” which, in particular, permits one to approximate the probability
function at some point k by integrating the normal density from k − 1/2 to
k + 1/2. More precisely, if Yn ∈ Bin(n, p) and n is “large”, then one learns
that

P (Yn = k) ≈
∫ k+1/2

k−1/2

1√
2πnp(1− p)

exp
{
− (x− np)2

2np(1− p)

}
dx.

This kind of approximation holds more generally for lattice distributions, that
is, distributions whose support is concentrated on a set of the form {kd + λ :
k = 0,±1,±2, . . .}, for some d > 0 and λ ∈ R; cf. Chapter 4.

The following result, which we state without proof, is due to Gnedenko
[96]; see also [88], p. 517. For more on this topic we refer to [97, 98, 142, 194].

Theorem 7.6. Suppose that X, X1, X2, . . . are independent, identically dis-
tributed lattice random variables with span d, set µ = E X, σ2 = VarX, and
Sn =

∑n
k=1 Xk, k ≥ 1. Then

lim
n→∞

σ
√

n

d
P (Sn = kd + nλ)− 1√

2π
exp

{
− (kd + nλ− nµ)2

2nσ2

}
= 0,

uniformly in k ∈ Z.

Two references for corresponding results in the renewal theoretic context,
which thus approximate the first passage time probabilities P (ν(t) = k) by a
normal density, are [4, 165]. In the formulation of the latter,

µ3/2
√

t

σ
P
(
ν(t) = [µ−1t + u

√
σ2µ−3t]

)
∼ 1√

2π
e−u2/2 as t →∞.

7.6 Large Deviations

Let X, X1, X2, . . . be a sequence of independent, identically distributed ran-
dom variables, with partial sums Sn, n ≥ 1. Suppose that E X = 0, that
σ2 = VarX < ∞, and let Fn denote the distribution function of Sn/σ

√
n.

One consequence of the central limit theorem is that

1− Fn(x)
1− Φ(x)

→ 1 and
Fn(−x)
Φ(−x)

→ 1 as n →∞. (7.1)

The problem of large deviations concerns the behavior of these ratios for
x = xn, where xn →∞ as n →∞. It turns out that the behavior depends on
the actual growth rate of xn.
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The general problem of when and how (7.1) holds when x is allowed to
depend on n is called the theory of large deviations. Some authors use the
term “moderate deviations” for x = xn growing at some kind of moderate
rate, such as a logarithmic one.

The basic standard assumption, usually called the Cramér condition, prob-
ably since the first general limit theorem in the area was presented in [55], is
the existence of the moment generating function ψ. Following, for the right-
hand tails, are two results without proofs. The obvious analogs for the left-
hand tails hold too.

Relevant introductory literature is [88], Section XVI.7; [142], Chapter VI;
[194], Chapter VIII; and [195], Section 5.8.

Theorem 7.7. Suppose that ψX(t) exists in a neighborhood of t = 0.
(i) If |x| = o(n1/6) as n →∞, then (7.1) holds.
(ii) If x = o(

√
n), then

1− Fn(x)
1− Φ(x)

= exp
{

x3λ
( x√

n

)(
1 +O

( x√
n

))}
as n →∞,

where λ(x) is a power series, called the Cramér series, that depends on the
cumulants of X, and which converges for sufficiently small arguments.

If, in particular, x = o(n1/4), then it turns out that

1− Fn(x)
1− Φ(x)

∼ exp
{ E X3

6σ3
√

n
x3
}

, as n →∞,

which turns the mind somewhat back to Theorem 7.1.

7.7 Convergence Rates

There exist two kinds of rate results. One kind pertains to tail probabilities,
the other, more directly, to the random variables and their distributions. This
subsection is devoted to the former kind, more precisely to a central limit
theorem analog of the results in Subsection 6.12.1.

Theorem 7.8. Let X, X1, X2, . . . be independent, identically distributed ran-
dom variables, such that E X = 0, and VarX = 1, and let {Sn, n ≥ 1} denote
their partial sums. Further, set σ2

n = Var
(
X I{|X| ≤

√
n}
)
.

(i) We have

∞∑
n=1

1
n

sup
x

∣∣∣P( Sn√
n
≤ x

)
− Φ

( x

σn

)∣∣∣ < ∞. (7.2)

Moreover,

∞∑
n=1

1
n

sup
x

∣∣∣P( Sn√
n
≤ x

)
− Φ(x)

∣∣∣ < ∞ , (7.3)



7 Some Additional Results and Remarks 367

if and only if
∞∑

n=1

1
n

(1− σ2
n) < ∞, (7.4)

or, equivalently, if and only if E X2 log+ |X| < ∞.
(ii) Let 2 < r < 3. If E|X|r < ∞, then

∞∑
n=1

n
r
2 −2 sup

x

∣∣∣P( Sn√
n
≤ x

)
− Φ

( x

σn

)∣∣∣ < ∞, (7.5)

∞∑
n=1

n
r
2 −2 sup

x

∣∣∣P( Sn√
n
≤ x

)
− Φ(x)

∣∣∣ < ∞ . (7.6)

The first result in this direction is due to Spitzer [233], who proved that the
sum

∞∑
n=1

1
n

(
P (Sn ≤ 0)− 1

2

)
(7.7)

is convergent; see also [234], p. 199. By Fourier methods Rosén [213] proved
that the sum is absolutely convergent, which amounts to proving (i) for x = 0.
Roséns method was extended in [12], where the sufficiency in (ii) was proved
for x = 0. The paper closes by pointing out that, by letting X be a coin-
tossing random variable, one can show that an analogous theorem cannot
hold for r ≥ 3, (and thus, even less so in the general case).

For general x ∈ R, it is shown in [90] that (7.6) holds if and only if

∞∑
n=1

n
r
2 −2(1− σ2

n) < ∞. (7.8)

With the aid of Fourier methods Heyde, [134], proves that, if E X = 0 and
Var X < ∞, then (7.3) holds if and only if E X2 log+ |X| < ∞, and that (7.6)
holds if and only if E|X|r < ∞; cf. also [114], where a slightly stronger version
of the necessity is proved. Namely, that if (7.3) holds, then E X2 log+ |X| < ∞
and E X = 0. We also remark that whereas Rosén’s result is used in [90] for
their proof, we do not need that result, so that, as a corollary, we obtain the
absolute convergence of (7.7) by probabilistic methods.

We precede the proof of the theorem with some auxiliary matter.

Lemma 7.1. Let 2 ≤ r < 3. In the above notation,
∞∑

n=1

1
n

(1− σ2
n) < ∞ ⇐⇒ E X2 log+ |X| < ∞,

∞∑
n=1

n
r
2 −2(1− σ2

n) < ∞ ⇐⇒ E|X|r < ∞.
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Proof. We first note that

E X2I{|X| >
√

n} = 1− E X2I{|X| ≤
√

n} ≤ 1− σ2
n

= 1− E X2I{|X| ≤
√

n}+ (E XI{|X| ≤
√

n})2

= E X2I{|X| >
√

n}+ (−E XI{|X| >
√

n})2

≤ 2E X2I{|X| >
√

n},

where we used the fact that E X = 0 and Lyapounov’s inequality, respectively,
in the last two steps. Consequently,

∞∑
n=1

n
r
2 −2(1− σ2

n) < ∞ ⇐⇒
∞∑

n=1

n
r
2 −2E X2I{|X| >

√
n} < ∞.

By Fubini’s theorem, the latter sum is finite if and only if

E

(( ∑
n≤X2

n
r
2 −2
)
X2
)

< ∞ ⇐⇒
{

E
(
log+(X2)X2

)
, when r = 2,

E
(
(X2)

r
2 −1X2

)
, when 2 < r < 3,

which proves the desired statements. �

We also need [73], Lemma 2.9 (which is an exercise in Taylor expansion;
note that one may assume that |xy − 1| ≤ 0.8 in the proof).

Lemma 7.2. For x, y > 0, and z ∈ R,∣∣∣Φ( z

x

)
−
(z

y

)∣∣∣ ≤ 1.25
∣∣∣x
y
− 1
∣∣∣.

Proof of the Theorem

(i): We first wish to prove that the sum in (7.2) converges. Toward this end,
set, for 1 ≤ k ≤ n, and n ≥ 1,

Yn,k =

{
Xk, when |Xk| ≤

√
n,

0, otherwise,

S′
n =

∑n
k=1 Yn,k, µn = E Yn,1, and recall that σ2

n = VarYn,1.
Since σn → 1 as n → ∞, there exists n0 such that σn > 1/2 for n ≥ n0.

Now, since

∣∣∣P( Sn√
n
≤ x

)
− P

( S′
n√
n
≤ x

)∣∣∣ ≤ nP (|X| >
√

n),

it follows, via the triangle inequality, that
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∞∑
n=1

1
n

sup
x

∣∣∣P( Sn√
n
≤ x

)
− Φ

( x

σn

)∣∣∣
≤

∞∑
n=1

P (|X| >
√

n) +
∞∑

n=1

1
n

sup
x

∣∣∣P( S′
n√
n
≤ x

)
− Φ

(x− µn
√

n

σn

)∣∣∣
+

∞∑
n=1

1
n

sup
x

∣∣∣Φ(x− µn
√

n

σn

)
− Φ

( x

σn

)∣∣∣
= Σ1 + Σ2 + Σ3. (7.9)

Next we examine each of the sums separately.
By Theorem 2.12.1 we know that

Σ1 < ∞ ⇐⇒ E X2 < ∞.

As for Σ2, Theorem 6.1, and the cr-inequalities together yield

sup
x

∣∣∣P( S′
n√
n
≤ x

)
− Φ

(x− µn
√

n

σn

)∣∣∣ ≤ C
E|Yn,1 − µn|3√

nσ3
n

≤ C
4(E|Yn,1|3 + |µn|3)√

nσ3
n

≤ C
8E|Yn,1|3√

nσ3
n

,

so that, by Lemma A.3.1 and Fubini’s theorem,

Σ2 ≤ C

∞∑
n=1

1
n

E|Yn,1|3√
nσ3

n

≤ C + C
∑

n≥n0

1
n3/2 E|Yn,1|3

= C + C
∑

n≥n0

1
n3/2 E|X|3I{|X| ≤

√
n}

≤ C + CE

(( ∑
n≥X2

1
n3/2

)
|X|3

)
≤ C + CE

( 1√
X2

|X|3
)

= C + CE X2.

For the third sum we apply the mean value theorem, together with the facts
that the standard normal density never exceeds 1/

√
2π, that σn > 1/2 when

n ≥ n0, that E X = 0, and Fubini:

Σ3 ≤
∞∑

n=1

1
n

1√
2π

|µn|
√

n

σn
≤ 1√

2π

∞∑
n=1

1
σn
√

n
E|X|I{|X| >

√
n}

≤ C +

√
2
π

∑
n≥n0

1√
n

E|X|I{|X| >
√

n}

≤ C + CE

(( ∑
n<X2

1√
n

)
|X|
)
≤ C + CE

√
X2|X| = C + CE X2.

This proves (7.2).
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Next we turn our attention to the second sum. Let Σ(i) and Σ(ii) denote
the sums in (7.2) and (7.3), respectively. Then

∣∣Σ(ii) −Σ(i)
∣∣ ≤ ∞∑

n=1

1
n

sup
x

∣∣∣Φ(x)− Φ
( x

σn

)∣∣∣ ≤ Σ(ii) + Σ(i). (7.10)

Since σ2
n ≤ E X2I{|X| ≤

√
n} ≤ E X2 = 1, it follows that

1− σn ≤ 1− σ2
n = (1− σn)(1 + σn) ≤ 2(1− σn), (7.11)

which, together with Lemma 7.2, shows that

sup
x

∣∣∣Φ(x)− Φ
( x

σn

)∣∣∣ ≤ 1.25(1− σn) ≤ 1.25(1− σ2
n). (7.12)

On the other hand, by the mean value theorem and (7.11),

sup
x

∣∣∣Φ(x)− Φ
( x

σn

)∣∣∣ ≥ (1− σn)
1

2
√

2π
e− 1

2 ≥ C(1− σ2
n) for n ≥ n0. (7.13)

Combining (7.10), (7.12), and (7.13) therefore shows that, if Σ(i) converges,
then so does Σ(ii) if and only if

∑∞
n=1

1
n (1 − σ2

n) < ∞, that is (Lemma 7.1),

if and only if E X2 log+ |X| < ∞.
(ii): The proof of this half follows the same path as that of the first half. We
therefore confine ourselves to a sketch, leaving it to the reader to complete
the details.

The first goal is to prove that

∞∑
n=1

nr/2−2 sup
x

∣∣∣P( Sn√
n
≤ x

)
− Φ

( x

σn

)∣∣∣ < ∞ .

The analogs of the three sums, Σ1, Σ2, and Σ3 are estimated as follows.

• By Lemma 2.12.1,

Σ
′
1 =

∞∑
n=1

nr/2−1P (|X| >
√

n) < ∞ ⇐⇒ E|X|r < ∞.

• Secondly, (note that (r − 5)/2 < −1 since r < 3),

Σ
′
2 ≤ C

∞∑
n=1

nr/2−2−1/2 E|Yn,1|3
σ3

n

≤ C + CE

(( ∑
n≥X2

n(r−5)/2
)
|X|3

)

≤ C + CE
(
(X2)(r−3)/2|X|3

)
.
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• Finally,

Σ
′
3 ≤

∞∑
n=1

nr/2−2 1√
2π

|µn|
√

n

σn
≤ 1√

2π

∞∑
n=1

n(r−3)/2 1
σn

E|X|I{|X| ≥
√

n}

≤ C + CE

(( ∑
n≤X2

n(r−3)/2
)
|X|
)
≤ C + CE

(
(X2)(r−1)/2).

This takes care of the first sum.
The conclusion for the second sum follows as in the first part of the theorem

with the second half of Lemma 7.1 replacing the first half.
This finishes the proof of (ii). �

Remark 7.3. The finiteness of the second sum was derived by the successive
approximations

P
( Sn√

n
≤ x

)
−→ P

( S′
n√
n
≤ x

)
−→ Φ

(x− µn
√

n

σn

)
−→ Φ

( x

σn

)
−→ Φ(x).

An inspection of the proof shows that the first three arrows require that
E X2 < ∞, whereas the last one requires E X2 log+ |X| < ∞. This means that
the convergence rate of the standardized sum to Φ(x/σn) is faster than the
convergence rate to Φ(x) in the sense that additional integrability is required
in the latter case. For a related remark, see [127], p. 1038. �

7.8 Precise Asymptotics

In our discussion of convergence rates in Chapter 6 one kind concerned the
rate at which probabilities such as P (|Sn| > nε) tend to 0 as n → ∞, thus
providing rates in terms of n, the number of summands. Another approach
is to investigate at which rate such probabilities tend to 1 as ε ↘ 0, in other
words, in terms of the closeness of ε to 0. Although this is a law of large
numbers problem it belongs to this chapter, since normal approximation is a
fundamental tool for the proof. The first result of this kind is due to Heyde
[136].

Theorem 7.9. Let X, X1, X2, . . . be independent, identically distributed ran-
dom variables with mean 0 and finite variance, and set Sn =

∑n
k=1 Xk, n ≥ 1.

Then

lim
ε↘0

ε2
∞∑

n=1

P (|Sn| ≥ nε) = E X2.

Note the relation to Theorem 11.2.
The next step was taken by Chen [41], whose result reduces to Heyde’s

theorem for r = p = 2.
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Theorem 7.10. Let 1 ≤ p < 2 ≤ r. Suppose that X, X1, X2, . . . are indepen-
dent, identically distributed random variables with mean 0, and (for simplicity)
variance 1, and suppose that E|X|r < ∞. Set Sn =

∑n
k=1 Xk, n ≥ 1. Then

lim
ε↘0

ε
2p

2−p ( r
p −1)

∞∑
n=1

n
r
p −2P (|Sn| ≥ n1/pε) = E|N(0, 1)|

2p
2−p ( r

p −1)

= 2
p

2−p ( r
p −1) Γ

( 1
2 + p

2−p ( r
p − 1)

)
( r

p − 1)Γ ( 1
2 )

.

The strategy of the proof is to begin by proving the conclusion for the nor-
mal distribution, then to approximate the sum for “lower” indices by normal
approximation and, finally, to take care of the tails separately. We confine
ourselves to providing an outline of the proof, and refer to the cited articles
for details.
Proof of Step I. The first step thus is to prove the result for X ∈ N(0, 1).
Putting Ψ(x) = P (|X| > x) = 1−Φ(x) + Φ(−x), and noticing that Sn/

√
n

d=
X, we have∫ ∞

1
xr/p−2Ψ(x1/p−1/2ε) dx ≤

∞∑
n=1

nr/p−2P (|Sn| ≥ n1/pε)

≤
∫ ∞

0
xr/p−2Ψ(x1/p−1/2ε) dx,

which, after the change of variable y = εx1/p−1/2, turns into

2p

2− p

∫ ∞

ε

y
2p

2−p ( r
p −1)−1Ψ(y) dy ≤ ε

2p
2−p ( r

p −1)
∞∑

n=1

nr/p−2P (|Sn| ≥ n1/pε)

≤ 2p

2− p

∫ ∞

0
y

2p
2−p ( r

p −1)−1Ψ(y) dy ,

which, in view of Theorem 2.12.1, proves the conclusion in the standard normal
case.
Proof of Step II. The second step is to take care of “lower” indices by the
normal approximation.

Toward this end, set

∆n = sup
x∈R

∣∣P (|Sn| ≥ n1/2x)− Ψ(x)
∣∣,

and let a(ε) = Mε−2p/(2−p), where M is some fixed, large number.
Since ∆n → 0 as n → ∞, Lemma A.6.1 tells us that the same is true for

a weighted average, which, in our case, yields

1
(a(ε))(r/p)−1

∑
n≤a(ε)

n
r
p −2∆n → 0 as ε → 0,
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which, by properly spelling this out, yields

lim
ε↘0

ε
2p

2−p ( r
p −1)

∑
n≤a(ε)

n
r
p −2∣∣P (|Sn| > n1/pε)− Ψ(n1/p−1/2ε)

∣∣ = 0.

Proof of Step III. This step is devoted to the normal tail. Since the summands
are monotonically decreasing for n large enough, letting ε be sufficiently small,
an integral comparison, followed by a change of variable y = x1/p−1/2ε, yields

ε
2p

2−p ( r
p −1)

∑
n>a(ε)

n
r
p −2Ψ(n1/p−1/2ε) ≤ ε

2p
2−p ( r

p −1)
∫ ∞

a(ε)
x

r
p −2Ψ(x1/p−1/2ε) dx

=
∫

M(2−p)/2py
2r

2−p
−1

Ψ(y) dy → 0, as ε → 0, and then M →∞.

Proof of Step IV. The last, and most difficult, step is devoted to the analog
for general summands, that is, to show that

ε
2p

2−p ( r
p −1)

∑
n>a(ε)

n
r
p −2P (|Sn| > n1/pε) → 0, as ε → 0, and then M →∞.

For this, some sharp inequalities for tail probabilities and some additional
estimates are needed. Once again, we refer to the original sources.

Note also that, in fact, Step III is a special case of Step IV. �

Remark 7.4. Most proofs follow this pattern. Sometimes, however, the intro-
duction of the additional constant M is not needed. �

In the remainder of this subsection we present a sample of extensions and
generalizations, together with some references.

Analogs for the counting process of a renewal process and first passage
times of random walks across horizontal boundaries have been proved in [122].
Here is one example.

Theorem 7.11. Let X, X1, X2, . . . be independent, identically distributed
random variables with positive mean µ and finite variance σ2. Set Sn =∑n

k=1 Xk, n ≥ 1, and let {τ(t), t ≥ 0} be the usual first passage time pro-
cess defined by

τ(t) = min{n : Sn > t}, t ≥ 0.

Let 0 < p < 2 and r ≥ 2. If E|X|r < ∞, then

lim
ε↘0

ε
2p

2−p ( r
p −1)

∫ ∞

1
tr/p−2P

(
|τ(t)− t

µ
| > t1/pε

)
dt

=
(σ2

µ3

) r−p
2−p p

r − p
E|N |

2(r−p)
2−p ,

where N is a standard normal random variable.
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Remark 7.5. For r = 2 and p = 1 the conclusion reduces to

lim
ε↘0

ε2
∫ ∞

1
P
(∣∣τ(t)− t

µ

∣∣ > tε
)

dt =
σ2

µ3 .

Observe the relation to Theorem 7.9, in that the normalization is the same
and that σ2/µ3 here plays the role of σ2 there. �

The corresponding result for record times and the associated counting process
has been proved in [115].

Theorem 7.12. Suppose that X1, X2, . . . are independent, identically dis-
tributed, absolutely continuous random variables, let {Ln, n ≥ 1} be the record
times, and {µ(n), n ≥ 1} the counting process. Then, for 1 ≤ p < 2, and
δ > −1,

lim
ε↘0

ε
2p(1+δ)

2−p

∑
n≥3

(log n)δ

n
P (|µ(n)− log n| > (log n)1/pε) =

1
1 + δ

E|N |
2p(1+δ)

2−p ,

and for 0 < p < 2,

lim
ε↘0

ε
2p

2−p ( r
p −1)

∞∑
n=1

n
r
p −2P (| log L(n)− n| ≥ n1/pε) =

p

r − p
E|N |

2p
2−p ( r

p −1) .

where, again, N is a standard normal random variable.

7.9 A Short Outlook on Extensions

The central limit theorem, the remainder term estimates, all of this chapter, is
devoted to limit distributions for sums of independent random variables with
finite variances. Having reached this point, at the end of the chapter, there
are two natural questions popping up.

The first one is “what can be said if the variance does not exist?”
The answer to this question leads to the theory of stable distributions,

domains of attraction, and as an extension, to the theory of infinitely divisible
distributions. A short(er) introduction and overview of these topics will be
given in Chapter 9.

The second question is “what happens if the summands are no longer
independent?”

There is an answer to this one too. There exist different dependence con-
cepts. One is the martingale concept, that we shall meet in Chapter 10. An-
other one, which is more oriented toward extensions of the classical limit the-
orems, concerns different notions of mixing, to which we shall be introduced
in Section 9.5.

Another generalization, that pertains in a different manner to the present
chapter, is the extension to the space C[0, 1] of continuous functions on the
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unit interval, which was briefly introduced in Subsection 2.3.2. Namely, in
addition to considering the limit of Sn as n → ∞, we may study the whole
path simultaneously.

Let ξ1, ξ2, . . . be independent, identically distributed random variables with
mean 0 and variance σ2 ∈ (0,∞), and consider the linearly interpolated,
normalized partial sums, Sn, n ≥ 1. For 0 ≤ t ≤ 1 we thus construct a
random element Xn ∈ C[0, 1] via

Xn(t, ω) =
Sk−1(ω)

σ
√

n
+

t− (k/n)
1/n

ξk(ω)
σ
√

n
for t ∈

[k − 1
n

,
k

n

]
, k = 1, 2, . . . , n.
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Figure 7.2. Linear interpolation of partial sums

By construction, Xn(t, ω) is a continuous function for every ω, for every
n. This means that Xn is, indeed, a random element in the space C[0, 1],
which we endow with the uniform topology. The point is that one can show
that Xn behaves asymptotically like standard Brownian motion, also called
the Wiener process, on the unit interval, that is, as a stochastic process with
independent, stationary normally distributed increments, and with continuous
sample paths. Formally, if W = {W (t), 0 ≤ t ≤ 1} is such a process, then, for
0 ≤ s < t ≤ 1,

W (t)−W (s) ∈ N(0, t− s).

To prove this one shows that all finite-dimensional distributions converge to
the corresponding multivariate normal distribution, and that the sequence
{Xn, n ≥ 1} is tight in the space C[0, 1] (for random variables the concept of
tightness was introduced in Section 5.8). The theorem thus obtained is called
Donsker’s theorem.

Theorem 7.13. In the above setting,

Xn
d→ W as n →∞,

where W is the Wiener measure on [0, 1].

Remark 7.6. The arrow d→ is to be interpreted as convergence of measures in
the space C[0, 1], which is defined in analogy with the second definition of dis-
tributional convergence, Definition 5.1.5. Recall also the remark immediately
following that definition. �
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The reference for Donsker’s theorem is [63]. For this and a lot more in the
area we refer to [20].

Theorems of this kind are called (weak) invariance principles or functional
central limit theorems. The reason for the first name is that, by applying a
continuous mapping theorem (cf. Subsection 5.10.1), one can prove the analog
of Theorem 5.10.4, and, as a consequence, find distributions of functionals of
the Wiener measure by computing limits of the corresponding functional of
Xn for a suitable distribution, which typically may be the simple, symmetric
random walk. Once again, consult [20]!

8 Problems

1. Suppose that X1, X2, . . . are independent random variables, such that
Xk ∈ Be(pk), k ≥ 1, and set Sn =

∑n
k=1 Xk, mn =

∑n
k=1 pk, and s2

n =∑n
k=1 pk(1− pk), n ≥ 1. Show that

Sn −mn

sn

d→ N(0, 1) as n →∞ ⇐⇒
∞∑

n=1

pk(1− pk) = +∞.

2. Suppose that X1, X2, . . . are independent U(−1, 1)-distributed random
variables, let mk, k ≥ 1, be a sequence of non-decreasing positive integers,
and set Sn =

∑n
k=1 Xmk

k , n ≥ 1. Prove that

Sn − E Sn√
Var Sn

d→ N(0, 1) as n →∞ ⇐⇒
∞∑

n=1

1
mk

= +∞.

3. Let X1, X2, . . . be independent random variables, such that

P (Xk = kα) = P (Xk = −kα) = 1/2, k ≥ 1,

where α ∈ R. Prove that the central limit theorem applies iff α ≥ −1/2.
4. Suppose that Xk ∈ U(−kα, kα), where α ∈ R, and that X1, X2, . . .

are independent. Determine the limit distribution (whenever it exists)
of
∑n

k=1 Xk, suitably normalized, as n →∞.
5. Let X1, X2, . . . be independent, identically distributed random variables

with mean 0 and variance σ2, and set Sn =
∑n

k=1 Xk, n ≥ 1. Determine
γ > 0 so that ∑n

k=1 Sk

nγ

d→ N(0, b2) as n →∞,

and determine b2 > 0.
6. Prove that

lim
n→∞

e−n
n∑

k=0

nk

k!
=

1
2
.
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7. Let X1, X2, . . . be independent random variables, such that

P (Xk =
√

k) = P (Xk = −
√

k) = 1/2, k ≥ 1,

and set

Yn =
n∏

k=1

(
1 + Xk

)1/
√

log n
, n ≥ 1.

Prove that Yn, suitably normalized, converges in distribution as n → ∞,
and determine the limit distribution.

8. There exist central limit theorems in spite of the fact that the variance is
infinite: Consider the two-sided Pareto distribution with density

f(x) =

{
1

|x|3 , for |x| ≥ 1,

0, otherwise.

(a) Prove that the characteristic function

ϕ(t) = 1− t2
(

log
1
|t| +O(1)

)
as t → 0.

(b) Let X1, X2, . . . be independent, identically distributed random vari-
ables with common density as above, and set Sn =

∑n
k=1 Xk. Prove

that
Sn√

n log n

d→ N(0, 1) as n →∞.

♣ Note that the normalization is not the usual
√

n.
9. Consider the setup of the previous problem. For an alternative proof, set

Yn = XnI{|Xn| ≤ bn}, for some “convenient” choice of bn.
(a) Compute E Yn and VarYn.
(b) Show that Y1, Y2, . . . , Yn satisfies Lyapounov’s condition, and state

the corresponding limit theorem for
∑n

k=1 Yk.
(c) Use convergence equivalence or distributional equivalence, depending

on the choice of truncation, to prove the asymptotic normality of Sn

as stated in the previous problem.
10. Show that the central limit theorem cannot be extended to convergence in

probability, that is, if X1, X2, . . . are independent, identically distributed
random variables with finite variance, then the sum, suitably normalized,
converges in distribution to the standard normal distribution but not in
probability .

11. (a) Prove the central limit theorem for arrays, Theorem 2.4.
(b) Check that assumption (2.21) does not restrict generality.
(c) Specialize to rediscover Theorem 2.1.

12. The central limit theorem for uniformly bounded random variables is
rather immediate. Here is an analog for arrays: Let {(Xn,k, k ≥ 1), n ≥ 1}
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be an array of row-wise independent random variables, such that, for every
n ≥ 1,

|Xn,k| ≤ An for k = 1, 2, . . . , n,

where An, n ≥ 1, are positive numbers, such that

An

sn
→ 0 as n →∞.

Show, by verifying the Lyapounov and/or Lindeberg conditions, that the
central limit theorem holds.
♣ Note that the random variables are uniformly bounded in each row, but that

the bounds (may) tend to infinity.
13. An extension of Lyapounov’s theorem, Theorem 2.2: Let X1, X2, . . . be

independent random variables with mean 0. Suppose that g is a non-
negative function, such that g(x)/x2 ↗ +∞ as x → ∞, and such that
E g(Xk) < ∞ for all k. Finally, set Sn =

∑n
k=1 Xk and s2

n =
∑n

k=1 Var Xk,
n ≥ 1. Show that, if, for every ε > 0,∑n

k=1 E g(Xk)
g(εsn)

→ 0 as n →∞,

then
Sn

sn

d→ N(0, 1) as n →∞.

♣ For g(x) = |x|2+δ the result reduces to Theorem 2.2. The case g(x) =
x2 log+ |x| provides a true extension, and, moreover, does not necessitate
E|X|r < ∞ for any r > 2.

♣ We have tacitly used the fact that the variances are finite. Why is this in
order?

14. Suppose that X and Y are independent, identically distributed random
variables with mean 0 and variance 1, such that

X + Y√
2

d= X.

Show that X and Y are standard normal.
♣ If we know that X and Y are standard normal, then it is easy to verify the

relation. The idea thus is to prove the converse.
15. We know, or else, it is not hard to prove, that if X and Y are independent

standard normal random variables, then X + Y and X − Y are indepen-
dent. This problem is devoted to a converse. Suppose that X and Y are
independent symmetric random variables with mean 0 and variance 1,
such that X + Y and X − Y are independent. Let ϕ denote the common
characteristic function of X and Y . Prove, along the following path, that
X and Y must be standard normal random variables:
(a) Prove that ϕ(2t) = (ϕ(t))4.
(b) Iterate.
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16. Consider the previous problem without assuming symmetry.
(a) Prove that ϕ(2t) = (ϕ(t))3ϕ(t).

(b) Prove that ϕ(t) �= 0 for all t.

(c) Set γ(t) = ϕ(t)/ϕ(t) and show that γ(2t) = (γ(t))2.

(d) Prove that γ(t) ≡ 1.

(e) Prove that ϕ(2t) = (ϕ(t))4.

(f) Iterate.
♣ Note that the distribution must be symmetric as a consequence of (d). Why?

17. The alternating renewal process. Consider a machine that alternates be-
tween being busy and idle, or a person at a cash register who alternates
between serving customers and reading a novel. Let Y1, Y2, . . . denote
the duration of the busy periods, and Z1, Z2, . . . the durations of the idle
periods, and suppose that a busy period starts at time 0. This means, i.a.,
that Tn =

∑n
k=1(Yk + Zk) equals the time that has elapsed after n visits

to each of the two states, and that Sn =
∑n

k=1 Yk equals the amount of
time spent in the busy period at time Tn. Let L(t) denote the availability
during the time span (0, t], that is, the relative amount of time spent in
the busy period during that time span.
(a) Prove that, if µy = E Y < ∞ and µz = E Z < ∞, then

L(t)
t

a.s.→ µy

µy + µz
as t →∞,

and interpret why this is a reasonable answer.
(b) Prove that if, in addition, σ2

y = VarY < ∞ and σ2
z = VarZ < ∞, then

L(t)− µy

µy+µz
t

√
t

d→ N
(
0,

µ2
yσ2

z + µ2
zσ

2
y

(µy + µz)3
)

as t →∞.

♠ Note that µyZk − µzYk, k ≥ 1, are independent, identically distributed
random variables with mean 0.

18. Let X1, X2, . . . be independent, identically distributed, non-negative,
random variables with finite variance. Find the limit distribution of (Sn)p

as n →∞ (p > 0).
♣ The case p = 1/2 is special, because the conjugate rule can be exploited.

19. Consider an experiment with success probability p. The entropy is

H(p) = −p log p− (1− p) log(1− p).

If p is unknown a natural (and best) estimate after n repetitions is the
relative frequency of successes, p∗

n = Xn/n, where Xn equals the number
of successes. In order to find an estimate of H(p) it seems reasonable to
try H(p∗

n). Determine the asymptotic distribution of H(p∗
n) as n →∞.

♠ Do not forget to distinguish between the cases p = 1/2 and p �= 1/2.
♣ We have thus replaced the estimate of the function with the function of the

estimate.
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20. Let Xn ∈ Γ (n, 1), n ≥ 1. Prove that

Xn − n√
Xn

d→ N(0, 1) as n →∞.

21. Problem 6.13.3(a), cont’d. Let X, X1, X2, . . . , Xn be independent, iden-
tically distributed random variables with E X4 < ∞, and set µ = E X,
σ2 = VarX, and µ4 = E(X−µ)4. Furthermore, let X̄n and s2

n denote the
sample mean and sample variances, respectively. Show that

s2
n − σ2
√

n

d→ N(0, µ4 − σ4) as n →∞.

22. Problem 6.13.3(b), cont’d. Let (Xk, Yk)′, 1 ≤ k ≤ n, be a sample from
a two-dimensional distribution with component-wise arithmetic means
X̄n = 1

n

∑n
k=1 Xk, and Ȳn = 1

n

∑n
k=1 Yk, respectively, and set µx = E X1,

σ2
x = VarX1 µy = E Y1, and σ2

y = VarY1. Suppose, in addition, that the
correlation coefficient ρ = 0, and that

µ2
xy = E(X1 − µx)2(Y1 − µy)2 < ∞.

Prove the following limit theorem for the empirical correlation coefficient:

√
nrn

d→ N(0, b2) as n →∞,

and determine b2.
23. Self-normalized sums. Let X1, X2, . . . be independent, identically dis-

tributed random variables with mean 0, and set Sn =
∑n

k=1 Xk, n ≥ 1.
Consider the statistic

Tn(p) =
Sn(∑n

k=1 |Xk|p
)1/p

,

where 0 < p < ∞. For ”p = ∞” the statistic is interpreted as Sn/Yn,
where Yn = max1≤k≤n |Xk|, and suppose that VarX < ∞. Show that
Tn(2), suitably normalized, converges to a standard normal distribution
as n →∞.
♣ In terms of Euclidean norms the denominator equals ‖Xn‖p, where Xn =

(X1, X2, . . . , Xn), and if we let 1n denote the vector (1, 1, . . . , 1)′, we may
rewrite the statistic, using scalar products as

Tn(p) =
Xn · 1n

‖Xn‖p
.

For p = 2 the statistic is reminiscent of the t-statistic if the sample is from
a normal distribution.

24. Extend Theorem 5.1 to the Lindeberg-Lévy case.
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25. We found in Section 4.3 that if two characteristic functions agree on an in-
terval around 0, then this was not enough for the distributions to coincide.
However, a certain closeness can be estimated. Namely, let U and V be
random variables with characteristic functions ϕU and ϕV , respectively,
and suppose that

ϕU (t) = ϕV (t) for |t| ≤ T.

(a) Prove that, if FV is differentiable, then

sup
x∈R

|FU (x)− FV (x)| ≤ C
supx F ′

V (x)
T

.

(b) Show that ∫ ∞

−∞
|FU (x)− FV (x)|dx ≤ C

T
.



8

The Law of the Iterated Logarithm

The central limit theorem tells us that suitably normalized sums can be ap-
proximated by a normal distribution. Although arbitrarily large values may
occur, and will occur, one might try to bound the magnitude in some manner.
This is what the law of the iterated logarithm (LIL) does, in that it provides
a parabolic bound on how large the oscillations of the partial sums may be as
a function of the number of summands.

In Theorem 6.9.1 we presented Borel’s theorem [26], stating that almost
all numbers are normal. Later Khintchine [159], proved that, if Nn equals
the number of ones among the first n decimals in the binary expansion of a
number (in the unit interval), then

lim sup
n→∞

Nn − n/2√
1
2n log log n

= 1 a.s.

By symmetry, the liminf equals −1 almost surely. We also observe that n/2
is the expected number of ones. The conclusion thus tells us that the fluctua-
tions around the expected value stay within a precisely given parabola except,
possibly, for a finite number of visits outside. So:

• To what extent can this be generalized?
• The result provides the extreme limit points. Are there any more?

The answer to these questions belong to the realm of the law of the iterated
logarithm. If the law of large numbers and the central limit theorem are the
two most central and fundamental limit theorems, the law of the iterated
logarithm is the hottest candidate for the third position.

In this chapter the main focus is on the Hartman-Wintner-Strassen the-
orem, which deals with the i.i.d. case; Hartman and Wintner [130] proved
the sufficiency, and Strassen [238] the necessity. The theorem exhibits the ex-
treme limit points. We shall also prove an extension, due to de Acosta [2], to
the effect that the interval whose endpoints are the extreme limit points is
a cluster set, meaning that, almost surely, the set of limit points is equal to
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the interval whose endpoints are the extreme limit points. During the course
of the proof we find results for subsequences from [109] and [245], respec-
tively, where it, for example, is shown that the cluster set shrinks for rapidly
increasing subsequences.

The “Some Additional Results and Remarks” section contains a proof
of how one can derive the general law from the result for normal random
variables via the Berry-Essen theorem (under the assumption of an additional
third moment), more on rates, and additional examples and complements.

1 The Kolmogorov and Hartman-Wintner LILs

In a seminal paper, Kolmogorov [161] proved the following result for indepen-
dent, not necessarily identically distributed, random variables.

Theorem 1.1. Suppose that X1, X2, . . . are independent random variables
with mean 0 and finite variances σ2

k, k ≥ 1, set Sn =
∑n

k=1 Xk, and s2
n =∑n

k=1 σ2
k, n ≥ 1. If

|Xn| ≤ o
( sn√

log log sn

)
for all n, (1.1)

then
lim sup

n→∞
(lim inf

n→∞
)

Sn√
2s2

n log log s2
n

= +1 (−1) a.s.

Remark 1.1. Marcinkiewicz and Zygmund [181] provide an example which
shows that the growth condition (1.1) cannot in general be weakened. �

Condition (1.1) looks strange if one also assumes that the random variables
are identically distributed; the condition should disappear.

The sufficiency part of the following result is due to Hartman and Wintner
[130]. The necessity is due to Strassen [238].

Theorem 1.2. Suppose that X, X1, X2, . . . are independent random vari-
ables with mean 0 and finite variance σ2, and set Sn =

∑n
k=1 Xk, n ≥ 1.

Then

lim sup
n→∞

(lim inf
n→∞

)
Sn√

2σ2n log log n
= +1 (−1) a.s. (1.2)

Conversely, if

P

(
lim sup

n→∞

|Sn|√
n log log n

< ∞
)

> 0,

then E X2 < ∞, E X = 0, and (1.2) holds.

Exercise 1.1. Check that Khintchine’s result is a special case. �
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Remark 1.2. As was mentioned in connection with the Kolmogorov zero-one
law, Theorem 2.10.6, the limsup is finite with probability 0 or 1, and, if finite,
the limit equals a constant almost surely. Thus, assuming in the converse that
the probability is positive is in reality assuming that it is equal to 1.

Remark 1.3. By symmetry it suffices to consider the limit superior (replace X
by −X). �

As a distinction between convergence in probability and point-wise behavior
we observe that, by Chebyshev’s inequality,

P

(∣∣∣ Sn√
2σ2n log log n

∣∣∣ > ε

)
≤ 1

2ε2 log log n
→ 0 as n →∞,

so that
Sn√

2σ2n log log n

p→ 0 as n →∞,

under the assumptions of Theorem 1.2. In other words in Sn√
2σ2n log log n

is close

to 0 with a probability close to 1 for large n, but sample-wise, or path-wise,
one observes oscillations between −1 and +1.

1.1 Outline of Proof

Proofs of laws of the iterated logarithm are rather technical. The first, and
a central, tool are the Kolmogorov upper and lower exponential bounds for
tail probabilities. The proof of the upper bound is manageable and will be
presented, but we omit the proof of the lower bound.

The second step is to apply these bounds to Borel-Cantelli sums for a
geometrically increasing subsequence of the partial sums. The convergence
part and the first Borel-Cantelli lemma then provide an upper bound for the
limit superior along that subsequence, after which an application of the Lévy
inequalities takes care of the behavior between subsequence points.

As for the divergence part we must establish a divergence part for incre-
ments, since the partial sums themselves are not independent. An application
of the second Borel-Cantelli lemma and some additional arguments then pro-
vide a lower bound – which coincides with the upper bound.

2 Exponential Bounds

Let Y1, Y2, . . . be independent random variables with mean 0, set σ2
k = VarYk

k ≥ 1, and, for n ≥ 1, s2
n =

∑n
k=1 σ2

k. Finally, suppose that, for cn > 0,

|Yk| ≤ cnsn a.s. for k = 1, 2, . . . , n, n ≥ 1.
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Lemma 2.1. (The upper exponential bound)
For 0 < x < 1/cn,

P

( n∑
k=1

Yk > xsn

)
≤ exp

{
− x2

2

(
1− xcn

2

)}
.

Proof. In order to apply Markov’s inequality, Theorem 3.1.1, we first derive
the following refinement of Theorem 3.1.2:

ψn(t) = E exp
{

t

n∑
k=1

Yk

}
≤ exp

{ t2s2
n

2

(
1 +

tcnsn

2

)}
. (2.1)

Let n ≥ 1, and 0 < t < 1/(cnsn). For 1 ≤ k ≤ n, Taylor expansion, and the
fact that the mean equals 0, yield

ψYk
(t) = E exp{tYk} = 1 +

∞∑
j=2

tj

j!
E(Y j

k )

≤ 1 +
t2

2!
E(Y 2

k )
(
1 + 2

∞∑
j=3

(tcnsn)j−2

j!

)

≤ 1 +
t2σ2

k

2

(
1 + 2tcnsn

∞∑
j=3

1
j!

)

≤ 1 +
t2σ2

k

2
(
1 + 2tcnsn(e− 2.5)

)
≤ 1 +

t2σ2
k

2
(
1 +

tcnsn

2
)
≤ exp

{
t2σ2

k

2

(
1 +

tcnsn

2

)}
,

the last inequality being a consequence of the inequality 1 + x < ex.
By independence we then obtain

ψn(t) =
n∏

k=1

ψYk
(t) ≤ exp

{
t2

2

n∑
k=1

σ2
k

(
1+

tcnsn

2

)}
= exp

{ t2

2
s2

n

(
1+

tcnsn

2

)}
,

which completes the proof of (2.1), after which an application of Markov’s
inequality with t = x/sn yields

P

( n∑
k=1

Yk > xsn

)
≤ ψn(t)

etxsn
≤ exp

{
− txsn +

t2s2
n

2

(
1 +

tcnsn

2

)}

= exp
{
− x2 +

x2

2

(
1 +

xcn

2

)}
.

�

Lemma 2.2. (The lower exponential bound)
Suppose that γ > 0. There exist constants x(γ) and κ(γ), such that, for x(γ) ≤
x ≤ κ(γ)/cn,

P

( n∑
k=1

Yk > xsn

)
≥ exp

{
− x2

2
(1 + γ)

}
.
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As has already been mentioned, this one is no pleasure to prove. We refer
to [239], Theorem 5.2.2, for details.

In order to make believe that the exponential bounds are in order, suppose,
for a moment, that Y1, Y2, . . . are independent N(0, σ2)-distributed random
variables. The exponential bounds

P

( n∑
k=1

Yk > xσ
√

n

){
≤ 1

x · exp{− 1
2x2}, for x > 0,

≥ 1
2x · exp{− 1

2x2}, for x >
√

2,
(2.2)

are immediate consequences of the fact that
∑n

k=1 Yk
d=
√

nY1, and Mill’s
ratio, Lemma A.2.1.

Remark 2.1. Note that the bounds are somewhat sharper than in the general
case in that the exponent in the right-hand side is exactly equal to −x2/2. On
the other hand, here we are dealing with an exact normal distribution, not an
approximate one. �

3 Proof of the Hartman-Wintner Theorem

The first step is to investigate Borel-Cantelli sums for geometrically increasing
subsequences.

Lemma 3.1. Let X, X1, X2, . . . be independent, identically distributed ran-
dom variables with mean 0, finite variance, σ2, and partial sums Sn =∑n

k=1 Xk, n ≥ 1. Furthermore, let λ > 1, and set nk = [λk]. Then

∞∑
k=1

P (|Snk
| > ε

√
nk log log nk) < ∞ for ε > σ

√
2, (3.1)

∞∑
k=1

P (Snk
> ε
√

nk log log nk) = ∞ for ε < σ
√

2. (3.2)

Since the proof is rather technical we begin by checking the normal case.

Borel-Cantelli Sums; Normal Random Variables

Let X1, X2, . . . be independent N(0, σ2)-distributed random variables with
partial sums Sn, n ≥ 1. Since, in view of the exponential bounds,

∞∑
n=1

P (Sn > ε
√

n log log n) ∼
∞∑

n=1

σ

ε
√

log log n
· (log n)− ε2

2σ2 = ∞

for any ε > 0, there is no hope for an application of the Borel-Cantelli lemma
to the whole sequence. We must resort to subsequences.
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Toward this end, let λ > 1, set nk = [λk], and let k0 be so large that

nk+1 > nk + 1, 1 <
nk+1

nk
< λ2 and 1 <

nk+1 log log nk+1

nk log log nk
< λ3 ; (3.3)

note that these requirements can always be met, since the ratio nk+1/nk →
λ > 1 as k →∞. Actually, one should throughout think of λ as being “close”
to 1.

In order to prove (3.1) we use the upper exponential bound from (2.2)
(once for each tail) and (3.3):

∞∑
k=k0

P (|Snk
| > ε

√
nk log log nk) ≤ 2

∞∑
k=k0

σ

ε
√

log log nk

· (log nk)− ε2

2σ2

≤ 2σ

ε

∞∑
k=k0

(
log
(
λk−1))− ε2

2σ2 =
2σ

ε

∞∑
k=k0

(
(k − 1) log λ

)− ε2

2σ2 .

For the lower bound we use the lower bound:
∞∑

k=k0

P (Snk
> ε
√

nk log log nk) ≥
∞∑

k=k0

σ

2ε
√

log log nk

· (log nk)− ε2

2σ2

≥ σ

2ε

∞∑
k=k0

1√
log(λ log k)

(k log λ)− ε2

2σ2 .

This establishes the lemma for normal random variables.

Borel-Cantelli Sums; The General Case – Convergence

We proceed by truncation. The Kolmogorov LIL forces a truncation at
o(sn/

√
log log sn) = o(

√
n/ log log n). The typical upper truncation when the

variance is finite is O(
√

n). Unfortunately, this leaves a gap between the two
levels, which forces us to truncate at two levels. And, although narrow, it
turns out that the middle part is the hardest one to deal with.

Thus, let X, X1, X2, . . . be independent, identically distributed random
variables with mean 0 and finite variance σ2, and set Sn =

∑n
k=1 Xk, n ≥ 1.

Let 0 < δ < 1/2, and set, for ε > 0,

cn =
2δσ

ε
√

log log n
and bn = cnσ

√
n =

2δσ2

ε

√
n

log log n
, n ≥ 1. (3.4)

For each n ≥ 1 we define, for j = 1, 2, . . . , n, the truncated random variables

X ′
n,j = XjI{|Xj | < 1

2bn}, X ′′
n,j = XjI{|Xj | >

√
n},

X ′′′
n,j = XjI{ 1

2bn ≤ |Xj | ≤
√

n},
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and note that X ′
n,j + X ′′

n,j + X ′′′
n,j = Xj for all j. We also tacitly suppose that

1
2bn <

√
n.

In addition we define the respective partial sums

S′
n =

n∑
k=1

X ′
n,j , S′′

n =
n∑

k=1

X ′′
n,j , S′′′

n =
n∑

k=1

X ′′′
n,j ,

so that S′
n + S′′

n + S′′′
n = Sn.

The three sums will now be taken care of separately. Remember that the
goal was to prove convergence of Borel-Cantelli sums for the subsequence
{Snk

, k ≥ 1}, where nk = [λk] for some λ > 1. We also remind the reader of
k0 defined in (3.3).

S′
n

Since the truncated random variables need not have mean 0 we first have to
estimate their means.

|E X ′
n,j | = |E XjI{|Xj | < 1

2bn}| = | − E XjI{|Xj | ≥ 1
2bn}|

≤ E|Xj |I{|Xj | ≥ 1
2bn} ≤

2
bn

E X2I{|X| ≥ 1
2bn},

so that

|E S′
n| ≤ n|E X ′

n,j | ≤
2n

bn
E X2I{|X| ≥ 1

2bn} = o(n/bn) = o(
√

n log log n),

as n →∞, that is, for our given δ above, there exists n0, such that

|E S′
n| ≤ εδ

√
n log log n for n > n0. (3.5)

Moreover,
Var X ′

n,1 ≤ E
(
(X ′

n,1)
2) ≤ E X2 = σ2.

By centering S′
nk

via (3.5), and applying the upper exponential bound, Lemma
2.1, with x = ε(1−δ)

σ

√
log log nk, and t = 2δ/cnk

(once for each tail), we then
obtain

P (|S′
nk
| > ε

√
nk log log nk) ≤ P (|S′

nk
− E S′

nk
| > ε(1− δ)

√
nk log log nk)

≤ 2 exp
{
− 1

2
ε2(1− δ)2

σ2 log log nk(1− δ)
}

= 2 exp
{
− ε2

2σ2 (1− δ)3 log log nk

}
= 2(log nk)− ε2

2σ2 (1−δ)3 , (3.6)

for k large, more precisely, for k ≥ k0 and nk0 ≥ n0. Redefining, k0, if neces-
sary, so that these conditions are met, we have shown that
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∞∑
k=k0

P (|S′
nk
| > ε

√
nk log log nk) ≤ 2

∞∑
k=k0

(log nk)− ε2

2σ2 (1−δ)3

≤ 2
∞∑

k=k0

(
(k − 1) log λ

)− ε2

2σ2 (1−δ)3
< ∞ for ε >

σ
√

2
(1− δ)3/2 . (3.7)

S′′
n

Let η > 0. Since

{|S′′
n| > η

√
n log log n} ⊂

n⋃
j=1

{X ′′
j,n �= 0} =

n⋃
j=1

{|Xj | >
√

n},

it follows that
∞∑

k=k0

P (|S′′
nk
| > η

√
nk log log nk) ≤

∞∑
k=k0

P

( nk⋃
j=1

{|Xj | >
√

nk}
)

≤
∞∑

k=k0

nkP (|X| > √
nk) ≤

∞∑
k=k0

λkP (|X| >
√

λk−1)

= λ

∞∑
k=k0−1

λkP (X2 > λk) < CE X2 < ∞. (3.8)

Here we used Theorem 2.12.4 to bound the last sum by the second moment.

S′′′
n

Let η > 0. We first estimate the truncated means.

|E X ′′′
n,j | = |E XjI{ 1

2bn < |Xj | <
√

n}| ≤ E|Xj |I{ 1
2bn < |Xj | <

√
n}

≤ E|Xj |I{|Xj | ≥ 1
2bn} ≤

2
bn

E X2I{|X| ≥ 1
2bn},

which is the same upper bound as for |E X ′
j,n|, so that (this time)

|E S′′′
n | ≤

η

2

√
n log log n for n > nη.

By Chebyshev’s inequality we thus have

P (|S′′′
nk
| > η

√
nk log log nk) ≤ P (|S′′′

nk
− E S′′′

nk
| > η

2

√
nk log log nk)

≤
4VarS′′′

nk

η2nk log log nk
≤

4E(X ′′′
1,nk

)2

η2 log log nk
=

4E X2
kI{ 1

2bnk
≤ |Xk| ≤

√
nk}

η2 log log nk
,

which (by redifining k0 if necessary, so that also nk0 > nη) implies that
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η2

4

∞∑
k=k0

P (|S′′′
nk
| > η

√
nk log log nk) ≤

∞∑
k=k0

E X2
kI{ 1

2bnk
≤ |Xk| ≤

√
nk}

log log nk

=
∞∑

k=k0

1
log log nk

∫ √
nk

1
2 bnk

x2 dF (x) =
∫ ∞

k∗

( ∑
A(k,x)

1
log log nk

)
x2 dF (x),

where k∗ is some lower irrelevant limit, and

A(k, x) = {k : 1
2bnk

≤ |x| ≤ √
nk}.

In order to invert the double inequality we first observe that, since the inverse
of
√

y/ log log y is of the order y2 log log y as y →∞, we have

{k : bnk
≤ |x|} ⊂ {k : nk ≤ 2

(δσ2

ε

)2
x2 log log x} for k ≥ k1,

so that, for k = k2 ≥ max{k0, k∗, k1},

A(k, x) ⊂
{
k : x2 ≤ nk ≤ 2

( ε

δσ2

)2
x2 log log |x|

}
,

which, via (3.3), yields

A(k, x) ⊂ A∗(k, x)

=
{

k :
2 log |x|
log λ

+ 1 ≤ k ≤
log 2 + 2 log ε

δσ2 + 2 log |x|+ log log log |x|
log λ

}
.

This tells us that, for any x,∑
A(k,x)

1
log log nk

≤
∑

A∗(k,x)

1
log log(x2)

=
1

log(2 log |x|) · |A
∗(k, x)|

≤
log 2 + 2 log ε

δσ2 + log log log |x|
log log |x| =

C + log log log |x|
log log |x| ,

which, inserted into the integral, proves that, for all η > 0,

∞∑
k=k0

P (|S′′′
nk
| > η

√
nk log log nk) ≤ 4

η2

∫ ∞

k∗

( ∑
A(k,x)

1
log log nk

)
x2 dF (x)

≤ 4
η2

∫ ∞

k∗

C + log log log |x|
log log |x| x2 dF (x)

≤ CE X2 log log log |X|
log log |X| < ∞. (3.9)

Putting the estimates for the three sums together via the inclusion{
|Snk

| > (ε + 2η)
√

nk log log nk)
}
⊂
{
|S′

nk
| > ε

√
nk log log nk)

}
⋃ {

|S′′
nk
| > η

√
nk log log nk)

} ⋃ {
|S′′′

nk
| > η

√
nk log log nk)

}
,
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shows that, for η > 0 and ε + 2η > σ
√

2
(1−3δ)3/2 ,

∞∑
k=1

P (|Snk
| > (ε + 2η)

√
nk log log nk) < ∞,

which, δ and η being arbitrary, proves (3.1).

Remark 3.1. Under the slightly stronger assumption that

EX2 log+ log+ |X| < ∞,

it suffices to truncate at 1
2bn. Namely, in this case one can join X ′′

n,j and X ′′′
n,j

into XjI{|Xj | > 1
2bn}. By proceeding as above, the computation for S′′

n and
S′′′

n then simplifies into

∞∑
k=k0

P

( k∑
j=1

XjI{|Xj | > 1
2bnk

}
)
≤ λ

∞∑
k=k0−1

λkP
(
|X| > c

√
λk/ log log(λk)

)
< CE X2 log+ log+ |X| < ∞,

since, asymptotically, x2 log log x is the inverse of
√

x/ log log x. �

Exercise 3.1. Check the details. �

Borel-Cantelli Sums; The General Case – Divergence

For this half of the proof we use the lower exponential bound applied to S′
nk

.
For the other two sums we use estimates (3.8) and (3.9) from above, since
they are valid for all η > 0.

In addition to the truncated expectation, E S′
nk

, that has been estimated
in (3.5), we need a lower bound for the truncated variance. Remembering that

(E X1,n)2 = (−E XI{|X| > 1
2bn})2 ≤ E X2I{|X| > 1

2bn},

via Lyapounov’s inequality, Theorem 3.2.5, we obtain

Var X ′
1,n = E X2

1,n − (E X1,n)2 = E X2 − E X2I{|X| > 1
2bn} − (E X1,n)2

≥ σ2 − 2E X2I{|X| > 1
2bn} ≥ σ2(1− δ),

for n ≥ n1, so that

Var S′
nk
≥ nkσ2(1− δ) for k > k3.

Thus, via centering and the lower exponential bound (3.2), we conclude that,
for δ > 0 and k > k4 = max{k2, k3},
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P (S′
nk

> ε
√

nk log log nk)

≥ P
(
S′

nk
− E S′

nk
> ε

(1 + δ)
σ
√

1− δ
Var (S′

nk
)
√

log log nk

)

≥ exp
{
− 1

2

( ε(1 + δ)
σ
√

1− δ

√
log log nk

)2
(1 + γ)

}

=
(
log nk

)− ε2(1+δ)2(1+γ)
2σ2(1−δ) ≥

(
k log λ)− ε2(1+δ)2(1+γ)

2σ2(1−δ) , (3.10)

and, hence, that

∞∑
k=k4

P (S′
nk

> ε
√

nk log log nk) ≥
∞∑

k=k4

(
log nk

)− ε2(1+δ)2(1+γ)
2σ2(1−δ)

≥
∞∑

k=k4

(
k log λ)− ε2(1+δ)2(1+γ)

2σ2(1−δ) = ∞ for ε <
σ
√

2
1 + δ

√
1− δ

1 + γ
.

By combining this estimate with those in (3.8), (3.9), and the inclusion{
S′

nk
> ε
√

nk log log nk)
}
⊂
{
Snk

> (ε− 2η)
√

nk log log nk)
}

⋃ {
|S′′

nk
| > η

√
nk log log nk)

} ⋃ {
|S′′′

nk
| > η

√
nk log log nk)

}
,

it follows that, for η > 0 and ε− 2η < σ
√

2
1+δ

√
1−δ
1+γ ,

∞∑
k=1

P (Snk
> (ε− 2η)

√
nk log log nk) = ∞,

which, in view of the arbitrariness of δ, γ, and η, finishes the proof of (3.2),
and thereby the proof of Lemma 3.1. �

Applying the Borel-Cantelli Lemmas

In this part of the proof we apply the Borel-Cantelli lemmas to the convergence
and divergence parts, respectively, of Lemma 3.1. For the convergence part
this is straightforward, in that the first Borel-Cantelli lemma applied to (3.1)
tells us that P (Snk

> ε
√

nk log log nk i.o.) = 0 almost surely for ε > σ
√

2,
and, hence that

lim sup
k→∞

Snk√
nk log log nk

≤ σ
√

2 a.s.

In other words, we have exhibited a subsequence that behaves as desired. In
order to prove that the whole sequence behaves properly we must prove that
nothing terrible occurs between the subsequence points.

Now, for k ≥ k0,
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P

(
max

nk≤j≤nk+1

∣∣∣ Sj√
j log log j

∣∣∣ > ε

)
≤ P ( max

nk≤j≤nk+1
|Sj | > ε

√
nk log log nk)

≤ P ( max
1≤j≤nk+1

|Sj | > ε
√

nk log log nk)

≤ 2P (|Snk+1 | > ε
√

nk log log nk − σ
√

2nk+1)

≤ 2P (|Snk+1 | > λ−3/2ε
√

nk+1 log log nk+1 − σ
√

2nk+1)

≤ 2P (|Snk+1 | > λ−2ε
√

nk+1 log log nk+1).

Here we have applied the Lévy inequalities, Theorem 3.7.2, in the third in-
equality, (3.3) in the fourth, and the fact that λ−3/2ε − σ

√
2/ log log nk+1 >

λ−2ε for k > k0 in the last one (possibly an increased k0).
Combining this with the first part of Lemma 3.1, leads to the following

upper class result.

Lemma 3.2. In the above setting,

∞∑
k=1

P ( max
nk≤j≤nk+1

|Sj | > ε
√

nk log log nk) < ∞ for ε > λ2σ
√

2,

P (|Sn| > ε
√

n log log n i.o.) = 0 for ε > λ2σ
√

2,

lim sup
n→∞

Sn√
n log log n

≤ σ
√

2 a.s.

Proof. The first relation follows from Lemma 3.1 and the computations pre-
ceding the present lemma. The convergence of these sums, together with the
first Borel-Cantelli lemma, Theorem 2.18.1, implies that

P (|Snk
| > ε

√
nk log log nk i.o.) = 0 for ε > σ

√
2,

P ( max
nk≤j≤nk+1

|Sj | > ε
√

nk log log nk) for ε > λ2σ
√

2,

that is, only finitely many sums from the subsequence surpass the given level,
and only finitely many increments between the subsequence points do so for
ε > λ2σ

√
2. Putting these facts together we find that only finitely many

partial sums surpass the given level. This proves the second statement. The
third one follows from the fact that λ may be chosen arbitrarily close to 1. �

It remains to prove that

lim sup
n→∞

Sn√
n log log n

≥ σ
√

2 a.s., (3.11)

which is something we shall achieve via the second Borel-Cantelli lemma.
However, we have to transfer to increments in order to obtain a Borel-Cantelli
sum for independent random variables.



3 Proof of the Hartman-Wintner Theorem 395

Lemma 3.3. Let 0 < δ < 1/3, and set, for k ≥ 1 and some fixed positive
integer j, mk = [λkj ] (= [(λj)k]). Then, for ε < σ

√
2 < εδλj/2,

∞∑
k=1

P (|Smk−1 | > εδ
√

mk log log mk) < ∞, (3.12)

∞∑
k=1

P (Smk
− Smk−1 > ε(1− δ)

√
mk log log mk) = ∞. (3.13)

Proof. We have{
Smk

> ε
√

mk log log mk

}
⊂
{
Smk

− Smk−1 > ε(1− δ)
√

mk log log mk

}
⋃ {

Smk−1 > εδ
√

mk log log mk

}
. (3.14)

Now, let k5 be large enough to ensure that mk

mk−1
> λj+1 for k > k5, which (cf.

(3.3)) is possible in view of the fact that the ratio converges to λj as k →∞.
Then,

∞∑
k=k5

P (Smk−1 > εδ
√

mk log log mk)

≤
∞∑

k=k5

P
(
|Smk−1 | > εδ

√
mk

mk−1

√
mk−1 log log mk−1

)

≤
∞∑

k=k5

P
(
|Smk−1 | > εδλ(j+1)/2

√
mk−1 log log mk−1

)
< ∞.

This proves (3.12), which, together with (3.2) and (3.14), proves (3.13). �

To conclude the proof of the theorem it only remains to exploit Lemma
3.3 to prove (3.11), which amounts to proving that

P (Sn > ε
√

n log log n) i.o.) = 1 for ε < σ
√

2. (3.15)

In order to achieve this, we need the following variation of (3.14):

{|Smk−1 | ≤ 2εδ
√

mk log log mk} ∩ {Smk
− Smk−1 > ε(1− δ)

√
mk log log mk}

⊂ {Smk
> ε(1− 3δ)

√
mk log log mk}. (3.16)

Let ε < σ
√

2. By (3.12) and the first Borel-Cantelli lemma we know, in par-
ticular, that

P (|Smk−1 | > 2εδ
√

mk log log mk i.o.) = 0,

and, remembering that the increments involved in the sum in (3.13) are in-
dependent, by (3.13) and the second Borel-Cantelli lemma, that

P (Smk
− Smk−1 > ε(1− δ)

√
mk log log mk i.o.) = 1.
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These facts, together with (3.16), then show that

P (Smk
> ε(1− 3δ)

√
mk log log mk i.o.) = 1,

which, due to δ being arbitrary (and {mk, k ≥ 1} being a subsequence), proves
(3.15).

The proof of the Hartman-Wintner law of the iterated logarithm has,
finally, reached its end. �

The Kolmogorov Law of the Iterated Logarithm

Theorem 1.1 may be proved along the same lines with some modifications.
(i) One relief is that no truncation is necessary.
(ii) In order to select the ideal subsequence one should observe that nk as
defined in the proof of Theorem 1.2 does not refer to the number of summands
but to the variance. The natural subsequence to try for Theorem 1.1 therefore
is nk = min{j : s2

n > λk} (which reduces to [λk] in the previous setting (if
σ2 = 1)).

Exercise 3.2. Prove Theorem 1.1. �

4 Proof of the Converse

Instead of Strassen’s original proof we present (a variation of) a shorter one
due to Feller [86]; see also [239], Theorem 5.3.5. For other proofs, see [135, 236].

We thus assume that

P
(

lim sup
n→∞

|Sn|√
n log log n

< ∞
)

> 0, (4.1)

and we wish to show that E X2 < ∞, E X = 0, and that (1.2) holds.
First of all, once the conditions on the first two moments have been estab-

lished the validity of the Hartman-Wintner law is immediate from what has
already been shown.

Following Feller’s proof as referred to, we begin by noticing that the prob-
ability that the limsup is finite is 0 or 1 by the Kolmogorov zero-one law,
Theorem 2.10.6. This means that

P
(

lim sup
n→∞

|Sn|√
n log log n

< ∞
)

= 1,

which, in turn, implies that

P
(

lim sup
n→∞

|Sn|
n

= 0
)

= 1,
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so that the strong law of large numbers holds. From its converse, Theorem
6.6.1(b), we therefore conclude that E X = 0.

Now, suppose that we know that the result holds for symmetric random
variables. In order to desymmetrize we use the usual technique from Chapter
6. Namely, if (4.1) holds, then, by the triangle inequality, (4.1) also holds
for the symmetrized sequence, from which it follows that VarXs < ∞, and
thus, that VarX = 1

2Var Xs < ∞. We may therefore restrict ourselves to the
symmetric case.

Suppose, on the contrary, that VarX = +∞. Let M > 0, and set
Yk = XkI{|Xk| ≤ M}, k ≥ 1, and S′

n =
∑n

k=1 Yk, n ≥ 1. Since the trun-
cated random variables are bounded, their variance σ2

M must be finite, in
fact, at most equal to M2. It therefore follows from the Hartman-Wintner
law, Theorem 1.2, that (for example)

P

(
S′

n√
n log log n

> σM i.o.
)

= 1. (4.2)

Since, by symmetry,

Sn − S′
n =

n∑
k=1

XkI{|X| > M} d=
n∑

k=1

−XkI{|X| > M} = Sn − S′
n,

it follows that the two events{{ S′
n√

n log log n
> σM

}⋂
{Sn − S′

n ≥ 0} i.o.
}

and{{ S′
n√

n log log n
> σM

}⋂
{Sn − S′

n ≤ 0} i.o.
}

are equiprobable, and since the union of them equals
{ S′

n√
n log log n

> σM i.o.
}
,

the two probabilities must be at least equal to 1/2, because of (4.2). This
implies, in particular, that

P

(
Sn√

n log log n
> σM i.o.

)

≥ P

({ S′
n√

n log log n
> σM

}⋂
{Sn − S′

n ≥ 0} i.o.
)
≥ 1

2
. (4.3)

Now, the choice of M is arbitrary, and the variance is infinite, so that we may
choose a non-decreasing sequence {Mk, k ≥ 1}, such that σ2

Mk
≥ k2 for all k.

Moreover, since the events

{ Sn√
n log log n

> k i.o.
}

are decreasing in k,

and
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P

(
Sn√

n log log n
> k i.o.

)
≥ 1

2
for all k,

it follows that, for all k,

P

( k⋂
j=i

{ Sn√
n log log n

> j i.o.
})

= P
( Sn√

n log log n
> k i.o.

)
≥ 1

2
.

Since the lower bound, 1/2, is independent of k we may let k → ∞, and
conclude that

P

({ Sn√
n log log n

> k
}

i.o. for all k

)
≥ 1

2
.

Finally, since this is a statement about the probability of a tail event, the
Kolmogorov zero-one law, Theorem 2.10.6, forces the probability to be equal
to 1, which, differently expressed, tells us that

P

(
lim sup

n→∞

Sn√
n log log n

= ∞
)

= 1,

which contradicts (4.1). �

Remark 4.1. The stronger Hewitt-Savage zero-one law referred to in [86] and
[239], p. 297, implies more directly that the probability in (4.3) equals 1. After
having established this fact one argues that, by choosing M appropriately, one
may achieve an arbitrarily large σ2

M , from which the contradiction follows. The
original reference for the Hewitt-Savage zero-one law is [132]. Proofs can also
be found in, e.g., [19, 48]. The above detour via the Kolmogorov zero-one law
was given to me by Svante Janson. �

Remark 4.2. Assumption (4.1) and the Kolmogorov zero-one law together im-
ply that lim supn→∞

|Xn|√
n log log n

< ∞ almost surely, which, in view of the
second Borel-Cantelli lemma and the equidistribution, shows that

∞∑
n=1

P (|X| >
√

n log log n) < ∞,

which, in turn, shows that E X2/ log+ log+ |X| < ∞ via inversion and Theo-
rem 2.12.3. The hard part thus is to move from E X2/ log+ log+ |X| < ∞ to
finite variance. �

5 The LIL for Subsequences

It is frequently important, interesting, and developing to lean back and review
a proof. It is, in particular, advisable to find out where a given condition
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has been used (let alone if ), and how. Sometimes one can thereby discover
more general results. It may even happen that a more general assumption can
simplify a proof, because some more specialized condition or assumption does
not have to be checked.

The Hartman-Wintner law is, as it turns out, such a case. Namely, the
geometrically increasing sequence {nk} forces condition (3.3) upon the proof
for the passage from nk to λ log(k − 1). By reviewing the proof of the Borel-
Cantelli sums we observe that the steps preceding the application of (3.3) in
both the upper and lower bounds for S′

nk
coincide, except for details in the

exponent. More precisely, they are

∞∑
k=k0

(log nk)− ε2

2σ2 (1−δ)3 and
∞∑

k=k2

(
log nk

)− 1
2

ε2(1+δ)2(1+γ)
(1−δ)σ2 .

Since the sums concerning S′′
nk

and S′′′
n,k were always convergent, the crucial

object seems to be

∞∑
k

(
log nk

)− 1
2

ε2

σ2 (1±δ)
, (5.1)

where the boundary for convergence or divergence is at δ = 0.
Once we have realized this, the natural question pops up, namely, “what

conclusions can be drawn for other subsequences, such as powers (which in-
crease more slowly than geometrically), or for very rapidly increasing subse-
quences, such as nk = 22k

?”
The answer is that the conclusion is the same as before for sequences

that grow at most geometrically, but differs for more rapidly increasing subse-
quences. This is the topic of the present section, which is, essentially, borrowed
from [109].

We begin with the easy one, namely, the dense subsequences, that is,
subsequences that increase at most geometrically.

Theorem 5.1. Let X, X1, X2, . . . be independent random variables with
mean 0 and finite variance σ2, and set Sn =

∑n
k=1 Xk, n ≥ 1. Further,

let {nk, k ≥ 1} be s strictly increasing subsequence of the integers, such that

lim inf
k→∞

nk

nk+1
> 0. (5.2)

Then
lim sup

k→∞
(lim inf

k→∞
)

Snk√
nk log log nk

= +σ
√

2 (−σ
√

2) a.s.

Proof. The conclusion is a consequence of the fact that the limsup of the
subsequence is at most equal to the limsup of the whole sequence which is
σ
√

2, and at least equal to the limsup of a geometric subsubsequence, which
is also σ

√
2.
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For the upper bound this is translated into

lim sup
k→∞

Snk√
nk log log nk

≤ lim sup
n→∞

Sn√
n log log n

= σ
√

2 a.s.

For the lower bound, let M > 2 be an integer and define

mj = min{k : nk > M j} for j = 1, 2, . . . .

Then, because of (5.2), there exists L > 1, such that nk+1 ≤ Lnk, so that, for
all j ≥ 1,

M j ≤ nmj ≤ LM j and
1

LM
≤

nmj

nmj+1

≤ L

M
.

In other words, we have exhibited a geometrically growing subsubsequence
with the aid of which we are in the position to conclude that

lim sup
k→∞

Snk√
nk log log nk

≥ lim sup
j→∞

Snmj√
nmj

log log nmj

= σ
√

2 a.s. �

Remark 5.1. With the aid of the same subsequence the theorem can alterna-
tively, and maybe more sophisticatedly, be deduced from the next one. �

The next one that was just alluded to concerns sparse subsequences, that is,
subsequences that increase at least geometrically. The crucial sum in (5.1)
suggests the definition of

ε∗ = inf
{

ε > 0 :
∞∑

k=3

(log nk)−ε2/2 < ∞
}

. (5.3)

The reason is that ε∗, being the boundary between convergence and diver-
gence, is likely to play the role of

√
2 in the present context. This is confirmed

by the following result.

Theorem 5.2. Let X, X1, X2, . . . be independent random variables with
mean 0 and finite variance σ2, and set Sn =

∑n
k=1 Xk, n ≥ 1. Further,

let {nk, k ≥ 1} be s strictly increasing subsequence of the integers, such that

lim sup
k→∞

nk

nk+1
< 1. (5.4)

Then
lim sup

k→∞
(lim inf

k→∞
)

Snk√
nk log log nk

= +σε∗ (−σε∗) a.s.

Remark 5.2. Theorems 5.1 and 5.2 meet at subsequences that increase geomet-
rically (and hence, at most as well as at least, geometrically). Such sequences
are of the form nk = λk for some λ > 1, and ε∗ =

√
2 in that case. �

The decisive tool for the proof of Theorem 5.2 is the following result on Borel-
Cantelli sums for sparse sequences.
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5.1 A Borel-Cantelli Sum for Subsequences

Lemma 5.1. Under the assumptions of the theorem we have

∞∑
k=3

P (|Snk
| >

√
nk log log nk) < ∞ for all ε > σε∗, (5.5)

∞∑
k=3

P (|Snk
| >

√
nk log log nk) = ∞ for all ε < σε∗. (5.6)

Proof. Most of the proof of Lemma 3.1 carries over to this, more general, case.
Using the same notation and truncations as there we find that (3.6) remains
unchanged, so that

∞∑
k=k0

P (|S′
nk
| > ε

√
nk log log nk) ≤ 2

∞∑
k=k0

(log nk)− ε2

2σ2 (1−δ)3 < ∞ (5.7)

for ε > σε∗
(1−δ)3/2 .

Instead of (3.8) we obtain

∞∑
k=k0

P (|S′′
nk
| > η

√
nk log log nk) ≤

∞∑
k=k0

nkP (|X| > √
nk)

=
∞∑

k=k0

nkP (X2 > nk) ≤ CE X2,

where the finiteness is due to Theorem 2.12.6.
As for (3.9), we must find an upper bound for |A∗(k, x)| in order to estimate∑

A(k,x)
1

log log nk
.

Since the subsequence increases at least geometrically, there exists (as we
have noted before) λ > 1, such that

nk+1 ≥ λnk for all k. (5.8)

Moreover, since nk ≥ x2 for k ∈ A(k, x), it follows that

|A∗(k, x)| ≤ min{k : x2λk ≥ 2
( ε

δσ2

)2
x2 log log |x|}

= min{k : λk ≥ 2
( ε

δσ2

)2
log log |x|}

= min
{

k : k ≥
log 2 + 2 log

(
ε

δσ2 ) + log log log |x|
)

log λ

}
≤ C + C log log log |x|.

Having this estimate at our disposal we are now able to compute the third
sum:
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∞∑
k=k0

P (|S′′′
nk
| > η

√
nk log log nk) ≤ 4

η2

∫ ∞

k∗

( ∑
A(k,x)

1
log log nk

)
x2 dF (x)

≤ 4
η2

∫ ∞

k∗

1
log log(x2)

|A∗(k, x)|x2 dF (x)

≤ 4
η2

∫ ∞

k∗

C + C log log log x

log log x
x2 dF (x) < ∞.

This proves the finiteness of the three sums. From here on the convergence
part follows as before, that is, the arguments following (3.9) carry over without
change.

To prove the divergence part we only have to revise the computations for
the first sum, since two other ones always converge. We obtain (cf. (3.10))

∞∑
k=k2

P (S′
nk

> ε
√

nk log log nk) ≥
∞∑

k=k2

(
log nk

)− ε2(1+δ)2(1+γ)
2(1−δ)σ2 = ∞

for ε < σε∗
1+δ

√
1−δ
1+γ .

From here on the arguments remain, once again, the same as before, which
completes the proof of the lemma. �

5.2 Proof of Theorem 5.2

Having established the behavior of the two Borel-Cantelli sums, the next step
amounts to applying the Borel-Cantelli lemmas.

For the convergence part this is easy, since the first Borel-Cantelli lemma
applied to (5.5) immediately tells us that

lim sup
k→∞

Snk√
nk log log nk

≤ σε∗.

Note also that we do not need any Lévy inequality here since we are only
interested in subsequences.

To prove the reverse inequality we must, as always, begin by proving a
divergence result for increments via a suitable subsubsequence. And, once
again, it turns out that geometric thinning works.

Thus, let j ≥ 1, set mk = njk, k ≥ 1, and define an ε∗ for that sequence;

ε∗
j = inf

{
ε :

∞∑
k=1

(log mk)−ε2/2 =
∞∑

k=1

(log njk)−ε2/2 = ∞
}

.

We first claim that

ε∗
j = ε∗. (5.9)
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To see this, we first note that ε∗
j ≤ ε∗, since {mk} is a subsequence of {nk}.

For the converse, let ε < ε∗, so that
∞∑

k=1

(log nk)−ε2/2 = ∞.

Then, necessarily,
∞∑

k=1

(log njk+i)−ε2/2 = ∞ for at least one i = 0, 1, 2, . . . j − 1,

so that, in particular,
∞∑

k=1

(log mk)−ε2/2 =
∞∑

k=1

(log njk)−ε2/2 = ∞,

since {nk} is strictly increasing. The reverse inequality follows.
The next thing is to prove that

∞∑
k=1

P (Smk
> ε
√

mk log log mk) = ∞ for ε < ε∗. (5.10)

Now, by (5.4) it follows that

lim sup
k→∞

mk

mk+1
= lim sup

k→∞

nkj

n(k+1)j
= lim sup

k→∞

j−1∏
i=0

nkj+i

nkj+i+1
< 1,

since there are always exactly j factors involved (or, else, directly, by (5.8),
since mk

mk+1
≤ λ−j < 1). The subsubsequence therefore satisfies the sparseness

condition, so that an application of Lemma 5.1 tells us that (5.10) holds.
From here on on can argue as in the proof of Lemma 3.3, upon noticing

that
√

mk

mk−1
≥
√

λ, and by replacing
√

2 by ε∗.

This completes the proof of the theorem. �

Exercise 5.1. Complete the details that we have omitted in the proof. �

A particular case is when ε∗ = 0, corresponding to “very rapidly” increas-
ing subsequences, that is, to “very sparse” subsequences.

Corollary 5.1. Let X, X1, X2, . . . be independent random variables with
mean 0 and finite variance σ2, and set Sn =

∑n
k=1 Xk, n ≥ 1. Further,

let {nk, k ≥ 1} be a strictly increasing subsequence of the integers, such that

lim sup
k→∞

nk

nk+1
< 1 and ε∗ = 0.

Then
Snk√

nk log log nk

a.s.→ 0 as n →∞.
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The corollary is, in fact, contained in Theorem 5.2, and does not require any
additional proof. The interesting fact is that the fluctuations disappear, so
that almost sure convergence holds. We shall return to this discussion in a
moment.

5.3 Examples

To make the results a bit more concrete we present some examples of sequences
that are sparse, some that are dense, and some that are not covered by the
theorems.

Example 5.1. The first example (although we have briefly met it) is nk = 2k,
for which nk/nk+1 = 1/2, so that the subsequence is sparse as well as dense,
and both theorems apply. And, luckily, ε∗ =

√
2.

Example 5.2. A sparser one is nk = 22k

, for which nk/nk+1 = 2−2k → 0 as
n →∞, log nk = 2k log 2, and ε∗ = 0, in particular, the corollary applies.

Example 5.3. Subsequences that grow like powers are dense. For nk = kd, for
some d = 2, 3, . . ., we have nk/nk+1 = k/(k + 1) → 1 as n → ∞, so that
Theorem 5.1 is the appropriate one. More generally, nk = [ckα], k ≥ 1, for
some c > 0, α > 1 is also dense.

Example 5.4. The example one longs for at this point is one where the extreme
limit points are strictly between 0 and ±σ

√
2. One family of examples satis-

fying this desire is nk = [2kα

], k ≥ 1, for some α > 1, which increases a bit
faster than geometrically, but not as fast as in the second example. Namely,
in this case, nk/nk+1 ∼ 2−αkα−1 → 0 as n → ∞; it is a sparse subsequence.
Since log nk ∼ kα log 2 we find that ε∗ =

√
2/α, so that, by Theorem 5.2,

lim sup
k→∞

(lim inf
k→∞

)
Snk√

nk log log nk

= +σ

√
2
α

(
− σ

√
2
α

)
a.s.

Example 5.5. For 0 < α < 1 the previous subsequence is dense.

Example 5.6. The subsequence nk = k!, k ≥ 1, is dense; one readily checks
that nk/nk+1 = 1/(k + 1) → 0 as n →∞. �

6 Cluster Sets

In this section we present the following more general result, namely that, in
fact, all points between the extreme ones provided by the Hartman-Wintner
law are limit points (almost surely). Not only do we thereby obtain a more
general result, as it turns out, we also replace the use of the lower exponential
bound by some more easily accessible tool. In addition, we obtain cluster
analogs of Theorems 5.2 and 5.1.
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The proofs follow a blend of [2], [3], [109], and [245]. However, before we
can state the result we need to define the concept “cluster set of a sequence
of random variables”.

Definition 6.1. For a sequence Y1, Y2, . . . of random variables we define

C({Yn, n ≥ 1}) = the cluster set = the set of limit points of {Yn, n ≥ 1}. �

Theorem 6.1. Let X, X1, X2, . . . be independent random variables with
mean 0 and finite variance σ2, and set Sn =

∑n
k=1 Xk, n ≥ 1. Then

C

({ Sn√
2nσ2 log log n

, n ≥ 9
})

= [−1,+1] a.s.,

in particular,

lim sup
n→∞

(lim inf
n→∞

)
Sn√

n log log n
= +σ

√
2 (−σ

√
2) a.s.

Just as in the previous proofs we proceed via subsequences. For nota-
tional convenience we assume throughout that for any increasing subsequence
{nk, k ≥ 1} we always have n1 ≥ 9 in order for log log nk to be larger than 1
for all k.

The following result, which extends Theorem 5.2 is due to Torr̊ang [245];
see Theorem 2.1 there.

Theorem 6.2. Let X, X1, X2, . . . be independent random variables with
mean 0 and finite variance σ2, and set Sn =

∑n
k=1 Xk, n ≥ 1. Further,

let {nk, k ≥ 1} be a sequence of positive integers, strictly increasing to +∞,
such that

lim sup
k→∞

nk

nk+1
< 1,

and let ε∗ = inf{ε > 0 :
∑∞

k=1(log nk)−ε2/2 < ∞} as before. Then

C

({ Snk√
nk log log nk

, k ≥ 1
})

= [−σε∗, +σε∗] a.s.,

in particular,

lim sup
k→∞

(lim inf
k→∞

)
Snk√

nk log log nk

= σε∗ (−σε∗) a.s.

As pointed out earlier, this verifies, in particular, Theorem 5.2 without using
the lower exponential bounds, Lemma 2.2. The same goes for the following
result, which follows as a corollary in the same way as Theorem 5.1 was
obtained from Theorem 5.2; cf. [245].
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Theorem 6.3. Let X, X1, X2, . . . be independent random variables with
mean 0 and finite variance σ2, and set Sn =

∑n
k=1 Xk, n ≥ 1. Further,

let {nk, k ≥ 1} be a sequence of positive integers, strictly increasing to +∞,
such that

lim inf
k→∞

nk

nk+1
> 0.

Then

C

({ Snk√
nk log log nk

, k ≥ 1
})

= [−σ
√

2, +σ
√

2] a.s.,

in particular,

lim sup
k→∞

(lim inf
k→∞

)
Snk√

nk log log nk

= σ
√

2 (−σ
√

2) a.s.

6.1 Proofs

Having stated the theorems it remains to prove them. We begin by proving
Theorem 6.2, after which Theorems 6.1 and 6.3 will be taken care of in that
order.

Proof of Theorem 6.2

The first step is to show that

lim sup
k→∞

Snk√
nk log log nk

≤ σε∗. (6.1)

But this follows from the first half of Lemma 5.1 and the first Borel-Cantelli
lemma as before.

We have thus found an upper (lower) bound for the extreme limit points,
which means that we have shown that

C

({ Snk√
nk log log nk

})
⊂ [−σε∗, +σε∗] a.s. (6.2)

It thus remains to show that the cluster set consists of all points in between.
In order to fulfill this task we follow closely the method of [2], cf. also [3], a
method that was later pursued in [245].

The procedure involves two steps. The first one is [2], Lemma 2.4; see also
[3], Lemma 3.1.

Lemma 6.1. Let X, X1, X2, . . . be independent, identically distributed ran-
dom variables with partial sums {Sn, n ≥ 1}. Suppose that E X = 0, and set
σ2 = VarX < ∞. Further, let mk ∈ N, and αk ∈ R+, k ≥ 1, be such that

αk

mk
→ 0 and

α2
k

mk
→∞ as k →∞.
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Then, for every ε > 0 and b ∈ R,

lim inf
k→∞

mk

α2
k

log P

(∣∣∣Smk

αk
− b
∣∣∣ < ε

)
≥ − b2

2σ2 .

Remark 6.1. For future use, think mk = nk and αk =
√

nk log log nk. �

Proof. Let N ∈ N(0, σ2), and set, for k ≥ 1,

pk =
[m2

kt2

α2
k

]
, qk =

[ α2
k

mkt2

]
, rk =

αk

tqk
.

Note that, asymptotically,

pk ∼ r2
k, pkqk ∼ mk,

qkmk

α2
k

∼ 1
t2

. (6.3)

For −∞ < c + δ < d− δ < ∞,

(
P (t(c + δ) <

Spk

rk
< t(d− δ))

)qk

=
qk−1∏
j=0

P
(
t(c + δ) <

S(j+1)pk
− Sjpk

rk
< t(d− δ)

)

= P

( qk−1⋂
j=0

{
t(c + δ) <

S(j+1)pk
− Sjpk

rk
< t(d− δ)

})

≤ P
(
tqk(c + δ) <

Spkqk

rk
< tqk(d− δ)

)
= P

(
c + δ <

Spkqk

αk
< d− δ

)
,

and

P
(
c + δ <

Spkqk

αk
< d− δ

)
· P
(∣∣∣Smk

− Spkqk

αk

∣∣∣ < δ

)

= P

({
c + δ <

Spkqk

αk
< d− δ

}⋂{∣∣∣Smk
− Spkqk

αk

∣∣ < δ
})

≤ P
(
c <

Smk

αk
< d
)
,

which, upon setting λk = P (
∣∣Smk

−Spkqk

αk

∣∣ ≥ δ), combined with the previous
computation and (6.3), tells us that

log P (cαk < Smk
< dαk) ≥ log(1− λk)

+qk log P
(
t(c + δ) <

Spk

rk
< t(d− δ)

)
. (6.4)

Next we note that, by Chebyshev’s inequality,
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λk ≤
(mk − pkqk)σ2

α2δ2 → 0 as k →∞,

and, by the central limit theorem (and, strictly speaking, by Cramér’s theorem
5.11.3, since the relations in (6.3) are ∼-relations),

Spk

rk

d→ N(0, σ2) as k →∞,

which, inserted into (6.4) and recalling (6.3), yields

lim inf
k→∞

mk

α2
k

P
(
c <

Smk

αk
< d
)

≥ lim inf
k→∞

(mk

α2
k

log(1− λk) +
qkmk

α2
k

P (t(c + δ) <
Spk

rk
< t(d− δ))

)

≥ lim inf
k→∞

mk

α2
k

log(1− λk) + lim inf
k→∞

qkmk

α2
k

P
(
t(c + δ) <

Spk

rk
< t(d− δ)

)
= 0 + lim inf

k→∞

1
t2

P
(
t(c + δ) <

Spk

rk
< t(d− δ)

)
=

1
t2

P (t(c + δ) < N < t(d− δ)).

Since δ > 0 may be arbitrarily small this establishes that

lim inf
k→∞

mk

α2
k

P
(
c <

Smk

αk
< d
)
≥ 1

t2
P (tc < N < td). (6.5)

Next, let c = b− ε and d = b + ε. Then, since N − tb ∈ N(−tb, σ2), it follows
that

P (|N − tb| < tε) =
∫ tε

−tε

1√
2π

e−(x+tb)2/2σ2
dx

≥ exp
{
− t2b2

2σ2

}∫ tε

−tε

1√
2π

e−x2/2σ2
dx

= exp
{
− t2b2

2σ2

}
P (|N | < tε),

and, hence, that

1
t2

log P (|N − tb| < tε) ≥ − b2

2σ2 +
1
t2

log P (|N | < tε),

so that

lim inf
t→∞

1
t2

log P (|N − tb| < tε) ≥ − b2

2σ2 .

This means that, for any given η > 0, we may choose t0 so large that
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1
t2

log P (|N − tb| < tε) ≥ − b2

2σ2 − η for t > t0,

which, in turn, inserted into (6.5), implies that

lim inf
k→∞

mk

α2
k

P

(∣∣∣Smk

αk
− b
∣∣∣ < ε

)
≥ − b2

2σ2 − η,

which establishes the lemma. �

In the second step of the proof we wish to verify the opposite of (6.2),
which amounts to proving that

P

(
lim inf
k→∞

∣∣∣ Snk√
nk log log nk

− b
∣∣∣ = 0

)
= 1 for all b ∈ [−σε∗, +σε∗], (6.6)

because once this has been achieved it follows that, for any countable, dense
set D ⊂ [−σε∗, +σε∗] (for example Q ∩ [−σε∗, +σε∗]),

P

(
D ⊂ C

({ Snk√
nk log log nk

}))
= 1,

which, together with the fact that the cluster set is closed, establishes that

P

(
[−σε∗, +σε∗] ⊂ C

({ Snk√
nk log log nk

}))
= 1,

which is precisely the opposite of (6.2).
Proof of 6.6. The proof contains two main ingredients from the corresponding
half of the proof of Theorem 1.2, namely, thinning and transition to incre-
ments, in order to apply the second Borel-Cantelli lemma; cf. Lemma 3.3.

Thus, set, as in the proof of Lemma 5.1, mk = njk, k ≥ 1, and

ε∗
j = inf

{
ε :

∞∑
k=1

(log mk)−ε2/2 =
∞∑

k=1

(log njk)−ε2/2 = ∞
}

,

and recall from (5.9) that ε∗
j = ε∗. We also recall that the sparseness implies

that there exists λ > 1, such that nk/nk+1 < λ < 1, which, for the thinned
subsequence implies that

mk

mk+1
< λj < 1. (6.7)

Let ε > 0. In order to take care of the increments, we apply Lemma 6.1 with
mk − mk−1 and

√
mk log log mk here playing the roles of mk and αk there.

The lemma then tells us that there exists k0, such that for any b ∈ R and
δ > 0,

mk −mk−1

mk log log mk
log P

(∣∣∣ Smk
− Smk−1√

mk log log mk

− b
∣∣∣ < ε

)
≥ −b2 + δ

2σ2 for k > k0,
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which, rewritten, taking (6.7) into account, tells us that, for k > k0,

P

(∣∣∣ Smk
− Smk−1√

mk log log mk

− b
∣∣∣ < ε

)
≥ exp

{
− b2 + δ

2σ2 · mk log log mk

mk −mk−1

}

≥ exp
{
− (b2 + δ) log log mk

2σ2(1− λj)

}
=
(
log mk

)− b2+δ

2σ2(1−λj) .

For |b| < σε∗√1− λj and δ so small that b2+δ
σ2(1−λj) < (ε∗)2, it therefore follows

that ∞∑
k=1

P

(∣∣∣ Smk
− Smk−1√

mk log log mk

− b
∣∣∣ < ε

)
= +∞,

which, by the second Borel-Cantelli lemma, Theorem 2.18.2, and the arbi-
trariness of ε and δ, shows that

P

(
lim inf
k→∞

∣∣∣ Smk
− Smk−1√

mk log log mk

− b
∣∣∣ = 0

)
= 1 for all |b| < σε∗

√
1− λj . (6.8)

The next step is to estimate the sum Smk−1 that precedes this increment.
Toward this end, let |b| < σε∗, and let j be so large that

|b| < σε∗
√

1− λj . (6.9)

From (6.2) we know that

P

(
lim sup

k→∞

∣∣∣ Smk−1√
mk−1 log log mk−1

∣∣∣ ≤ σε∗
)

= 1,

which, via the bound (6.7), implies that, almost surely,

lim sup
k→∞

∣∣∣ Smk−1√
mk log log mk

∣∣∣ = lim sup
k→∞

∣∣∣ Smk−1√
mk−1 log log mk−1

∣∣∣
×

√
mk−1 log log mk−1

mk log log mk

≤ lim sup
k→∞

∣∣∣ Smk−1√
mk−1 log log mk−1

∣∣∣λj/2 ≤ σε∗λj/2.

Now, by the triangle inequality,∣∣∣ Smk√
mk log log mk

− b
∣∣∣ ≤ ∣∣∣ Smk−1√

mk log log mk

∣∣∣+ ∣∣∣ Smk
− Smk−1√

mk log log mk

− b
∣∣∣,

so that, by joining this with our knowledge about the two terms in the right-
hand side, we obtain,

lim inf
k→∞

∣∣∣ Smk√
mk log log mk

− b
∣∣∣ ≤ λj/2σε∗ + lim inf

k→∞

∣∣∣ Smk
− Smk−1√

mk log log mk

− b
∣∣∣

≤ λj/2σε∗ + 0 = λj/2σε∗ a.s.
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Finally, since

lim inf
k→∞

∣∣∣ Snk√
nk log log nk

− b
∣∣∣ ≤ lim inf

k→∞

∣∣∣ Smk√
mk log log mk

− b
∣∣∣,

or, equivalently,

C

({ Smk√
mk log log mk

})
⊂ C

({ Snk√
nk log log nk

})
,

and since j may be chosen arbitrarily large, we conclude, with (6.9) in mind,
that

P

(
lim inf
k→∞

∣∣∣ Snk√
nk log log nk

− b
∣∣∣ = 0

)
= 1 for |b| ≤ σε∗,

which is precisely (6.6).
This completes the proof of Theorem 6.2

Proof of Theorem 6.1

From the proof of the upper half of the Hartman-Wintner theorem, Lemma
3.2, we know that

lim sup
n→∞

Sn√
n log log n

≤ σ
√

2,

which, in particular, implies that

C

({ Sn√
n log log n

})
⊂ [−σ

√
2, +σ

√
2] a.s.

In order to prove the opposite inclusion we choose a geometrically increasing
subsequence, for example, nk = 2k, k ≥ 1, for which ε∗ = σ

√
2. The proof is

completed by observing that, almost surely,

[−σ
√

2, +σ
√

2] = C

({ Snk√
nk log log nk

})
⊂ C

({ Sn√
n log log n

})
,

where the (almost sure) equality emanates from Theorem 6.2. �

Proof of Theorem 6.3

For the upper bound,

C

({ Snk√
nk log log nk

})
⊂ [−σ

√
2, +σ

√
2],

we invoke Theorem 5.1, and for the lower bound we choose the subsequence
from the proof of Theorem 5.1, namely
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mj = min{k : nk > M j} for j = 1, 2, . . . , and some M = 2, 3, . . . ,

which is sparse (as well as dense), so that, on the one hand,

C

({ Smk√
mk log log mk

})
= [−σ

√
2, +σ

√
2],

and on the other,

C

({ Smk√
mk log log mk

})
⊂ C

({ Snk√
nk log log nk

})
. �

Exercise 6.1. Check the details. �

7 Some Additional Results and Remarks

In this section we collect some complements pertaining to the law of the
iterated logarithm.

7.1 Hartman-Wintner via Berry-Esseen

Since, as we have seen earlier in this chapter, the steps corresponding to the
derivation of the results for the Borel-Cantelli sums were more easily derived
for normal random variables, it is tempting to derive the general result from
the normal case with the aid of the Berry-Esseen theorem, Theorem 7.6.1;
albeit, under the additional assumption of a finite third moment.

Theorem 7.1. Suppose that X, X1, X2, . . . are independent, identically dis-
tributed random variables with mean 0 and finite variance σ2, and set Sn =∑n

k=1 Xk, n ≥ 1. Suppose, in addition, that γ3 = E|X|3 < ∞. Then

∞∑
k=1

P (|Snk
| > ε

√
nk log log nk) < ∞ for ε > σ

√
2, (7.1)

∞∑
k=1

P (Snk
> ε
√

nk log log nk) = ∞ for ε < σ
√

2, (7.2)

and (thus)

lim sup
n→∞

Sn√
2σ2n log log n

= +1 a.s. (7.3)

Proof. Let k0 be defined as in (3.3). By the triangle inequality and the Berry-
Esseen theorem,
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∣∣∣∣
∞∑

k=k0

P (|Snk
| > ε

√
nk log log nk)−

∞∑
k=k0

2
(
1− Φ

(ε
√

log log nk

σ

))∣∣∣∣
≤

∞∑
k=k0

∣∣∣∣P (|Snk
| > ε

√
nk log log nk)− 2

(
1− Φ

(ε
√

log log nk

σ

))∣∣∣∣
≤

∞∑
k=k0

2 sup
x∈R

∣∣∣P( Snk

σ
√

nk
≤ x

)
− Φ(x)

∣∣∣ ≤ ∞∑
k=k0

Cγ3

σ3 · 1√
nk

≤ Cγ3

σ3

∞∑
k=k0

1
λ(k−1)/2 ≤

Cγ

σ3 ·
√

λ√
λ− 1

< ∞.

This proves the claims about the Borel-Cantelli sums, after which (7.3) follows
as before. �

7.2 Examples Not Covered by Theorems 5.2 and 5.1

Having met examples that are covered by the theorems it is reasonable to ask
for sequences that are not. Such sequences necessarily have the property that

lim inf
k→∞

nk

nk+1
= 0 and lim sup

k→∞

nk

nk+1
= 1.

We shall provide two examples, both building on the sequence nk = 22k

, k ≥ 1.
For one of them we shall find that ε∗ = 0, whereas the sum

∑∞
n=1(log nk)−ε2/2

diverges for all ε > 0 in the other example.

Example 7.1. Let n2k = 22k

and n2k+1 = 22k

+ 1, k ≥ 1. Since {n2k, k ≥ 1}
and {n2k+1, k ≥ 1} both are sparse sequences with ε∗ = 0, it follows from
Corollary 5.1 that the normalized limit for both sequences equals 0, and since
the sum of two sequences that converge almost surely converges almost surely
(Theorem 5.11.1), we conclude that

Snk√
nk log log nk

a.s.→ 0 as n →∞.

Example 7.2. This time, let Ak = {22k

+ 1, 22k

+ 2, . . . , 22k+1}, for k ≥ 1, and
set

B1 =
∞⋃

k=1

A2k and B2 =
∞⋃

k=0

A2k+1.

Then ∑
k∈B1

(log nk)−ε2/2 =
∑

k∈B2

(log nk)−ε2/2 = ∞ for all ε > 0.
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Moreover, since P (Sn > ε
√

n log log n i.o.) = 1 when ε < σ
√

2, we must have

P (Sn > ε
√

n log log n i.o. , n ∈ Bj) = 1 for ε < σ
√

2,

for at least one of j = 1, 2; it follows, in fact, that both probabilities are equal
to 1.

To summarize, this means that

lim sup
k→∞

Snk√
nk log log nk

= σ
√

2 a.s.,

for (at least one of) the sequences {nk, k ∈ Bj}, j = 1, 2, and at the same
time there is no finite ε∗. �

The last two examples show that one has to check each individual subsequence
that is not covered by Theorems 5.1 or 5.2 separately. For some extensions,
see [225], where also Banach space valued random elements are considered.

7.3 Further Remarks on Sparse Subsequences

The law of the iterated logarithm provides one description on the fluctuations
or oscillations of the random walk {Sn, n ≥ 1}. We have seen, in Theorem
5.2, that the extreme limit points are smaller than σ

√
2 for subsequences that

increase faster than geometrically, that is, when ε∗ <
√

2. This means that
the fluctuations for those subsequences are smaller. In particular, for ε∗ = 0
they are invisible on the

√
n log log n scale. In order to make them visible, we

therefore have to turn to another scale.

Theorem 7.2. ([109]) Let X, X1, X2, . . . be independent random variables
with mean 0 and finite variance σ2, and set Sn =

∑n
k=1 Xk, n ≥ 1. Further,

let {nk, k ≥ 1} be a strictly increasing subsequence of the integers, such that

lim sup
k→∞

nk

nk+1
< 1.

Then
lim sup

k→∞
(lim inf

k→∞
)

Snk√
nk log k

= +σ
√

2 (−σ
√

2) a.s.

The proof runs along the same lines as before. However, the truncation in
(3.4) has to be modified; in the present case we truncate at

bn =
2δσ2

ε

√
n

log+ m(n)
and

√
n,

where m(x) = #{k : nk ≤ x}, x > 0. Moreover, log log n has to be replaced
by log m(n) at relevant places; note that log log nk then will be replaced by
log m(nk) = log k in the proof.
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Exercise 7.1. Carry out the details of the proof of the theorem. �

Theorem 7.2 does not provide any essential novelty compared to Theorem
5.2 when 0 < ε∗ <

√
2, since then log log nk ∼ α log k, that is, the normaliza-

tions only differ by a non-zero scaling factor, which, obviously, reappears in
the right-hand side. However, for ε∗ = 0 the situation is different in that we
have obtained a scaling that makes the fluctuations visible, the new scaling is
of a different order of magnitude.

The correctness of the logarithmic order can somewhat heuristically be
seen as follows. If the subsequence increases “very, very” rapidly, then Snk−1

should be essentially negligible compared to Snk
, since the former is the sum

of “just the first few terms” of the latter. Moreover, Snk−1 and Snk
should

be close to independent. In view of the central limit theorem, the sequence
{Snk

/
√

nk log k, k ≥ 3} can therefore be expected to behave (asymptotically)
essentially as the sequence {Zk/ log k, k ≥ 3}, where {Zk, k ≥ 3} are inde-
pendent N(0, σ2)-distributed random variables.

Now, Mill’s ratio, Lemma A.2.1, tells us that, as k →∞,

P (|Z3| > ε
√

log k) ∼ σ√
2πε

√
log k

exp
{
− ε2 log k

2σ2

}
=

C√
log k

· 1
kε2/2σ2 ,

so that ∞∑
k=3

P (|Zk| > ε
√

log k) < ∞ ⇐⇒ ε > σ
√

2,

and since {Zk, k ≥ 3} are independent, both Borel-Cantelli lemmas are appli-
cable, from which we conclude (using the symmetry of the normal distribution)
that

lim sup
k→∞

(lim inf
k→∞

)
Zk√
log k

= +σ
√

2 (−σ
√

2) a.s.

The cluster analog of this theorem runs as follows.

Theorem 7.3. Let X, X1, X2, . . . be independent random variables with
mean 0 and finite variance σ2, and set Sn =

∑n
k=1 Xk, n ≥ 1. Further,

let {nk, k ≥ 1} be a sequence of positive integers, strictly increasing to +∞,
such that

lim sup
k→∞

nk

nk+1
< 1.

Then

C

({ Snk√
nk log k

, k ≥ 3
})

= [−σ
√

2, +σ
√

2] a.s.

Exercise 7.2. Prove the theorem. �

We have seen that the fluctuations for rapidly increasing subsequences are
smaller than for the full sequence. One might also be tempted to ask whether,
possibly, less than finite variance would suffice for some positive result in
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such cases. And, in fact, in [109], Section 7, it is shown that if, in addition,
log k/ log log nk ↓ 0 as k → ∞, then Snk

/
√

nk log log nk
a.s.→ 0 as k → ∞

under a moment condition which is (slightly) weaker than finite variance. For
example, for our favorite subsequence {22k

, k ≥ 1}, the conclusion holds under
the assumption that E X2 log+ log+ log+ |X|

log+ log+ |X| < ∞.

7.4 An Anscombe LIL

Since the law of the iterated logarithm is a path-wise result it is natural that
the assumption of “asymptotic linear growth in probability” for the sequence
of random indices in the original Anscombe theorem is exchanged for “almost
sure asymptotic linear growth”.

Theorem 7.4. Let X, X1, X2, . . . be independent, identically distributed ran-
dom variables with mean 0 and variance σ2, and set Sn,n ≥ 1. Further, sup-
pose that {N(t), t ≥ 0} is a family of positive, integer valued random variables,
such that, for some θ ∈ (0,∞),

N(t)
t

a.s.→ θ as t →∞.

Then

C

⎛
⎝{ SN(t)√

N(t) log+ log+ N(t)

}⎞⎠ = [−σ
√

2, +σ
√

2],

C

({ SN(t)√
t log log t

})
= [−σ

√
2θ, +σ

√
2θ].

In particular,

lim sup
t→∞

(lim inf
t→∞

)
SN(t)√

N(t) log+ log+ N(t)
= σ

√
2 (−σ

√
2) a.s.,

lim sup
t→∞

(lim inf
t→∞

)
SN(t)√

t log log t
= σ

√
2θ (−σ

√
2θ) a.s.

For an “elementary” proof (in discrete time) that proceeds via deterministic
subsequences we refer to [245].

Remark 7.1. Elementary means that basic methods are used, that one does not
appeal to some abstract, esoteric theorem from somewhere else. Elementary
should not be confused with easy or simple. Elementary proofs can be very
complicated – and sophisticated. �
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7.5 Renewal Theory for Random Walks

The setup was first described in Subsection 2.16.3. In subsequent chapters we
have established the law of large numbers and the central limit theorem. Here
is now the LIL:

Theorem 7.5. ([45]) If X1, X2, . . . are independent, identically distributed
random variables with mean µ > 0, finite variance, σ2, partial sums Sn, n ≥ 1,
and first passage times τ(t) = min{n : Sn > t} for t ≥ 0, then

C

({ τ(t)− t/µ√
t log log t

, t ≥ ee)
})

=
[
− σ

√
2

µ3/2 ,
σ
√

2
µ3/2

]
a.s.

In particular,

lim sup
t→∞

(lim inf
t→∞

)
τ(t)− t/µ√

t log log t
=

σ
√

2
µ3/2

(
− σ

√
2

µ3/2

)
a.s.

For a proof using the random index method with the aid of Theorem 7.4, that
is, the analog of the proof of Theorem 7.4.1, see [108], Section 4 (for a sketch,
see [110], Section III.11).

7.6 Record Times

For a background to this problem we refer to Subsection 2.18.3, and for the
law of large numbers and the central limit theorem we refer the corresponding
chapters. We are thus given a sequence X1, X2, . . . of independent, identically
distributed, continuous random variables, with record times L(n), n ≥ 1, and
counting variables µ(n), n ≥ 1.

The law of the iterated logarithm for these two sequences, that is, the
second half of the following theorem, is due to Rényi [205].

Theorem 7.6. We have

C

({ µ(n)− log n√
log n log log log n

, n ≥ ee
})

= [−
√

2,
√

2] a.s.,

C

({ log L(n)− n√
n log log n

, n ≥ eee
})

= [−
√

2,
√

2] a.s.

In particular,

lim sup
n→∞

(lim inf
n→∞

)
µ(n)− log n√

log n log log log n
=
√

2 (−
√

2) a.s.,

lim sup
n→∞

(lim inf
n→∞

)
log L(n)− n√

n log log n
=
√

2 (−
√

2) a.s.
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The proof of the law of the iterated logarithm for the counting process follows
from the Kolmogorov law of the iterated logaritm; Theorem 1.1. Rényi’s proof
for the record times then proceeds via inversion. The result for record times,
alternatively, follows via William’s representation [251].

However, more is true. Namely, William’s representation, together with
Theorem 6.1, may be exploited to provide the cluster set LIL for the record
times, after which Theorem 7.4 (and a little more) proves the cluster LIL for
the counting process. For details, see [111].

7.7 Convergence Rates

Let, again X, X1, X2, . . . be independent, identically distributed random
variables with mean 0, variance σ2, and partial sums Sn, n ≥ 1. The problem
of rate results in connection with the law of the iterated logarithm is more
subtle than for the law of large numbers; Subsection 6.12.1. Namely, if the
summands are standard normal then an application of Mill’s ratio, Lemma
A.2.1, tells us that

∞∑
n=3

nαP (|Sn| > ε
√

n log log n) = ∞ for all α > −1,

so that there is no hope for convergence.
The first result to that effect is due to Slivka [226], who proved that the

counting variable

N(ε) = #{n : |Sn| > ε
√

n log log n},

has no finite moments of any order.
Introducing the last exit times

L(ε) = sup{n : |Sn| > ε
√

n log log n},

we have
E L(ε)r ≥ E N(ε)r = ∞ for all r > 0.

It is, however, possible to prove a positive result for logarithmic moments.

Theorem 7.7. Suppose that X, X1, X2, . . . are independent, identically dis-
tributed random variables with mean 0 and finite variance σ2. Further, let Sn,
n ≥ 1, denote the partial sums, and let L(ε) be the last exit time. If

E X2 log+ |X|
log+ log+ |X|

< ∞ and E X = 0, (7.4)

then



7 Some Additional Results and Remarks 419

∞∑
n=1

log n

n
P (|Sn| > ε

√
n log log n) < ∞ for all ε > 2σ; (7.5)

∞∑
n=3

log n

n
P ( max

1≤k≤n
|Sk| > ε

√
n log log n) < ∞ for all ε > 2σ; (7.6)

∞∑
n=3

1
n

P (sup
k≥n

|Sk/
√

k log log k| > ε) < ∞ for all ε > 2σ; (7.7)

E log L(ε) < ∞ for all ε > 2σ. (7.8)

Conversely, if one of (7.5)–(7.8) holds for some ε > 0, then so do the others
as well as (7.4).

For proofs and related material we refer to [61, 62, 105].
The law of the iterated logarithm tells us that L(ε) < ∞ almost surely for

ε > σ
√

2. Slivka’s result implies that no moments exist. Relation (7.8) states
that logarithmic moments exist, but not all the way down to σ

√
2, only to 2σ.

However, in [215] it is shown that if VarX = σ2 < ∞, then E log log L(ε) < ∞
for ε > σ

√
2.

Another way to express this in prose is to say that the law of the iterated
logarithm “barely” holds.

7.8 Precise Asymptotics

There also exist analogs to those from Subsection 7.7.8. We confine ourselves
to presenting one example, namely [121], Theorem 2.
Theorem 7.8. Let X, X1, X2, . . . be independent, identically distributed ran-
dom variables, and suppose that E X = 0 and Var X = σ2 < ∞. Then

lim
ε↘0

ε2
∞∑

n=3

1
n log n

P (|Sn| ≥ ε
√

n log log n) = σ2.

A further reference in the area is [173].

7.9 The Other LIL

Let X1, X2, . . . be independent, (identically distributed) random variables
with mean 0 and finite variances. One can show that the extreme limit points
of the maximal partial sums are the same as those for the sums themselves.
This is maybe no surprise in view of the Lévy inequalities, Theorem 3.7.1.
However, Chung [47] proves that

lim inf
n→∞

max1≤k≤n |Sk|√
s2

n

log log s2
n

=
π√
8

a.s.,

(where as always, Sn and s2
n, n ≥ 1, are the partial sums and the sums of

the variances, respectively) under the assumption of finite third moments and
Lyapounov type conditions.
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8 Problems

1. Let X1, X2, . . . be independent, identically distributed random variables
with mean 0 and variance σ2, and set Sn =

∑n
k=1 Xk, n ≥ 1. Show that

Sn√
n(log n)β

a.s.→ 0 as n →∞, for any β > 0.

2. Let X, X1, X2, . . . be independent, identically distributed random vari-
ables with E X = 0 and VarX = σ2, and set Sn =

∑n
k=1 Xk, n ≥ 1.

Prove the following two LILs for subsequences:

lim sup
k→∞

(lim inf
k→∞

)
Skk√

kk log k
= σ

√
2 (−σ

√
2) a.s.,

lim sup
k→∞

(lim inf
k→∞

)
S[kα]√

kα log log k
= σ

√
2 (−σ

√
2) a.s.

3. Let E ⊂ R, and suppose that {Y (t), t ≥ 1} is a family of random variables,
such that

C{Y (t), t ≥ 1} = E a.s.

Further, let {ξ(t), t ≥ 1} and {η(t), t ≥ 1} be families of random variables,
such that

ξ(t) a.s.→ 1 and η(t) a.s.→ 0 as t →∞.

Prove that
C{ξ(t)Y (t) + η(t), t ≥ 1} = E a.s.

♣ This is a kind of Cramér theorem; cf. Theorems 5.11.3 and 5.11.4.
4. The purpose of this problem is to prove Theorem 7.5. Let X1, X2, . . . be

independent, identically distributed random variables with mean µ > 0
and finite variance, σ2, set Sn =

∑n
k=1 Xk, n ≥ 1, and let

τ(t) = min{n : Sn > t}, t ≥ 0.

(a) Prove that

C

⎛
⎝{ Sτ(t) − µτ(t)√

τ(t) log+ log+ τ(t)

}⎞⎠ = [−σ
√

2, σ
√

2] a.s.

(b) Prove that

C

({Sτ(t) − µτ(t)√
t log log t

, t ≥ ee
})

= [−σ
√

2/µ, σ
√

2/µ] a.s.

(c) Prove that
Xτ(t)√

t log log t

a.s.→ 0 as n →∞.

(d) Prove the theorem.



8 Problems 421

5. Prove the LIL for the counting process in Theorem 7.6.
6. Let X1, X2, . . . be independent, identically distributed random vari-

ables with mean 0 and finite variance, and set Sn =
∑n

k=1 Xk, M
(1)
n =

max1≤k≤n Sk, and M
(2)
n = max1≤k≤n |Sk|, n ≥ 1. State and prove LILs

for M
(1)
n and M

(2)
n .
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Limit Theorems; Extensions and
Generalizations

Let us recapitulate what we have learned so far. After an introductory chap-
ter containing some set theory and measure theory, we met a chapter on
random variables and expectations, the probabilistic equivalent of Lebesgue
integration on finite measure spaces. This was then followed by a number of
probabilistic tools and methods, and one chapter each on the three corner-
stone results, the law of large numbers, the central limit theorem, and the law
of the iterated logarithm – LLN,CLT, and LIL. So, what’s up next?

The main emphasis in the last three chapters has been on sums of indepen-
dent, identically distributed random variables. In the last two chapters finite
variance was an additional assumption. Some natural questions that arise are
the following:

• What happens if the variance does not exist?
• What happens if the summands are no longer independent?
• Are there interesting quantities aside from sums?

These and other problems certainly deserve a chapter of their own in a book
like this. However, one has to make choices. Such choices necessarily are made
via a blend of “importance of the various topics” and “personal taste” (which
are not completely disjoint). In this chapter we provide an introduction, some-
times a little more than that, to some more general limit theorems, with the
hope that the reader will be tempted to look into the literature for more.
However, there is one exception – the theory of martingales, which is given a
chapter of its own; the next, and final one.

The first three sections are devoted to an extension of the central limit
problem. The problem was “what can be said if the variance does not exist?”
By departing from the normal analog we remember from Subsection 4.2.4
that if X1, X2, . . . have a symmetric stable distribution with index α, where
0 < α ≤ 2, then so has

∑n
k=1 Xk/n1/α.

Is there a connection? Is it possible that if the variance does not exist,
then the sum

∑n
k=1 Xk, suitably normalized – by n1/α for some convenient

α? – is asymptotically stable?
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The answer to this question is essentially “yes” and the limits are the stable
distributions, but the details are technically more sophisticated than when the
variance is finite. So, before turning to asymptotics we have to investigate the
stable distribution themselves, and to prove the so-called convergence to types
theorem, which states that if a sequence of random variables converges in
distribution and a linearly transformed sequence does too, then the limits
must be linear transformations of each other.

A further extension is to consider arrays of random variables and the
corresponding classes of limit distributions. The class of limit distributions
for arrays is the class of infinitely divisible distributions. This will be the topic
of Section 9.4.

Another generalization is to suppress the independence assumption. In
Section 9.5 we provide an introduction to the area, where we present some of
the dependence concepts and connections.

As a parallel to the limit theory for sums there exists a limit theory for
extremes. In Section 9.6 we define max-stable distributions and extremal dis-
tributions, which are the ones that may occur as limit distributions; that they
coincide is a consequence of the convergence to types theorem. We also prove a
celebrated theorem due to Gnedenko [95], which states that there exist three
possible classes of limit distributions for partial maxima, and present some
criteria for convergence to the respective classes. The section concludes with
the corresponding limit theorem for record values.

The Stein-Chen method is a device to prove distributional convergence to
the Poisson distribution via total variation distance. A short introduction to
the method will be given in Section 9.7.

1 Stable Distributions

The name of the class of distributions, the stability, pertains to the fact that
a sum of independent, identically distributed random variables has the same
distribution as a linearly transformed summand.

Definition 1.1. The distribution of a random variable X is stable in the
broad sense if X, X1, X2, . . . are independent, identically distributed random
variables with partial sums Sn, n ≥ 1, and there exist constants, cn > 0, and
dn ∈ R, n ≥ 1, such that

Sn
d= cnX + dn for all n.

The distribution is strictly stable if dn = 0 for all n. �

According to history, this class was discovered by Paul Lévy after a lecture
in 1919 by Kolmogorov, when someone told him that the normal distribution
was the only stable one. He went home and discovered the symmetric stable
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distributions the same day. Lévy’s early work on stable laws is summarized in
his two books [170, 172]. An excellent recent source is [216].

We observe immediately that the normal distribution with mean 0 is
strictly stable with cn =

√
n, and that the standard Cauchy distribution

is strictly stable with cn = n.
Generally, let X, X1, X2, . . . be independent random variables with a sta-

ble distribution, and suppose, for simplicity, throughout the discussion that the
distribution is symmetric. Then, by interpreting S2n in two different ways,
namely,

S2n =
n∑

k=1

Xk +
2n∑

k=n+1

Xk and S2n =
2n∑

k=1

Xk,

respectively, and at the same time remembering that Sn
d= cnX, we find that

c2Sn
d= S2n

d= c2nX,

which tells us that
c2n = c2 · cn.

Similarly, by splitting the sum Smn into blocks of equal lengths, one finds that
the sequence {cn, n ≥ 1} is multiplicative;

cmn = cm · cn for all n, m ∈ N,

cnk = (cn)k for all n, k ∈ N.

The first of these equations is the Hamel equation. Moreover, the second
equation and Corollary 3.7.1, together imply that

P (X1 > x) = P (cnkX1 > cnkx) = P (Sc
nk

> cnkx) ≤ 2P (Sc(n+1)k
> cnkx)

= P (c(n+1)kX1 > cnkx) = P
(
X1 >

( cn

cn+1

)k

x
)
.

Since the left-most member is some fixed quantity between 0 and 1, (cn/cn+1)k

must remain bounded for all n and k in order to avoid that the right-hand
side converges to 0 as k →∞, from which it follows that cn/cn+1 < 1 for all
n, that is, {cn} is increasing. Lemma A.8.2(b) therefore tells us that,

cn = n1/α for α > 0. (1.1)

Having thus extablished the nature of the normalizing sequence, what does
the characteristic function look like?

Since Sn
d= n1/αX, the characteristic function of a symmetric stable dis-

tribution must satisfy

ϕ(t) =
(
ϕ(t/n1/α)

)n for all n ∈ N.
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Since the characteristic functions of the normal and Cauchy distributions are
exponentials with the argument raised to 2 and 1, respectively, it is tempting
to try the Ansatz

ϕ(t) = e−c|t|α , (1.2)

where c > 0 is some constant. And, indeed, it works:

exp{−c|t/n1/α|α}n = e−c|t|α .

For α > 2 this means that ϕ(t) = 1 + o(t) for t in the neighborhood of the
origin, which, by Theorem 4.4.3, implies that the variance equals 0, and, hence,
by uniqueness that ϕ cannot be a characteristic function (this accidentally
solves Exercise 4.4.2). Thus, the only possible case is 0 < α ≤ 2.

What about moments? The normal distribution has moments of all orders.
The Cauchy distribution possesses moments of all orders strictly less than 1.
More generally, if X has a moment of order r, then, by the scaling property
on the one hand, and Theorem 3.6.1 on the other,

E|Sn|r
{

= nr/αE|X|r,
≤ nE|X|r,

which only makes sense for r ≤ α. For the full story we exploit Lemma 4.4.4,
which tells us that, if E|X|r < ∞ for some r ∈ (0, 2), then

E|X|r = C(r)
∫ ∞

−∞

1−Re(ϕ(t))
|t|r+1 dt,

and conversely, where C(r) = 1
π Γ (r + 1) sin(rπ/2).

For a symmetric stable distribution this means that, for E|X|r to be finite,
it is necessary that ∫ ∞

−∞

1− e−c|t|α

|t|r+1 dt < ∞.

Since the integrand ∼ c|t|α−r−1 as t → 0, it follows that E|X|r = ∞ for
r ≥ α, 0 < α < 2. Moreover, since the integral is, indeed, finite for r < α we
also conclude that E|X|r < ∞ for r < α < 2. Summarizing the above yields

Proposition 1.1. If X has a symmetric stable distribution with index α, and
characteristic function ϕ, then

• 0 < α ≤ 2;
• ϕ(t) = exp{−c|t|α}, c > 0;
• E|X|r < ∞ for r < α < 2;
• E|X|r = ∞ for r ≥ α, 0 < α < 2.
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We now turn to the general case. As for moments, it follows from the inequal-
ities in Chapter 3 that

E|X|r ≤ E|Xs|r ≤ 2E|X|r for 0 < r ≤ 2,

(where a superscript s denotes symmetrized random variables as usual), so
that the conclusion of the proposition remains unchanged.

Furthermore, it can be shown – see, e.g., [88, 98, 142, 177, 216] – that the
characteristic function is of the form

ϕ(t) = exp
{

iµt− c|t|α
(
1 + iβ

t

|t| tan
πα

2

)}
for

{
0 < α ≤ 2, α �= 1, |β| ≤ 1,

µ ∈ R, c > 0,

and

ϕ(t) = exp
{

iµt− c|t|α
(
1 + iβ

t

|t|
2
π

log |t|
)}

for

{
α = 1, |β| ≤ 1,

µ ∈ R, c > 0,

respectively. The parameter α is the index, and the parameter β is a skewness
parameter; note that the distribution is symmetric around µ when β = 0.

Moreover, since the characteristic function is integrable, it follows from
Theorem 4.1.4 that stable distributions are absolutely continuous, and that
the density can be obtained by the inversion formula there. However, only
the three cases α = 1/2, 1, and 2 produce closed expressions; for other values
of α the densities are expressed as infinite sums. For details we refer to the
literature mentioned above.

2 The Convergence to Types Theorem

One consequence of the continuous mapping theorem, Theorem 5.10.4, is that
if X1, X2, . . . is a sequence of random variables, such that Xn

d→ X as n →
∞ for some random variable X, then, for an ∈ R+ and bn ∈ R, such that
an → a and bn → b as n → ∞, we have anXn + bn

d→ aX + b. Since general
questions about convergence should have answers which in some sense do
not depend on linear transformations, it is natural to introduce the concept
of types of random variables or distributions in the following sense: To each
random variable X we assign a type of laws, namely,

{aX + b : a ∈ R+, b ∈ R},

that is, the collection of distributions obtained by linear transformations of
the original random variable. The particular case when a = 0, that is, the
constants, is called the degenerate type.

For example, the central limit problem is independent under linear trans-
formations; if the central limit theorem holds, then, since linear transforma-
tions of normal random variables remain normal, we can say, not only that the
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original sequence of distributions obeys the central limit theorem, but that
the type does. This also includes the degenerate case; a one-point distribution
may be interpreted as a normal distribution with variance 0.

Following is the main theorem in this direction.

Theorem 2.1. (The convergence to types theorem)
Let X1, X2, . . . be a sequence of random variables, an, αn ∈ R+, bn, βn ∈ R,
n ≥ 1, be such that

Xn − βn

αn

d→ U and
Xn − bn

an

d→ V as n →∞,

where U and V are non-degenerate random variables. Then there exist A ∈ R+

and B ∈ R, such that

an

αn
→ A and

bn − βn

αn
→ B as n →∞.

In particular, if

Xn
d→ U and Vn =

Xn − bn

an

d→ V as n →∞,

where U and V are as before, then there exist A ∈ R+ and B ∈ R, such that

an → A and bn → B as n →∞,

and, hence,

V
d=

U −B

A
or, equivalently, U

d= AV + B.

Proof. Since the general case follows from the particular one by rescaling, it
suffices to prove the latter.

The proof proceeds via the following steps:

(a) Xn
d→ U, an → a > 0, bn → b =⇒ Vn

d→ X−b
a as n →∞;

(b) Xn
d→ U, an → +∞ =⇒ Xn

an

p→ 0 as n →∞;

(c) Xn
d→ U, supn |bn| = ∞ =⇒ Xn − bn � d→ as n →∞;

(d) Xn
d→ U, Vn

d→ V =⇒ 0 < infn an ≤ supn an < ∞, supn |bn| < ∞;
(e) U

d= U−b
a =⇒ a = 1, b = 0.

We shall repeatedly use the continuous mapping theorem, Theorem 5.10.4,
without explicit mentioning.
(a) and (b): Immediate (by Theorem 5.10.4).
(c): The unboundedness of the normalizing sequence implies that there exist
subsequences b′

n → +∞ and/or b′′
n → −∞ as n′, n′′ →∞, respectively, which

implies that, for all x,
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P (X ′
n − b′

n ≤ x) = P (X ′
n ≤ x + b′

n) → 1 as n′ →∞,

P (X ′′
n − b′′

n ≤ x) = P (X ′′
n ≤ x + b′′

n) → 0 as n′′ →∞.

(d): If supn an = +∞, there exists a subsequence {nk, k ≥ 1}, such that
ank

→ ∞ as k → ∞, so that, by (b), Xnk
/ank

p→ 0 as k → ∞. But then,
remembering that Vnk

d→ V as k →∞, (c) tells us that supk |bnk
|/ank

< +∞,
which, in turn, implies that there exists a further subsequence nkj , j ≥ 1,
such that bnkj

/ankj
→ c for some c ∈ R as j → ∞. Joining this with (a) we

conclude that Vnkj

p→ −c as j →∞, which contradicts the non-degeneracy of
V , and establishes that supn an < ∞. Reversing the roles of Xn and Vn shows
that infn an > 0:

Xn
d→ U and Vn

d→ V ⇐⇒ Vn
d→ V and anVn + bn

d→ U.

It remains to show that supn |bn| < ∞. Toward this end, suppose the contrary,
and choose a subsequence {nk, k ≥ 1} (in two steps), such that ank

→ a and
bnk

→∞ as k →∞. Then Xnk
/ank

converges in distribution as k →∞, but
Vnk

does not in view of (c). The same argument (with the same conclusion)
can be applied to a subsequence {mj , j ≥ 1}, such that bmj

→ −∞ as j →∞.
This completes the proof of (d).
(e): Iterating the assumption yields

U
d=

U−b
a − b

a
=

U

a2 −
b

a2 −
b

a

d= . . .
d=

U

an
− b

n∑
k=1

1
ak

=
U − anb

∑n−1
k=0 ak

an
.

An application of (d) therefore tells us that

0 < inf
n

an ≤ sup
n

an < ∞ and sup
n

an|b|
n−1∑
k=0

ak| < ∞,

which forces a = 1 and b = 0.
We are now set for the final argument. Namely, the assumptions of the

theorem and the boundedness implied by (d) allow us to select a subsequence
{nk, k ≥ 1}, such that ank

→ A > 0 and bnk
→ B ∈ R as k → ∞, which,

implies that

Vnk

d→ U −B

A
as k →∞,

so that
V

d=
U −B

A
.

Now, if, along another subsequence, {mj , j ≥ 1}, we have amj → A∗ > 0 and
bmj → B∗ ∈ R as j →∞, and, hence,

Vmj

d→ U −B∗

A∗ as k →∞,
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so that
V

d=
U −B∗

A∗ ,

it follows, by (e), that B = B∗ and A = A∗. This shows that every conver-
gent pair of normalizations yields the same limit, and, hence, that the whole
sequence does too.

The proof the theorem is complete. �

Exercise 2.1. Deduce the first, more general, statement in Theorem 2.1 from the
particular one. �

Exercise 2.2. Prove Theorem 2.1 using characteristic functions. Theorem 4.1.7
may be helpful with regard to certain (non)-degeneracy aspects. �

An immediate consequence of the theorem is that the normal distribution
is the only one that can appear as a limit distribution for normalized sums
of independent, identically distributed random variables with finite variance,
which means that the central limit theorem is “the only one” in that context.
In the same vein the next section is devoted to the question of finding all limit
distributions when the variance is no longer assumed to be finite.

It should also be mentioned that the convergence to types theorem does
not prevent us from producing a normalizing sequence that yields a degenerate
limit.

Theorem 2.2. For any sequence of random variables, X1, X2, . . . , there al-
ways exists {an, n ≥ 1}, such that

Xn

an

p→ 0 as n →∞.

Proof. Since P (|Xn| > x) → 0 as x →∞ for all n, there exists cn, such that

P (|Xn| > cn) <
1
n

for all n.

By putting an = ncn we obtain, for any ε > 0 and n > ε−1, that

P
( |Xn|

an
> ε
)

= P (|Xn| > ncnε) ≤ P (|Xn| > cn) <
1
n
→ 0 as n →∞. �

3 Domains of Attraction

In this section we shall provide the answer to the question raised in the open-
ing of this chapter, namely: What are the possible limit distributions of a
normalized sequence of independent, identically distributed random variables
when the variance does not exist? In order to investigate this problem we
introduce the notion of domains of attraction.
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Definition 3.1. Let X, X1, X2, . . . be independent, identically distributed
random variables with partial sums Sn, n ≥ 1. We say that X, or, equiv-
alently, the distribution FX , belongs to the domain of attraction of the (non-
degenerate) distribution G if there exist normalizing sequences {an > 0, n ≥
1}, and {bn, n ≥ 1}, such that

Sn − bn

an

d→ G as n →∞.

The notation is FX ∈ D(G), alternatively, X ∈ D(Z) if Z ∈ G. �

The first observation is that, if VarX < ∞, the central limit theorem tells us
that X belongs to the domain of attraction of the normal distribution; choose
bn = nE X, and an =

√
nVar X. In particular, the normal distribution belongs

to its own domain of attraction. Our discussion in the first section above
shows that the stable distributions belong to their own domain of attraction.
However, more is true.

Theorem 3.1. Only the stable distributions or random variables possess a
domain of attraction.

Proof. That they do possess a domain of attraction has already been estab-
lished. That they are the only ones follows from the convergence to types
theorem, Theorem 2.1. Namely, suppose that X1, X2, . . . are independent,
identically distributed random variables with partial sums Sn, n ≥ 1, such
that

Zn =
Sn − bn

an

d→ G as n →∞,

and consider blocks as in the previous section: Let n = km with k fixed, set

Vk =
k∑

j=1

(∑jm
i=(j−1)m+1 Xi − bm

am

)
,

and observe that

Vk
d=

k∑
j=1

Z
(m)
j ,

where Z
(m)
1 , Z

(m)
2 , . . . , Z

(m)
k are independent copies of Zm.

Now, if Zn ∈ D(Y ) for some random variable Y , then, by Theorem 5.11.2,

Vk
d→

k∑
j=1

Yj as n →∞,

where Y1, Y2, . . . , Yk are independent copies of Y . Since Zn and Vk only differ
by scale and location, the same holds true for the limits Y and

∑k
j=1 Yj ,

which, by the convergence to types theorem, forces the distribution of Y to
be stable. �
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So, the stable distributions are the only ones with a domain of attraction.
The next problem is to find criteria for a distribution to belong to the domain
of attraction of some given (stable) distribution for which we need some facts
about regular and slow variation from Section A.7.

The main theorem runs as follows.

Theorem 3.2. A random variable X with distribution function F belongs to
the domain of attraction of a stable distribution iff there exists L ∈ SV, such
that

U(x) = E X2I{|X| ≤ x} ∼ x2−αL(x) as x →∞, (3.1)

and, moreover, for α ∈ (0, 2),

P (X > x)
P (|X| > x)

→ p and
P (X < −x)
P (|X| > x)

→ 1− p as x →∞. (3.2)

Remark 3.1. Requirement (3.1) provides information on the growth rate of
the truncated second moment. The second condition describes the proportion
of the left-hand and right-hand tails relative to the total mass in the tails. �

By partial integration and Lemma A.7.1(i) one can show that (3.1) is equiv-
alent to

x2P (|X| > x)
U(x)

→ 2− α

α
as x →∞, for 0 < α ≤ 2, (3.3)

P (|X| > x) ∼ 2− α

α
· L(x)

xα
as x →∞, for 0 < α < 2. (3.4)

Joining this with Theorem 3.1 yields the following alternative formulation of
Theorem 3.2.

Theorem 3.3. A random variable X with distribution function F belongs to
the domain of attraction of
(a) the normal distribution iff U ∈ SV.
(b) a stable distribution with index α ∈ (0, 2) iff (3.4) and (3.2) hold.

Remark 3.2. Here we have used the fact that we already know that any possible
limit is stable. However, a full proof starting from scratch, which, i.a., reproves
this fact without resorting to the convergence to types theorem is also possible.
One approach is based on characteristic functions; see [98], Chapter 4. An
elegant development of the theory based on convolution semi-groups can be
found in [88], Chapter IX. �

The proof proceeds in two main steps. The first one consists of finding
criteria under which the normalized partial sums converge. A detailed proof
of this part would take us far beyond the scope of this book and will therefore
only be sketched. In the second step the criteria are applied to prove Theorems
3.2 and 3.3. That part will be given greater attention.
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3.1 Sketch of Preliminary Steps

A necessary condition for convergence is that {(Sn−bn)/an, n ≥ 1} is stochas-
tically bounded, that is, that, for every ε > 0, there exists M , such that

P

(∣∣∣Sn − bn

an

∣∣∣ > M

)
< ε. (3.5)

For this to happen we must trivially assume that an →∞ as n →∞.
Throughout this subsection we reformulate, for convenience, the problem

in the language of arrays; recall Subsection 7.2.4. For each n ≥ 1 we thus set

Xn,k =
Xk

an
for 1 ≤ k ≤ n, (3.6)

and consider Sn =
∑n

k=1 Xn,k.
To find conditions for stochastic boundedness, one uses standard trunca-

tion techniques. Let u > 0, and set, for 1 ≤ k ≤ n, n ≥ 1,

X ′
n,k =

⎧⎪⎨
⎪⎩
−u, when Xk ≤ −u,

Xn,k, when |Xn,k| ≤ u,

u, when Xk ≥ u,

(3.7)

and S′
n =

∑n
k=1 X ′

n,k.
The first step is to apply the truncated Chebyshev inequality, Theorem

3.1.5. In order to simplify matters one starts by assuming that the distribution
of the summands is symmetric, which implies that E X ′

n,1 = 0, so that

P (|Sn| > M) ≤
nVar X ′

n,1

M2 + nP (|X| > u). (3.8)

An analysis of the two terms in the right-hand side provides necessary and
sufficient criteria for stochastic boundedness:

Lemma 3.1. (i) Suppose that the distribution is symmetric. For the sequence
{Sn, n ≥ 1} to be stochastically bounded it is necessary and sufficient that,
for every ε > 0, there exist M and u0, such that

nVar X ′
n,1 < Mε, (3.9)

nP (|Xn,1| > u) < ε for u > u0. (3.10)

(ii) In the general, non-symmetric, case the conditions are necessary and suf-
ficient for the stochastic boundedness of{

Sn −med (Sn), n ≥ 1
}
.

We also have the following corollary.
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Corollary 3.1. In the general case the sequence{
Sn − E S′

n, n ≥ 1
}

is stochastically bounded

under the conditions of the lemma.

Proof. The conclusion is immediate from the truncated Chebyshev inequality,
since, in the general case, Sn in (3.8) is replaced by Sn − E S′

n. �

In order to postpone the problem of centering, we note that, in the sym-
metric case, (3.9) is the same as

nE
(
(X ′

n,1)
2) = nE X2

n,1I{|Xn,1| ≤ u} < Mε. (3.11)

In the general case, they are equivalent if

(E X ′
n,1)

2 = o
(
E(X ′

n,1)
2) as n →∞. (3.12)

One such example is when the mean exists and equals 0, because E X ′
n,1 → 0

as n →∞ in this case.
The next point is to prove existence of a so-called canonical measure, Π,

that is finite for finite intervals, and such that the integrals

γ+(x) =
∫ ∞

x

dΠ(y)
y2 and γ−(x) =

∫ −x

−∞

dΠ(y)
y2 (3.13)

are convergent for all x > 0. This is achieved via a limiting procedure applied
to the measures Πn, defined by

Πn((c, d]) = nE X2
n,1I{c < Xn,1 ≤ d} for −∞ < c < d < ∞. (3.14)

Lemma 3.2. Suppose that (3.12) holds. The measure Πn is bounded on
bounded intervals iff (3.9) holds.

Proof. The conclusion follows from the relation

Var S′
n +

(
E S′

n

)2 = E
(
(S′

n)2
)

= Πn(−u, u) + u2P (|Xn,1| > u). �

Remark 3.3. Condition (3.12) is automatic in the symmetric case, and in the
general case with E X = 0. �

Next one applies Helly’s selection principle, Theorem 5.8.1, to conclude
that

nP (c < Xn,1 ≤ d) =
∫ d

c

dΠn(y)
y2 →

∫ d

c

dΠ(y)
y2 ,

along a subsequence, after which one lets d →∞ to obtain

nP (Xn,1 > c) →
∫ ∞

c

dΠ(y)
y2 = γ+(c),

along the same subsequence, and similarly for the negative tail. Some addi-
tional arguments then show that the limit is unique, after which one arrives
at
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Lemma 3.3. (i) If (3.10) and (3.12) are satisfied, and the measure Πn defined
in (3.14) is bounded on bounded intervals, then

{Sn − E S′
n, n ≥ 1} and {Sn −med (Sn), n ≥ 1}

are stochastically bounded, and

• Πn → Π as n →∞;
• Π is bounded on bounded intervals;
• nP (Xn,1 > c) → γ+(c) as n →∞;
• nP (Xn,1 < −c) → γ−(c) as n →∞.

(ii) If the distribution of the summands is symmetric, the conclusions remain
the same without assumption (3.12).

The final step amounts to proving that a suitably centered sum is conver-
gent under the conditions of Lemma 3.3.

Theorem 3.4. If (3.10) and (3.12) are satisfied, and the measure Πn defined
in (3.14) is bounded on bounded intervals, then

Sn − nE X ′
n,1

d→ Yα,

where Yα is a non-degenerate stable distribution.
If the distribution is symmetric, convergence holds without assumption

(3.12) and without the centering of Sn.

Remark 3.4. (a) That the limit distribution necessarily is stable is a conse-
quence of Theorem 3.1.
(b) One can show that the sufficient conditions are also necessary. �

After this sketch we shall see how our main result follows from this, more
general, setting.

3.2 Proof of Theorems 3.2 and 3.3

We only prove the sufficiency, and refer to the already cited literature for
additional details.

We modify the original notation slightly in that we consider the sequence

Sn

an
− bn, n ≥ 1,

because it facilitates the desymmetrization procedure.
Before we take off we make some preliminary observations.

(i): If U(∞) < ∞, then the variance exists, and the central limit theorem
applies. This case is therefore no longer of interest (here).
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(ii): In the more general scenario of the previous subsection we introduced
condition (3.12) to facilitate certain operations. In the present context, upon
noticing, for example, that |x| = |x|α/4|x|1−α/4, we have(

E|X|I{|X| ≤ x}
)2 =

(
E|X|α/4 · E|X|1−α/4I{|X| ≤ x}

)2
≤ EXα/2E|X|2−α/2I{|X| ≤ x}
≤ C

(
U(x)

)1−α/4 = o(U(x)) as x →∞,

by Proposition 1.1, Cauchy’s inequality, and Lyapounov’s inequality, which
shows that Condition (3.12) is always satisfied whenever U(∞) = ∞.
(iii): In Proposition 1.1 we established, i.a., that stable distributions only
possess moments of order strictly less than α. The same is true for distributions
belonging to the domain of attraction of stable distributions. To see this one
combines assumption (3.4) on the decay of the tails and Theorem 2.12.1.

Theorem 3.5. If X belongs to the domain of attraction of a stable distribu-
tion with index α ∈ (0, 2), then

E|X|r < ∞ for r < α, and E|X|r = ∞ for r ≥ α. �

Exercise 3.1. Check the details. �

We finally turn our attention to Theorems 3.2 and 3.3. Toward this end, we
define a normalizing sequence {an, n ≥ 1} as follows:

an = sup
{

x :
nU(x)

x2 ≤ 1
}

, n ≥ 1.

In view of assumption (3.1), this produces a sequence of positive numbers,
such that

lim
n→∞

nU(an)
a2

n

= 1. (3.15)

Because of the regular variation of U this implies (Section A.7) that

lim
n→∞

Πn(−x, x) = lim
n→∞

nU(anx)
a2

n

= lim
n→∞

U(anx)
U(an)

· nU(an)
a2

n

= x2−α · 1 = x2−α = Π(−x, x),

which shows that Π is bounded on bounded intervals of the form (−x, x).
For α = 2 we obtain Π = δ(0), after which the rest is automatic, so that

there is nothing more to prove.
For 0 < α < 2 an application of (3.2) and (3.4) shows that

xαP (X > x)
L(x)

=
P (X > x)
P (|X| > x)

· x2P (|X| > x)
U(x)

· U(x)
x2−αL(x)

∼ p · 2− α

α
as x →∞,
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so that, by (3.15) and the slow variation of L,

nP (X > anx) ∼ p(2− α)
α

· nL(anx)
(anx)α

=
p(2− α)

α
· 1
xα

· L(anx)
L(an)

· nU(an)
a2

n

∼ p(2− α)
α

· 1
xα

(
= γ+(x)

)
as x →∞.

The mirrored argument proves the analog for the other tail.
Combining the two shows that Π is bounded for arbitrary intervals that

stay away from 0, and, hence, that Π is the desired canonical measure. Next,
set

X ′
n,k =

⎧⎪⎨
⎪⎩
−u, for Xk ≤ −anu,
Xk

an
, for |Xn,k| ≤ anu,

u, for Xk ≥ anu.

An appeal to Theorem 3.4 then establishes that

Sn − E S′
n

an
=

Sn

an
− nE X ′

n,1
d→ Yα as n →∞,

where Yα is stable with index α.
It remains to investigate the centering.
The tail behavior (3.4), (3.15), the slow variation of L, and Theorem 2.12.1

tell us that, for α �= 1,

nE

(
X1

an
I
{ |Xn,1|

an
≤ u

})
∼ 2− α

α
· nL(anu)
an(anu)α−1

=
2− α

α
· nU(an)

a2
n

· L(anu)
L(an)

· u1−α ∼ 2− α

α
u1−α as n →∞,

and, similarly, that

nE(uI{X1 ≥ anu} − uI{X1 ≤ −anu}) = nuP (|X| ≥ anu)

∼ u
2− α

α
· nL(anu)

(anu)α
∼ 2− α

α
· u1−α as n →∞,

so that
nE X ′

n,k ∼
2− α

α
· u1−α as n →∞.

This means that the centerings are constants asymptotically, and can be dis-
missed; the limit distribution is still a stable one (the convergence to types the-
orem). When α > 1 we know, in addition, from Theorem 3.5 that E|X| < ∞,
so that we may assume, without restriction, that E X = 0, or else, center at
the mean which amounts to the same. For α = 1 the centering causes trouble,
mainly because of the integral∫

|x|≤anu

L(x)
x

dx.
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The centering therefore cannot be dispensed with. For example, in the trivial
case, when L(x) ≡ 1, the integral ∼ log(anu).

Except for the exact expression when α = 1, the proof of Theorems 3.2
and 3.3, has been completed. �

Remark 3.5. Inspecting (3.15) we find, in view of (3.1), that, asymptotically,

na2−α
n L(an)

a2
n

∼ 1,

so that
an ∼ n1/α

(
L(an)

)1/α
.

By setting L∗(n) ∼
(
L(an)

)1/α, it follows that

an ∼ n1/αL∗(n). (3.16)

We also note that L∗ ∈ SV in view of Lemma A.7.1(e).
For α = 2 (3.1) states that U ∈ SV. One such case is when the variance is

finite – U(∞) < ∞ –, in which case an ∼ c
√

n as expected (required).
The other case is when the variance is infinite – U(∞) = +∞. This hap-

pens, for example, if U(x) ∼ log x or U(x) ∼ log log x as x → ∞. In these
cases the limit distribution is still normal. However, the normalization will
be of the form an ∼

√
nL∗(n), in other words,

√
n multiplied by some slowly

varying function. �

3.3 Two Examples

Let us, as a first illustration, look at the simplest example. Yes, experience
from Chapter 6 tells us that we should try the two-sided Pareto distribution.

Example 3.1. Let X, X1, X2, . . . be independent random variables with com-
mon density

f(x) =

{
1

2x2 , for |x| > 1,

0, otherwise.

The distribution is symmetric, the mean is infinite, and the tails decrease
like those of the Cauchy distribution, so we would expect the distribution to
belong to the domain of attraction of a symmetric stable distribution with
index α = 1.

Simple integration shows that

P (X > x) =
1
2x

, P (X < −x) =
1

2|x| , P (|X| > x) =
1
x

, U(x) = x− 1,

so that (3.1)–(3.4) are satisfied (p = 1/2 and L(x) = 1).
The guess that the distribution belongs to the domain of attraction of the

standard Cauchy distribution was correct. �
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Next, we consider an interesting boundary case; interesting in the sense
that the variance does not exist, but the asymptotic distribution is normal all
the same.

Example 3.2. Suppose that X, X1, X2, . . . are independent random variables
with common density

f(x) =

{
1

|x|3 , for |x| > 1,

0, otherwise.

The variance is infinite;
∫∞
1

x2

x3 dx = +∞.
The first natural thing to investigate is (3.1):

U(x) =
∫

|y|≤x

y2f(y) dy = 2
∫ x

0

dy

y
= 2 log x,

so that U ∈ SV as x →∞, that is, X belongs to the domain of attraction of
the normal distribution.

Thus, for a suitable choice of normalizing constants {an, n ≥ 1} (no cen-
tering because of symmetry),

Sn

an

d→ N(0, 1) as n →∞.

The variance being infinite, (3.16) tells us that

an ∼
√

n · 2 log(an).

Since, as a first order approximation, an ≈
√

n, we obtain,

an ∼
√

n · 2 log
√

n =
√

n log n,

suggesting that
Sn√

n log n

d→ N(0, 1) as n →∞,

which is precisely what was to be shown in Problem 7.8.8. �

3.4 Two Variations

An interesting feature in Example 3.1 is that the slowly varying function
L ≡ 1. Distributions for which this happens belong to the domain of normal
attraction to the normal or more general stable laws. This means that the
Pareto distribution in Example 3.1 belongs to the domain of normal attraction
of the standard Cauchy distribution. If, as will be seen in the problem section,
we modify the density in the example by multiplying with a power of the
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logarithm, the resulting distribution will belong to the domain of attraction
(only).

More formally, a distribution belongs to the normal domain of attraction
if the normalizing sequence is of the form cn1/α, where c is some positive con-
stant. For example, the normal and stable distributions belong to the domain
of normal attraction to themselves.

By checking the conditions for attraction one can also show that X belongs
to the domain of normal attraction to the normal law, if and only if the
variance is finite, and that X belongs to the domain of normal attraction to
a stable law with index α ∈ (0, 2) if and only if, for some constant a > 0,

P (X < −x) ∼ c1
aα

|x|α , and P (X > x) ∼ c2
aα

xα
as x →∞.

Finally, if the condition for belonging to the domain of attraction holds for a
subsequence, the corresponding distribution is said to belong to the domain
of partial attraction of the relevant limit distribution. In these cases various
kinds of strange behaviors are possible. There exist, for example, distributions
that do not belong to their own domain of partial attraction, and there exist
distributions that belong to the domain of partial attraction of infinitely many
distributions.

Once again, more can be found in [88, 98, 142, 194, 195].

3.5 Additional Results

Just as Theorem 7.3.2 is a “random sum central limit theorem”, the following
one is an Anscombe type random sum stable limit theorem.

Theorem 3.6. Let X1, X2, . . . be independent, identically distributed ran-
dom variables with mean 0, and set Sn =

∑n
k=1 Xk, n ≥ 1. Suppose that

{Bn, n ≥ 1} is a sequence of positive normalizing constants, such that

Sn

Bn

d→ Yα as n →∞,

where Yα has a stable distribution with index α ∈ (1, 2], and that {N(t), t ≥ 0}
is a family of positive, integer valued random variables, such that, for some
0 < θ < ∞,

N(t)
t

p→ θ as t →∞.

Then
SN(t)

BN(t)

d→ Yα and
SN(t)

B[θt]

d→ Yα as t →∞.

A proof may be modeled after the proof of Theorem 7.3.2, but with some
additional care. One first notes that
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lim
δ→0

lim
n→∞

B[n(1+δ)]

Bn
= lim

δ→0
(1 + δ)1/α = 1,

because of the regular variation of the normalizing sequence. This means that
Anscombe’s condition (7.3.2) is satisfied (cf. [209], p. 77), so that Anscombe’s
theorem 7.3.1 applies, and the first statement follows.

For the second one we also need the fact that

BN(t)

B[θt]

p→ 1 as t →∞, (3.17)

see [103], Lemma 2.9.a.

Exercise 3.2. Complete the details. �

Remark 3.6. In [253] the result is obtained with different methods as a corol-
lary of more general results. �

As an application of Theorem 3.6 one can prove the following stable analog
of Theorem 7.4.1; see [103], Theorem 2.9, or [110], Theorem III.5.3, cf. also
[253], Theorem 5.2.

Theorem 3.7. Let X1, X2, . . . be independent, identically distributed ran-
dom variables with mean µ > 0, and set Sn =

∑n
k=1 Xk, n ≥ 1. Suppose that

{Bn, n ≥ 1} is a sequence of positive normalizing constants such that

Sn

Bn

d→ Yα as n →∞,

where Yα has a stable distribution with index α ∈ (1, 2]. Furthermore, let
{τ(t), t ≥ 0} be the first passage time process, viz., τ(t) = min{n : Sn > t},
t ≥ 0. Then

τ(t)− t/µ

µ−1B[t/µ]

d→ −Yα and
τ(t)− t/µ

µ−(1+(1/α))B[t]

d→ −Yα as t →∞.

The proof follows “the usual pattern”, except that taking care of Xτ(t) is
significantly harder. In addition to (3.17) we need [103], Lemma 2.9.b:

Lemma 3.4. Under the assumptions of the theorem,

Xτ(t)

B[t/µ]

p→ 0 as t →∞.

Exercise 3.3. Prove the lemma and Theorem 3.7. �

Remark 3.7. Note that the limit is −Yα. The reason for this is that general
stable distributions are not symmetric (in contrast to the normal case, recall
Theorem 7.4.1). �

Finally, for extensions to convergence rate results and the like we confine
ourselves to referring, in chronological order, to [120, 122, 231].
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4 Infinitely Divisible Distributions

During the process of proving that the stable distributions were the only
ones that could appear as limit distributions of normalized partial sums we
switched to a triangular array of random variables. Having seen, in Theorem
7.2.4, that the the Lindberg-Lévy-Feller theorem could be extended to arrays,
it is not far-fetched to ask for the class of distributions that may appear as
possible limit distributions of normalized arrays. Clearly, the stable distribu-
tions, in particular the normal ones, must be contained in this, possibly larger,
class.

The answer to this question is:

Theorem 4.1. Let {(Xn,j , 1 ≤ j ≤ kn), n ≥ 1} be an array of row-wise
independent, identically distributed random variables. The class of limit dis-
tributions of partial sums Sn =

∑kn

j=1 Xn,j, n ≥ 1, coincides with the class of
infinitely divisible distributions.

In order to understand the statement, here is a definition of infinite divisibility.
Or, the other way around, let the theorem motivate the notion of infinite
divisibility.

Definition 4.1. A random variable X has an infinitely divisible distribution
iff, for each n, there exist independent, identically distributed random variables
Xn,k, 1 ≤ k ≤ n, such that

X
d=

n∑
k=1

Xn,k for all n,

or, equivalently, iff

ϕX(t) =
(
ϕXn,1(t)

)n for all n. �

An inspection of some of the most familiar characteristic functions tells us
that, for example, the normal, the Cauchy, the Poisson, the gamma, and
the degenerate distributions all are infinitely divisible. The symmetric stable
distributions are another easily accessible example. Namely, on the one hand,

e−|t|α =
(
exp{−|t/n1/α|α}

)n
,

and on the other hand we obtain directly that

Xn,k =
Xk

n1/α
, k = 1, 2, . . . , n,

satisfies the definition of infinite divisibility for all n. Note that this, in addi-
tion, elucidates the switching from Xk/an to Xn,k in (3.6).

First, some elementary properties.
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Theorem 4.2. (i) The characteristic function of an infinitely distribution
never vanishes.
(ii) If X and Y are independent, infinitely divisible random variables, then,
for any a, b ∈ R, so is aX + bY .
(iii) Let 0 < p < 1. If F1 and F2 are infinitely divisible distributions, then
pF1 + (1− p)F2 is not necessarily infinitely divisible; convex combinations of
infinitely divisible distributions need not be infinitely divisible.
(iv) If Fk, k ≥ 1, are infinitely divisible, then so is F = limk→∞ Fk; the class
of infinitely divisible distribution is closed under limits.

Proof. (i): Let X (F ) have characteristic function ϕ. In order to stay among
the real numbers we consider the symmetrized distribution whose character-
istic function is |ϕ|2.

We know that 0 ≤ |ϕ|2 ≤ 1, so that

|ϕ(t)|2/n → ϕ∗(t) =

{
1, for {t : |ϕ(t)|2 �= 0},
0, for {t : |ϕ(t)|2 = 0}.

Considering that |ϕ(0)|2 = 1, and that |ϕ|2 is uniformly continuous, we must
have ϕ∗(t) = 1 in a neighborhood of the origin, so that, by the continuity the-
orem for characteristic functions, Theorem 5.9.2, ϕ∗(t) is itself a characteristic
function, which, due to continuity, leaves ϕ∗(t) ≡ 1, and thus |ϕ(t)|2 �= 0, and
therefore ϕ(t) �= 0 for all t, as the only possibility.
(ii): For every n there exist random variables {Xn,k, 1 ≤ k ≤ n}, and
{Yn,k, 1 ≤ k ≤ n}, such that

X
d=

n∑
k=1

Xn,k and Y
d=

n∑
k=1

Yn,k,

so that

aX + bY
d= a

n∑
k=1

Xn,k + b

n∑
k=1

Yn,k
d=

n∑
k=1

(aXn,k + bYn,k),

or, alternatively, via characteristic functions,

ϕaX+bY (t) = ϕX(at) · ϕY (bt) =
(
ϕXn,1(at)

)n(
ϕYn,1(bt)

)n
=
(
ϕXn,1(at)ϕYn,1(bt)

)n =
(
ϕaXn,1(t)ϕbYn,1(t)

)n
=
(
ϕaXn,1+bYn,1(t)

)n
.

(iii): Let X ∈ δ(−1) and Y ∈ δ(1). Then F = 1
2FX + 1

2FY corresponds to a
coin-tossing random variable. Namely,

ϕF (t) =
1
2
e−it +

1
2
eit = cos t,

which, due to (a), shows that F is not infinitely divisible.
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(iv): Suppose first that Fk, k ≥ 1, are symmetric, so that the characteristic
functions are positive. For each k we then have

ϕk(t) =
(
ϕ

(n)
k (t)

)n for all n.

By “the easy half” of the continuity theorem for characteristic functions it
follows that

ϕk(t) → ϕ(t) as k →∞, for all t,

but also, that for all n,

ϕ
(n)
k (t) → ϕ(n)(t) as k →∞, for all t.

The other half of the same continuity theorem then tells us that ϕ(n)(t) is, in-
deed, the characteristic function corresponding to some distribution for every
n, which, in turn, shows that

ϕk(t) =
(
ϕ

(n)
k (t)

)n → (
ϕ(n)(t)

)n as k →∞.

Joining the displayed formulas, finally shows that

ϕ(t) =
(
ϕ(n)(t)

)n for all n,

which proves the infinite divisibility of the limit distribution.
For the general case one needs a desymmetrization argument based on

the fact that the symmetrized distribution is infinitely divisible (why?), so
that, by (a), the characteristic function of the symmetrized distribution never
vanishes, so that the logarithm, and therefore nth roots are well defined, from
which the conclusion follows. We omit the details.

Exercise 4.1. Prove that the U(−1, 1)-distribution is not infinitely divisible. �

The following result characterizes the class of infinitely divisible distributions.

Theorem 4.3. The random variable X has an infinitely divisible distribution
iff

ϕX(t) = exp
{

iµt +
∫ ∞

−∞

(
eitx − 1− itx

1 + x2

)1 + x2

x2 dG(x)
}

,

where µ ∈ R, and where G is a finite measure. The integrand is defined as
−t2/2 for x = 0.

In order to present the basic ideas behind the proof we content ourself with
the simpler case of finite variance, for which the characterization is as follows.

Theorem 4.4. Suppose that X is a random variable with finite variance.
Then X is infinitely divisible iff

ϕX(t) = exp
{

iµt +
∫ ∞

−∞

(
eitx − 1− itx

) 1
x2 dG(x)

}
,

where µ ∈ R, and where G is a distribution function up to a multiplicative
constant.
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Remark 4.1. There are two infinitely divisible distributions for which G is
degenerate. If G has point mass σ2 at 0 then X is normal with mean µ and
variance σ2, and if G has point mass λ at 1 and µ = 1, then X ∈ Po(λ). �

Proof. If X is infinitely divisible, then, for each n, there exist random vari-
ables {Xn,k, 1 ≤ k ≤ n} with characteristic function ϕn, such that ϕX(t) =
(ϕn(t))n. Moreover, ϕX �= 0 so that logarithms are well defined. Thus, by
borrowing from the first proof of Theorem 7.2.1 for the second equality, and
using the fact that E X = nE Xn,1 in the last equality, we obtain

log ϕX(t) = n log ϕn(t) = n log
(
1− (1− ϕn(t)

)
= n(ϕn(t)− 1) + o(1) = n

∫ ∞

−∞

(
eitx − 1) dFXn,1(x) + o(1)

= itE X +
∫ ∞

−∞

(
eitx − 1− itx

) 1
x2 nx2 dFXn,1(x) + o(1)

= itE X +
∫ ∞

−∞

(
eitx − 1− itx

) 1
x2 dGn(x) + o(1) as n →∞,

where

Gn((c, d]) = nE X2
n,1I{c < Xn,1 ≤ d} for −∞ < c ≤ d < ∞.

The measure Gn (which is reminiscent of (3.14)) is a distribution function,
except possibly for a scaling factor; viz.,

Gn(−∞) = 0 and G(+∞) = nE X2
n,1 = E X2.

By Helly’s selection principle, there exists a vaguely convergent subsequence,
{Gnk

, k ≥ 1}, which, by Theorem 5.8.2, shows that, for any bounded interval,
[A, B], where A, B ∈ C(G),∫ B

A

(
eitx−1− itx

) 1
x2 dGnk

(x) →
∫ B

A

(
eitx−1− itx

) 1
x2 dG(x) as k →∞.

Via estimates of the function eitx from Lemma A.1.2 and the uniform bound-
edness of the measures Gnk

it follows that the integrals
∫ A

−∞ and
∫∞

B
can be

made arbitrarily small for |A|, B sufficiently large, so that, indeed,

log ϕX(t) = itE X +
∫ ∞

−∞

(
eitx − 1− itx

) 1
x2 dG(x) .

This proves the conclusion, and at the same time identifies µ as E X (which
is why that symbol was chosen).

To prove the converse we recall Remark 4.1 and the Poisson distribution.
If, instead G has point mass λx2 at x and µ = 0, then

ϕ(t) = exp{λ(eitx − 1− itx)},
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which is the characteristic function of a linear transformation of a Poisson
distribution; if Y ∈ Po(λ), then ϕ(t) is the characteristic function of λ(Y −x).

Exploiting this, let, for k = 0,±1,±2, . . . ,±22n, n ≥ 1, Yn,k be indepen-
dent, linearly transformed Poisson distributed random variables, correspond-
ing to

Gn,k

( k

2n

)
= G

(( k

2n
,
k + 1
2n

])
,

and set
Yn =

∑
k

Yn,k,

the G-measure of which becomes

Gn =
∑

k

Gn,k.

Since, as we have just seen, each Yn,k is infinitely divisible, the same can be
said for Yn by Theorem 4.2(ii).

Now, Gn
v→ G as n → ∞, and Gn(R) ≤ G(R) < ∞. By repeating the

convergence procedure from the first half of the proof, we conclude that

ϕYn(t) → exp
{

iµt +
∫ ∞

−∞

(
eitx − 1− itx

) 1
x2 dG(x)

}
as n →∞,

so that, in this half of the proof, the right-hand side is a characteristic func-
tion by the continuity theorem for characteristic functions, and moreover, an
infinitely divisible one, thanks to Theorem 4.2(iv). �

Remark 4.2. In words we can say that the class of infinitely divisible distribu-
tions with finite variance coincides with limits of compound Poisson distribu-
tions.

Remark 4.3. A further analysis shows that, in addition to µ = E X, we have
Var X = G(R). �

From Theorem 4.2(iv) we know that limits of infinitely divisible distribu-
tions are infinitely divisible. The following theorem provides conditions for
convergence.

Theorem 4.5. Let {Yn, n ≥ 1} be random variables with finite variances,
corresponding to infinitely divisible distributions with characteristic functions

ϕn(t) = exp
{

iµnt +
∫ ∞

−∞

(
eitx − 1− itx

) 1
x2 dGn(x)

}
.

Then
Yn

d→ Y and Var Yn → Var Y as n →∞,

where
ϕY (t) = exp

{
iµt +

∫ ∞

−∞

(
eitx − 1− itx

) 1
x2 dG(x)

}
.

iff
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• Gn
v→ G as n →∞;

• Gn(R) → G(R) as n →∞;
• µn → µ as n →∞.

Remark 4.4. The first two conditions would imply convergence in distribution,
had the total mass been equal to 1. �

By further elaborations of the arguments of the proof of the central limit
theorem, taking Theorem 4.5 into account one can show that the subclass of
infinitely divisible distributions with finite variances coincides with limits of
triangular arrays under the assumption of finite variance.

Theorem 4.6. Let {(Xn,j , 1 ≤ j ≤ kn), n ≥ 1} be an array of row-wise
independent random variables with finite variances, set Sn =

∑kn

j=1 Xn,j and

µn =
∑kn

j=1 E Xn,j, for n ≥ 1, and suppose that

sup
n

s2
n = sup

n

kn∑
j=1

Var Xn,j < ∞,

max
1≤j≤kn

Var Xn,j → 0 as n →∞.

Then the class of infinitely divisible distributions with characteristic functions

ϕ(t) = exp
{

iµt +
∫ ∞

−∞

(
eitx − 1− itx

) 1
x2 dG(x)

}

coincides with the class of limit distributions of Sn.
In addition, Sn converges iff (with obvious notation)

Gn
v→ G, Gn(R) → G(R), and µn → µ as n →∞.

Exercise 4.2. Note that, and how, the conditions are reminiscent of the Lindeberg
conditions. Prove the central limit theorem, Theorem 7.2.1, as a corollary of Theorem
4.6. �

We close this introduction to infinite divisibility by remarking that the
proof of Theorem 4.3 follows the same basic strategy as the proof of Theorem
4.4, but that additional care is required at 0 in order to obtain a convergent
integral.

One can then show that this, more general, class coincides with the class
of infinitely divisible distributions, which extends Theorem 4.6 to Theorem
4.1.

For details and more we refer, e.g., to [19, 21, 48, 71, 88, 97, 98, 142, 177,
194, 195]. A somewhat different source is [25].
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5 Sums of Dependent Random Variables

The first encounter with dependent random variables that one faces is usually
the drawing of balls without replacement from an urn: Suppose that an urn
contains balls of two colors, blue and yellow. Drawing balls repeatedly from
the urn, and putting Ik = 1 if the ball is yellow and 0 if it is blue, produces
a sequence of indicator variables. The sum of the first n indicators describes
the number of yellow balls obtained after n draws. If we draw with replace-
ment the indicators are independent, if we draw without replacement they are
dependent.

There exist many notions of dependence. A fundamental notion is Markov
dependence. Vaguely speaking, the future then depends on the past only
through the present. A random walk is an example. The future depends on
where one is now, but not on how one got there. Another important depen-
dence concept is martingale dependence, which is the topic of the next chapter.
There also exist various concepts which are defined via some kind of decay, in
the sense that the further two elements are apart in time or index, the weaker
is the dependence.

We begin with the simplest such concept, namely m-dependence, after
which we introduce some of the different concepts of mixing.

Definition 5.1. The random variables X1, X2, . . . are m-dependent if Xi

and Xj are independent whenever |i− j| > m. �

Remark 5.1. Independence is the same as 0-dependence.1 �

Example 5.1. If we flip a coin repeatedly and let An denote the event that the
nth toss yields a head, n ≥ 1, we obtain a sequence of independent events.
In Subsection 2.18.2 we discussed this problem in connection with the Borel-
Cantelli lemmas. If, however,

Bn = {the (n− 1)th and the nth toss both yield heads}, n ≥ 2,

then we do not have independent events, and the second Borel-Cantelli lemma
is not applicable. However, the events with even indices are independent, and
so are those with odd indices. More precisely, Bi and Bj are independent if
|i− j| > 1. Attaching indicators to the B-events, such that In = 1 whenever
Bn occurs and 0 otherwise, we obtain a 1-dependent sequence of random
variables.

Example 5.2. Peak Numbers. Let X1, X2, . . . be independent, U(0, 1)-distri-
buted random variables. There is a peak at Xk if Xk−1 and Xk+1 both are
smaller than Xk, k ≥ 2. Let

Ik =

{
1, if there is a peak at Xk,
0, otherwise.

1In Swedish this looks prettier: “Oberoende” is the same as “0-beroende”.
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Then

P (Ik = 1) =
1
3
, for all k ≥ 2,

P (Ik = 1, Ik+1 = 1) = 0, for all k ≥ 2,

P (Ik = 1, Ik+2 = 1) =
2
15

, for all k ≥ 2,

P (Ii = 1, Ij = 1) =
1
9
, for |i− j| > 2, i, j ≥ 2.

The sequence of indicators is 2-dependent. �

Exercise 5.1. Go over the example and check the details. �

A common example of m-dependent sequences are the so-called (m + 1)-
block factors defined by

Yn = g(Xn, Xn+1, . . . , Xn+m−1, Xn+m), n ≥ 1,

where X1, X2, . . . are independent random variables, and g : Rm+1 → R. The
Bn-sequence in the coin tossing example is an example of a 2-block factor.

It was, in fact, long believed that any m-dependent sequence must be an
(m + 1)-block factor. However, that this is not necessarily the case has been
shown in [1].

In the m-dependent case the dependence stops abruptly. A natural gener-
alization would be to allow the dependence to drop gradually. This introduces
the concept of mixing. There are various variations with different names. Here
are some of them.

Let H and G be sub-σ-algebras of F . Following are some measures of
dependence :

α(H,G) = sup
F∈H,G∈G

|P (F ∩G)− P (F )P (G)|,

φ(H,G) = sup
F∈H,G∈G

|P (G | F )− P (G)|, for P (F ) > 0,

ψ(H,G) = sup
F∈H,G∈G

|P (F ∩G)− P (F )P (G)|
P (F )P (G)

,

ρ(H,G) = sup
X∈L2(H),Y ∈L2(G)

|ρX,Y |.

The following relations and facts can be shown to hold:

α(H,G) ≤ 1
4
, ψ(H,G) ≤ 1, ρ(H,G) ≤ 1,

4α(H,G) ≤ 2φ(H,G) ≤ ψ(H,G),
4α(H,G) ≤ ρ(H,G) ≤ ψ(H,G),

ρ(H,G) ≤ 2
√

φ(H,G).
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The next step is to extend these notions to random variables. Toward that
end, let X1, X2, . . . be random variables, and let

Fj
i = σ{Xk, i ≤ k ≤ j}.

By interpreting the index as discrete time, Fj
i thus contains the information

from i o’clock to j o’clock. Corresponding to the above measures of dependence
we define the following mixing coefficients:

α(n) = sup
k∈Z

α(Fk
1 ,F∞

k+n),

φ(n) = sup
k∈Z

φ(Fk
1 ,F∞

k+n),

ψ(n) = sup
k∈Z

ψ(Fk
1 ,F∞

k+n),

ρ(n) = sup
k∈Z

ρ(Fk
1 ,F∞

k+n).

These quantities measure the dependence of those portions of the sequence
{Xk, k ≥ 1} that are located n “time units” apart. From the above inequal-
ities we can see that some measures of dependence are stronger than others.
For independent sequences all of them equal 0 (of course), and if the mixing
coefficients converge to 0 as n →∞ we may interpret this as asymptotic inde-
pendence, in the sense that two events belonging to Fk

1 and F∞
k+n, respectively,

are asymptotically independent as n →∞.
We call a sequence of random variables α-mixing or strong mixing if

α(n) → 0 as n → ∞, and φ-mixing, ψ-mixing, ρ-mixing, if φ(n) → 0,
ψ(n) → 0, ρ(n) → 0, respectively, as n →∞.

An immediate consequence of the inequalities above is that ψ-mixing im-
plies φ-mixing, which in turn implies α-mixing. This means that if we would
like to prove, say, a central limit theorem for α-mixing sequences, then it is
enough to consider the φ-mixing case if that happens to be more tractable.
Conversely, if one wishes to prove some fact in the φ-mixing case and does
not have tools enough at ones disposal for φ-mixing, one might try a stronger
concept instead (to obtain, at least, a partial result).

A famous problem in this context that has triggered a considerable amount
of attention is the Ibragimov conjecture [141], which states that a strictly
stationary, centered, φ-mixing sequence X1, X2, . . . , such that E X2

1 < ∞
and Var

(∑n
k=1 Xk

)
→∞ as n →∞ satisfies the central limit theorem.

A common method of proof is the “big block–small block” technique, which
means that the partial sums are split into alternating “smaller” and “bigger”
blocks, with the effect that the small blocks can be neglected asymptotically,
and the big blocks are asymptotically independent.

Some references are [16, 27, 28, 29, 30, 131, 142, 144, 190, 191, 192, 198].
In particular, Bradley’s recent monographs [28, 29, 30] provide an excellent
source for the more recent literature and the current state of the art. A further
reference for general dependence structures is [128]; results on, e.g., the law of
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the iterated logarithm may be found in [239]; and [168] is devoted to extremes.
Two references on renewal theory in dependent cases are [15, 148].

There also exist analogs of Donsker’s theorem, Theorem 7.7.13, in this
setting. The first more extensive contribution to this area of research is [199].
A functional version of the Ibragimov conjecture was suggested by Iosifescu
[143]. Two further references are [189, 247].

In addition to the above mixing concepts there has been an increased in-
terest in what is called associated sequences, negatively associated sequences,
interlaced mixing sequences, and so on, but we stop here, and leave the inter-
ested reader to research this further.

6 Convergence of Extremes

Paralleling the theory of stable distributions and domains of attraction con-
nected with sums, there exists a theory of max-stable distributions and
domains of attractions for extremes. Relevant literature for this topic are
[19, 21, 71, 91, 100, 123, 168, 207, 208]. Some of the sources also treat depen-
dent cases.

6.1 Max-stable and Extremal Distributions

Max-stable distributions are the analog of stable distributions. Extremal dis-
tributions correspond to the limit distributions of normalized maxima.

Definition 6.1. (i) A non-degenerate distribution F is extremal if it can ap-
pear as a limit distribution of standardized partial maxima of independent,
identically distributed random variables, that is, if there exist {an > 0, n ≥ 1},
{bn ∈ R, n ≥ 1}, and a distribution function G, such that, for all x ∈ C(F ),(

G(anx + bn)
)n → F (x) as n →∞.

(ii) A non-degenerate distribution F is max-stable iff there exist {an > 0, n ≥
1} and {bn ∈ R, n ≥ 1}, such that(

F (anx + bn)
)n = F (x) for all n.

(iii) In terms of random variables: Let X, X1, X2, . . . be independent, iden-
tically distributed random variables with distribution function G, and set

Yn = max
1≤k≤n

Xk, n ≥ 1.

Then X is extremal iff there exist {an > 0, n ≥ 1} and {bn ∈ R, n ≥ 1}, such
that

Yn − bn

an

d→ Y, where FY = F,

and X is max-stable iff iff there exist {an > 0, n ≥ 1} and {bn ∈ R, n ≥ 1},
such that

Yn
d= anX + bn for all n.

�
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In the light of the previous sections of this chapter it is natural to ask for
classes of extremal distributions. For sums the conclusion was that only the
stable distributions can appear as limit distributions. In this case the “obvi-
ous” result should be, and is, the following:

Theorem 6.1. The classes of extremal distributions and max-stable distribu-
tions coincide.

Proof. That every max-stable distribution is extremal follows from the defi-
nition. The converse follows from the convergence to types theorem. Namely,
if G is a limit distribution, then

Yn − bn

an
→ G as n →∞,

and, by considering blocks,

Ỹj = max
(j−1)n+1≤i≤jn

Xi ( d= Yn), 1 ≤ j ≤ k,

noticing that
Ynk = max

1≤j≤k
Ỹj ,

we also have

Ynk − bn

an
→ Gk as n →∞, for all k.

Theorem 2.1 therefore tells us that there exist constants Ak > 0 and Bk, such
that

max
1≤j≤k

Zj
d= AkZ1 + Bk,

where {Zj} are independent identically distributed random variables with
distribution function G. This shows that G is max-stable. �

The next problem is to describe these distributions, preferably explicitly.
The following theorem, due to Gnedenko [95], provides the solution; see also
[89].

Theorem 6.2. There exist three classes or types of extremal distributions:

Fréchet: Φα(x) =

{
0, for x < 0,

exp{−x−α}, for x ≥ 0,
α > 0;

Weibull: Ψα(x) =

{
exp{−(−x)α}, for x < 0,

1, for x ≥ 0,
α > 0;

Gumbel: Λ(x) = exp{−e−x}, for x ∈ R.
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Remark 6.1. Note that the Weibull distribution is concentrated on the neg-
ative half-axis, whereas “the usual” Weibull distribution, whose distribution
function equals F (x) = 1−exp{−e−xα}, x > 0, is concentrated on the positive
half-axis; for more on this, cf. [71], p. 123. �

Proof. The instrumental part of the proof is, again, the convergence to types
theorem, Theorem 2.1.

Suppose that G is extremal. Considering the usual blocks we have(
F (anx + bn)

)n → G(x) as n →∞,(
F (ankx + bnk)

)nk → G(x) as n →∞, for all k,

for some distribution function F . At the same time we also know that(
F (anx + bn)

)nk →
(
G(x)

)k as n →∞, for all k,

so that, by the convergence to types theorem, there exist ck and dk, such that

(G(x))k = G(ckx + dk). (6.1)

Considering blocks once again it follows that(
G(x)

)nm =
(
G(cmx + dm)

)n = G
(
cn(cmx + dm) + dn

)
= G

(
cncmx + (cndm + dn)

)
,

Combining the two (with k = nm) it follows (in the language of distribution
functions) from Step (e) in the proof of Theorem 2.1 that

cnm = cncm and dnm = cndm + dn, n, m ∈ N, (6.2)

where c1 = 1 and d1 = 0. Changing variables in (6.1), and raising the equation
to the power m, yields

(G(x))m/n =
(

G
(x− dn

cn

))m

= G
(
cm

x− dn

cn
+ dm

)

= G
(cm

cn
x− cmdn

cn
+ dm

)
. (6.3)

We now distinguish between the cases ck = 1 for all k and its complement,
the latter of which is reduced to the two cases “dk = 0 for all k, G(0) = 0”,
and “dk = 0 for all k, G(0) = 1”, respectively.

The Case ck = 1 for All k

In this case (6.3) reduces to

(G(x))r = G(x + γr), (6.4)

with γr = dm − dn, for r = m/n ∈ Q.
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Since 0 < G(x) < 1 for some x, it follows that γr is strictly decreasing
in r (since Gr(x) is decreasing in r), and, moreover, that, for r = m/n and
s = j/k,

γrs = dmj − dnk = dm + dj − dn − dk = γr + γs. (6.5)

Define
γ(u) = inf

0<r∈Q<u
γr for u ∈ R.

The function so defined is decreasing in u (for any u1 < u2 we select rationals
r1, r2, r3, such that r1 < u1 < r2 < u2 < r3). Moreover, (6.4) and (6.5) carry
over to continuous versions:

(G(x))u = G(x + γ(u)) for all x ∈ R, u > 0,

γ(uv) = γ(u) + γ(v).

Applying Lemma A.8.2 to the latter yields

γ(u) = −c log u,

where c must be positive, since the logarithm is increasing, and γ is decreasing.
This means that

G(x) =
(
G(x− c log u)

)1/u
,

which, upon setting u = exp{x/c}, so that x− c log u = 0, shows that

G(x) =
(
G(0)

)exp{−x/c} = exp{log G(0)e−x/c}, x ∈ R.

This proves that the case ck = 1 for all k corresponds to the Gumbel type
distribution – it is the Gumbel distribution, except for scaling.

The Case dk = 0 for All k and G(0) = 0

This time (6.3) reduces to

(G(x))r = G(βrx), (6.6)

where, for any r = m/n ∈ Q, we define βr = cm/cn, which is strictly decreas-
ing in r, since the distribution only lives on the positive half-axis.

The analog of (6.5) is

βrs =
cmcj

cnck
=

cm

cn
· cj

ck
= βrβs,

so that, by arguing as above, we find that

β(u) = inf
0<r∈Q<u

βr for u ∈ R,
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satisfies the same multiplication rule. Lemma A.8.2 therefore tells us that
β(u) = u−c, where c > 0, since β is decreasing. Thus

G(x) =
(
G(xu−c)

)1/u
,

which, putting u = x1/c, so that xu−c = 1, yields

G(x) =

{
0, for x < 0,

(G(1))x−1/c

= exp{−x−1/c(log 1/G(1))}, for x ≥ 0,

which is a Fréchet type distribution.

The Case dk = 0 for All k and G(0) = 1

This case is completely symmetric: The function β will be increasing since
the distribution lives on the negative half-axis, which leads to β(u) = (−u)c,
where c > 0, and, finally to

G(x) =

{
(G(−1))(−x)1/c

= exp{−(−x)−1/c(log 1/G(−1))}, for x < 0,

1, for x ≥ 0,

which is a Weibull-type distribution. We leave it to the reader to check the
details.

The Case ck �= 1 for Some k

It remains to check how the case “ck �= 1 for some k” is reduced to the two
previous ones.

By assumption there exists k0 > 1, such that ck0 �= 1. In view of (6.1) this
means that(

G
( dk0

1− ck0

))k0

= G
(
ck0

dk0

1− ck0

+ dk0

)
= G

( dk0

1− ck0

)
.

We have thus found a point x0, such that (G(x0))k0 = G(x0), which forces
G(x0) to be 0 or 1.

This rules out the Gumbel case, since the distribution has its support on
the whole real axis.

Suppose first that G(x0) = 0, and let x∗ = sup{x : G(x) = 0} be the left
end-point of the support of G. By translating the distribution if necessary, we
may w.l.o.g. assume that x∗ = 0. The only consequence is that the constants
dk might change.

Now, suppose that there exists some (possibly changed) dk > 0. Then, by
letting x be small and negative, we can make ckx + dk > 0, which contradicts
(6.6), since the left-hand side will be equal to 0 and the right-hand side will be
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positive. If dk < 0 we let, instead, x be small and positive to achieve the same
contradiction, except that the roles between the left-hand side and the right-
hand side have switched. This forces dk to be 0 for every k, which reduces
this case to the two previous ones.

The proof of the theorem is complete. �

6.2 Domains of Attraction

In analogy with domains of attraction for sums, a distribution F belongs to
the domain of attraction of the extremal distribution G – F ∈ D(G) – if there
exist normalizations an > 0 and bn ∈ R, n ≥ 1, such that

Fn(anx + bn) → G(x) as n →∞.

In terms of random variables: Let X1, X2, . . . be independent, identically
distributed random variables, and set Yn = max1≤k≤n Xk, n ≥ 1. Then X ∈
D(G) if there exist normalizations an > 0 and bn ∈ R, n ≥ 1, such that

Yn − bn

an

d→ G as n →∞.

Here is now a theorem that provides necessary and sufficient criteria on the
distribution to belong to the domain of attraction to one of the three extremal
ones. The result is not exhaustive, there exist other (equivalent) criteria. A
good source is [21], Section 8.13.

Theorem 6.3. Let F be a distribution function.

(a) F ∈ D(Φα) iff 1 − F ∈ RV (−α), in which case one may choose the
normalizations an = inf{x : 1− F (x) ≤ 1/n} and bn = 0;

(b)F ∈ D(Ψα) iff x∞ = sup{x : F (x) < 1} < ∞, and 1 − F ∗ ∈ RV (−α),
where F ∗(x) = F (x∞ − 1/x), in which case one may choose the normal-
izations an = sup{x : 1− F (x∞ − x) ≤ 1/n} and bn = x∞;

(c) F ∈ D(Λ) iff either

lim
t→∞

U(tx)− U(t)
U(ty)− U(t)

=
log x

log y
for all x, y > 0, y �= 1,

where, U is the inverse of 1
1−F , or

V (y + log x)− V (log x)
y

∈ SV as x →∞, for all y > 0,

where V is the inverse of − log(1− F ).

The proofs of the sufficiencies are managable. Let us sketch the first one:
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log
(
F (anx)

)n = n log(1− (1− F (anx))) ∼ −n(1− F (anx))

= − n

1− F (an)
· 1− F (anx)

1− F (an)
→ −1 · x−α as n →∞.

Here ∼ stems from Taylor expansion. The limits are consequences of the
definition of an and the regular variation of the tail 1− F .

Exercise 6.1. Classify the exponential distribution, the uniform distribution, and
the Pareto distribution. �

The expressions in the Gumbel case look more complicated than the others.
For the absolutely continuous case there is a swifter condition due to von
Mises [185], which we quote without proof.

Theorem 6.4. Suppose that x∞ = sup{x : F (x) < 1} = ∞, and let f be the
density of F . If

d
dx

(1− F (x)
f(x)

)
→ 0 as x →∞,

then F ∈ D(Λ).

Exercise 6.2. Check that the exponential and normal distributions belong to the
domain of attraction of the Gumbel distribution. �

We close by remarking that there also exist local limit theorems, results on
large deviations and convergence rates; we refer to [21] and further references
give there.

6.3 Record Values

The starting point for records (Subsection 2.17.2) was a sequence X1, X2, . . .
of independent, identically distributed, continuous random variables. In this
subsection we focus on the record values, {XL(n), n ≥ 1}, which have been
found to behave like a compressed sequence of partial maxima. This, in turn,
makes it reasonable to suggest that there exist three possible limit distribu-
tions for XL(n) as n →∞, namely, some modification(s) (perhaps) of the three
extremal distributions, the modification, if necessary, being a consequence of
the compression. The following theorem, due to Resnick [206], confirms this.

Theorem 6.5. Suppose that F is absolutely continuous. The possible limit
distributions for record values

Φ(− log(− log G(x))),

where G is an extremal distribution and Φ the distribution function of the
standard normal distribution. More precisely, the three classes or types of
limit distributions are
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Φ(R)
α (x) =

{
0, for x < 0,

Φ(α log x), for x ≥ 0,
α > 0;

Ψ(R)
α (x) =

{
Φ(−α log(−x)), for x < 0,

1, for x ≥ 0
α > 0;

Λ(R)(x) = Φ(x), for x ∈ R.

Remark 6.2. Note the unfortunate collision between the standard notations Φ
and Φ. �

We only indicate the proof here and refer to the original work or [21, 207] for
the full story.

The key ideas are that the order between observations are preserved under
non-decreasing transformations; that the exponential distribution is easy to
handle; and that, if we associate the random variable X with the distribution
function F , then − log(1− F (X)) ∈ Exp(1).

Thus, let us first consider the standard exponential distribution. An el-
ementary argument shows that the increments XL(n) − XL(n−1), n ≥ 2,
are independent, standard exponential random variables, and, hence, that
XL(n) ∈ Γ (n, 1) for all n. That this is the case can, for example, be seen via
the lack of memory property of the exponential distribution and the Poisson
process. The central limit theorem therefore tells us that

XL(n) − n√
n

d→ N(0, 1) as n →∞,

in this special case.
The connection to the exponential distribution implies that, in the general

case,
− log(1− F (XL(n)))− n√

n

d→ N(0, 1) as n →∞.

This fact must be combined with our aim, namely to find normalizing se-
quences {an > 0, n ≥ 1}, and {bn ∈ R, n ≥ 1}, such that

XL(n) − bn

an

d→ G as n →∞,

for some distribution G, which is the same as finding G, such that

P
(− log

(
1− F (XL(n))

)
− n√

n
≤
− log

(
1− F (anx + bn)

)
− n√

n

)
d→ G,

as n → ∞. For this to be possible it is necessary that there exists some
function g(x), such that

− log
(
1− F (anx + bn)

)
− n√

n
→ g(x) as n →∞,

in which case the limit distribution becomes G( · ) = Φ(g( · )).
The analysis of this problem leads to the desired conclusion.
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7 The Stein-Chen Method

The Stein method is a method due to Stein [237], to prove normal convergence.
The Stein-Chen method is an adaptation due to Chen [39], to prove Poisson
approximation, primarily of indicator functions. The mode of convergence is
variational convergence; recall Definition 5.6.1 and Theorem 5.6.4 (we are
dealing with integer valued random variables here). For a full treatment of
the method with many applications we refer to the monograph [9].

In a first course one learns that a binomial distribution with a “small” p can
be well approximated by a Poisson distribution. However, this requires that
the success probabilities in each experiment are the same, and that successive
trials are independent.

Suppose now that the probabilities vary; let X1, X2, . . . , Xn be indepen-
dent random variables, such that P (Xk = 1) = 1 − P (Xk = 0) = pk, k ≥ 1.
Is it then possible to approximate the sum, Sn by Tn ∈ Po(

∑n
k=1 pk)? In

particular, what is the variational distance between Sn and Tn as a function
of n?

Before proceeding we recall the definition of variational distance from Def-
inition 5.6.1: If X and Y are random variables, then

d(X, Y ) = sup
A∈R

|P (X ∈ A)− P (Y ∈ A)|.

Let Yk ∈ Po(pk), k ≥ 1, be independent random variables. The variational
distance between Sn and Tn can be conveniently estimated via the following
result.

Lemma 7.1. (i) Let X and Y be random variables. Then

d(X, Y ) ≤
n∑

k=1

P (X �= Y ).

(ii) Let X1, X2, . . . and Y1, Y2, . . . , Yn be sequences of random variables, and
set Sn =

∑n
k=1 Xk, and Tn =

∑n
k=1 Yk, n ≥ 1. Then

d(Sn, Tn) ≤
n∑

k=1

P (Xk �= Yn).

Proof. (i): By subtracting and adding P ({X ∈ A} ∩ {Y ∈ A}) we find that

P (X ∈ A)−P (Y ∈ A) = P ({X ∈ A}∩{Y ∈ Ac})−P ({Y ∈ A}∩{X ∈ Ac}),

which shows that

|P (X ∈ A)− P (Y ∈ A)| ≤ P (X �= Y ) for all A ⊂ R.

(ii): The first part, the relation
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{Sn �= Tn} ⊂
n⋃

k=1

{Xn �= Yn} ,

and sub-additivity, together yield

d(Sn, Tn) ≤ P (Sn �= Tn) ≤
n∑

k=1

P (Xk �= Yk).
�

A consequence of the lemma is that the problem reduces to estimating
the right-most probabilities. Assuming, to begin with, that Xk and Yk are
independent for all k yields

P (Xk �= Yk) = P (Xk = 0)P (Yk ≥ 1) + P (Xk = 1)P (Yk �= 1)
= (1− pk)(1− e−pk) + pk(1− pke−pk)
≤ pk(2− 2pk + p2

k) ≤ pk,

where the first inequality follows from the elementary inequality e−x ≥ 1− x.
This proves that

d(Sn, Tn) ≤
n∑

k=1

pk.

However, the important observation is that nothing is assumed about (in)de-
pendence between Xk and Yk in the formulation of the original problem. In
fact, it even turns out that a suitable dependence assumption yields a better
rate as compared to independence. With a different terminology: it is advan-
tageous to couple the two sequences in some efficient manner.

Let us see how this can be done in two different ways. In [137] the authors
assume that

P (Xk = Yk = 1) = pke−pk ,

P (Xk = 1, Yk = 0) = pk(1− e−pk),
P (Xk = Yk = 0) = e−pk − pk(1− e−pk),

P (Xk = 0, Yk = j) = e−pk
pj

k

j!
, j = 2, 3, . . . ,

to obtain

d(Sn, Tn) ≤ 2
n∑

k=1

p2
k.

To be precise, this works for pk ≤ 0.8, which is enough, since the upper bound
2p2

k > 1 for pk > 0.8.
Serfling [218] improves this bound to

d(Sn, Tn) ≤
n∑

k=1

p2
k. (7.1)
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To achieve this he introduces a sequence Z1, Z2, . . . , Zn via

P (Zk = 0) = (1− pk)epk , P (Zk = 1) = 1− (1− pk)epk ,

and then X1, X2, . . . , Xn as

Xk = I{Yk ≥ 1}+ I{Yk ≥ 0}I{Zk ≥ 1}, k = 1, 2, . . . , n,

where Y1, Y2, . . . are as before. Moreover, it is assumed that Yk and Zk are
independent for all k. Then

P (Xk = 1) = P (Yk ≥ 1) + P (Yk = 0)P (Zk = 1)
= 1− e−pk + e−pk

(
1− (1− pk)epk

)
= pk,

P (Xk = 0) = 1− pk,

so that Xk is a Bernoulli random variable as required. However, in this case,

P (Xk �= Yk) = P (Xk = 0, Yk ≥ 1) + P (Xk = 1, Yk �= 1)
= P (Yk ≥ 2) + P (Xk = 1, Yk = 0)
= P (Yk ≥ 2) + P (Yk = 0)P (Zk = 1)
= 1− e−pk − pke−pk + e−pk

(
1− (1− pk)epk

)
= pk(1− e−pk) ≤ p2

k,

which establishes (7.1).
If, in particular, all success probabilities are equal (to p), the bound turns

into np2 = λp, where λ = np is the parameter of the Poisson distribution. In
the general case,

n∑
k=1

p2
k ≤ max

1≤k≤n
pk

n∑
k=1

pk = λ max
1≤k≤n

pk.

An interpretation of this is that if we consider a sequence of experiments
{(Xn,k, 1 ≤ k ≤ n), n ≥ 1}, such that P (Xn,k = 1) = pn,k, and such that∑n

k=1 pn,k → λ as n → ∞, then Sn =
∑n

k=1 Xn,k
d→ Po(λ) as n → ∞ under

the additional assumption that max1≤k≤n pn,k → 0 as n →∞.
Barbour and Hall [8] use the Stein-Chen method to improve the upper

bound (7.1) further as follows.

Theorem 7.1. Suppose that X1, X2, . . . are independent random variables,
such that Xk ∈ Be(pk), k ≥ 1, and set Sn =

∑n
k=1 Xk, n ≥ 1. Further, let

Tn ∈ Po(λn), where λn =
∑n

k=1 pk, n ≥ 1. Then

d(Sn, Tn) ≤ 1− e−λn

λn

n∑
k=1

p2
k ≤

1
λn

n∑
k=1

p2
k. (7.2)
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Strictly speaking, they prove the first inequality. The second one is trivial, and
coincides with Chen’s result [39] (without his factor 5). Barbour and Hall also
provide a lower bound of the same order of magnitude; cf. also [9], Theorem
2.M, and Corollary 3.D.1.

Remark 7.1. In the i.i.d. case the bound (7.2) becomes

1− e−np

np
np2 =

1− e−λ

λ
λp = p(1− e−λ) ≤ p.

This is an improvement over the bound λp, but still not very interesting. The
interesting part is unequal success probabilities. �

Before we hint on the proof, let us verify the Poisson approximation for
µ(n), the counting process for records:

d(µ(n), Po(mn)) ≤ π2

6 log n
,

where mn = E µ(n) =
∑n

k=1 1/k, mentioned in connection with Theorem
7.7.5.

Since pk = 1/k, and λn =
∑n

k=1 1/k as n → ∞, we obtain, utilizing the
extreme members in (7.2) and Lemma A.3.1(iii), that

d(µ(n), Po(mn)) ≤ 1∑n
k=1

1
k

n∑
k=1

1
k2 ≤

1
log n

∞∑
k=1

1
k2 =

π2

6 log n
,

as claimed.
In the discussion so far we have assumed that the indicators are inde-

pendent. However, the essential feature of the Stein-Chen method is that the
method works in many situations where dependence is involved. Once again,
we refer to [9] for theory and many applications.

The starting point for the method is the Poisson analog to Stein’s equation
for normal approximations, that is, the equation

E
(
λg(Z + 1)− Zg(Z))

)
= 0,

which is satisfied for Z ∈ Po(λ) and bounded functions g : Z+ → R, where
we may set g(0) = 0 w.l.o.g. Namely, if Z ∈ Po(λ), the left-hand side equals

e−λλg(1) + e−λ
∞∑

n=1

(
g(n + 1)

λn+1

n!
− g(n)

λn

(n− 1)!

)
,

which equals 0 due to telescoping.
It is, in fact, also possible to prove a converse, namely that any function

h : Z+ → R for which E h(Z) = 0 must be of the form

h(k) = λg(k + 1)− kg(k),
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for g as above. In other words, this characterizes the Poisson distribution.
Let X1, X2, . . . , Xn be indicators as before, but without any assumption

about independence, set Sn =
∑n

k=1 Xk, and let Tn ∈ Po(λn), where λn =∑n
k=1 pk.
The central idea is to use the above characterization of the Poisson distri-

bution. Toward this end, let A ⊂ R, and construct, by recursion, a function
gλn,A : Z+ → R, such that

λgλn,A(k + 1)− kgλn,A(k) = I{k ∈ A} − P (Tn ∈ A), k ≥ 0. (7.3)

Inserting Sn and taking expectations yields

E
(
λgλn,A(Sn)− Sngλn,A(Sn)

)
= P (Sn ∈ A)− P (Tn ∈ A). (7.4)

Next, set

S(j)
n =

n∑
k=1
k �=j

Xk.

In order to give a flavor of the method we assume, in the following, that
the indicators are, indeed, independent.

Conditioning on Xj we obtain, due to independence,

E Sngλn,A(Sn) =
n∑

j=1

E Xjgλn,A(S(j)
n + Xj)

=
n∑

k=1

pj1 · E gλn,A(S(j)
n + 1) + (1− pj)0 · E gλn,A(S(j)

n )

=
n∑

k=1

pjE gλn,A(S(j)
n + 1),

which implies that∣∣E(λgλn,A(Sn + 1)− Sngλn,A(Sn)
)∣∣

=
∣∣ n∑

j=1

pjE
{
gλn,A(Sn + 1)− gλn,A(S(j)

n + 1)
}∣∣

≤
n∑

j=1

pjE
∣∣gλn,A(S(j)

n + Xj + 1)− gλn,A(S(j)
n + 1)

∣∣
≤

n∑
j=1

p2
j sup

1≤j≤n
|gλn,A(j + 1)− gλn,A(j + 1)|+ 0 ,

since the only contribution comes from the set {Xj = 1}.
The final step is to find upper bounds for supj |gλn,A| and, then, for

supj |gλn,A(j) − gλn,A(j)|. These are, min{1,
√

1/λn} and (1 − e−λn)/λn ≤



464 9 Limit Theorems; Extensions and Generalizations

1/λn, respectively; see [9], Lemma 1.1.1. The uniformity of the bound, and a
glance at (7.4), finally establishes (7.2).

The main feature of the Stein-Chen method is that one can handle sums
of dependent random variables. The assumption that the indicators are inde-
pendent was used here only toward the end, and only in order to illustrate
the procedure. The crucial problem is the treatment of the quantity

E Sngλn,A(Sn) =
n∑

k=1

pjE
(
gλn,A(Sn) | Xj = 1

)
,

which, in the general case, introduces some additional term(s) to take care of;
once again, we refer to [9] for details.

The final point is how to apply the result. So far we have provided an
estimate of the variational distance between the sum of indicators and one
suitable(?) Poisson distribution. One question remains: Which Poisson distri-
bution is the best one? That is, how shall one construct the approximating
Poisson variables?

In the first example we found that independence between X1, X2, . . . , Xn

and Y1, Y2, . . . , Yn provided a poorer estimate than if Xk and Yk were de-
pendent. Even more so, the two different couplings involving dependence pro-
duced different upper bounds for the variational distance. More generally, the
problem on how to connect the two sequences introduces the art of coupling ,
which means how to introduce an efficient dependence structure between the
two sequences X1, X2, . . . , Xn and Y1, Y2, . . . , Yn in order to minimize the
variational distance. In general this may be tricky and require some ingenuity;
see [9]. However, sometimes it suffices to know that a coupling exists.

In order to illustrate the wide applicability of the approximation method,
we close by mentioning applications to random permutations, random graphs,
occupancy problems, extremes, and many more that have been dealt with in
[9].

8 Problems

1. Prove that if X is strictly stable with index α ∈ (0, 2), and Y is non-
negative and stable with index β ∈ (0, 1), then XY 1/α is stable with
index αβ.

2. Suppose that X1, X2, . . . are independent, strictly stable random vari-
ables with index α ∈ (0, 2), and set Sn =

∑n
k=1 Xk, n ≥ 1. Prove that

log |Sn|
log n

p→ 1
α

.

♣ In other words, if α is unknown, the ratio log n/ log |Sn| provides an estimate
of the index.
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3. Let X be a stable random variables with index α ∈ (0, 2), suppose that Y
is a coin-tossing random variable (P (Y = 1) = P (Y = −1) = 1/2), which
is independent of X. Show that XY is strictly stable.

4. Suppose that X1, X2, . . . are independent random variables with common
density

f(x) =

{
c

|x|α+1(log |x|)γ , for |x| > e,

0, otherwise,

where α > 0, γ ∈ R, and where c is a normalizing constant (without
interest). Find the (possible) limit distributions for the various values of
α and γ.

5. Let X1, X2, . . . be independent, symmetric, stable random variables with
index α ∈ (0, 2], and let ak ∈ R, k ≥ 1.
(a) Prove that

∑n
k=1 akXk converges in distribution iff

∑∞
n=1 |cn|α < ∞.

(b) Prove that, in fact,

∞∑
n=1

anXn < ∞ a.s. ⇐⇒
∞∑

n=1

|cn|α < ∞.

♣ Note the special cases α = 1, the Cauchy distribution, and α = 2 that we
have encountered earlier in Chapters 5 and 6.

6. Let X, X1, X2, . . . be independent, identically distributed random vari-
ables with partial sums Sn, n ≥ 1. Suppose that X belongs to the domain
of attraction of Y , that is, suppose that there exist {an > 0, n ≥ 1} and
{bn ∈ R}, such that

Sn − bn

an

d→ Y as n →∞.

Prove that

an →∞ and that
an+1

an
→ 1 as n →∞.

♠ Suppose first that X is symmetric, and check a2n/an.
7. (a) Let X be standard exponential, which means that the characteristic

function equals ϕX(t) = 1
1−it . Show that X is infinitely divisible by

convincing yourself that

ϕX(t) = exp
{∫ ∞

0

(
eitx − 1)

e−x

x
dx
}

.

(b) Find the representation for X ∈ Exp(λ), λ > 0.
(c) Check that, if X ∈ Γ (p, 1), then

ϕX(t) = exp
{∫ ∞

0

(
eitx − 1)xp−1e−x dx

}
.
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8. Show that the geometric distribution is infinitely divisible by exhibiting
the canonical representation of the characteristic function.

9. Prove that if X is infinitely divisible with characteristic function

ϕ(t) = exp
{∫ ∞

−∞

(
eitx − 1− itx

1 + x2

)1 + x2

x2 dG(x)
}

,

then
X ≥ 0 ⇐⇒ G(0) = 0.

10. Let X1, X2, . . . be independent, identically distributed random variables,
which are also independent of N ∈ Po(λ). Show that X1 +X2 + · · ·+XN

is infinitely divisible.
11. Show that the partial maxima of independent, identically distributed ex-

tremal random variables, properly rescaled, are extremal. More precisely,
let X, X1, X2, . . . be independent, identically distributed random vari-
ables, and set

Yn = max{X1, X2, . . . , Xn}, n ≥ 1.

Show that,
(a) if X has a Fréchet distribution, then

Yn

n1/α

d= X;

(b) if X has a Weibull distribution, then

n1/αYn
d= X;

(c) if X has a Gumbel distribution, then

Yn − log n
d= X.

12. Let X1, X2, . . . be Exp(θ)-distributed random variables, let N ∈ Po(λ),
and suppose that all random variables are independent. Show that

Y = max{X1, X2, . . . , XN} d= V + = max{0, V },

where V has a Gumbel type distribution.
♠ It may help to remember Problem 4.11.25.

13. Suppose that X1, X2, . . . are independent random variables, such that
Xk ∈ Be(pk), k ≥ 1, and set Sn =

∑n
k=1 Xk, µn =

∑n
k=1 pk, and s2

n =∑n
k=1 pk(1− pk), n ≥ 1.

(a) Use Theorem 7.1 to provide an estimate of the closeness in total vari-
ation to a suitable Poisson distribution (which one?).

(b) Compare with the normal approximation from Problem 7.8.1. When is
the Poisson approximation better? When is the normal approximation
better?
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Martingales

Martingales are probably the most ingenious invention and generalization of
sums of independent random variables with mean 0. They play an important
role in probability theory and in statistics. They are also extremely applicable,
mathematically tractable, and astonishingly exploitable in purely mathemat-
ical contexts. In addition, the theory is extremely elegant and aesthetically
appealing.

The term martingale originates in gambling theory.1 The famous gambling
strategy to double one’s stake as long as one loses and leave as soon as one
wins is called a martingale. Unfortunately though, the gambler will have spent
an infinite amount of money on average when he or she, finally, wins. We shall
briefly return to this game in Example 3.5.

The first appearance of the term martingale in the present context was in
1939 in Étude Critique de la Notion de Collectif by Jean Ville; see [249]. The
major breakthrough was with the now legendary book Stochastic Processes
[66] by J. L. Doob, where much of the foundation was coherently proved and
described for the first time. Other, more recent books are [186, 252]. A number
of textbooks have a chapter devoted to martingales, such as [48, 177, 208].

We open this chapter with a section on conditional expectation, which is
an essential concept in the definition of martingales, as well as for most mar-
tingale properties. After having provided a number of equivalent definitions of
martingales we present a rather extensive selection of examples. This is then
followed by the establishment of various properties, such as orthogonality of
increments and decomposition theorems.

A major role is played by martingales evaluated at certain random times,
called stopping times. After definitions we prove some inequalities and con-
vergence theorems. As for the latter we shall present, not only the traditional
proof which is based on so-called upcrossings, but also a different, elegant proof
taken from Garsia’s monograph [92]. Once a limit has been established it turns

1The term is also used in non-mathematical contexts, although the origin is
somewhat unclear. The traditional example is “a horse’s harness”.
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out that this limit may or may not be a “last” element in the (sub)martingale.
This leads to classifications of regular stopping times and regular martingales.

The last part of the chapter is devoted to some applications, such as
stopped random walks, after which we close with a section on reversed martin-
gales with an application to the strong law of large numbers and U -statistics.

1 Conditional Expectation

As mentioned in the introductory text, conditional expectations are corner-
stones in martingale theory. Before providing the definition we recall from
Definition 2.1.2 that the equivalence class of a random variable X is the col-
lection of random variables that differ from X on a null set.

Definition 1.1. The conditional expectation E(X | G) of an integrable ran-
dom variable, X, relative to a sub-σ-algebra G of F is any G-measurable,
integrable random variable Z in the equivalence class of random variables,
such that ∫

Λ

Z dP =
∫

Λ

X dP for any Λ ∈ G. �

Remark 1.1. Observe that the integrals of X and Z over sets Λ ∈ G are the
same; however, X ∈ F , whereas Z ∈ G. �

The conditional expectation thus satisfies∫
Λ

E(X | G) dP =
∫

Λ

X dP for any Λ ∈ G, (1.1)

which is called the defining relation.
If, in particular, X is the indicator variable of some F-measurable set,

X = I{A}, the defining relation produces∫
Λ

P (A | G) dP = P (A ∩ Λ) for any Λ ∈ G, (1.2)

which means that the conditional probability P (A | G) is any G-measurable
random variable in the equivalence class of random variables, satisfying (1.2).

In order to see that conditional expectations exist, we recall that in Section
2.13 we briefly mentioned conditional distributions, and in Proposition 1.4.1,
the law of total probability. Combining these we note that if X is a discrete
random variable, taking the values {xn, n ≥ 1}, then, for A ∈ F ,

P (A) =
∞∑

n=1

P (A | X = xn)P (X = xn).

By “randomizing”, that is, by replacing P (X = xn) by the indicator function
I{X = xn}, we obtain
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P (A | σ{X}) = P (A | X) =
∞∑

n=1

P (A | X = xn)I{X = xn},

which means that, for a given ω ∈ Ω,

P (A | σ{X})(ω) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P (A | X = x1), if X(ω) = x1,

P (A | X = x2), if X(ω) = x2,

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
P (A | X = xn), if X(ω) = xn,

0, otherwise.

This coincides with (1.2), since∫
Λ

( ∞∑
n=1

P (A | X = xn)I{X = xn}
)
dP =

∑
{n:xn∈Λ}

P (A | X = xn)P (X = xn)

= P (A ∩ Λ).

More generally, let {Λn, n ≥ 1} be a partition of Ω, and let E(X | Λn) be the
conditional expectation relative to the conditional measure P (· | Λn), so that

E(X | Λn) =
∫

Ω

X(ω) dP (ω | Λn) =

∫
Λn

X dP

P (Λn)
.

Then, for Λ =
∑

j∈J Λj ∈ G, we obtain, noticing the disjointness of the Λj ’s,∫
Λ

( ∞∑
n=1

E(X | Λn)I{Λn}
)
dP =

∑
j∈J

∞∑
n=1

∫
Λj

E(X | Λn)I{Λn}I{Λj}dP

=
∑
j∈J

∫
Λj

E(X | Λj) dP =
∑
j∈J

E(X | Λj)P (Λj) =
∑
j∈J

∫
Λj

X dP

P (Λj)
P (Λj)

=
∑
j∈J

∫
Λj

X dP =
∫

∪j∈Jλj

X dP =
∫

Λ

X dP.

This proves that, in this case,

E(X | G) =
∞∑

n=1

E(X | Λn)I{Λn} a.s.,

or, spelled out, that

E(X | G) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E(X | Λ1), if ω ∈ Λ1,

E(X | Λ2), if ω ∈ Λ2,

· · · · · · · · · · · · · · · · · ·
E(X | Λn), if ω ∈ Λn,

0, otherwise.
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Another way to express this is that the random variable E(X | G) takes
on the discrete values E(X | Λ1), E(X | Λ2), . . . , E(X | Λn) on the sets
Λ1, Λ2, . . . , Λn, respectively.

Before we turn to existence in the general case, let us prove a.s. uniqueness.
Thus, suppose that Y and Z are conditional expectations, satisfying the defin-
ing relation. Since both are G-measurable we may choose {ω : Y (ω) > Z(ω)}
as our Λ ∈ G. The integrals, being equal, yields∫

Λ

(Y − Z) dP = 0,

which necessitates P (Λ) = 0. Similarly for {ω : Y (ω) < Z(ω)}. This shows
that conditional expectations are unique up to null sets (if they exist).

For existence in the general case we need a definition and the Radon-
Nikodym theorem as a final preparation.

Definition 1.2. Let P and Q be probability measures. The measure Q is ab-
solutely continuous with respect to P iff

P (A) = 0 =⇒ Q(A) = 0 for all A ∈ F .

Notation: Q � P . �

Theorem 1.1. (The Radon-Nikodym theorem)
Let (Ω,F , P ) be a probability space, and suppose that Q is a finite measure
that is absolutely continuous with respect to Q � P . Then there exists an
F-measurable random variable X with finite mean, such that

Q(A) =
∫

A

X dP for all A ∈ F .

Moreover, X is P -a.s. unique and is written as

X =
dQ

dP
.

It is called the Radon-Nikodym derivative.

For a proof we refer to the measure theoretic literature. Note, however, that
if on the other hand, P and Q are related as in the theorem, then Q � P .
The Radon-Nikodym theorem thus is an “only if” result.

The definition of conditional expectation can now be justified via the fol-
lowing result.

Theorem 1.2. Let X be a random variable with finite expectation, and G a
sub-σ-algebra of F . Then there exists a unique equivalence class of random
variables with finite mean, satisfying the defining relation (1.1).
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Proof. Let P |G be the measure P restricted to G, and set

Q(A) =
∫

A

X dP for A ∈ G.

From our findings in Section 2.6 we assert that Q � P |G and that the Radon-
Nikodym theorem is applicable. The conclusion follows. �

The equivalence class thus obtained is the Radon-Nikodym derivative,
which we henceforth denote E(X | G) in the present context.

As a side remark we mention without details that if X is integrable and G
a sub-σ-algebra of F , then it follows from the defining relation that∫

Λ

(X − E(X | G))Z dP = 0 for all bounded Z ∈ G,

which, in turn, induces the decomposition

X = Y + Z, (1.3)

where Y = E(X | G) ∈ G and E Y Z = 0. This means that Y is the “projec-
tion” of X onto G, and that Z is the “orthogonal complement”.

1.1 Properties of Conditional Expectation

We begin by establishing the fact that elementary properties that are known
to hold for ordinary (unconditional) expectations remain valid for conditional
expectations, except for the fact that they are almost sure properties in the
present context. After all, expectations are reals, conditional expectations are
functions.

Proposition 1.1. Let X and Y be integrable random variables, G ⊂ F , and
a, b, c real numbers. Then

(a) E(E(X | G)) = E X;
(b) E(aX + bY | G) a.s.= aE(X | G) + bE(Y | G);
(c) if X ∈ G, then E(X | G) a.s.= X;
(d) E(c | G) a.s.= c;
(e) E(X | {∅, Ω}) a.s.= E X;
(f) if X ≥ 0 a.s., then E(X | G) ≥ 0 a.s.;
(g) if X ≤ Y a.s., then E(X | G) ≤ E(Y | G) a.s.;
(h) |E(X | G)| ≤ E(|X| | G);
(j) if X is indpendent of G, then E(X | G) = E X a.s.

Proof. Every property follows from the defining relation.
The first one follows by setting Λ = Ω, and the second one via
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Λ

E(aX + bY | G) dP =
∫

Λ

(aX + bY ) dP = a

∫
Λ

X dP + b

∫
Λ

Y dP

= a

∫
Λ

E(X | G) dP + b

∫
Λ

E(Y | G) dP

=
∫

Λ

aE(X | G) + bE(Y | G).

Statement (c) follows from the tautology∫
Λ

X dP =
∫

Λ

X dP for any Λ ∈ G,

so that X being G-measurable! satisfies the defining relation, and, since any
constant is G-measurable, (d) is immediate from (c).

As for (e), ∫
Λ

X dP =

{
0, for Λ = ∅,
E X, for Λ = Ω,

that is, ∫
Λ

X dP =
∫

Λ

E X dP, for all Λ ∈ {∅, Ω},

so that E X can be substituted for E(X | G).
Next, (f) follows via∫

Λ

E(X | G) dP =
∫

Λ

X dP ≥ 0,

which, together with (b), applied to the non-negative random variable Y −X,
yields (g).

Moving down the list, (h) follows via (b)

|E(X | G)| = |E(X+ | G)− E(X− | G)|
≤ E(X+ | G) + E(X− | G) = E(|X| | G).

To prove (j), we note that E X ∈ G, and that, for any Λ ∈ G,∫
Λ

E X dP = E XP (Λ) = E(XI{Λ}) =
∫

Ω

XI{Λ} dP =
∫

Λ

X dP.

The equality between the extreme members tells us that E X satisfies the
defining relation. �

Remark 1.2. Most of the properties are intuitively “obvious”. Consider, for
example, (c). If G is given, then X “is known”, so that there is no (additional)
randomness, in the sense that X is “constant” on G. And it is well known
that the expected value of a constant is the constant itself. �
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Next in line are the conditional counterparts of the monotone convergence
theorems, Fatou’s lemma and the Lebesgue convergence theorem.

Proposition 1.2. We have

(a) If Xn ↑ X as n →∞, then E(Xn | G) ↑ E(X | G) a.s. as n →∞;
(b) If Xn ↓ X as n →∞, then E(Xn | G) ↓ E(X | G) a.s. as n →∞;
(c) If {Xn, n ≥ 1} are non-negative and integrable, then

E(lim inf
n→∞

Xn | G) ≤ lim inf
n→∞

E(Xn | G) a.s.;

(d) If Xn ≤ Z ∈ L1 for all n, then

E(lim sup
n→∞

Xn | G) ≥ lim sup
n→∞

E(Xn | G) a.s.;

(e) If |Xn| ≤ Y ∈ L1 and Xn
a.s.→ X as n →∞, then

E(Xn | G) a.s.→ E(X | G) as n →∞.

Proof. We know from Proposition 1.1(g) that the sequence E(Xn | G) is
monotone increasing, so the limit Z = limn→∞ E(Xn | G) exists. Thus, by the
defining relation and monotone convergence (twice),∫

Λ

Z dP =
∫

Λ

lim
n→∞

E(Xn | G) dP = lim
n→∞

∫
Λ

E(Xn | G) dP

= lim
n→∞

∫
Λ

Xn dP =
∫

Λ

lim
n→∞

Xn dP =
∫

Λ

X dP.

This proves (a), from which (b) follows by changing signs.
To prove (c) we set Zn = infk≥n Xn ≤ Xn, and note that Zn

a.s.→
lim infn→∞ Xn monotonically. Thus, by Proposition 1.1(g) and (a), we have

E(Xn | G) ≥ E(Zn | G) ↑ E(lim inf
n→∞

Xn) | G,

and (c) follows.
For (d) we observe (as in Chapter 2) that Z − Xn is non-negative and

integrable, after which we apply (c) and linearity.
Finally, (e) follows by joining (c) and (d) as in the proof of Theorem 2.5.3.

We omit the details. �

Proposition 1.3. If X and XY are integrable, Y ∈ G, then

E(XY | G) a.s.= Y E(X | G).

Proof. First suppose that X and Y are non-negative. For Y = I{A}, where
A is G-measurable, Λ ∩A ∈ G, so that, by the defining relation,
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Λ

Y E(X | G) dP =
∫

Λ∩A

E(X | G) dP =
∫

Λ∩A

X dP =
∫

Λ

XY dP,

which proves the desired relation for indicators, and hence for simple random
variables. Next, if {Yn, n ≥ 1} are simple random variables, such that Yn ↗ Y
almost surely as n → ∞, it follows that YnX ↗ Y X and YnE(X | G) ↗
Y E(X | G) almost surely as n → ∞, from which the conclusion follows by
monotone convergence. The general case follows by the decomposition X =
X+ −X− and Y = Y + − Y −. �

1.2 Smoothing

Many martingale properties and results are proved via iterated, or successive,
conditioning. In order to verify such facts we need the following smoothing
lemma, which turns out to be handy in many situations.

Lemma 1.1. Suppose that F1 ⊂ F2. Then

E(E(X | F2) | F1) = E(X | F1) = E(E(X | F1) | F2) a.s.

Proof. Since E(X | F1) ∈ F2 the second equality is immediate from Propo-
sition 1.1(c), and it remains to prove the first one. Pick Λ ∈ F1 and observe
that, automatically, Λ ∈ F2. Applying the defining relation three times, we
obtain ∫

Λ

E(E(X | F2) | F1) dP =
∫

Λ

E(X | F2) dP =
∫

Λ

X dP

=
∫

Λ

E(X | F1) dP. �

A proper exploitation of the smoothing lemma and Proposition 1.3 yields
the following results. The proofs being similar, we confine ourselves to proving
the first one.

Theorem 1.3. Suppose that Y is a random variable with finite variance and
that G is a sub-σ-algebra of F . Then

E
(
Y − E(Y | G)

)2 = E Y 2 − E
(
E(Y | G)

)2
.

Proof. By smoothing and Proposition 1.3,

E
(
Y E(Y | G)

)
= E

{
E
(
E(Y E(Y | G) | G

)}
= E

{
E(Y | G)E(Y | G)

}
= E

(
E(Y | G)2

)
,

so that,

E
(
Y − E(Y | G)

)2 = E Y 2 + E
(
E(Y | G)2

)
− 2E

(
Y E(Y | G)

)
= E Y 2 − E

(
E(Y | G)

)2
. �
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By defining conditional variance as the the conditional expectation

Var (X | G) = E
((

X − E(X | G)
)2 | G),

another application of the smoothing lemma produces the following:

Theorem 1.4. Let X and Y be random variables with finite variance, let g be
a real valued function, such that E(g(X))2 < ∞, and let G be a sub-σ-algebra
of F . Then

E
(
Y − g(X)

)2 = E Var (Y | G) + E
(
E(Y | G)− g(X)

)2 ≥ E Var (Y | G),

where equality is obtained for g(X) = E(Y | G).

Exercise 1.1. Prove the theorem. �

Remark 1.3. Theorem 1.4 has a Pythagorean touch. This is not accidental, in
fact, the second moment on the left (the hypotenuse) has been decomposed
into the second moment of Y minus its projection, and “the rest” (the two
other sides). The inequality in the theorem corresponds to the fact that the
shortest distance from a point to a plane is the normal, which in the present
context is obtained when g is chosen to be the projection. �

An important statistical application of the last two results is provided in
the following subsection.

1.3 The Rao-Blackwell Theorem

Suppose that we are given a family of probability measures {Pθ, θ ∈ Θ}, where
θ is some parameter and Θ is the parameter set. Two examples are the family
of exponential distributions, or the family of normal distributions. In the latter
case it may be so that the mean is given and the parameter set is the set of
possible variances or vice versa, or, possibly, that Θ = {(µ, σ), µ ∈ R, σ >
0}. If one would like to estimate the unknown parameter θ it is of obvious
interest to do so under minimal “risk”. Another feature is unbiasedness, which
means that the expected value of the estimator θ̂ equals the true value of the
parameter; E θ̂ = θ.

A special class of statistics are the sufficient statistics, the feature of which
is that the conditional distribution of any random variable given that statistic
is independent of the actual value of the unknown parameter.

Suppose that T is a sufficient statistic and that Y is an arbitrary unbiased
estimator. Then we know that the conditional distribution (Y | T = t), more
generally, (Y | σ{T}), is the same irrespective of the actual true value of the
unknown parameter θ.

Theorem 1.3 can now be used to show that the conditional expectation of
an unbiased estimator Y , given a sufficient statistic, T , has smaller variance
than Y itself, and is also unbiased.
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Theorem 1.5. (The Rao-Blackwell theorem)
Suppose that T is a sufficient statistic for θ ∈ Θ, and let Y be an unbiased
estimator of θ, such that

Eθ(Y − θ)2 < ∞ for all θ ∈ Θ.

Then

Eθ(Y − θ)2 = E
(
Y − E(Y | T )

)2 + Eθ

(
E(Y | T )− θ

)2
≥
{

E
(
Y − E(Y | T )

)2
,

Eθ

(
E(Y | T )− θ

)2
,

so that,

• the minimum square loss Eθ(Y − θ)2 equals E
(
Y − E(Y | T )

)2;
• the expected square loss of E(Y | T ) is always smaller than that of Y ;
• if Y is unbiased, then so is E(Y | T ).

Remark 1.4. Eθ denotes expectation under the hypothesis that the true value
of the parameter is θ. The absence of θ in the expression E

(
Y − E(Y | T )

)2
is a consequence of the sufficiency of the estimator T . �

Proof. The equality is taken from Theorem 1.3. The first conclusion is a con-
sequence of the first inequality, the second conclusion is a consequence of
the second inequality, and the third conclusion follows from the Proposition
1.1(a);

E
(
E(Y | T )

)
= E Y = θ. �

1.4 Conditional Moment Inequalities

In order to compare moments or sums of martingales we need conditional
versions of several standard inequalities from Chapter 3.

Theorem 1.6. (Conditional inequalities) Let X and Y be random variables,
and suppose that G is a sub-σ-algebra of F . The following conditional moment
inequalities hold almost surely (provided the corresponding moments exist):

• Conditional cr

E(|X + Y |r | G) ≤ cr

(
E(|X|r | G) + E(|Y |r | G)

)
,

where cr = 1 when r ≤ 1 and cr = 2r−1 when r ≥ 1.
• Conditional Hölder

|E(XY | G)| ≤ E(|XY | | G) ≤ ‖(X | G)‖p · ‖(Y | G)‖q.
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• Conditional Lyapounov

‖(X | G)‖r ≤ ‖(X | G)‖p for 0 < r ≤ p.

• Conditional Minkowski

‖
(
(X + Y ) | G

)
‖p ≤ ‖(X | G)‖p + ‖(Y | G)‖p.

• Conditional Jensen

g
(
E(X | G)

)
≤ E

(
g(X) | G

)
.

Proof. The proofs are the same as the unconditional ones; they all depart
from inequalities for real numbers. �

Exercise 1.2. Please, check the details. �

Finally we are ready to turn our attention to the theory of martingales.

2 Martingale Definitions

The point of departure is the traditional probability space, (Ω, F , P ) with,
additionally, a sequence {Fn, n ≥ 0} of increasing sub-σ-algebras of F – a
filtration, – which means that

F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ Fn+1 ⊂ · · · ⊂ F .

If n is interpreted as (discrete) time, then Fn contains the information up to
time n.

We also introduce F∞ = σ{∪nFn}. Recall that the union of a sequence of
σ-algebras is not necessarily a σ-algebra.

Definition 2.1. A sequence {Xn, n ≥ 0} of random variables is {Fn}-
adapted if Xn is Fn-measurable for all n. If Fn = σ{X0, X1, X2, . . . , Xn}
we call the sequence adapted, and we call {Fn, n ≥ 0} the sequence of natural
σ-algebras, or the natural filtration.

Definition 2.2. A sequence {Xn, n ≥ 0} of random variables is {Fn}-
predictable if Xn ∈ Fn−1 for all n. If Fn = σ{X0, X1, X2, . . . , Xn} we
call the sequence predictable.

Definition 2.3. A sequence An, n ≥ 0} is called an increasing process if
A0 = 0, An ↗, and {An} is predictable (with respect to {Fn, n ≥ 0}). �

Here is now the definition we have been waiting for.



478 10 Martingales

Definition 2.4. An integrable {Fn}-adapted sequence {Xn} is called a mar-
tingale if

E(Xn+1 | Fn) = Xn a.s. for all n ≥ 0.

It is called a submartingale if

E(Xn+1 | Fn) ≥ Xn a.s. for all n ≥ 0,

and a supermartingale if

E(Xn+1 | Fn) ≤ Xn a.s. for all n ≥ 0.

We call it an Lp-martingale (submartingale, supermartingale) if, in addition,
E|Xn|p < ∞ for all n. We call it Lp-bounded if, moreover, supn E|Xn|p < ∞.

Definition 2.5. A non-negative supermartingale {(Xn,Fn), n ≥ 0}, such
that E Xn → 0 as n →∞ is called a potential. �

Remark 2.1. The equality and inequalities in the definition are almost sure
relations. In order to make the material easier to read we shall refrain from
repeating that all the time. We must remember throughout that a statement
such as X = E(Y | G) in reality means X

a.s.= E(Y | G).
Moreover, a statement such as {Xn, n ≥ 0} is a martingale “does not

make sense” without a filtration having been specified. We shall, at times,
be somewhat careless on that point. Frequently it is fairly obvious that the
natural filtration is the intended one. �

Precisely as in the context of sums of independent random variables it turns
out that it is sometimes more convenient to talk about increments.

Definition 2.6. An integrable, {Fn}-adapted sequence {Un} is called a mar-
tingale difference sequence if

E(Un+1 | Fn) = 0 for all n ≥ 0.

It is called a submartingale difference sequence if

E(Un+1 | Fn) ≥ 0 for all n ≥ 0,

and a supermartingale difference sequence if

E(Un+1 | Fn) ≤ 0 for all n ≥ 0. �

Remark 2.2. It follows from the definition that a martingale is both a sub-
martingale and a supermartingale, and that switching signs turns a submartin-
gale into a supermartingale (and vice versa).
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Remark 2.3. Martingales, submartingales and supermartingales are related to
harmonic-, subharmonic- and superharmonic functions, which are central ob-
jects in the theory of harmonic analysis. Many results in the present context
have counterparts in harmonic analysis and there is an important interplay
between the two areas, for example, in terms of proof techniques. �

In order to provide interesting examples we need to establish some properties.
However, to have one example in mind already, the sequence of partial sums
of independent random variables with mean 0 constitutes a martingale.

2.1 The Defining Relation

It follows from the definition of conditional expectations that an equivalent
definition of a martingale is that∫

Λ

Xn+1 dP =
∫

Λ

Xn dP for all Λ ∈ Fn, n ≥ 0,

or that ∫
Λ

Xn dP =
∫

Λ

Xm dP for all Λ ∈ Fm, 0 ≤ m ≤ n.

Analogously {Xn, n ≥ 0} is a submartingale if∫
Λ

Xn+1 dP ≥
∫

Λ

Xn dP for all Λ ∈ Fn, n ≥ 0,

or, equivalently,∫
Λ

Xn dP ≥
∫

Λ

Xm dP for all Λ ∈ Fm, 0 ≤ m ≤ n,

and a supermartingale if∫
Λ

Xn+1 dP ≤
∫

Λ

Xn dP for all Λ ∈ Fn, n ≥ 0,

or, equivalently,∫
Λ

Xn dP ≤
∫

Λ

Xm dP for all Λ ∈ Fm, 0 ≤ m ≤ n.

Integrability and proper adaptivity must, of course, also be assumed.

2.2 Two Equivalent Definitions

We can now prove the statements made prior to the smoothing lemma, thereby
obtaining equivalent definitions of martingales, sub- and supermartingales.
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Theorem 2.1. (i) An integrable {Fn}-adapted sequence {Xn} is a martingale
iff

E(Xn | Fm) = Xm for all 0 ≤ m ≤ n.

It is a submartingale iff

E(Xn | Fm) ≥ Xm for all 0 ≤ m ≤ n,

and a supermartingale iff

E(Xn | Fm) ≤ Xm for all 0 ≤ m ≤ n.

(ii) A martingale has constant expectation. A submartingale has non-decrea-
sing expectations. A supermartingale has non-increasing expectations.

Proof. The sufficiency in (i) is, of course, trivial; put n = m+1. To prove the
necessity we apply Lemma 1.1.

For martingales,

E(Xn | Fm) = E(E(Xn | Fn−1) | Fm) = E(Xn−1 | Fm) = · · ·
= E(Xm+1 | Fm) = Xm.

For submartingales,

E(Xn | Fm) = E(E(Xn | Fn−1) | Fm) ≥ E(Xn−1 | Fm) ≥ · · ·
≥ E(Xm+1 | Fm) ≥ Xm,

and for supermartingales the conclusion follows by a sign change; recall
Remark 2.2.

To prove (ii) we apply part (ii) of the smoothing lemma, according to
which

E Xm = E(E(Xn | Fm)) = E Xn,

for martingales,
E Xm ≤ E(E(Xn | Fm)) = E Xn,

for submartingales, and

E Xm ≥ E(E(Xn | Fm)) = E Xn,

for supermartingales. �

If we interpret a martingale as a game, part (ii) states that, on average,
nothing happens, and part (i) states that the expected state of the game given
the past history equals the present state. A poetic way to state this is that
in a sense life itself is a martingale. This was formulated by the Nobel Prize
winner of 2002, Imre Kertész, in his book Ad kudarc [155] with the Swedish
title Fiasko2 where he writes as follows about the future:

2Fiasko is (of course) Swedish for fiasco. The Hungarian title is more toward
“failure” without the disastrous connotation of fiasco.
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[...] det är inte framtiden som väntar mig, bara nästa ögonblick, framti-
den existerar ju inte, den är inget annat än ett ständigt fortg̊aende, ett
tillstädesvarande nu. [...] Prognosen för min framtid – det är kvalitén
p̊a mitt nu.3

The following, equivalent, definition is expressed in terms of (sub-, super-)
martingale difference sequences.

Theorem 2.2. Let {Un} be {Fn}-adapted and integrable, and set Xn =∑n
k=0 Uk, n ≥ 0.

(i) {(Xn,Fn), n ≥ 0} is a martingale iff {(Un,Fn), n ≥ 0} is a martingale
difference sequence, a submartingale iff {(Un,Fn), n ≥ 0} is a submartin-
gale difference sequence, and a supermartingale iff {(Un,Fn), n ≥ 0} is a
supermartingale difference sequence.
(ii) A martingale difference sequence has constant expectation 0; a sub-
martingale difference sequence has non-negative expectations; a supermartin-
gale difference sequence has non-positive expectations.

Exercise 2.1. Prove the theorem. �

3 Examples

We begin by verifying the claim about sums of independent random variables
with mean 0.

Example 3.1. Suppose that Y1, Y2, . . . are independent random variables with
mean 0, and set Xn =

∑n
k=1 Yk, n ≥ 0 (with Y0 = X0 = 0). Moreover,

let Fn = σ{Y0, Y1, Y2, . . . , Yn} = σ{X0, X1, X2, . . . , Xn}, n ≥ 0. Then
{(Xn,Fn), n ≥ 0} is a martingale (and {(Yn,Fn), n ≥ 0} is a martingale
difference sequence). Namely,

E(Xn+1 | Fn) = E(Xn + Yn+1 | Fn) = Xn + E(Yn+1 | Fn) = Xn + 0 = Xn.

Example 3.2. If, in particular, Y1, Y2, . . . , in addition, are identically dis-
tributed, the conclusion in Example 3.1 can be rephrased as a centered random
walk is a martingale. �

Example 3.3. It is tempting to guess that, for example, the square of an
L2-martingale is a martingale. This is, however, not the case (it is, as we
shall soon find out, a submartingale), but by proper compensation one can
exhibit a martingale.

3[...] it is not the future that is expecting me, just the next moment, the future
does not exist, it is nothing but a perpetual ongoing, a present now. [...] The pre-
diction for my future – is the quality of my present. Translation (from Swedish) and
italicization, by the author of this book.
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As a preliminary example, let Y1, Y2, . . . be independent random variables,
such that E Yk = µk and VarYk = σ2

k, and set s2
n =

∑n
k=1 σ2

k, n ≥ 1. Once
again, {Fn, n ≥ 1} are the natural σ-algebras. Finally, set

Xn =
( n∑

k=1

(Yk − µk)
)2

− s2
n, n ≥ 1.

Then {(Xn,Fn), n ≥ 1} is a martingale.
To see this, we first note that it is no restriction to assume that all means

are 0 (otherwise, subtract them from the original summands and rename
them). By exploiting the rules for conditional expectations,

E(Xn+1 | Fn) = E

(( n∑
k=1

Yk + Yn+1

)2
− s2

n+1 | Fn

)

= E

(( n∑
k=1

Yk

)2
| Fn

)
+ E

(
Y 2

n+1 | Fn

)
+ 2E

(( n∑
k=1

Yk

)
Yn+1 | Fn

)
− s2

n+1

=
( n∑

k=1

Yk

)2
+ σ2

n+1 + 2
( n∑

k=1

Yk

)
E
(
Yn+1 | Fn

)
− s2

n − σ2
n+1

= Xn + 2
( n∑

k=1

Yk

)
· 0 = Xn.

If, in particular, Y1, Y2, . . . are identically distributed and the mean is 0, then
{Xn = (

∑n
k=1 Yk)2 − nσ2

1 , n ≥ 1}, is a martingale.

Example 3.4. Suppose that Y1, Y2, . . . are independent random variables with
mean 1, set Xn =

∏n
k=1 Yk, n ≥ 1, (with Y0 = X0 = 1), and let {Fn, n ≥ 0}

be the natural σ-algebras. Then {(Xn,Fn), n ≥ 0} is a martingale, because
in this case

E(Xn+1 | Fn) = E(Xn · Yn+1 | Fn) = Xn · E(Yn+1 | Fn) = Xn · 1 = Xn.

Example 3.5. Double or nothing. Set X0 = 1 and, for n ≥ 1, recursively,

Xn+1 =

{
2Xn, with probability 1

2 ,

0, with probability 1
2 ,

or, equivalently,

P (Xn = 2n) =
1
2n

, P (Xn = 0) = 1− 1
2n

.

Since

Xn =
n∏

k=1

Yk,
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where Y1, Y2, . . . are independent, identically distributed random variables
which equal 2 or 0, both with probability 1/2, Xn equals a product of in-
dependent, identically distributed random variables with mean 1, so that
{Xn, n ≥ 0} is a martingale.

Example 3.6. Suppose that Y1, Y2, . . . are independent, identically distributed
random variables with a finite moment generating function ψ, and set Sn =∑n

k=1 Yk, n ≥ 1. Then

Xn =
etSn

(ψ(t))n
=

n∏
k=1

etYk

ψ(t)
, n ≥ 1,

is a martingale, frequently called the exponential martingale, (for t inside the
range of convergence of the moment generating function).

This follows from the Example 3.4, since Xn is a product of n independent
factors with mean 1.

Example 3.7. If Y1, Y2, . . . are independent random variables with common
density f , the sequence of likelihood ratios (Subsection 2.16.4) equals

Ln =
n∏

k=1

f(Yk; θ1)
f(Yk; θ0)

, n ≥ 0,

where θ0 and θ1 are the values of some parameter under the null- and alter-
native hypotheses, respectively, constitutes a martingale of the product type
under the null hypothesis;

E
(f(Yk; θ1)

f(Yk; θ0)

)
=
∫ ∞

−∞

f(y; θ1)
f(y; θ0)

f(y; θ0) dy =
∫ ∞

−∞
f(y; θ1) dy = 1.

Example 3.8. One of the applications in Subsection 2.15.1 was the Galton-
Watson process. Starting with one founding member, X(0) = 1, we found
that, if

X(n) = # individuals in generation n, n ≥ 1,

and {Yk, k ≥ 1} and Y are generic random variables denoting children, then

X(2) = Y1 + · · ·+ YX(1),

and, recursively,
X(n + 1) = Y1 + · · ·+ YX(n).

Suppose now that the mean number of off-springs equals m < ∞, and set
Fn = σ{X(k), 0 ≤ k ≤ n}. It follows from the reproduction rules that the
branching process is Markovian, so that

E
(
X(n + 1) | Fn

)
= E

(
X(n + 1) | X(n)

)
= X(n) ·m,
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which implies that, setting Xn = X(n)
mn , n ≥ 1, we obtain,

E(Xn+1 | Fn) = m−(n+1)E
(
X(n + 1) | X(n)

)
= m−(n+1)X(n) ·m = Xn.

This shows that {(Xn,Fn), n ≥ 0} is a martingale.

Example 3.9. A special kind of martingales is constructed as conditional ex-
pectations of integrable random variables. Namely, let Z have finite expecta-
tion, let {Fn, n ≥ 0} be a filtration, and set

Xn = E(Z | Fn), n ≥ 0.

Then Xn ∈ Fn for all n,

E|Xn| = E|E(Z | Fn)| ≤ E
(
E(|Z| | Fn)

)
= E|Z| < ∞, (3.1)

in view of Proposition 1.1(h) and the smoothing lemma, and

E(Xn+1 | Fn) = E
(
E(Z | Fn+1) | Fn

)
= E(Z | Fn) = Xn,

via another application of the smoothing lemma, which establishes that
{(Xn,Fn), n ≥ 0} is a martingale.

We shall later find that this class of martingales has additional pleasant
features.

Example 3.10. Any integrable, adapted sequence can be adjusted to become
a martingale. To see this, let {Yn, n ≥ 0} be {Fn}-adapted, set X0 = Y0 and

Xn =
n∑

k=1

(
Yk − E(Yk | Fk−1)

)
, n ≥ 1.

By smoothing, and the fact that Yk ∈ Fn for 1 ≤ k ≤ n,

E(Xn+1 | Fn) = E
( n+1∑

k=1

(
Yk − E(Yk | Fk−1)

)
| Fn

)

=
n∑

k=1

E
(
Yk − E(Yk | Fk−1) | Fn

)
+ E

(
(Yn+1 − E(Yn+1 | Fn)) | Fn

)

=
n∑

k=1

(
Yk − E(Yk | Fk−1)

)
+ E(Yn+1 | Fn)− E(Yn+1 | Fn)

= Xn + 0 = Xn,

that is, {(Xn,Fn), n ≥ 0} is a martingale.
As a corollary we find that the partial sums of any adapted, integrable

sequence can be decomposed into a martingale + the sum of the conditional
expectations:

n∑
k=1

Yk = Xn +
n∑

k=1

E(Yk | Fk−1), n ≥ 1.
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Example 3.11. If {Yn, n ≥ 0}, in addition, are independent with E Yk = µk,
then conditional expectations reduce to ordinary ones and the decomposition
reduces to

n∑
k=1

Yk =
n∑

k=1

(Yk − µk) +
n∑

k=1

µk, n ≥ 1.

Example 3.12. Let {(Yn,Fn), n ≥ 0} be a martingale with martingale differ-
ence sequence {Un, n ≥ 0}, suppose that {vk, k ≥ 1} is a predictable sequence,
set X0 = 0, and

Xn =
n∑

k=1

Ukvk, n ≥ 1.

Such a sequence {Xn, n ≥ 0} is called a martingale transform, and is in itself
a martingale. Namely, recalling Proposition 1.3, we obtain

E(Xn+1 | Fn) =
n∑

k=1

E(Ukvk | Fn) + E(Un+1vn+1 | Fn)

= Xn + vn+1E(Un+1 | Fn) = Xn + vn+1 · 0 = Xn.

Typical examples of predictable sequences appear in gambling or finance con-
texts where they might constitute strategies for future action. The strategy is
then based on the current state of affairs. If, for example, k − 1 rounds have
just been completed, then the strategy for the kth round is vk ∈ Fk−1, the
money invested in that round is Uk ∈ Fk.

Another situation is when vk = 1 as long as some special event has not yet
happened and 0 thereafter, that is, the game goes on until that special event
occurs. In this case we are faced with a stopped martingale, a topic we shall
return to in Section 10.8.

Example 3.13. Suppose that we are given the setup of Examples 3.1 or 3.2. If
E Yn > 0 for all n, then {(Xn,Fn), n ≥ 0} is a submartingale, and if E Yn < 0
for all n we have a supermartingale.

To see this we note that {Xn − E Xn, n ≥ 0} is a martingale, so that, by
adding and subtracting the sum of the expectations,

E(Xn+1 | Fn) = E
(
(Xn − E Xn + (Yn+1 − E Yn+1) | Fn

)
+ E Xn + E Yn+1

= Xn − E Xn + 0 + E Xn + E Yn+1 = Xn + E Yn+1{
≥ Xn, when E Yn > 0,

≤ Xn, when E Yn < 0.

In particular, in the random walk case, with E Y1 = µ, we have

E(Xn+1 | Fn) = Xn + µ,

and, of course, the analogous conclusion. �
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Something between examples and properties is what happens if one adds
or subtracts martingales or submartingales, takes the largest of two, and so
on.

Proposition 3.1. Let a, b ∈ R, and suppose that {(X(1)
n ,Fn), n ≥ 0} and

{(X(2)
n ,Fn), n ≥ 0} are martingales. Then

• {(aX
(1)
n + bX

(2)
n ,Fn), n ≥ 0} is a martingale;

• {(max{X(1)
n , X

(2)
n },Fn), n ≥ 0} is a submartingale;

• {(min{X(1)
n , X

(2)
n },Fn), n ≥ 0} is a supermartingale.

Proof. The first statement is a simple consequence of the linearity of condi-
tional expectation; Proposition 1.1(b):

E(aX
(1)
n+1 + bX

(2)
n+1 | Fn) = aE(X(1)

n+1 | Fn)+ bE(X(2)
n+1 | Fn) = aX(1)

n + bX(2)
n .

Next, since max{X(1)
n , X

(2)
n } ≥ X

(1)
n and max{X(1)

n , X
(2)
n } ≥ X

(2)
n , it follows

that

E(max{X(1)
n+1, X

(2)
n+1} | Fn) ≥ max{E(X(1)

n+1 | Fn), E(X(2)
n+1 | Fn)}

= max{X(1)
n , X(2)

n },

which proves the second assertion.
The third statement follows similarly with the inequality sign reversed,

since that minimum is smaller than each of the individual ones. �

The analog for submartingales is a bit more delicate, since changing the sign
changes the submartingale into a supermartingale, and also because the in-
equality involved in max and min is not allowed to conflict with the inequality
in the definition of submartingales and supermartingales. We leave it to the
reader to prove the following results (which, alternatively, might have been
called exercises).

Proposition 3.2. Let a, b > 0, and suppose that {(X(1)
n ,Fn), n ≥ 0} and

{(X(2)
n ,Fn), n ≥ 0} are submartingales. Then {(aX

(1)
n + bX

(2)
n ,Fn), n ≥ 0}

and {(max{X(1)
n , X

(2)
n },Fn), n ≥ 0} are submartingales.

Proposition 3.3. Let a, b > 0, and suppose that {(X(1)
n ,Fn), n ≥ 0} and

{(X(2)
n ,Fn), n ≥ 0} are supermartingales. Then {(aX

(1)
n + bX

(2)
n ,Fn), n ≥ 0}

and {(min{X(1)
n , X

(2)
n },Fn), n ≥ 0} are supermartingales.

Proposition 3.4. Let a, b ∈ R, and suppose that {(X(1)
n ,Fn), n ≥ 0} is a

martingale, and that {(X(2)
n ,Fn), n ≥ 0} is a submartingale. Then {(aX

(1)
n +

bX
(2)
n ,Fn), n ≥ 0} is a submartingale for b > 0, and a supermartingale for

b < 0.
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We have just seen that changing the sign transforms a submartingale into
a supermartingale. Are there other connections of this kind?

The following result, which is a consequence of the conditional Jensen
inequality, tells us (a little more than) the fact that a convex function of a
martingale is a submartingale.
Theorem 3.1. If {(Xn,Fn), n ≥ 0} is

(a) a martingale and g a convex function, or
(b) a submartingale and g a non-decreasing convex function,

and, moreover, E|g(Xn)| < ∞ for all n, then

{(g(Xn),Fn), n ≥ 0} is a submartingale.

Proof. Suppose that {(Xn,Fn), n ≥ 0} is a martingale. Then, by convexity,

E(g(Xn+1) | Fn) ≥ g(E(Xn+1 | Fn)) = g(Xn),

which proves the conclusion in that case.
For submartingales, the first inequality remains unchanged, but since

E(Xn+1 | Fn) ≥ Xn, the final equality becomes a ≥-inequality only if g
is non-decreasing. �

Typical martingale examples are the functions |x|p, for p ≥ 1, x+, x−

and |x|p(log+ |x|)r for p, r ≥ 1. Typical submartingale examples are the func-
tions x+ and (x+)p, p > 1. Note that |x| and x− do not work for general
submartingales.

Because of their special importance we collect some such results as a sep-
arate theorem (in spite of the fact that it is a corollary).
Theorem 3.2. (a) If {(Xn,Fn), n ≥ 0} is a martingale, then {(X+

n ,Fn), n ≥
0}, {(X−

n ,Fn), n ≥ 0}, and {(|Xn|,Fn), n ≥ 0} are submartingales.
(b) If {(Xn,Fn), n ≥ 0} is a martingale, and E|Xn|p < ∞ for all n and
some p > 1, then {(|Xn|p,Fn), n ≥ 0} is a submartingale.
(c) If {(Xn,Fn), n ≥ 0} is a submartingale, then so is {(X+

n ,Fn), n ≥ 0}.
(d) If {(Xn,Fn), n ≥ 0} is a non-negative submartingale, and E|Xn|p < ∞
for all n and some p ≥ 1, then {(|Xn|p,Fn), n ≥ 0} is a submartingale.

Remark 3.1. It is not far-fetched to ask for converses. For example, is it true
that every non-negative submartingale can be represented as the absolute
value of a martingale? It was shown in [94] that the answer is positive. It
is also mentioned there that it is not true that every submartingale can be
represented as a convex function of a martingale. �

4 Orthogonality

Martingales are (i.a.) generalizations of random walks, which have independent
increments. Martingales do not, but their increments, the martingale differ-
ences, are orthogonal (provided second moments exist). This also implies a
kind of Pythagorean relation for second moments.
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Lemma 4.1. Let {(Xn,Fn), n ≥ 0} be an L2-martingale with martingale
difference sequence {Un}.
(a) Then

E UnUm =

{
E U2

m, for n = m,

0, otherwise.

(b) For m < n,

E UnXm = E
(
UnE(Xn | Fm)

)
= 0,

E XnXm = E
(
XmE(Xn | Fm)

)
= E X2

m,

E(Xn −Xm)2 = E X2
n − E X2

m,

E

( n∑
k=m+1

Uk

)2

=
n∑

k=m+1

E U2
k .

(c) If {(Xn,Fn), n ≥ 0} is an L2-submartingale (supermartingale), then the
same hold true with = replaced by ≥ (≤).

Proof. This is, once again, an exercise in smoothing, keeping Proposition 1.3
in mind.
(a): There is nothing to prove for the case n = m. If m < n,

E UnUm = E(E(UnUm | Fm)) = E
(
UmE(Un | Fm)

)
= E(Um · 0) = 0.

(b): Similarly,

E UnXm = E
(
E(UnXm | Fm)

)
= E

(
XmE(Un | Fm)

)
= E(Xm · 0) = 0,

E XnXm = E
(
E(XnXm | Fm)

)
= E

(
XmE(Xn | Fm)

)
= E X2

m,

which also establishes the next relation, since

E(Xn −Xm)2 = E X2
n − 2E XnXm + E X2

m.

The last one is just a restatement of the third one, or, alternatively, a conse-
quence of (i).
(c): For submartingales and supermartingales the martingale-equality is re-
placed by the corresponding inequality at the appropriate place. �

Remark 4.1. In the martingale case, a rewriting of the third relation as

E X2
n = E X2

m + E(Xn −Xm)2

shows that martingales have orthogonal increments, and, in addition, that
E X2

n ≥ E X2
m. Note that the inequaity also is a consequence of the fact that

{X2
n, n ≥ 1} is a submartingale (Theorem 3.2).

Remark 4.2. In particular, if {Un} are independent with finite variances we
rediscover the well-known fact that the variance of a sum equals the sum of
the variances of the summands. �
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5 Decompositions

The analog of centering random walks (whose increments have positive mean)
is conditional centering of submartingales.

Theorem 5.1. (The Doob decomposition)
Any submartingale, {(Xn,Fn), n ≥ 0}, can be uniquely decomposed into
the sum of a martingale, {(Mn,Fn), n ≥ 0}, and an increasing process,
{(An,Fn), n ≥ 0}:

Xn = Mn + An, n ≥ 0.

Proof. Recalling Example 3.10 we know that any adapted sequence can be
adjusted to become a martingale. Using that recipe we can write

Xn = Mn + An for n ≥ 0,

where M0 = X0, so that A0 = X0 −M0 = 0, and

Mn =
n∑

k=1

(
Xk − E(Xk | Fk−1)

)
and An = Xn −Mn, n ≥ 1,

where, thus {(Mn,Fn), n ≥ 0} is a martingale. The next step therefore is to
prove that {(An,Fn), n ≥ 0} is an increasing process.

We already know that A0 = 0. Secondly, An is predictable, since

An =
n∑

k=1

E(Xk | Fk−1)−
n−1∑
k=1

Xk ∈ Fn−1.

Finally,

An+1 −An = Xn+1 −Mn+1 − (Xn −Mn) = (Xn+1 −Xn)− (Mn+1 −Mn)
= Xn+1 −Xn − (Xn+1 − E(Xn+1 | Fn))
= E(Xn+1 | Fn)−Xn ≥ 0,

by the submartingale property.
This establishes existence of a decomposition, and it remains to prove

uniqueness.
Thus, suppose that Xn = M ′

n + A′
n is another decomposition. Then, by

predictablity,

A′
n+1 −A′

n = E(A′
n+1 −A′

n | Fn) = E({(Xn+1 −Xn)− (M ′
n+1 −M ′

n)} | Fn)
= E(Xn+1 | Fn)−Xn − (M ′

n −M ′
n) = E(Xn+1 | Fn)−Xn

= An+1 −An,

which, together with the fact that A0 = A′
0 = 0, proves uniqueness of the

increasing process, and therefore, since

Mn = Xn −An = Xn −A′
n = M ′

n,

also of the martingale. �
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In developing theories or proving theorems it is, as we have seen a num-
ber of times, often convenient to proceed via positive “objects” and then to
decompose, x = x+ − x−, in order to treat the general case. For proving
martingale convergence the next decomposition does that for us.

Theorem 5.2. (The Krickeberg decomposition)
(i) For any martingale, {(Xn,Fn), n ≥ 0}, such that

sup
n

E(X+
n ) < ∞,

there exist non-negative martingales {(M (i)
n ,Fn), n ≥ 0}, i = 1, 2, such that

Xn = M (1)
n −M (2)

n .

(ii) For any submartingale {(Xn,Fn), n ≥ 0}, such that

sup
n

E(X+
n ) < ∞,

there exist non-negative martingales {(M (i)
n ,Fn), n ≥ 0}, i = 1, 2, and an

increasing process {(An,Fn), n ≥ 0}, such that

Xn = M (1)
n −M (2)

n + An.

Proof. We begin by observing that (ii) follows from (i) with the aid of the
Doob decomposition, so we only have to prove the statement for martingales.

The immediate idea is (of course?) the decomposition Xn = X+
n − X−

n .
However, in view of Theorem 3.1, this decomposes the martingale into the
difference of non-negative submartingales.

If the martingale is as given in Example 3.9, that is, of the form Xn =
E(Z | Fn) for some integrable random variable Z, then

Xn = E(Z+ | Fn)− E(Z− | Fn), n ≥ 0

does the job.
In the general case one makes a similar attack, but the details are a bit

more sophisticated. Namely, set,

Ym,n = E(X+
m | Fn) for m ≥ n,

and note that {(Ym,n,Fn), 0 ≤ n ≤ m} is a submartingale for every fixed
m. The idea is to let m → ∞, thereby obtaining one of the non-negative
martingales, (with + replaced by − for the other one).

Since, by Theorem 3.1, {(X+
n ,Fn), n ≥ 0} is a submartingale, it follows

that E(X+
m+1 | Fm) ≥ X+

m, so that, by smoothing,

Ym+1,n = E
(
E(X+

m+1 | Fm) | Fn

)
≥ E(X+

m | Fn) = Ym,n.
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Consequently, Ym,n ↑ M
(1)
n , say, almost surely as m → ∞ for fixed n, where

M
(1)
n is non-negative and Fn-measurable, since m ≥ n is arbitrary..
Moreover, by monotonicity and the L1-boundedness of X+

n ,

E M (1)
n = E lim

m→∞
Ym,n = lim

m→∞
E(E(X+

m | Fn))

= lim
m→∞

E X+
m ≤ sup

m
E(X+

m) < ∞,

that is, M
(1)
n is integrable. Finally, to verify the martingale property, we exploit

monotonicity and smoothing once more:

E(M (1)
n+1 | Fn) = E( lim

m→∞
Ym,n+1 | Fn) = lim

m→∞
E
(
E(X+

m | Fn+1) | Fn

)
= lim

m→∞
E(X+

m | Fn) = M (1)
n . �

Remark 5.1. The Krickeberg decomposition is not unique. This follows from
the fact, to be proven later, that Xn

a.s.→ X∞ as n →∞, and that therefore

Xn =
(
M (1)

n + E(|X∞| | Fn)
)
−
(
M (2)

n + E(|X∞| | Fn)
)

is another decomposition of the desired kind, since the sum of two non-negative
martingales is, again a non-negative martingale. This complication will, how-
ever, never be a problem in our discussion. �

To prove the next decomposition we need the convergence theorem. Since
the proof to a large extent is based on the Doob decomposition, and the fact
that changing sign in a supermartingale transforms it into a submartingale,
we postpone the proof to Problem 17.15. As for the definition of a potential,
recall Definition 2.5.

Theorem 5.3. (The Riesz decomposition)
Any supermartingale, {(Xn,Fn), n ≥ 0}, such that

inf
n

E(Xn) > −∞,

can be uniquely decomposed into a martingale, {(Mn,Fn), n ≥ 0}, and a
potential, {(Zn,Fn), n ≥ 0};

Xn = Mn + Zn.

6 Stopping Times

Several inequalities in Chapter 3 concerning maximal partial sums were proved
by splitting events, such as the maximum being larger than some number, into
disjoint “slices” that kept track of when the first passage across that number
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occurred. At the end of Section 3.7 we found that life would be made easier by
introducing a random index that kept track of exactly when this first passage
occurred. Such indices are examples of the more general concept of stopping
times, which turn out to have several attractive properties in the martingale
context. For example, many martingales can be suitably “stopped” in such a
way that the martingale property remains.

Formally we allow stopping times to assume the value +∞ with positive
probability, which, vaguely speaking, corresponds to the situation that the
kind of stopping alluded to above never occurs.

Set N = {1, 2, . . .} and N̄ = {1, 2, . . . ,∞}.
Definition 6.1. A positive, integer valued, possibly infinite, random variable
τ is called a stopping time (with respect to {Fn, n ≥ 1}) if

{τ = n} ∈ Fn for all n ∈ N. �

Lemma 6.1. A positive integer valued, possibly infinite, random variable τ is
a stopping time iff one of the following holds:

{τ ≤ n} ∈ Fn for all n ∈ N,

{τ > n} ∈ Fn for all n ∈ N.

Proof. Immediate, from the relations

{τ ≤ n} =
n⋃

k=1

{τ = k},

{τ = n} = {τ ≤ n}� {τ ≤ n− 1},
{τ > n} =

(
{τ ≤ n}

)c
. �

The important feature is that stopping times are measurable with respect
to “what has happened so far”, and, hence, do not depend on the future.

Typical stoppings time (as hinted at in the introductory paragraph) are
first entrance times, such as the first time a random walk reaches a certain
level, the first time a simple, symmetric random walk returns to 0, and so
on. Such questions can be answered by looking at what has happened until
“now”.

Typical random indices that are not stopping times are last exit times, for
example, the last time a simple, symmetric random walk returns to 0. Such
questions cannot be answered without knowledge about the future.

The intimate relation between stopping times and time suggests the in-
troduction of a σ-algebra that contains all information prior to τ , just as Fn

contains all information prior to n.

Definition 6.2. The pre-τ -σ-algebra Fτ of a stopping time τ is defined as

Fτ = {A ∈ F∞ : A ∩ {τ = n} ∈ Fn for all n}.
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Given its name, one would expect that the pre-τ -σ-algebra is, indeed, a
σ-algebra.

Proposition 6.1. Fτ is a σ-algebra.

Proof. We have to show that Ω, complements, and countable unions of sets
in Fτ belong to Fτ .

Clearly Ω ∈ F∞ and Ω ∩ {τ = n} = {τ = n} ∈ Fn for all n.
Secondly, suppose that A ∈ Fτ . Then, for all n,

Ac ∩ {τ = n} = {Ω � A} ∩ {τ = n} = {Ω ∩ {τ = n}}� {A ∩ {τ = n}}
= Ω � {A ∩ {τ = n}} ∈ Fn.

Finally, if {Ak, k ≥ 1} all belong to Fτ , then, for all n,{⋃
k

Ak

}
∩ {τ = n} =

⋃
k

{Ak ∩ {τ = n}} ∈ Fn.
�

Exercise 6.1. In the literature one can also find the following definition of the
pre-τ -σ-algebra, namely

Fτ =
{

A ∈ F∞ : A =
⋃
n

{An ∩ {τ ≤ n}
}

where An ∈ Fn for all n.

Prove that this definition is equivalent Definition 6.2. �

Next, some propositions with general facts about stopping times.

Proposition 6.2. Following are some basic facts:

(a) Every positive integer is a stopping time.
(b) If τ ≡ k, then Fτ = Fk.
(c) Fτ ⊂ F∞.
(d) τ ∈ Fτ .
(e) τ ∈ F∞.
(f) {τ = +∞} ∈ F∞.

Proof. Suppose that τ ≡ k. Then

{τ = n} =

{
Ω, when n = k,

∅, otherwise.

This proves the (a), since Ω and ∅ both belong to Fn for all n. As for (b), let
A ∈ F∞. Then

A ∩ {τ = n} =

{
A, when n = k,

∅, otherwise,

and the conclusion follows.
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Since Fτ is defined as sets in F∞ with an additional property it is obvious
that Fτ ⊂ F∞, which verifies claim (c), and since, for all m ∈ N,

{τ = m} ∩ {τ = n} =

{
{τ = n}, when m = n,

∅, otherwise,
∈ Fn for all n ∈ N,

it follows that {τ = m} ∈ Fτ for all m, which means that τ ∈ Fτ , so that (d)
holds true.

Statement (e) follows by joining (c) and (d). Finally, (f) follows from the
observation that

{τ = +∞} =
(⋃

n

{τ = n}
)c

∈ F∞. �

The next proposition concerns relations between stopping times.

Proposition 6.3. Suppose that τ1 and τ2 are stopping times. Then

(a) τ1 + τ2, min{τ1, τ2}, and max{τ1, τ2} are stopping times;
(b) τM = min{τ,M} is a bounded stopping time for any M ≥ 1;
(c) what about τ1 − τ2?
(d) if {τk, k ≥ 1} are stopping times, then so are

∑
k τk, mink{τk}, and

maxk{τk};
(e) if τn are stopping times and τn ↓ τ , then τ is a stopping time;
(f) if τn are stopping times and τn ↑ τ , then τ is a stopping time;
(g) if A ∈ Fτ1 , then A ∩ {τ1 ≤ τ2} ∈ Fτ2 ;
(h) if τ1 ≤ τ2, then Fτ1 ⊂ Fτ2 .

Proof. For all n,

{τ1 + τ2 = n} =
n⋃

k=0

{
{τ1 = k} ∩ {τ2 = n− k}

}
∈ Fn,

{min{τ1, τ2} > n} = {τ1 > n} ∩ {τ2 > n} ∈ Fn,

{max{τ1, τ2} ≤ n} = {τ1 ≤ n} ∩ {τ2 ≤ n} ∈ Fn,

which proves (a) – recall Lemma 6.1. And (b), since M is a stopping time
and, obviously, τM ≤ M . However, the difference between two stopping times
may be negative, so the answer to that one is negative. Note also that if the
difference equals n then one them must be larger than n which violates the
measurability condition. (d) follows by induction from (a), and (e) and (f) by
monotonicity; {τ = n} = ∩k{τk = n} ∈ Fn and {τ = n} = ∪k{τk = n} ∈ Fn,
respectively.

In order to prove (g), we first note that A ∈ F∞. Now, for all n,

A ∩ {τ1 ≤ τ2} ∩ {τ2 = n} =
{
A ∩ {τ1 ≤ τ2} ∩ {τ1 ≤ n} ∩ {τ2 = n}

}
⋃ {

A ∩ {τ1 ≤ τ2} ∩ {τ1 > n} ∩ {τ2 = n}
}

=
{
A ∩ {τ1 ≤ n}

}
∩ {τ2 = n} ∈ Fn. (6.1)

This proves that A ∩ {τ1 ≤ τ2} ∈ Fτ2 , which establishes (g).
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As for (h), the left-most member in (6.1) equals A∩ {τ2 = n} by assump-
tion, so that, in this case, A ∈ Fτ2 . This proves that every A ∈ F∞ that
belongs to Fτ1 also belongs to Fτ2 , and, hence, that Fτ1 ⊂ Fτ2 . �

Remark 6.1. If A ∈ Fτ2 , then an analogous argument shows that

A ∩ {τ1 = n} =
(
A ∩ {τ2 ≥ n}

)
∩ {τ1 = n},

from which it, similarly, would follow that Fτ2 ⊂ Fτ1 , and, by extension, that
all σ-algebras would be equal. The reason the argument breaks down is that
A ∩ {τ2 ≥ n} in general does not belong to Fτ2 . �

Here is another rather natural hypothesis: Martingales have constant expec-
tation, but what about E Xτ for stopping times τ? And, is it true that
E(Xτ2 | Fτ1) = Xτ1 if τ1 ≤ τ2 are stopping times? Our next task is to
provide answers to these questions.

7 Doob’s Optional Sampling Theorem

One question thus concerns whether or not a stopped martingale (submartin-
gale) remains a martingale (submartingale).

The answer is not always positive.

Example 7.1. Let Y, Y1, Y2, . . . be independent coin-tossing random variables,
that is P (Y = 1) = P (Y = −1) = 1/2, set Xn =

∑n
k=1 Yk, n ≥ 1, and let

τ = min{n : Xn = 1}.
Since X1, X2, . . . constitutes a centered random walk, we know that it is a
martingale (with respect to the natural filtration); in particular, E Xn = 0
for all n. However, since Xτ = 1 almost surely it follows, in particular, that
E Xτ = 1 �= 0, so that Xτ cannot be a member of the martingale; {X1, Xτ}
is not a martingale. The problem is that τ is “too large”; in fact, as we shall
see later, E τ = +∞. �

However, the answer is always positive for a restricted class of martingales,
namely those from Example 3.9, and bounded stopping times.

Theorem 7.1. (Doob’s optional sampling theorem)
Let Z ∈ L1, suppose that {(Xn,Fn), n ≥ 0} is a martingale of the form Xn =
E(Z | Fn), n ≥ 0, and that τ is a stopping time. Then {(Xτ ,Fτ ), (Z,F∞)}
is a martingale, in particular,

E Xτ = E Z.

Proof. That {Xn} is indeed a martingale has already been established in
Example 3.9. It therefore remains to show that the pair Xτ , Z satisfies the
defining relation ∫

Λ

Xτ dP =
∫

Λ

Z dP. (7.1)
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To prove this we apply Proposition 1.3 and smoothing: Let Λ ∈ Fτ . Then,
since I{Λ ∩ {τ = n}} ∈ Fn for all n, we obtain

E XτI{Λ} =
∑

n

E
(
XτI{Λ ∩ {τ = n}}

)
=
∑

n

E
(
XnI{Λ ∩ {τ = n}}

)
=
∑

n

E
(
E(Z | Fn)I{Λ ∩ {τ = n}}

)
=
∑

n

E
(
E(ZI{Λ ∩ {τ = n}} | Fn)

)
=
∑

n

E
(
ZI{Λ ∩ {τ = n}}

)
= E ZI{Λ}.

The conclusion now follows upon observing that the equality between the
extreme members, in fact, is a rewriting of the defining relation (7.1). �

Corollary 7.1. Suppose that {(Xn,Fn), n ≥ 0} is a martingale, and that τ
is a bounded stopping time; P (τ ≤ M) = 1. Then {Xτ , XM} is a martingale,
and

E Xτ = E XM .

Proof. The conclusion follows from Theorem 7.1 with Z = XM , since

Xn = E(XM | Fn) for 0 ≤ n ≤ M,

and τ is bounded by M . �

A particularly useful application is the following one.

Corollary 7.2. Suppose that {Xn, n ≥ 0} is a martingale, and that τ is a
stopping time. Then {Xτ∧n, Xn} is a martingale, and

E Xτ∧n = E Xn.

Proof. Immediate, since τ ∧ n is bounded by n. �

Exercise 7.1. Review Example 7.1; compare E Xτ and E Xτ∧n. �

An early fact was that martingales have constant expectation. In Corol-
lary 7.1 we have even seen that martingales evaluated at bounded stopping
times have constant expectation. It turns out that this, in fact, characterizes
martingales.

Theorem 7.2. Suppose that X1, X2, . . . is an {Fn}-adapted sequence. Then
{(Xn,Fn), n ≥ 0} is a martingale if and only if

E Xτ = constant for all bounded stopping times τ. (7.2)
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Proof. The necessity has just been demonstrated. In order to prove the suffi-
ciency, suppose that (7.2) holds, let A be Fm-measurable, and set

τ(ω) =

{
n if ω ∈ A,

m if ω ∈ Ac,
for 0 ≤ m < n.

Then E Xτ = E Xm, which means that∫
A

Xn dP +
∫

Ac

Xm dP =
∫

A

Xm dP +
∫

Ac

Xm dP,

which simplifies into ∫
A

Xn dP =
∫

A

Xm dP. �

Theorem 7.1 can be extended, in a straightforward manner, to cover a
sequence of non-decreasing stopping times as follows.

Theorem 7.3. Let Z ∈ L1, and suppose that {(Xn,Fn), n ≥ 0} is a martin-
gale of the form Xn = E(Z | Fn), n ≥ 0. If τ1 ≤ τ2 ≤ . . . ≤ τk are stopping
times, then {X0, Xτ1 , Xτ2 , . . . , Xτk

, Z} is a martingale, and

E X0 = E Xτ1 = E Xτ2 = · · · = E Xτk
= E Z.

Exercise 7.2. Prove Theorem 7.3. �

An inspection of the proof of Theorem 7.1 (and the corollaries) shows that we
can make the following statements for submartingales.

Theorem 7.4. Suppose that {(Xn,Fn), n ≥ 0} is a submartingale, and that
τ is a bounded stopping time; P (τ ≤ M) = 1. Then {Xτ , XM} is a sub-
martingale, and

E Xτ ≤ E XM .

In particular, if τ is a stopping time, then {Xτ∧n, Xn} is a submartingale,
and

E Xτ∧n ≤ Xn.

Proof. The conclusion follows by replacing the third equality in the proof
of the optional sampling theorem with an inequality (≤), and the fact that
submartingales have non-decreasing expectations. �

Exercise 7.3. Check the details. �

8 Joining and Stopping Martingales

In this section we shall show how one may join (super)martingales at stopping
times in such a way that the new sequence remains a (super)martingale, and
that a stopped martingale preserves the martingale property in a sense made
precise below.
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Our first result, however, is more suited for supermartingales.

Theorem 8.1. (i) Suppose that {(X(i)
n , Fn), n ≥ 0}, i = 1, 2, are super-

martingales, and that τ is a stopping time such that

X(1)
τ (ω) ≥ X(2)

τ (ω) on the set {τ < ∞}. (8.1)

Set

Xn(ω) =

{
X

(1)
n (ω) for n < τ(ω),

X
(2)
n (ω) for n ≥ τ(ω).

Then {(Xn,Fn), n ≥ 0} is a supermartingale.

(ii) If {(X(i)
n , Fn), n ≥ 0}, i = 1, 2, are martingales and equality holds in

(8.1), then {(Xn,Fn), n ≥ 0} is a martingale, and if {(X(i)
n , Fn), n ≥ 0},

i = 1, 2, are submartingales and the inequality is reversed in (8.1), then
{(Xn,Fn), n ≥ 0} is a submartingale.

(iii) If {(X(i)
n , Fn), n ≥ 0}, i = 1, 2, are martingales, and (8.1) holds, then

{(Xn,Fn), n ≥ 0} is a supermartingale.

Proof. (i): By construction,

Xn = X(1)
n I{n < τ}+ X(2)

n I{n ≥ τ},

which, first of all, shows that both terms and, hence, Xn is Fn-measurable.
For the transition from n to n+1 we single out the event {τ = n+1} and

apply (8.1) to obtain

X
(1)
n+1I{n < τ}+ X

(2)
n+1I{n ≥ τ}

= X
(1)
n+1I{n + 1 < τ}+ X

(1)
n+1I{n + 1 = τ}+ X

(2)
n+1I{n ≥ τ}

≥ X
(1)
n+1I{n + 1 < τ}+ X

(2)
n+1I{n + 1 = τ}+ X

(2)
n+1I{n ≥ τ}

= X
(1)
n+1I{n + 1 < τ}+ X

(2)
n+1I{n + 1 ≥ τ} = Xn+1.

Proposition 1.3 and the supermartingale property, X
(i)
n ≥ E(X(i)

n+1 | Fn),
i = 1, 2, now imply that

Xn = X(1)
n I{n < τ}+ X(2)

n I{n ≥ τ}
≥ I{n < τ}E(X(1)

n+1 | Fn) + I{n ≥ τ}E(X(2)
n+1 | Fn)

= E(X(1)
n+1I{n < τ} | Fn) + E(X(2)

n+1I{n ≥ τ} | Fn)

= E(X(1)
n+1I{n < τ}+ X

(2)
n+1I{n ≥ τ} | Fn)

≥ E(Xn+1 | Fn),

which establishes the supermartingale property.
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Conclusion (ii) follows similarly by replacing certain inequalities by equali-
ties or by reversed inequalities; recall that switching sign in a supermartingale
transforms it into a submartingale, and (iii) is immediate from (i). �

Exercise 8.1. Check the modifications needed for the proofs of (ii) and (iii). �

A somewhat similar approach leads to the following result.

Theorem 8.2. If {(Xn,Fn), n ≥ 0} is a (sub)martingale and τ a stopping
time, then {(Xτ∧n,Fn), n ≥ 0} is a (sub)martingale.

Proof. Once again we begin by asserting measurability;

Xτ∧n = XτI{τ < n}+ XnI{τ ≥ n} =
n−1∑
k=1

XkI{τ = k}+ XnI{τ ≥ n} ∈ Fn,

since each term belongs to Fn.
Now, in the submartingale case,

E(Xτ∧(n+1) | Fn) =
n∑

k=1

E(XkI{τ = k} | Fn) + E(Xn+1I{τ ≥ n + 1} | Fn)

=
n∑

k=1

XkI{τ = k}+ I{τ > n}E(Xn+1 | Fn)

≥
n∑

k=1

XkI{τ = k}+ I{τ > n}Xn

=
n−1∑
k=1

XkI{τ = k}+ XnI{τ = n}+ XnI{τ > n}

=
n−1∑
k=1

XkI{τ = k}+ XnI{τ ≥ n} = Xτ∧n.

As before there is equality instead of inequality in the martingale case. �

We call the martingales (submartingales, supermartingales) of the kind
that have been constructed in Theorems 8.1 and 8.2 stopped martingales (sub-
martingales, supermartingales). The pattern examples, which were hinted at
in the introductory lines, are first exit times, first entrance times, first hitting
times.

As an illustration, let {(Xn,Fn), n ≥ 0} be a supermartingale, and define
the stopping time

τ = min{n : Xn > t}, t > 0.

In order to apply Theorem 8.1 we let {X(1)
n } be the original supermartingale,

and X
(2)
n = t for all n. The new supermartingale is obtained by letting it be
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equal to the original one before passage has occurred and equal the second
one after passage, more precisely,

X0, X1, X2, . . . , t, t, t, t, . . . .

Then (8.1) is satisfied, since X
(1)
τ ≥ t = X

(2)
τ , so, by Theorem 8.1, the new

sequence is also a supermartingale.
The sequence {Xτ∧n, n ≥ 0} in Theorem 8.2 is

X0, X1, X2, . . . , Xτ , Xτ , Xτ , Xτ , . . . ,

whose elements are the original ones as long as τ ≤ n, after which they are
equal to Xτ .

In both cases the original stretch varies from ω to ω. The joined martingale
and {Xτ∧n, n ≥ 0} coincide up to (but not including) the hitting time, but
they take different paths thereafter. Namely, the joined martingale stays at
the constant level t after passage, whereas the other one stays at the random
level Xτ where stopping occurred, a level, which thus varies from realization
to realization.

Typical stopped martingales, submartingales and supermartingales are
stopped random walks. Suppose that Y1, Y2, . . . are independent, identically
distributed random variables, and set Xn =

∑n
k=1 Yk as in Examples 3.2 or

3.13. Then
τ = min{n : Xn ∈ A}, for some A ⊂ R,

is standard example, typically when A is some interval, such as (a,∞) for
some a > 0 or, as in sequential analysis, (b, a), where b < 0 < a. In the former
case the corresponding supermartingale is a random walk with negative drift
(recall Example 3.13), which implies that the probability of ever hitting a
positive level is less than one; P (τ < ∞) < 1. This shows that the phrase
“on the set {τ < ∞}” is important in Theorem 8.1. Since martingales are
also supermartingales, random walks with mean 0 also fit the theorem. In
this case, P (τ < ∞) = 1. If, instead, we would consider submartingales, then
P (τ < ∞) = 1, but then the second submartingale, which is identical to a
would be smaller than the first one and thus violate the reversed inequality
(8.1).

In the special case of a simple symmetric random walk, that is when the
steps are equal to +1 and −1 with probability 1/2 each, the random walk
is a martingale (recall Example 3.2), with the special property that if the
level a is an integer, then Xτ = a exactly. Thus, if we let Xn be the random
walk until the hitting of the integer level a and equal to a ever after, then
X

(2)
τ = a = X

(1)
τ , so that Theorem 8.1 tells us that {(Xn,Fn), n ≥ 0} is a

martingale, the realizations of which are

X0, X1, X2, . . . , a, a, a, a, a, . . . .

The realizations of the martingale {(Xτ∧n,Fn), n ≥ 0} in Theorem 8.2 are
the same in this case.
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At first sight it might be confusing that this is a martingale, since EX0 = 0
and E a = a, which would violate the martingale property. The reason for this
being in order is that the indices of the a’s are random. For any Xk with k
fixed we have E Xk = 0. This is no contradiction, since any such Xk assumes
its regular value along the random walk and equals a once the level has been
hit, which, in turn, if at all, occurs after a random number of steps.

In this rather simple case, the number of X’s before the a run begins is
negative binomial – how many times does one have to flip a symmetric coin
in order to obtain a more heads than tails? In particular, this shows that
P (τ < ∞) = 1.

We shall return to the theory of stopped random walks in Section 10.14.
In the last two sections we have discussed stopped martingales, de-

parting from the question of whether a stopped (sub)martingale remains a
(sub)martingale or not, and Doob’s optional sampling theorem. There is more
to be said about this, and we shall briefly return to the matter in Section 10.15
with some facts about regular martingales and regular stopping times.

9 Martingale Inequalities

Our first result is one that appears under different names in the literature; it
seems that the first inequality in the chain of inequalities below is due to Doob
and the fact that the left-most one is smaller than the right-most one is due to
Kolmogorov. As we shall see after the theorem, in the special case when the
martingale is a sum of independent centered random variables, the inequality
between the extreme members reduces to the Kolmogorov inequality for sums
of independent random variables, Theorem 3.1.6.

Theorem 9.1. (The Kolmogorov-Doob inequality)
Let λ > 0.
(i) Suppose that {(Xn,Fn), n ≥ 0} is a submartingale. Then

λP ( max
0≤k≤n

Xk > λ) ≤
∫

{max0≤k≤n Xk>λ}
Xn dP ≤ E X+

n ≤ E|Xn|.

(ii) Suppose that {(Xn,Fn), n ≥ 0} is a martingale. Then

λP ( max
0≤k≤n

|Xk| > λ) ≤
∫

{max0≤k≤n |Xk|>λ}
|Xn|dP ≤ E|Xn|.

Proof. Set

τ = min{k : Xk > λ} and Λ = { max
0≤k≤n

Xk > λ} = {Xτ∧n > λ}.

Since, by Theorem 7.4, the (sub)martingale property is preserved for the pair
{Xτ∧n, Xn} and, moreover, Λ ∈ Fτ∧n, we obtain
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λP (Λ) ≤
∫

Λ

Xτ∧n dP ≤
∫

Λ

Xn dP ≤ E X+
n ≤ E|Xn|.

This proves (i), from which (ii) follows, since {|Xn|, Fn} is a submartingale
(Theorem 3.2). �

Example 9.1. As a particular example, suppose that Y1, Y2, . . . , Yn are inde-
pendent random variables with mean 0 and finite variances, and set Xk =∑k

j=1 Yj , 1 ≤ k ≤ n. Then {Xk, 1 ≤ k ≤ n} is a martingale and, thus, by
Theorem 3.2, {X2

k , 1 ≤ k ≤ n} a submartingale. An application of Theorem
9.1 therefore yields

λP ( max
0≤k≤n

X2
k > λ) ≤ E(X2

n),

which is the same as

P ( max
0≤k≤n

|Xk| > λ) ≤ E(X2
n)

λ2 ,

which coincides with the Kolmogorov inequality, Theorem 3.1.6. We also no-
tice that the crucial step there was to prove that ES2

k ≤ ES2
n for k ≤ n,

something that is immediate here because of Theorem 2.1(ii). �

Example 9.2. Let, once again, Y1, Y2, . . . , Yn be independent random vari-
ables with E Yj = 0 and VarYj = σ2

j . Set, for k = 1, 2, . . . , n, Xk =
∑k

j=1 Yj ,

s2
k =

∑k
j=1 σ2

j and Zk = X2
k − s2

k. We then know from Example 3.3 that
{Zk, 1 ≤ k ≤ n} is a martingale.

Suppose, in addition, that there exists A > 0, such that |Yk| ≤ A for all k,
define

τ = min{k : |Xk| ≥ λ},
and set M = {max1≤k≤n |Xk| ≥ λ}. Then, by the optional sampling theorem,
Theorem 7.1, E Zτ∧n = 0, that is,

E X2
τ∧n = E s2

τ∧n.

Moreover, since s2
n ≤ s2

τ∧n on M c and

|Xτ∧n| = |Xτ∧n−1 + Yτ∧n| ≤ λ + A,

it follows that

s2
nP (M c) ≤ Es2

τ∧n = EX2
τ∧n ≤ (λ + A)2,

which, rewritten, tells us that

P ( max
1≤k≤n

|Xk| < λ) ≤ (λ + A)2

s2
n

.

We have thus obtained a martingale proof of “the other” Kolmogorov inequal-
ity, Theorem 3.1.7. �
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Theorem 9.2. If {(Xn,Fn), n ≥ 0} is a submartingale, then for λ > 0,

λP ( min
0≤k≤n

Xk < −λ) ≤ E Xn − E X0 −
∫

{min0≤k≤n Xk<−λ}
Xn dP

≤ E Xn − E X0 ≤ E X+
n − E X0.

Proof. Set

τ = min{k : Xk < −λ} and Λ = { min
0≤k≤n

Xk < −λ} = {Xτ∧n < −λ}.

Then, via Theorem 7.4 (cf. the proof of Theorem 9.1),

E X0 ≤ E Xτ∧n =
∫

Λ

Xτ∧n dP +
∫

Λc

Xτ∧n dP ≤ −λP (Λ) +
∫

Λc

Xτ∧n dP,

so that

λP (Λ) ≤
∫

Λc

Xn dP − E X0 ≤ E Xn −
∫

Λ

Xτ∧n dP − E X0,

and the conclusion follows. �

Just as the Kolmogorov inequality for sums of independent random vari-
ables has a (sub)martingale version, so has the Hájek-Rényi inequality, Theo-
rem 3.1.8; see [43]. The proof below, however, was given by Professor Esseen,
on October 1, 1969, during a series of lectures on martingale theory.

Theorem 9.3. Let {ck, 0 ≤ k ≤ n} be positive, non-increasing real numbers,
and suppose that {(Xn,Fn), n ≥ 0} is a submartingale. Then, for λ > 0,

λP ( max
0≤k≤n

ckXk > λ) ≤ c0E X+
0 +

n∑
k=1

ck(E X+
k − E X+

k−1)

−cn

∫
{max0≤k≤n ckXk≤λ}

X+
n dP

≤ c0E X+
0 +

n∑
k=1

ck(E X+
k − E X+

k−1) =
n−1∑
k=0

(ck − ck+1)E X+
k + cnE X+

n .

Proof. Since {max0≤k≤n ckXk ≥ λ} = {max0≤k≤n ckX+
k ≥ λ}, and since

{(X+
n , Fn), n ≥ 0} is also a submartingale, it suffices to prove the theorem

for the latter.
Set Y0 = c0X

+
0 , and, for 1 ≤ k ≤ n,

Yk = c0X
+
0 +

k∑
j=1

cj(X+
j −X+

j−1) =
k−1∑
j=0

(cj − cj+1)X+
j + ckX+

k .

Then, Yk+1 = Yk + ck+1(X+
k+1 −X+

k ), k ≥ 0, so that
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E(Yk+1 | Fk) = Yk + ck+1E((X+
k+1 −X+

k ) | Fk) ≥ Yk,

that is, {(Yn,Fn), n ≥ 0} is a non-negative submartingale, so that, since
Yk ≥ ckX+

k for all k, an application of Theorem 9.1 yields

λP ( max
0≤k≤n

ckX+
k > λ) ≤ λP ( max

0≤k≤n
Yk > λ) ≤

∫
{max0≤k≤n Yk>λ}

Yn dP

≤
∫

{max0≤k≤n ckX+
k k>λ}

( n−1∑
j=0

(cj − cj−1)X+
j + cnX+

n

)
dP

≤
n−1∑
j=0

E(cj − cj−1)X+
j + cnE X+

n −
∫

{max0≤k≤n ckX+
k k≤λ}

X+
n dP

≤
n−1∑
j=0

E(cj − cj−1)X+
j + cnE X+

n . �

Example 9.3. Let Y1, Y2, . . . , Yn be independent, identically distributed ran-
dom variables with mean 0, finite variances, and partial sums X1, X2, . . . , Xn.
By noticing as before that {X2

k , 1 ≤ k ≤ n} is a submartingale, an applica-
tion of Chow’s inequality provides another proof of the original Hájek-Rényi
inequality, Theorem 3.1.8. �

Exercise 9.1. Please check this claim. �

Next, a famous maximal inequality due to Doob. Whereas the inequalities
so far have provided estimates on tail probabilities the Doob inequality relates
moments of maxima to moments of the last element in the sequence. We begin,
however, with an auxiliary result.

Lemma 9.1. Let X and Y be non-negative random variables. If

P (Y > y) ≤ 1
y

∫
{Y ≥y}

X dP,

then

E Y p ≤
{

( p
p−1 )pE Xp, when p > 1,
e

e−1 + e
e−1E X log+ X, when p = 1.

Proof. We first consider the case p > 1. As always, q is defined via the relation
1
p + 1

q = 1. We have

E Y p = p

∫ ∞

0
yp−1P (Y > y) dy ≤ p

∫ ∞

0
yp−2

(∫
{Y ≥y}

X dP
)

dy

= p

∫
Ω

X
(∫ Y

0
yp−2 dy

)
dP =

p

p− 1
E(XY p−1)

≤ p

p− 1
‖X‖p‖Y p−1‖q =

p

p− 1
‖X‖p‖Y ‖p−1

p ,

where the inequality is a consequence of Hölder’s inequality, Theorem 3.2.4.
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If ‖Y ‖p = 0 there is of course nothing to prove. If not, division of the
extreme members by ‖Y ‖p−1

p completes the proof when p > 1.
For the case p = 1,

E Y =
∫ ∞

0
P (Y > y) dy ≤ 1 +

∫ ∞

1
P (Y > y) dy

≤ 1 +
∫ ∞

1

(1
y

∫
{Y ≥y}

X dP
)

dy = 1 +
∫

Ω

X
(∫ Y

1

(1
y

dy
)

dP

= 1 + E(X log+ Y ).

To finish off we need the following “elementary” inequality

a log+ b ≤ a log+ a + b/e, a, b > 0, (9.1)

the proof of which we postpone for a few lines.
Given this inequality we obtain

E Y ≤ 1 + E(X log+ X + Y/e) = 1 + E X log+ X + E Y/e,

from which the conclusion follows after some rearranging.
It thus remains to prove the inequality (9.1).
If 0 < a, b ≤ 1, the left-hand side equals 0 and there is nothing to prove,

and if a > b the inequality is trivial. Thus, suppose that 1 < a < b. Then

a log+ b = a log b ≤ a log a + a log(b/a) = a log+ a + b · log+(b/a)
b/a

,

so that the proof of (9.1) reduces to showing that

log c

c
≤ 1

e
, for c > 1,

which is an easy task. �

Here is now the promised moment inequality.

Theorem 9.4. (Doob’s maximal inequality)
(i) If {(Xn,Fn), n ≥ 0} is a non-negative submartingale, then

E( max
0≤k≤n

Xk)p ≤
{

( p
p−1 )pE Xp

n, when p > 1,
e

e−1 + e
e−1E Xn log+ Xn, when p = 1.

(ii) If {(Xn,Fn), n ≥ 0} is a martingale, then

E( max
0≤k≤n

|Xk|)p ≤
{

( p
p−1 )pE|Xn|p, when p > 1,
e

e−1 + e
e−1E|Xn| log+ |Xn|, when p = 1.

Proof. With Y ←→ max0≤k≤n Xk and X ←→ Xn (i) follows immediately
from the Kolmogorov inequality and Lemma 9.1, after which (ii) follows from
(i) via Theorem 3.1. �
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One might ask whether the additional logarithm when p = 1 is really nec-
essary or just a consequence of the method of proof, because of the appearance
of the harmonic series. However, it is shown in [101] that a converse inequality
holds for a large class of martingales. So, it is necessary. We also refer to [32]
and to Subsection 10.16.1 below, where a converse is shown in a law of large
numbers context.

Burkholder Inequalities

As we have noted, martingales are generalizations of sums of independent ran-
dom variables with mean 0. Increments are not independent, but orthogonal.
Several results for sums of independent random variables carry over, as we
have seen, to martingales, although sometimes with minor modifications. The
Marcinkiewicz-Zygmund inequalities, Theorem 3.8.1 is one such result. It is
interesting to note that Marcinkiewicz and Zygmund proved their result for
the case p > 1 in 1937, and for p = 1 in 1938 [180, 182]. For martingales,
Burkholder, in his path-breaking 1966 paper [33], proved the result for p > 1;
Theorem 9 there. For p = 1 the result is not generally true. However, it is true
if one replaces the martingale by the maximal function [59]. Since one has to
limit oneself in order for a book not to be too heavy, we content ourselves by
stating the results. Let us, however, mention that Burkholder’s result can be
proved with methods close to those for sums of independent random variables.

Before stating our results we introduce a piece of notation.
To a martingale {(Xn,Fn), n ≥ 0} with martingale difference sequence

{Yk, k ≥ 0}, we associate, the maximal function X∗
n = max0≤k≤n |Xk|, the

square function Sn(X) =
(∑n

k=0 Y 2
k

)1/2, n ≥ 0, and the conditional square

function sn(X) =
(∑n

k=1 E(Y 2
k | Fk−1)

)1/2
, n ≥ 1.

Theorem 9.5. (Burkholder [33], Theorem 9)
(i) Let p > 1. There exist constants Ap and Bp, depending only on p, such
that

Ap‖Sn(X)‖p ≤ ‖Xn‖p ≤ Bp‖Sn(X)‖p.

(ii) Let p ≥ 1. There exist constants Ap and Bp, depending only on p, such
that

Ap‖Sn(X)‖p ≤ ‖X∗
n‖p ≤ Bp‖Sn(X)‖p.

Remark 9.1. If the increments are independent with mean 0 we notice imme-
diately that (i) reduces to the Marcinkiewicz-Zygmund inequalities. �

Theorem 9.6. (Burkholder [34], Theorem 21.1)
Suppose that {(Xn,Fn), n ≥ 0} is a martingale with martingale difference
sequence {Yk, k ≥ 0}, let Φ be a non-negative, convex function, satisfying the
growth condition Φ(2x) ≤ cΦ(x), x > 0, for some c > 0. Then there exists a
constant C, depending only on c, such that
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EΦ(X∗
n) ≤ C

(
E Φ(sn(X)) + E max

0≤k≤n
Φ(Yk)

)
≤ 2C max{E Φ(sn(X)), E max

0≤k≤n
Φ(Yk)}.

Particularly useful is the following corollary.

Corollary 9.1. Let p ≥ 2, and suppose that {(Xn,Fn), n ≥ 0} is a martin-
gale, with martingale difference sequence {Yk, k ≥ 0}. There exists a constant
Dp, depending only on p, such that

‖Xn‖p ≤ Dp

(
‖sn(X)‖p + ‖ max

1≤k≤n
|Yk|‖p

)
≤ Dp

(
‖sn(X)‖p +

n∑
k=1

‖Yk‖p

)

≤ 2Dp max
{
‖sn(X)‖p,

n∑
k=1

‖Yk‖p

}
.

If, in particular, the increments are independent with mean 0 and finite
variances σ2

k, the conditional square function turns into s2
n(X) =

∑n
k=1 σ2

k,
and we obtain

Corollary 9.2. Let p ≥ 2, suppose that Y1, Y2, . . . , Yn are independent with
mean 0, finite variances σ2

k, that E|Yk|p < ∞, and set Xn =
∑n

k=1 Yk, n ≥ 1.
Then there exists a constant Dp, depending only on p, such that

E|Xn|p ≤ Dp

(( n∑
k=1

σ2
k

)p/2
+ E max

1≤k≤n
|Yk|p

)

≤ Dp

(( n∑
k=1

σ2
k

)p/2
+

n∑
k=1

E|Yk|p
)

≤ 2Dp max
{( n∑

k=1

σ2
k

)p/2
,

n∑
k=1

E|Yk|p
}

.

In particular, if Y1, Y2, . . . , Yn are identically distributed with mean 0 and
common variance σ2, then

E|Xn|p ≤ Dp

(
np/2σp + E max

1≤k≤n
|Yk|p

)
≤ Dp

(
np/2σp + nE|Y1|p

)
≤ 2Dp max{np/2σp, nE|Y1|p}.

Observe the similarities to Rosenthal’s inequality, Theorem 3.9.1, in the
final estimate.

The statements above all contain phrases of the kind “there exist constants
Ap and Bp depending only on p, such that . . .”. It should be mentioned that a
fair amount of work has been put into finding best constants, sharp constants,
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and so on. We invite the (interested) reader to search in the literature and on
the web. Admittedly, such results may be of interest if one aims at “optimal”
results, but if they are used in order to determine finiteness of moments, or
just existence of some kind, then the exact numerical value is (usually) of
minor importance.

Much more can be said concerning this topic, but let us stop here by
mentioning the early very important papers [34, 35, 36], Garsia’s monograph
[93], and [102], in particular the first half.

10 Convergence

One of the most important theorems is the convergence theorem. There ex-
ist a few different proofs of this result. The original proof of the convergence
theorem is due to Doob [64]. The “standard” one, which is also due to Doob,
is based on, what is called, upcrossings (and downcrossings), and will be pre-
sented in Subsection 10.10.2. Prior to that we present our favorite proof, which
is due to Garsia [92]. The beauty comes from its gradual, stepwise, elegant,
approaching of the final target. We close with some hints and references to
other approaches.

Theorem 10.1. Suppose that {Xn, n ≥ 0} is a submartingale such that

sup
n

EX+
n < ∞.

Then Xn converges almost. surely.

Remark 10.1. Since a martingale is also a submartingale it follows in partic-
ular that martingales satisfying the required boundedness condition are a.s.
convergent. �

10.1 Garsia’s Proof

We follow, essentially, [92].

{Xn} Is an L2-bounded Martingale

Since {X2
n} is an L1-bounded submartingale we know that E X2

n ↗ monoton-
ically and has a limit. From Lemma 4.1 it therefore follows that, for m < n,

E(Xn −Xm)2 = E X2
n − E X2

m → 0 as m, n →∞,

which shows that the sequence {Xn} is Cauchy-convergent in L2 and, hence,
L2-convergent to some random variable X, in particular, convergent in prob-
ability.
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Since a sequence that converges in probability always contains a subse-
quence that converges almost surely we know, in particular, that

Xnk

a.s.→ X as k →∞, (10.1)

for some subsequence {nk}. Moreover, since, once again by Lemma 4.1,

E X2
nk

= E X2
n0

+
k∑

j=1

E(Xnj −Xnj−1)
2,

the L2-boundedness implies that also∑
k

E(Xnk
−Xnk−1)

2 < ∞. (10.2)

Now, since Xi −Xnk
∈ Fi for all i ≥ nk, and

E(Xj −Xnk
| Fi) = E(Xj | Fi)−Xnk

= Xi −Xnk

for all j ≥ i ≥ nk it follows that

{Xi −Xnk
, i ≥ nk} is a martingale,

so that, by the Kolmogorov inequality and (10.2),

∑
k

P ( max
nk<i≤nk+1

|Xi −Xnk
| > ε) ≤ 1

ε2

∑
k

E(Xnk+1 −Xnk
)2 < ∞,

for any ε > 0. An application of the first Borel-Cantelli lemma therefore tells
us that

P ( max
nk<i≤nk+1

|Xi −Xnk
| > ε i.o.) = 0 for any ε > 0.

Combining this with (10.1) finishes the proof.

{Xn} Is a Non-negative L2-bounded Submartingale

Let Xn = Mn + An, n ≥ 0, be the Doob decomposition. Then

E An = E Xn − E Mn = E Xn − E M0 = E Xn − E X0

≤ E Xn ≤
√

E X2
n ≤ C < ∞,

so that {An} is increasing, L1-bounded, and therefore a.s. convergent.
In order to complete the proof we show that {Mn} is L2-bounded, from

which the a.s. convergence follows from the previous step.
From the proof of the Doob decomposition we know that the increments

of the martingale are
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Mn+1 −Mn = Xn+1 − E(Xn+1 | Fn),

so that, via Lemma 4.1, Theorem 1.3, and the submartingale property,

E M2
n+1 − E M2

n = E(Mn+1 −Mn)2 = E
(
Xn+1 − E(Xn+1 | Fn)

)2
= E X2

n+1 − E
(
E(Xn+1 | Fn)2

)
≤ E X2

n+1 − E X2
n.

Since X0 = M0 we therefore conclude, via telescoping, that

E M2
n ≤ E X2

n < C < ∞,

which proves the desired L2-boundedness.

{Xn} Is a Non-negative L1-bounded Martingale

By Theorem 3.1, {e−Xn , n ≥ 0} is a submartingale, which, moreover, is uni-
formly bounded. By the previous step this submartingale is a.s. convergent.
However, it may converge to 0, in which case Xn

a.s.→ ∞ as n → ∞. To see
that this is not the case we apply the Kolmogorov inequality to obtain

P ( max
0≤k≤n

Xk > λ) ≤ E Xn

λ
≤ C

λ
< ∞.

Since the upper bound does not depend on n it follows that

P (sup
n

Xn > λ) ≤ C

λ
< ∞,

that is, supn Xn is a.s. finite.

{Xn} Is an L1-bounded Martingale

The conclusion is immediate via the Krickeberg decomposition.

{Xn} Is a Martingale, supn E X+
n < ∞

Since

E|Xn| = E X+
n + E X−

n = 2E X+
n − E Xn = 2E X+

n − E X0,

it follows that supn E X+
n < ∞ implies L1-boundedness and the previous step

applies.

{Xn} Is an L1-bounded Submartingale

The Doob decomposition yields

E An = E Xn − E Mn = E Xn − E M0 = E Xn − E X0,

which shows that {An} is L1-bounded and, as before, a.s. convergent. It follows
that {Mn} is L1-bounded and, hence, a.s. convergent. The same therefore also
holds for {Xn}.
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{Xn} Is a Submartingale, supn E X+
n < ∞

By modifying the computation from the martingale analog, we obtain

E|Xn| = E X+
n + E X−

n = 2E X+
n − E Xn = 2E X+

n − E Mn − E An,

= 2E X+
n − E M0 − E An ≤ 2E X+

n − E M0,

and we conclude, once again, that {Xn} is L1-bounded, so that the previous
step applies.

The theorem is completely proved. �

10.2 The Upcrossings Proof

Let {xn, n ≥ 0} be a sequence of reals, and set, for arbitrary reals a < b,

τ1 = min{k ≥ 0 : xk ≤ a},
τ2 = min{k ≥ τ1 : xk ≥ b},
τ3 = min{k ≥ τ2 : xk ≤ a},
τ4 = min{k ≥ τ3 : xk ≥ b},
· · · · · · · · · · · · · · · · · · · · · · · ·

τ2k−1 = min{k ≥ τ2k−2 : xk ≤ a},
τ2k = min{k ≥ τ2k−1 : xk ≥ b},

with the convention that the minimum or infimum of the empty set is infinite.
The following, so-called upcrossings lemma states that a convergent se-

quence of real numbers can only oscillate a finite number of times between
any two rationals.

Lemma 10.1. The sequence {xn, n ≥ 0} converges iff

ν(a, b) = max{k : τ2k < ∞} < ∞ for all a, b ∈ Q, a < b.

Proof. If xn does not converge there exist reals a < b, such that

lim inf
n→∞

xn < a < b < lim sup
n→∞

xn,

which implies that ν(a, b) = ∞. If, on the other hand, ν(a, b) = ∞ for some
a < b ∈ Q, then we must have infinitely many x’s below a and infinitely many
x’s above b, so that

lim inf
n→∞

xn ≤ a < b ≤ lim sup
n→∞

xn,

in which case xn cannot converge.
The proof is finished by observing that the rationals are dense in R. �
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Upcrossings can equally well be defined for random sequences, and the up-
crossings lemma can be extended to such sequences as follows.

Lemma 10.2. The sequence {Xn, n ≥ 0} converges almost surely iff

ν(a, b) = max{k : τ2k < ∞} < ∞ a.s. for all a, b ∈ Q, a < b.

Proof. We first note that ν(a, b) is a random variable, since {ν(a, b) ≥ n} =
{τ2n < ∞}, which is a measurable set.

Next, given ω ∈ Ω, it follows from the Lemma 10.1 that Xn(ω) converges
if and only if ν(a, b, ω) < ∞ for all a < b ∈ Q, so that

{Xn converges} =
⋂

a<b, a,b∈Q

{ν(a, b) < ∞},

which is a countable intersection of sets. The conclusion follows. �

In order to prove the convergence theorem we thus have to prove that
ν(a, b) is finite almost surely for all a < b ∈ Q. This is achieved by estimating
the expected number of upcrossings.

Lemma 10.3. Suppose that {(Xn,Fn), n ≥ 0} is a submartingale, and let,
for −∞ < a < b < ∞, νn(a, b) be the number of upcrossings of the sequence
X1, X2, . . . , Xn.
(i) Then

E νn(a, b) ≤ E((Xn − a)+)− E((X1 − a)+)
b− a

≤ E(X+
n ) + |a|

b− a
.

(ii) If, in addition,
sup

n
E(X+

n ) = C < ∞,

then
E ν(a, b) ≤ C + a

b− a
.

Proof. It suffices to consider the number of crossings of the levels 0 and b− a
of the translated sequence {(Xn−a)+, n ≥ 0}, that is, we may w.l.o.g. assume
that Xn ≥ 0, that a = 0 and, hence, that Xτj = 0 whenever j is odd.

We extend the crossing times {τk} with an additional τ0 = 0. Moreover,
since we stop at τ[νn(a,b)/2] we set τk = n thereafter. Notice that τn = n
always.

By telescoping,

Xn −X0 = Xτn −X0 =
n∑

j=1

(Xτj −Xτj−1)

=
∑

j odd

(Xτj −Xτj−1) +
∑

j even

(Xτj −Xτj−1) .
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In order to take care of the odd terms we observe that the crossing times
are a sequence of non-decreasing, bounded (by n) stopping times, so that
{(Xτk

,Fτk
), k ≥ 0} is a submartingale by Doob’s optional sampling theorem,

Theorem 7.1, in particular,

E(Xτ2j+1 −Xτ2j ) ≥ 0.

As for the even terms,

Xτ2j −Xτ2j−1

⎧⎪⎨
⎪⎩
≥ b− 0 = b, when 2j ≤ νn(a, b),
= Xn −Xτ2j−1 ≥ 0, when 2j = νn(a, b) + 1,

= Xn −Xn = 0, when 2j > νn(a, b).

Putting the above facts together shows that

E(Xn −X0) ≥
∑

2j≤νn(a,b)

E(Xτ2j
−Xτ2j−1) ≥ bE νn(a, b),

which proves the first inequality in the translated setting. Translating back,
the numerator of the upper bound turns into

E
(
(Xn − a)+

)
− E

(
(X1 − a)+)

)
≤ E

(
(Xn − a)+

)
≤ E(X+

n ) + |a|.

The denominator becomes b− a.
This proves (i), from which (ii) is immediate. �

To prove submartingale convergence it only remains to observe that
Lemma 10.3(ii) is applicable, so that, for any rationals a < b,

E νn(a, b) ≤ C + a

b− a
,

independently of n, so that, by letting n →∞, it follows that

E ν(a, b) < ∞ =⇒ P (ν(a, b) < ∞) = 1,

from which almost sure convergence follows from Lemma 10.2. �

10.3 Some Remarks on Additional Proofs

Here we mention some other methods of proof. Only statements are provided.
For details we refer to the cited sources.
• A very short, functional analytic proof is given in [166].
• For the following kind of Fatou lemma, which states that if {Xn, n ≥ 1} is
an adapted sequence and TF the collection of finite stopping times, then

E lim sup
n→∞

Xn ≤ lim sup
τ∈TF

E Xτ ,

E lim inf
n→∞

Xn ≥ lim inf
τ∈TF

E Xτ ,
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we refer to [240]. For L1-bounded adapted sequences this has been extended
in [38] to

E(lim sup
n→∞

Xn − lim inf
n→∞

Xn) ≤ lim sup
τ,σ∈TB

E(Xσ −Xτ ),

where now TB is the family of bounded stopping times.
Since the right-hand side equals 0 for martingales by Theorem 7.2, it fol-

lows immediately that L1-bounded martingales are almost surely convergent.
• Another approach is via the following approximation lemma; [6].

Lemma 10.4. Let Y be an F∞-measurable random variable, such that Y (ω)
is a cluster point of the sequence {Xn(ω), n ≥ 1} for every ω ∈ Ω. Then there
exists a sequence of bounded, non-decreasing stopping times τn ≥ n, such that

Xτn

a.s.→ Y as n →∞.

If {(Xn,Fn), n ≥ 0} is a martingale we can use this fact to exhibit two
sequences of bounded stopping times, {σk, k ≥ 1} and {τk, k ≥ 1}, with
conditions as given in the lemma, such that

Xσk

a.s.→ lim inf
n→∞

Xn and Xτk

a.s.→ lim sup
n→∞

Xn as k →∞,

which, together with Fatou’s lemma and Theorem 7.2, shows that

E(lim sup
n→∞

Xn − lim inf
n→∞

Xn) ≤ lim inf
k→∞

E(Xσk
−Xτk

) = 0,

so that Xn converges almost surely as n →∞.
• Asymptotic martingales, abbreviated amarts, are defined in terms of net
convergence: A sequence {(Xn,Fn), n ≥ 0} is an amart iff

E Xτn
converges as n →∞,

for every sequence {τn, n ≥ 1} of bounded, non-decreasing stopping times.
The amart convergence theorem can be proved as above for bounded

amarts with dominated convergence instead of Fatou’s lemma and trunca-
tion; truncated amarts remain amarts.

Since martingales have constant expectation for bounded stopping times
it follows immediately that martingales are amarts. This also pertains to sub-
martingales.

For more on amarts, see [70] and [106] and references given there.

10.4 Some Questions

The theorem suggests (at least) four natural questions:

• Give an example of a non-convergent martingale.
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• If Xn
a.s.→ X∞ (say) as n → ∞, is it true that X∞ can be interpreted as

some kind of last element of the martingale, that is, can we conclude that
{X1, X2, . . . , Xn, . . . , X∞} is a martingale, in other words, is it true that
Xn = E(X∞ | Fn) for all n?

• When, if at all, is there also L1-convergence? Lp-convergence?
• What about submartingales?

We shall provide answers to these questions in the following two subsections.

10.5 A Non-convergent Martingale

The “immediate” martingale is a sum of independent zero mean random ran-
dom variables. Let’s check if it is convergent or not.

Thus, suppose that Xn =
∑n

k=1 Yk, where Y, Y1, Y2, . . . , Yn are i.i.d. coin-
tossing random variables, that is, P (Y = 1) = P (Y = −1) = 1/2. It is well
known (or follows from the law of the iterated logarithm, Theorem 8.1.2) that
the random walk {Xn, n ≥ 1} oscillates and, hence cannot converge. We also

note that E|Xn| ∼
√

2n
π as n →∞, since Xn√

n
→ N(0, 1) in (distribution and

in) L1 as n →∞. In particular {Xn, n ≥ 1} is not L1-bounded.

10.6 A Central Limit Theorem?

We have extensively dwelt on almost sure convergence of martingales. One
might ask whether it is possible that martingales suitably normalized have
some asymptotic normal(?) limit. As ever so often, Paul Lévy in the 1930s
was the first to prove a result of that kind. A more recent reference is [18]. For
further contributions, see [210, 211, 212], the monographs by Hall and Heyde
[128], and [239].

Let us only mention that one of the problems is how to tackle conditions on
variances. Variances? Conditional variances? Boundedness? Constancy? And
so on. In contrast to the simplest case of independent, identically distributed
summands where all variances (as well as conditional variances(!)) are the
same.

11 The Martingale {E(Z | Fn)}
In this section we shall get acquainted with the subclass of uniformly inte-
grable martingales, which have certain additional properties, such as being
L1-convergent as one might guess from Chapter 5.

Theorem 11.1. Let Z ∈ L1, and set

Xn = E(Z | Fn).

Then {(Xn,Fn), n ≥ 0} is a uniformly integrable martingale.
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Proof. The martingale property of {Xn, n ≥ 0}} was established in Example
3.9. Checking uniform integrability: Theorem 9.1 and (3.1) together tell us
that

P ( max
0≤k≤n

|Xk| > a) ≤ 1
a
E|Xn| ≤

1
a
E|Z|,

so that, by letting n →∞,

P (sup
n
|Xk| > a) ≤ 1

a
E|Z| → 0 as a →∞,

independently of n, which implies that.

E|Xn|I{|Xn| > a} = E|E(Z | Fn)|I{|Xn| > a}
≤ E

(
E(|Z| | Fn)|I{|Xn| > a}

)
= E

(
E(|Z|I{|Xn| > a} | Fn)

)
= E(|Z|I{|Xn| > a}) ≤ E(|Z|I{sup

n
|Xn| > a}) → 0 as a →∞,

independently of (and therefore uniformly in) n, the convergence to 0 being a
consequence of Theorem 2.6.3(ii).

Uniform integrability may, alternatively, be checked directly (that is, with-
out exploiting the Kolmogorov inequality) as follows:

E|Xn|I{|Xn| > a} ≤ E|Z|I{sup
n
|Xn| > a}

= E|Z|I{sup
n
|Xn| > a, |Z| >

√
a}+ E|Z|I{sup

n
|Xn| > a, |Z| ≤

√
a}

≤ E|Z|I{|Z| >
√

a}+
√

aP (sup
n
|Xn| > a)

≤ E|Z|I{|Z| >
√

a}+
1√
a
E|Z| → 0 as a →∞.

Once again, no n is involved at the end. �

Corollary 11.1. Let p ≥ 1. If E|Z|p < ∞, then {(|Xn|p, Fn), n ≥ 0} is a
uniformly integrable submartingale.

Proof. By Proposition 1.1(h),

|Xn|p = |E(Z | Fn)|p ≤ E(|Z|p | Fn),

so that uniform integrability follows by replacing Z with |Z|p in the proof
of Theorem 11.1, after which an application of Theorem 3.2 establishes the
submartingale property. �

12 Regular Martingales and Submartingales

In the first two subsections we provide answers to the last three questions in
Subsection 10.10.4, after which we show, by examples, that there exist mar-
tingales that are L1-bounded but not uniformly integrable, and therefore a.s.
convergent but not L1-convergent. A final revisit to the uniformly integrable
martingales from Section 10.11 concludes the section.
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12.1 A Main Martingale Theorem

Theorem 12.1. Suppose that {(Xn,Fn), n ≥ 0} is a martingale. The follow-
ing are equivalent:

(a) {Xn, n ≥ 0} is uniformly integrable.

(b) Xn converges in L1.

(c) Xn
a.s.→ X∞ as n →∞, X∞ ∈ L1, and {(Xn,Fn), n = 0, 1, 2, . . . ,∞}

is a martingale – X∞ closes the sequence.

(d) There exists Y ∈ L1, such that Xn = E(Y | Fn) for all n ≥ 0.

Remark 12.1. A martingale satisfying one of these properties is called com-
plete, closable, or regular (depending on the literature). �

Proof. We show that (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a).
(a) =⇒ (b): Uniform integrability implies L1-boundedness and, hence, a.s.
convergence and thus also convergence in L1. Note that the L1-convergence is
the consequence of a general result concerning a.s. convergence and moment
convergence – Theorem 5.5.2.
(b) =⇒ (c): Convergence in L1 implies L1-boundedness, and, hence, almost
sure convergence, and thus also uniform integrability – Theorem 5.5.2. again.
We may therefore pass to the limit in the defining relation: For any Λ ∈ Fm,∫

Λ

Xm dP =
∫

Λ

Xn dP →
∫

Λ

X∞ dP as n →∞, (12.1)

which proves that X∞ closes the sequence.
Strictly speaking we have exploited the fact that for every fixed m, the

sequence {XnI{Λ}, n ≥ m} is a uniformly integrable martingale and, hence,
converges almost surely and in L1. The equality in (12.1) is the martingale
property, and the arrow denotes convergence of the expectations.
(c) =⇒ (d): Choose Y = X∞.
(d) =⇒ (a): Apply Theorem 11.1. �

If higher-order moments exist, then additional convergence properties are
automatic.

Theorem 12.2. Let p > 1. Suppose that {(Xn,Fn), n ≥ 0} is an Lp-bounded
martingale, that is,

sup
n

E|Xn|p < ∞.

Then,

(a) {|Xn|p} is uniformly integrable;

(b) Xn → X∞ a.s. and in Lp;

(c) E|Xn|p → E|X∞|p as n →∞;

(d) {(Xn,Fn), n = 0, 1, 2, . . . ,∞} is a martingale.
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Proof. Set Yn = sup0≤k≤n |Xk|, and Y = supn |Xn|. The L1-boundedness,
Fatou’s lemma, and the Doob maximal inequality, Theorem 9.4, together yield

E Y p ≤ lim inf
n→∞

E(Yn)p ≤ lim inf
n→∞

( p

p− 1

)p

E|Xn|p

≤
( p

p− 1

)p

sup
n

E|Xn|p < ∞.

We have thus exhibited a dominating random variable Y ∈ Lp, which, by
Theorem 5.4.4 proves (a).

Since, the martingale, in particular, is L1-bounded it converges almost
surely, which together with (a) and Theorem 5.5.4 proves (b), and, together
with (a), also (c). Finally, (d) is immediate from Theorem 12.1. �

Remark 12.2. The “problem” for p = 1 is that there are L1-bounded martin-
gales that are not uniformly integrable, whereas powers are automatically so
when the martingale is Lp-bounded. The “reason” for this discrepancy is the
additional logarithm in the Doob maximal inequality when p = 1. �

Recalling Corollary 11.1 allows us to formulate the following result.

Corollary 12.1. Suppose that {Xn, n ≥ 0} is a martingale of the form Xn =
E(Z | Fn), n ≥ 0. Then Xn → X∞ almost surely and in L1 as n → ∞
and X∞ closes the martingale. If, in addition, Z ∈ Lp for some p > 1, then
Xn → X∞ almost surely and in Lp as n →∞.

12.2 A Main Submartingale Theorem

The version for submartingales differs slightly from the martingale analog,
because Theorem 12.1(d) is no longer applicable.

Theorem 12.3. Suppose that {(Xn,Fn), n ≥ 0} is a submartingale. The fol-
lowing are equivalent:

(a) {Xn, n ≥ 0} is uniformly integrable;

(b) Xn converges in L1;

(c) Xn
a.s.→ X∞ as n →∞, X∞ ∈ L1, and {(Xn,Fn), n = 0, 1, 2, . . . ,∞}

is a submartingale – X∞ closes the sequence.

Proof. The proofs that (a) ⇒ (b) ⇒ (c) are the same as for martingales,
except that the equality in (12.1) is replaced by an inequality. Moreover,
convergence of the expectations follows from almost sure convergence and
uniform integrability via Theorem 5.5.4
(c) =⇒ (a): Since, by convexity, {(X+

n ,Fn), 0 ≤ n ≤ ∞} is a submartingale,
it follows from the defining relation that∫

{X+
n >λ}

X+
n ≤

∫
{X+

n >λ}
X+

∞,
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and, since, by the Kolmogorov-Doob inequality,

P (X+
n > λ) ≤ λ−1E X+

n ≤ λ−1E X+
∞ → 0 as λ →∞,

independently of (and hence uniformly in) n, it follows, from Theorem 5.4.1,
that {X+

n } is uniformly integrable. This, the fact that X+
n

a.s.→ X∞ as n →∞,
together with an application of Theorem 5.5.2, proves that E X+

n → E X+
∞ as

n →∞.
Now, since the expectations of Xn and X+

n converge as n →∞ the same
holds true for X−

n , which, together with almost sure convergence and another
application of Theorem 5.5.2, shows that {X−

n } is uniformly integrable.
Finally, since the sum of two uniformly integrable sequences is also uni-

formly integrable (Theorem 5.4.6), it follows that {Xn} is uniformly inte-
grable, which proves (a). �

12.3 Two Non-regular Martingales

In this subsection we exhibit two martingales that are L1-bounded but not
uniformly integrable, and, hence, not regular, not complete, not closable, de-
pending on the preferred language. This means that they converge almost
surely, but not in L1, and, hence, do not “fit” Theorem 12.1(d).

Example 12.1. Recall the game “double or nothing” from Example 3.5, in
which X0 = 0, and, recursively,

Xn+1 =

{
2Xn, with probability 1

2 ,

0, with probability 1
2 .

We proved there that {(Xn,Fn), n ≥ 0} was a martingale with mean 1.
Since P (Xn = 2n) = 1 − P (Xn = 0) = 2−n, an application of the

first Borel-Cantelli lemma, Theorem 2.18.1, shows, what is intuitively clear,
namely, that Xn

a.s.→ 0 as n →∞. However, since E Xn = 1 for all n the mean
does not converge to 0, so that the martingale is not uniformly integrable.

Example 12.2. A critical Galton-Watson process is a branching process in
which the mean offspring equals 1, which, i.a., implies that the expected num-
ber of individuals in every generation equals 1; recall Example 2.15.1. Such
processes die out almost surely. Thus, if Xn = X(n) denotes the number of
individuals in the nth generation, then {Xn, n ≥ 0} is a martingale with mean
1 (recall Example 3.8). Since Xn

a.s.→ 0 and E Xn = 1, the martingale is not
uniformly integrable. �

12.4 Regular Martingales Revisited

Once again, let Xn = E(Z | Fn), n ≥ 0. The sequence {Xn, n ≥ 0} is a
uniformly integrable martingale, and we know from (the proof of) the main
theorem – recall (12.1) that for Λ ∈ Fm,
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Λ

Z dP =
∫

Λ

Xn dP →
∫

Λ

X∞ dP as n →∞, for all m.

By standard approximation arguments such as “it suffices to check rectangles”
one concludes that∫

Λ

Z dP =
∫

Λ

X∞ dP for all Λ ∈ F∞,

which, via the defining relation shows that X∞ = E(Z | F∞).
Collecting these facts (and a little more) we obtain the following result.

Theorem 12.4. Suppose that Z ∈ L1, and set Xn = E(Z | Fn), n ≥ 0. Then

Xn → X∞ = E(Z | F∞) a.s. and in L1 as n →∞,

in other words {X0, X1, X2, . . . , Xn, X∞, Z} is a martingale.
In particular, if Z ∈ F∞, then X∞ = Z a.s.

Remark 12.3. From Theorem 12.1 we know that Z closes the martingale. But
so does X∞. We call X∞ the nearest closing random variable. �

13 The Kolmogorov Zero-one Law

Here is a beautiful application of Theorem 12.4.
Let Y1, Y2, . . . be independent random variables, let Fn be the natural

σ-algebras, Fn = σ{Y1, Y2, . . . , Yn}, and T the tail-σ-field.
Let Z ∈ T be a random variable, and suppose, to begin with, that Z ∈ L1.

Consider the sequence {E(Z | Fn), n ≥ 1}. Since T ⊂ F∞ an application of
Theorem 12.4 yields

E(Z | Fn) → E(Z | F∞) = Z a.s.

The fact that Z is independent of Fn tells us that E(Z | Fn) = E Z, which
proves that

Z = E Z a.s.

We thus conclude that an integrable random variable that is measurable with
respect to the tail-σ-field must be a.s. constant.

If Z is not integrable we perform the same analysis on, say, Z/(1 + |Z|)
with the same conclusion, and since this new random variable is a.s. constant,
so is Z. Thus:

Theorem 13.1. A random variable that is measurable with respect to the tail-
σ-field of a sequence of independent random variables is a.s. constant.

Next we apply this result to the special case when Z is the indicator of a set
in the tail-σ-field, thereby rediscovering Theorem 2.10.6.
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Corollary 13.1. (The Kolmogorov zero-one law)
Let Y1, Y2, . . . be a sequence of independent random variables, set Fn =
σ{Y1, Y2, . . . , Yn}, and let A ∈ T , the tail-σ-field. Then

P (A) = 0 or 1.

14 Stopped Random Walks

Random walks were introduced in Section 2.16. As we have already empha-
sized a number of times, it is frequently more realistic in applications to ob-
serve a random walk at fixed time points, which means after a random number
of steps, rather than after a fixed number of steps, that is, at a random time
point. This naturally suggests a theory of stopped random walks.

In this section we shall focus on results for stopped random walks pertain-
ing to martingale theory. Throughout our σ-algebras are assumed to be the
natural ones. For more on this topic we refer to [110].

14.1 Finiteness of Moments

One application of the Burkholder inequalities is obtained by joining them
with Theorem 8.2 in order to prove results about existence of moments of
stopped random walks. The conclusion, [110], Theorem I.5.1, runs as follows:

Theorem 14.1. Let Y, Y1, Y2, . . . be independent, identically distributed dis-
tributed random variables such that E|Y |p < ∞ for some p > 0, with E Y = 0,
when p ≥ 1, set Xn =

∑n
k=1 Yk, and suppose that τ is a stopping time. Then

E|Xτ |p ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E τ · E|Y |p, for 0 < p ≤ 1,

Bp · E τ · E|Y |p, for 1 ≤ p ≤ 2,

Bp

(
E τp/2 · (E Y 2)p/2 + E τ · E|Y |p

)
≤
{

2Bp max{E τp/2 · (E Y 2)p/2, E τ · E|Y |p},
2Bp · E τp/2 · E|Y |p, for p ≥ 2,

where Bp is a numerical constant depending only on p.

Proof. If τ is not sufficiently integrable, there is nothing to prove, so, suppose
that the relevant moments of τ exist whenever they appear.

Let, as usual, τn = τ ∧ n, and observe that it suffices to prove the the-
orem for τ ∧ n, since E(τ ∧ n)p ≤ E(τ)p by monotonicity, and E|Xτ |p ≤
lim infn→∞ E|Xτ∧n|p by Fatou’s lemma.

Secondly, since, for any p > 0, {|Yk|p − E|Yk|p, k ≥ 1} are independent,
identically distributed random variables with mean 0, it follows from Theorem
8.2 that

E

τ∧n∑
k=1

|Yk|p = E(τ ∧ n) · E|Y |p. (14.1)
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First, let 0 < p < 1. Then, by Theorem 3.2.2, the cr-inequalities, and
(14.1),

E|Xτ∧n|p ≤ E

τ∧n∑
k=1

|Yk|p = E(τ ∧ n) · E|Y |p.

Next, let 1 < p ≤ 2. Then, by Theorem 9.5, the cr-inequalities (note that
p/2 ≤ 1), and (14.1),

E|Xτ∧n|p ≤ Bp
pE

( τ∧n∑
k=1

Y 2
k

)p/2

≤ Bp
pE

τ∧n∑
k=1

|Yk|p = Bp
pE(τ ∧ n) · E|Y |p.

Finally, for p ≥ 2 we use Theorem 9.1 and independence to obtain

E|Xτ∧n|p ≤ Dp
pE

( τ∧n∑
k=1

E(Y 2
k | Fk−1)

)p/2

+ Dp
pE

τ∧n∑
k=1

|Yk|p

= Dp
pE
(
(τ ∧ n) · E Y 2)p/2 + Dp

pE(τ ∧ n)E|Y |p

= Dp
p

(
E(τ ∧ n)p/2(E Y 2)p/2 + E(τ ∧ n)E|Y |p

)
,

and what remains of substance follows from Lyapounov’s inequality, Theorem
3.2.5. �

If E Y = µ �= 0 we may apply the Minkowski inequality, Theorem 3.2.6,
and Theorem 14.1 to the inequality

|Xτ | ≤ |Xτ − µτ |+ |µ|τ

to obtain the following result.

Theorem 14.2. Let p ≥ 1, and suppose that Y, Y1, Y2, . . . are independent,
identically distributed distributed random variables with E|Y |p < ∞. Set Xn =∑n

k=1 Yk, and suppose that τ is a stopping time. Then

E|Xτ |p ≤ B′
p · E τp · E|Y |p,

where B′
p is a numerical constant depending only on p.

14.2 The Wald Equations

We have just provided inequalities for moments of stopped sums. But for mean
and variance one can frequently obtain equalities. Do such equalities hold for
the mean and variance of stopped random walks?

From Section 10.3 and the optional sampling theorem we know that

E Xτ∧n = 0 and that E
(
X2

τ∧n − (τ ∧ n)E Y 2) = 0,
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(under appropriate moment assumptions). One might therefore hope that it
is possible to let n → ∞ in order to obtain equalities in these cases. We
shall see that this is, indeed, the case in Section 10.15, where we shall also
provide more general results concerning when it is possible to let n → ∞
and retain a specific property, such as, for example, allowing the transition
E Xτ∧n = 0 · · · −→ E Xτ = 0.

Let Y, Y1, Y2, . . . be independent, identically distributed random variables
with finite mean µ, and let Sn, n ≥ 1, denote the partial sums. From Theorem
2.15.1 we know that E Sτ = µ · E τ if τ is a (non-negative integer valued)
random variable with finite mean, which is independent of Y1, Y2, . . . , and
that an analogous relation holds for VarSτ provided enough integrability is
at hand. There are several results of this kind that carry over to stopping
times. The following result, the Wald equations, is one of them.

Theorem 14.3. Let Y, Y1, Y2, . . . be independent, identically distributed ran-
dom variables with finite mean, µ, and let Sn, n ≥ 1, denote the partial sums.
Suppose that τ is a stopping time.

(i) If E τ < ∞, then
E Sτ = µ · E τ.

(ii) If, moreover, Var Y = σ2 < ∞, then

E(Sτ − µτ)2 = σ2 · E τ.

Proof. (i): Following the usual pattern, we first have

E Xτ∧n = E(Sτ∧n − µ(τ ∧ n)) = 0,

so that
E Sτ∧n = µ · E(τ ∧ n) ↗ µ · E τ < ∞ as n →∞,

by point-wise and monotone convergence.
If the summands are non-negative, then we also have E Sτ∧n ↗ E Sτ as

n →∞ by point-wise and monotone convergence. In the general case the same
follows by point-wise convergence and dominated convergence, since

|Sτ∧n| ≤
τ∧n∑
k=1

|Yk| a.s.→
τ∧n∑
k=1

|Yk|

monotonically. We have thus shown that

E Sτ ← E Sτ∧n = µ · E(τ ∧ n) → µE τ as n →∞.

The conclusion follows.
(ii): We exploit the second random walk martingale, Example 3.3. An appli-
cation of the optional sampling theorem yields

E(Sτ∧n − µ(τ ∧ n))2 = σ2 · E(τ ∧ n) ↗ σ2 · E τ < ∞ as n →∞, (14.2)

where convergence follows as in the proof of (i).
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In order to take care of the left-hand side we first note that

Sτ∧n − µ · (τ ∧ n) a.s.→ Sτ − µ · τ as n →∞. (14.3)

Secondly, by orthogonality (Section 10.4),

E
(
{Sτ∧m − µ · (τ ∧m)} − {Sτ∧n − µ · (τ ∧ n)}

)2
= E

(
Sτ∧m − µ · (τ ∧m)

)2 − E
(
Sτ∧n − µ · (τ ∧ n)

)2
= σ2(Eτ ∧m− (τ ∧ n)

)
→ 0 as n, m →∞,

so that, by (14.3) (and Theorem 5.5.2),

E(Sτ∧n − µ · (τ ∧ n))2 → E(Sτ − µ · τ)2 as n →∞.

Joining this with (14.2) finishes the proof. �

Remark 14.1. An important pitfall is to falsely conclude that E(Sτ − µτ)2 is
the same as Var Sτ (if µ �= 0); after all, E(Sn − nµ)2 = VarSn . . .. The truth
is, by (i), that VarSτ = E(Sτ −µE τ)2. Moreover, by adding and subtracting
µE τ , and invoking (ii), we find that

σ2E τ = E(Sτ − µτ)2

= Var (Sτ ) + E(µE τ − µτ)2 + 2E(Sτ − µE τ)(µE τ − µτ)
= Var (Sτ ) + µ2Var τ − 2µCov (Sτ , τ),

which can be rewritten as

Var (Sτ ) = σ2E τ − µ2Var τ + 2µCov (Sτ , τ). (14.4)

If, in particular, τ is independent of Y1, Y2, . . . , then, by conditioning,
Cov (Sτ , τ) = µVar τ , and (14.4) reduces to the well-known

Var (Sτ ) = σ2E τ + µ2 Var τ. �

Returning to an Old Promise

We are now in the position to complete the promise given in Example 7.1,
namely, to prove that the expected time it takes a symmetric simple random
walk to reach the level +1 is infinite.

Example 14.1. Thus, let Y, Y1, Y2, . . . be independent random variables, such
that P (Y = 1) = P (Y = −1) = 1/2, set Xn =

∑n
k=1 Yk, n ≥ 1, and let

τ = min{n : Xn = 1}.

Assume the contrary, namely that E τ < ∞. It then follows from the first
Wald equation, and the fact that Xτ = 1 almost surely, that
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1 = E Xτ = E Y · E τ = 0 · E τ = 0,

which is a contradiction. Hence E τ = +∞.
Note, however, that E Xτ∧n = 0 for every fixed n by the optional sampling

theorem.
Moreover, the expected time to reach −1 is also infinite. And, yet, the

minimum of these, that is the time it takes to reach +1 or −1, equals 1
always; min{n : |Xn| = 1} = 1. �

14.3 Tossing a Coin Until Success

We begin by showing that the expected number of independent repetitions of
zeroes and ones until the first 1 is obtained has mean 1/P (1), after which we
derive the geometric distribution of this random variable. This is certainly no
news, but the procedure illustrates very nicely the martingale and stopping
time technique.

Let Y, Y1, Y2, . . . be independent Be(p)-distributed random variables,
that is, P (Y = 1) = 1− P (Y = 0) = p, and let

τ = min{n : Yn = 1}.

The claim is that E τ = 1/p.
In order to see this we wish to find a suitable martingale to which we can

apply τ ∧n and then let n →∞. The natural martingale (with mean 0) is (of
course?) {(Xn,Fn), n ≥ 0}, where Xn =

∑n
k=1(Yk−p), n ≥ 1 (recall Example

3.2). Upon observing that, in fact, τ = min{n :
∑n

k=1 Yk = 1}, we can apply
the optional sampling theorem, Theorem 7.1, to conclude that E Xτ∧n = 0,
that is, that

E
τ∧n∑
k=1

Yk = pE(τ ∧ n).

Now, without appeal to any general result, we observe that

0 ≤
τ∧n∑
k=1

Yk ≤
τ∑

k=1

Yk = 1,

so that, since
∑τ∧n

k=1 Yk →
∑τ

k=1 Yk = 1 as n →∞, the left-hand side converges
to E

∑τ
k=1 Yk = 1 by bounded convergence. And, since τ ∧ n ↗ τ as n →∞,

the right-hand side converges to E τ by monotone convergence. Putting the
convergences together we find that E τ = 1/p as claimed.

We can, however, do more. Namely, set

Xn =
exp{s

∑n
k=1 Yk}

(1− p + pes)n
, n ≥ 1.
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This defines another martingale (recall Example 3.6). By the optional sam-
pling theorem we therefore know that E Xτ∧n = 1, which, rewritten, tells us
that, for s in a neighborhood of 0,

E
( exp{s

∑τ∧n
k=1 Yk}

(1− p + pes)τ∧n

)
= 1.

Since 0 ≤
∑τ∧n

k=1 Yk ≤
∑τ

k=1 Yk = 1, it follows that

0 ≤ Xτ∧n ≤
exp{|s|}

1− p + pe−|s| ,

so that the bounded convergence theorem allows us to conclude that

E
(exp{s

∑τ
k=1 Yk}

(1− p + pes)τ

)
= 1,

that is, that

E
( exp{s}

(1− p + pes)τ

)
= 1.

The change of variable u = (1− p + pes)−1 then shows that

E uτ =
pu

1− p + pu
,

which is the probability generating function of a geometric random variable
with mean 1/p. The uniqueness theorem for generating functions, Theorem
4.7.1, therefore allows us to conclude that τ ∈ Ge(p).

A famous, more sophisticated, example is

14.4 The Gambler’s Ruin Problem

Two persons play a coin tossing game. Player A starts with a Euros, player
B with b Euros, both amounts being integers. If the coin turns heads, A wins
one Euro from B and if it turns tails B wins one Euro from A. The game ends
when one player goes broke.

This can be modeled by a simple random walk starting at 0, ending at
a > 0 or −b < 0, whichever is reached first. The traditional, classical solution
is to set up a system of difference equations.

The more beautiful way is to use martingales.
Let p = P (Player A wins one round), and set q = 1 − p. If Yk is the

outcome of round number k with Y as a generic random variable, then

P (Y = 1) = 1− P (Y = −1) = p.

The game ends after τ rounds, where

τ = min
{

n :
n∑

k=1

Yk = a or − b
}

.
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Suppose first that p �= q. In this case we can argue with the aid of the
moment generating function as in the previous example to obtain

E
(exp{s

∑τ∧n
k=1 Yk}

(qe−s + pes)τ∧n

)
= 1.

By point-wise convergence, and the fact that

0 ≤ exp{s
∑τ∧n

k=1 Yk}
(qe−s + pes)τ∧n

≤ exp{|s|(a + b)}
qe−|s| + pe−|s| = exp{|s|(a + b + 1)} ,

the bounded convergence theorem yields

E
(exp{s

∑τ
k=1 Yk}

(qe−s + pes)τ

)
= 1. (14.5)

Let α = P (
∑τ

k=1 Yk = a) = 1 − P (
∑τ

k=1 Yk = −b). Since (14.5) holds for
all s, we continue our discussion for the particular value s = log(q/p), which
has the special feature that the denominator equals 1 and therefore vanishes.
Equation (14.5) therefore conveniently reduces to

α
(q

p

)a

+ (1− α)
(q

p

)−b

= 1,

the solution of which is

α = P (Player A is the winner of the game) =
1− (p/q)b

(q/p)a − (p/q)b
,

with 1− α being the probability that player B is the winner.
Before taking care of the symmetric case we present another martingale

that does the job. Namely, set

Xn =
(q

p

)Tn

, where Tn =
n∑

k=1

Yk, n ≥ 1.

Then {(Xn,Fn), n ≥ 0} is a martingale of the product type with mean 1. The
usual arguments thus lead to E Xτ∧n = 1, and, since

0 ≤ Xτ∧n ≤
(q

p

)a+b

+
(p

q

)a+b

,

via point-wise convergence and bounded convergence, to E Xτ = 1, which,
rewritten, tells us that

E
(q
p

)Tτ = 1.

With α = P (Player A is the winner of the game) as before we obtain

α
(q

p

)a

+ (1− α)
(q

p

)−b

= 1,
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which is the same equation as before, but obtained in a much swifter way. We
might say that the second choice of martingale was a better one (but both are
interesting as illustrations of the method).

It remains to solve the case p = q = 1/2, and for this we consider the
martingale from Example 3.2 defined by Xn =

∑n
k=1 Yk, n ≥ 1. The usual

procedure produces
E Xτ∧n = 0,

which, together with the bound

|Xτ∧n| ≤ a + b,

and bounded convergence, shows that

E Xτ = 0.

In this case α is obtained as the solution of the equation

α · a + (1− α) · (−b) = 0,

which is
α =

b

a + b
.

In particular, if a = b, that is, both players start off with the same amount
of money, they win with probability 1/2 each, which is what intuition would
suggest.

It is also possible to compute the expected duration of the game.
In the asymmetric case we apply the martingale from Example 3.2, the

centered random walk, to the optional sampling theorem, to obtain E Xτ∧n =
0, that is,

E
τ∧n∑
k=1

Yk = (p− q)E(τ ∧ n).

Since |
∑τ∧n

k=1 Yk| ≤ a + |b|, the corresponding bounded and monotone conver-
gences, respectively, show that

E
τ∑

k=1

Yk = (p− q)E τ.

Since the left-hand side is available from the first part of the discussion we
are now in the position to find E τ . In fact,

E τ =
E
∑τ

k=1 Yk

p− q
=

α · a + (1− α) · (−b)
p− q

=
1

p− q

(
a− (a + b)

1− (p/q)b

(q/p)a − (p/q)b

)
.
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In order to find the expected duration of the game in the symmetric case we
use the martingale from Example 3.3. Thus, set Xn =

(∑n
k=1 Yk

)2 − n, for
n ≥ 1, (VarY = 1), so that {(Xn,Fn), n ≥ 0} is a martingale with mean 0.
Proceeding as before we obtain E Xτ∧n = 0, that is

E

( τ∧n∑
k=1

Yk

)2

= E(τ ∧ n). (14.6)

In this case,

0 ≤
( τ∧n∑

k=1

Yk

)2

≤ (a + b)2, (14.7)

and the sum converges point-wise to
∑τ

k=1 Yk, so that, by bounded conver-
gence, the left-hand side of (14.6) converges to E

(∑τ
k=1 Yk

)2.
The right-hand side of (14.6) converges to E τ by monotone convergence.

Moreover, by Fatou’s lemma, and (14.6), and (14.7),

E τ ≤ lim inf
n→∞

E(τ ∧ n) ≤ (a + b)2 < ∞.

Putting our findings together proves that

E
( τ∑

k=1

Yk

)2
= E τ.

Inserting the absorption probabilities α and 1− α at the respective ends, we
finally obtain

E τ = αa2 + (1− α)b2 =
b

a + b
· a2 +

a

a + b
· b2 = ab.

14.5 A Converse

Theorem 14.1 states, in particular, that if moments of certain orders of the
summands and the stopping time exist, then so does the stopped sum. For
example, if, for p ≥ 2, E|Y |p < ∞ and E τp/2 < ∞, then E|Xτ |p < ∞.
Theorem 14.3(i) provides a convenient means to compute the expected value
of a stopped random walk. However, before applying the theorem we must
know that the stopping time has finite mean. On the other hand, sometimes
one may have a good grasp on E Sτ , and not on E τ , and one would like to use
the Wald equation in order to find E τ . But, once again, we must first know
that E τ is finite, which means that we are caught in a catch-22 situation.

A number of “converse results” can be found in [119]. One example, which
is to be exploited later in this section, is Theorem 2.2 there (see also [110],
Theorem I.5.5).
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Theorem 14.4. Let Y1, Y2, . . . be independent, identically distributed ran-
dom variables with partial sums Sn, n ≥ 1, and suppose that µ = E Y �= 0.
Further, let τ be a stopping time.
(i) Then

E|Sτ | < ∞ =⇒ E τ < ∞.

(ii) If, in addition, E|Y |p < ∞, then

E|Sτ |p < ∞ =⇒ E τp < ∞.

Proof. (i): The proof is based on a beautiful device due to Blackwell [22, 23],
and the converse(!) of the strong law of large numbers.

Let {τn, n ≥ 1} be independent copies of τ , constructed as follows: Let
τ1 = τ . Restart the random walk at “time” τ1, and let τ2 be the corresponding
stopping time for that sequence. Technically this means that we consider the
sequence Yτ1+1, Yτ1+2 . . ., and let τ2 play the same role as τ1 did for the original
sequence. Then restart at τ1 + τ2, and so on.

This makes {τn, n ≥ 1} into a sequence of independent, identically dis-
tributed random variables, distributed as τ . Moreover, {Sτ1+τ2+···+τk

, k ≥ 1}
is a sequence of partial sums of independent, identically distributed random
variables distributed as Sτ .

The strong law of large numbers applied to these sums therefore tells us
that

Sτ1+τ2+···+τk

k

a.s.→ E Sτ as k →∞.

On the other hand,

Sτ1+τ2+···+τk

τ1 + τ2 + · · ·+ τk

a.s.→ E Y as k →∞,

by the “random index strong law of large numbers”, Theorem 6.8.2(iii).
Combining the two yields

τ1 + τ2 + · · ·+ τk

k
=

τ1 + τ2 + · · ·+ τk

Sτ1+τ2+···+τk

· Sτ1+τ2+···+τk

k

a.s.→ 1
E Sτ

· E Y as k →∞.

By the converse of the Kolmogorov strong law of large numbers, Theorem
6.6.1(b), we therefore conclude that Eτ < ∞.
(ii): We combine the inequality

|µτ | ≤ |Sτ − µτ |+ |Sτ |, (14.8)

Theorem 14.1, and the cr-inequality (Theorem 3.2.2), and work ourselves
through the powers of 2.

If 1 < p ≤ 2, (14.8), Theorem 14.1, the cr-inequality, and part (i) of the
theorem tells us that
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|µ|pE τp ≤ 2p−1BpEτE|Y |p + 2p−1E|Sτ |p < ∞.

If 2 < p ≤ 22 the same procedure yields

|µ|pE τp ≤ 2p−12BpEτp/2E|Y |p + 2p−1E|Sτ |p < ∞.

And so on. �

Remark 14.2. The proof shows i.a. that the converse of the strong law not
only tells us that finite mean is necessary for the strong law to hold, it may
also be used to conclude that the mean of the summands at hand must be
finite.

Remark 14.3. The assumption that the mean is not zero cannot be dispensed
with; the symmetric coin is a simple counter-example. Remember that we had
Sτ = 1, E Y = 0, and Eτ = ∞ in that example.

Remark 14.4. A fact that we passed by in the proof was a detailed verification
of the fact that τ1, τ2, . . . are, indeed, independent, identically distributed
random variables. The reason for this being true is that the pre-σ-algebra is
independent of what comes after a stopping time, so that Fτk

and {Yn, n > τk}
are independent for all k. In another language this is a consequence of the
strong Markov property. �

Exercise 14.1. Put the details of the previous remark on paper. �

Example 14.2. If we reconsider tossing a coin until heads appears, Subsection
10.14.3, once more, we know that E Y = p and that Sτ (= Xτ ) = 1 a.s.
Via Theorem 14.4 we obtain E τ < ∞, after which Theorem 14.3 – without
resorting to τ ∧ n and letting n →∞ – tells us that

E τ =
ESτ

E Y
=

1
p
.

Once again, this is really hard artillery for a triviallity, nevertheless, it illus-
trates a thought. �

15 Regularity

Much of the work involved in limit theorems for martingales concerns the
asymptotics of moments and conditional moments. We have also seen, in
Theorem 12.1, that the closable, or regular martingales have a more pleas-
ant (regular) behavior. We have also seen in Theorem 7.1 that the martingale
property is preserved for regular martingales evaluated at stopping times.
Finally, in the examples above, and in the work on stopped random walks we
had to check expected values or moments of τ ∧ n as n →∞.

With this in mind, let us introduce the concept of regular stopping time,
and collect some general facts for regular martingales and regular stopping
times.
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Definition 15.1. A stopping time τ is a regular stopping time for the mar-
tingale {(Xn,Fn), n ≥ 0} if

{(Xτ∧n,Fn), n ≥ 0} is a regular martingale. �

Regular martingales are almost surely convergent. Combining this with the
uniform integrability and Theorem 5.5.2 yields the first part of the following
result (which we, for simplicity, state under the additional assumption that
the stopping time has a finite mean).

Theorem 15.1. Let {(Xn,Fn), n ≥ 0} be a martingale, and suppose that τ
is a stopping time with finite mean. The following are equivalent:

(i) τ is a regular stopping time;
(ii) Xτ∧n → Xτ almost surely and in L1 as n →∞.

If τ is regular, then E Xτ∧n → E Xτ as n →∞.

Proof. The equivalence between (i) and (ii) was discussed prior to the state-
ment of the proposition. The convergence of the expected values follows from
the fact that

|E Xτ∧n − E Xτ | ≤ E|Xτ∧n −Xτ | → 0 as n →∞. �

Reviewing Example 14.1 we find that the stopping time defined there is
not regular. We also note that the main effort in the coin-tossing problem, the
Gambler’s ruin problem, and the proof of the Wald equations, Theorem 14.3,
was to prove regularity. Actually, not quite, it was to verify the last statement
in Theorem 15.1, which is somewhat less than proving uniform integrability.
However, with some additional arguments we obtain regularity as follows.

Theorem 15.2. Let Y, Y1, Y2, . . . be independent, identically distributed ran-
dom variables, and let Sn, n ≥ 1, denote the partial sums. Suppose that τ is
a stopping time relative to a filtration, {Fn, n ≥ 1}, and that E τ < ∞.

(i) If µ = E Y < ∞, then τ is regular for {(Sn − nµ,Fn), n ≥ 0}.
(ii) If σ2 = VarY < ∞, then τ is regular for {

(
(Sn−nµ)2−nσ2,Fn

)
, n ≥ 0}.

Proof. From the proof of Theorem 14.3 we extract that

|Xτ∧n| = |Sτ∧n − µ(τ ∧ n)| ≤
τ∧n∑
k=1

|Yk|+ µ(τ ∧ n) ≤
τ∑

k=1

|Yk|+ µτ ∈ L1,

by Theorems 14.1 or 14.3, that is, we have found an integrable random variable
that dominates the sequence {Xτ∧n, n ≥ 1}, which therefore, by Theorem
5.4.4, is uniformly integrable. This proves (i).

To prove (ii) we note that in the proof of the second Wald equation we
showed that Sτ∧n − µ(τ ∧ n) → Sτ − µ(τ) = Xτ almost surely and in L2, as
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n →∞, which due to Theorem 5.5.2 proves that {(Sτ∧n − µ(τ ∧ n))2, n ≥ 1}
is uniformly integrable.

Moreover, since τ ∧ n ≤ τ which is integrable, another application of
Theorem 5.5.2 asserts that {τ ∧ n, n ≥ 1} is uniformly integrable.

And, since the sum (as well as the difference) of two uniformly integrable
sequences is uniformly integrable (Theorem 5.4.6), we conclude that

{(Sτ∧n − µ(τ ∧ n))2 − σ2(τ ∧ n), n ≥ 1} is uniformly integrable. �

By employing the new terminology we may rephrase the results in Sections
10.7 and 10.8 in the following language.

Theorem 15.3. Let {(Xn,Fn), n ≥ 0} be a martingale.

• If {(Xn,Fn), n ≥ 0} is regular, then any stopping time is regular.

• If τ is regular and τ1 ≤ τ is another stopping time, then τ1 is regular too,

E(Xτ | Fτ1) = Xτ1 , and E X0 = E Xτ1 = E Xτ .

• If τ is regular and τ1 ≤ τ1 ≤ · · · ≤ τk ≤ τ are stopping times, then
{τi, 1 ≤ i ≤ k} are regular,

E(Xτj
| Fτi

) = Xτi
for 1 ≤ i < j ≤ k,

and E X0 = E Xτj = E Xτ for 1 ≤ j ≤ k.

Exercise 15.1. Please, verify the details of these statements. �

The obvious question at this point is whether there are some convenient nec-
essary and sufficient criteria for a stopping time to be regular.

Here is one such result.

Theorem 15.4. Suppose that {(Xn,Fn), n ≥ 0} is a martingale. The stop-
ping time τ is regular if and only if

(i) E|Xτ |I{τ < ∞} < ∞, and

(ii) {XnI{τ > n}, n ≥ 0} is uniformly integrable.

Proof. Suppose first that τ is regular. By Fatou’s lemma,

E|Xτ |I{τ < ∞} ≤ lim inf
n→∞

E|Xτ∧n|I{τ ∧ n < ∞}

= lim inf
n→∞

E|Xτ∧n|I{τ ≤ n} ≤ sup
n

E|Xτ∧n| < ∞,

since {Xτ∧n} is uniformly integrable. This verifies (i).
To verify (ii) it suffices to observe that the sequence {|XnI{τ > n}|, n ≥ 0}

is dominated by the uniformly integrable sequence {|Xτ∧n|, n ≥ 0}, and,
therefore, in view of Theorem 5.4.4, is uniformly integrable too.
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Conversely, assume that (i) and (ii) are satisfied. Then,

E|Xτ∧n|I{|Xτ∧n| > a} = E|Xτ∧n|I{{|Xτ∧n| > a} ∩ {τ ≤ n}}
+E|Xτ∧n|I{{|Xτ∧n| > a} ∩ {τ > n}}

= E|Xτ |I{{|Xτ | > a} ∩ {τ ≤ n}}
+E|Xn|I{{|Xn| > a} ∩ {τ > n}}

≤ E|Xτ |I{τ < ∞}I{|Xτ |I{τ < ∞} > a}
+E|Xn|I{τ > n}I{|Xn|I{τ > n} > a}

→ 0 as a →∞,

by (i) (the tail of a convergent integral) and (ii), respectively.
We have thus shown that {Xτ∧n, n ≥ 0} is uniformly integrable, and,

hence, that τ is regular. �

Remark 15.1. For the Gambler’s ruin problem we have shown above that
E τ < ∞, so that XτI{τ < ∞} = Xτ , which equals a or b depending on
the barrier that is hit. Secondly, |Xn|I{τ > n} ≤ max{a, |b|} which is a fi-
nite constant. An application of Theorem 15.4 shows that τ is regular for the
martingales considered there. �

Sometimes a sufficient condition is sufficient for ones needs. Here is one
that ensures that Theorem 15.4(i) is satisfied.

Theorem 15.5. If {(Xn,Fn), n ≥ 0} is an L1-bounded martingale, then
E|Xτ | < ∞, and, all the more, E|Xτ |I{τ < ∞} < ∞.

The conclusion holds, in particular, for all non-negative martingales.

Proof. The L1-boundedness implies that Xn
a.s.→ X∞ as n → ∞, so that Xτ

is always well defined. Moreover, since {(|Xn|,Fn), n ≥ 0} is a submartingale
we can apply the second part of Theorem 7.4 to conclude that {X0, Xτ∧n, Xn}
is a submartingale. An application of Fatou’s lemma therefore yields

E|Xτ | ≤ lim inf
n→∞

E|Xτ∧n| ≤ lim inf
n→∞

E|Xn| ≤ sup
n

E|Xn| < ∞.

The final statement is a consequence of the fact that all non-negative martin-
gales are L1-bounded automatically. �

Important stopping times are, as has been mentioned before, “the first
time something special happens”. With the aid of the regularity criteria we
can easily establish the following result for first entrance times, or escape
times, depending on the angle from which one is observing the process.

Theorem 15.6. Suppose that {(Xn,Fn), n ≥ 0} is an L1-bounded martin-
gale. Then, for −∞ < b < 0 < a < ∞,

τa = min{n : |Xn| > a}, and
τb,a = min{n : Xn < b or Xn > a}

are regular stopping times.
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Proof. Because of the L1-boundedness, Theorem 15.5 shows that condition (i)
in Theorem 15.4 is satisfied. The fact that |Xn|I{τ > n} < a in the first case,
and that |Xn|I{τ > n} < max{a, |b|} in the second case, verifies condition
Theorem 15.4(ii). �

In the following subsection we shall encounter a model where the associated
martingale is not L1-bounded, but the stopping time of interest, a one-sided
escape time, is regular all the same.

15.1 First Passage Times for Random Walks

One application of stopped random walks is the theory of first passage times
for random walks. The background was presented in Section 2.16. We have
later met the topic again in connection with the three classical limit theorems.
Here we shall address questions such as: When is the stopping time finite?
What are the appropriate conditions for finiteness of moments? When is (some
power of) the stopped sum integrable?

Formally, let Y, Y1, Y2, . . . be independent, random variables with mean
µ > 0 and partial sums Sn =

∑n
k=1 Yk, n ≥ 1, and first passage times

τ = τ(t) = min{n : Sn > t}, for some t > 0.

The stopped sum is Sτ = Sτ(t).
We also recall the important “sandwich inequality” (6.9.3):

t < Sτ = Sτ−1 + Yτ ≤ t + Yτ . (15.1)

Now, putting Xn = Sn − nµ for n ≥ 1 we know that {(Xn,Fn), n ≥ 0} is a
martingale, so that by Theorem 7.1, E Xτ∧n = 0, that is,

E Sτ∧n = µ · E(τ ∧ n). (15.2)

Suppose, to begin with, that the summands are bounded above; P (Y ≤ M) =
1 for some M > 0. Since Sτ∧n ≤ Sτ , (15.1) tells us that

Sτ∧n ≤ t + M,

which, together with (15.2), and Fatou’s lemma shows that

E τ ≤ lim inf
n→∞

E(τ ∧ n) ≤ t + M

µ
,

which is some finite constant.
To remove the restriction we introduce the truncated random walk, whose

summands are YkI{Yk ≤ M}, k ≥ 1. The crucial observation now is that the
summands, and therefore the partial sums, of the truncated random walk are
smaller than those of the original random walk, which means that the level t
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is reached more rapidly for the original random walk than for the truncated
one. In other words, the first passage time for the original random walk is
smaller than that of the truncated random walk, which, in turn had a finite
mean.

A reference to Theorem 15.2 shows that τ , in addition, is regular for the
martingale {(Sn − nµ, Fn), n ≥ 1}.

We have thus established the following result, which because of its impor-
tance is given as a theorem.

Theorem 15.7. Let Y1, Y2, . . . be independent, random variables with mean
µ > 0 and partial sums Sn, n ≥ 1. Let

τ = τ(t) = min{n : Sn > t}, for some t > 0.

Then

(i) E τ < ∞;
(ii) τ is regular for the martingale {(Sn − nµ, Fn), n ≥ 1}.

Remark 15.2. The martingale defined in the proof is not L1-bounded and that
τ is a one-sided escape time. We thus had two reasons for not being able to
apply Theorem 15.6. However, τ turned out to be regular all the same. �

Returning to (15.1) we note that the “last” summand, Yτ , plays an impor-
tant role in this context. The following corollary to Theorem 15.7 provides
information about the integrability of Yτ .

Theorem 15.8. Let p ≥ 1, and let Y, Y1, Y2, . . . and τ be given as before. If
E|Y |p < ∞, then

E|Yτ |p ≤ E τE|Y |p < ∞.

Proof. Since

|Yτ |p ≤
τ∑

k=1

|Yk|p,

the conclusion follows via the first Wald equation, Theorem 14.3(i). �

Remark 15.3. In this case the last summand must be positive. The theorem
therefore remains true with |Y | replaced by Y +.

Remark 15.4. As a by-product we point out loudly that Yτ does not behave
like a standard summand; for example, it is always positive. On the one hand
this is trivial, on the other it is sometimes forgotten (or overlooked) in the
literature. �

By combining (15.1) and Theorem 15.8 we are in the position to prove

Theorem 15.9. Let p ≥ 1. In the above setup,

E(Sτ )p < ∞ ⇐⇒ E(Y +)p < ∞.
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Proof. “If” is immediate from (15.1) and Theorem 15.8, and “only if” follows
from the fact that

Sτ ≥ Y +
1 ,

because if the first summand does not reach the required level we must wait
for a larger sum. �

Whereas the positive tail of the summands is crucial for the integrability
of the stopped sum, the negative tail is crucial for the integrability of τ .

Theorem 15.10. Let p ≥ 1. Under the present setup,

E τp < ∞ ⇐⇒ E(Y −)p < ∞.

Proof. For the sufficiency we exploit Theorem 14.4.
If E|Y |p < ∞ we know that from Theorem 15.9 that E(Sτ )p < ∞. This,

together with Theorem 14.4 proves that E τp < ∞. The conclusion then
follows via the truncation procedure in the proof of Theorem 15.7, because
we create smaller summands which results in a larger stopping time which, in
turn, is known to have a finite moment of the requested order.

For the necessity we refer to [110], p. 80. �

Exercise 15.2. Check the details.

Exercise 15.3. The last two proofs show that integrability of Y − is irrelevant for
the integrability of the stopped sum, and that integrability of Y + is irrelevant for
the integrability of the stopping time. Explain in words why this is “obvious”. �

15.2 Complements

The results here concern random walks drifting to +∞. It is known from clas-
sical random walk theory that there are three kinds of random walks; those
drifting to +∞, those drifting to −∞, and the oscillating ones. In particular,
random walks whose increments have positive mean, negative mean, and zero
mean, belong to the classes in that order (this can, for example, be seen with
the aid of the law of large numbers and the law of the iterated logarithm).
Moreover, it can be shown that the hitting times we have discussed in this
section are infinite with positive probability when the increments have a neg-
ative expected value, and almost surely finite, but with infinite expectation,
when the mean is zero. We refer to the classic by Spitzer [234] for more on
this. An overview and additional references can be found in [110].

Let us also comment somewhat on, what seems to be almost the same,
namely ν = ν(t) = max{n : Sn ≤ t}. If the increments are positive, i.e., for
renewal processes, we have

ν + 1 = τ, (15.3)
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that is, they are essentially the same. This means that many renewal theo-
retic results can be obtained with the aid of stopped random walks. As for
sequential analysis we recall that the procedure was to continue sampling until
Ln, the likelihood ratio, escapes from a strip, so that the random sample size
becomes

τb,a = min{n : Ln /∈ (b, a)}, where 0 < b < a < ∞.

In order to see that the procedure eventually stops, we recognize that the
problem fits into the above framework. In fact, Theorem 15.6 tells us that τb,a

is regular.
Since, as we have noticed before, a general random walk may well drop

below the level t a number of times before finally taking off to +∞, (15.3)
does not hold in this case. The mathematical difference, which is an essential
one, is that ν is not a stopping time. A distinction between the first passage
time and this last exit time can be read off in the following analog of Theorem
15.10. For a nice proof we refer to [147], Theorem 1.

Theorem 15.11. Let p > 0. Then

E νp < ∞ ⇐⇒ E(Y −)p+1 < ∞.

The “price” for not being a stopping time, we might say, is that an additional
moment of Y − is required in order to obtain the same level if integrability for
the last exit time.

15.3 The Wald Fundamental Identity

Given a random variable Y , let g be the logarithm of the moment generating
function:

g(u) = log ψ(u) = log E exp{uY }, u ∈ R,

and suppose that g is finite in some interval containing 0. (Sometimes in the
literature g is called the cumulant generating function. We have, however,
kept the more common terminology, namely, that the cumulant generating
function is the logarithm of the characteristic function (recall Chapter 4).)

Excluding the trivial case when g is constant, an application of the Hölder
inequality shows that g is strictly convex, where it exists. Moreover, g(0) = 0,
g′(u) = ψ′(u)/ψ(u), so that E Y = g′(0). Checking the second derivative one
finds that VarY = g′′(0).

Now, given Y1, Y2, . . . , independent, identically distributed random vari-
ables with partial sums Sn, n ≥ 1, we can rewrite the exponential Wald
martingale, Example 3.6, as

Xn =
euSn

(ψ(u))n
= exp{uSn − ng(u)}. (15.4)
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Our next project is to prove that the first passage time across a positive level,
τ , is regular (for {(Xn,Fn), n ≥ 0}, where {Fn} are the natural σ-algebras),
and that E Xτ = 1, under the assumption of a positive mean. The proof
amounts “of course” to applying Theorem 7.1 and some regularity criterion
from Section 10.15.

Theorem 15.12. Let Y, Y1, Y2, . . . be independent, identically distributed
random variables, and let {(Xn,Fn), n ≥ 0} be the Wald martingale as defined
in (15.4). Suppose that E Y ≥ 0, and that g = log ψ is finite in a neighborhood
of 0. Finally, let

τ = min{n : Sn > t}, t ≥ 0.

Then

(a) Xn
a.s.→ 0 as n →∞;

(b) τ is regular for {(Xn,Fn), n ≥ 0} ;
(c) E Xτ = E exp{uSτ − τg(u)} = 1;
(d) The same holds for any stopping time τ∗ ≤ τ .

Proof. We begin by proving a.s. convergence. Let G = {u : g(u) < ∞}, and
suppose that 2u ∈ G. By convexity,

g(u) = g
(1

2
· 0 +

1
2
· 2u
)

<
1
2
g(0) +

1
2
g(2u) =

1
2
g(2u),

so that u ∈ G. Therefore, since, by the martingale convergence theorem, the
Wald martingale is a.s. convergent, we have

Xn
a.s.→ X∞ as n →∞,

which, rewritten and squared, yields

exp{uSn − ng(u)} a.s.→ X∞ and exp{2(uSn − ng(u))} a.s.→ (X∞)2

as n →∞. However, since

exp{2uSn − ng(u)} > exp{2(uSn − g(u))} =
(
exp{uSn − g(u)}

)2
a.s.→ (X∞)2 as n →∞,

it follows that (X∞)2 > (X∞)2, which necessitates that X∞ = 0 a.s.
To prove regularity we wish to apply Theorem 15.4.
From Corollary 7.2 we know that

E Xτ∧n = E exp{uSτ∧n − (τ ∧ n)g(u)} = 1.

As for E τ , we have already proved finiteness for the case E Y > 0. That this
also holds when the mean equals 0 follows from general random walk theory
(because of the oscillating character of the random walk referred to earlier).
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Since the variance is finite this is, in fact, also a consequence of the law of the
iterated logarithm, Theorem 8.1.2.

The integrability of τ is enough for Theorem 15.4(i) in view of Theorem
15.5, since our martingale is non-negative. It thus remains to verify condition
Theorem 15.4(ii), that is, that

{XnI{τ > n}} =
{

exp{uSn − ng(u)}I{τ > n}
}

is uniformly integrable.

However, since 0 ≤ XnI{τ > n} ≤ Xn
a.s.→ 0 as n → ∞, showing uniform

integrability is equivalent to showing that

E XnI{τ > n} → 0 as n →∞, (15.5)

(for example by Theorem 5.5.2).
We use what is called exponential tilting . This amounts to a change of

measure, the tilting meaning that the mean is changed, that “the general
direction” (think law of large numbers) of the random walk is changed. Our
new measure (on a new probability space) is defined as

dP ∗(x) = exp{ux− g(u)} dP (x),

where P is the original measure. The new measure is non-negative. That it is
a probability measure is seen by integration:∫

R

dP ∗(x) =
∫

R

exp{ux− g(u)} dP (x) = exp{−g(u)}ψ(u) = 1.

Moreover, the new mean is non-negative, since, letting a superscript star de-
note a tilted random variable,

E Y ∗ =
∫

R

xdP ∗(x) =
∫

R

x exp{ux− g(u)} dP (x)

= exp{−g(u)}ψ′(u) =
E Y

ψ(u)
≥ 0.

Moreover, due to independence, the probability measure of
∑n

k=1 Y ∗
k becomes

dP ∗
n(z1, z2, . . . , zn) = exp

{
u

n∑
k=1

zk − ng(u)
} n∏

k=1

dPk(zk).

Finally, set yt = {(y1, y2, . . . , yn) :
∑n

k=1 yk ≤ t}. Then

E XnI{τ > n} = E exp{uSn − ng(u)}I{τ > n} =
∫
yt

dP ∗
n(z1, z2, . . . , zn)

= P ∗
( n∑

k=1

Y ∗
k ≤ t

)
= P ∗(τ∗ > n) → 0 as n →∞,

since the tilted mean is non-negative, so that, as was pointed out earlier in
the proof, τ∗ < ∞, P ∗-a.s.
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This verifies condition (ii) in Theorem 15.4, which proves (b), after which
(c) and (d) follow from Theorem 15.3. �

Remark 15.5. Note that the first derivation in the Gambler’s ruin problem
was based on the exponential Wald martingale, and that (14.5) derived there,
in fact, is precisely the Wald identity (for that particular stopping time).

Remark 15.6. We have i.a. shown that the martingale is not regular, but the
first passage times are. In other words, we have a stopping time that is regular
for a non-regular martingale.

Remark 15.7. The tilted measure is also called the Esscher transform. �

The tilting of measures is a common and useful technique. In insurance
risk problems where one has a negative drift and wishes to study passages to
a positive level one tilts the measure so that it gets a positive drift, employs
known results for that case, after which one “factors out” the tilting factor.

Another area is importance sampling where one tilts the measure in such
a way that sampling (mainly) occurs where most of the original probabil-
ity measure is concentrated. This technique is also important in stochastic
integration. For more on this, see [235], in particular, Chapter 13.

16 Reversed Martingales and Submartingales

If we interpret n as time, then reversing means reversing time. Traditionally
one considers a sequence of decreasing σ-algebras {Fn, n ≥ 0} and defines the
reversed martingale property as

Xn = E(Xm | Fn) for all m < n.

Note that the conditioning is on “the future”. The more modern way is to let
the reversed martingales be defined as ordinary, forward, martingales indexed
by the negative integers.

Thus, let

· · · ⊂ F−(n+1) ⊂ F−n ⊂ · · · ⊂ F−2 ⊂ F−1 ⊂ F0,

and set F−∞ = ∩nFn.

Remark 16.1. Note that the intersection of a sequence of σ-algebras is indeed
a σ-algebra, and remember that the infinite union in the forward case was not
necessarily so. �

Definition 16.1. An integrable {Fn}-adapted sequence {Xn n ≤ 0} is a re-
versed martingale if

E(Xn | Fm) = Xm for all m ≤ n ≤ 0,
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or, equivalently,

E(Xn | Fn−1) = Xn−1 for all n ≤ 0.

It is called a reversed submartingale if

E(Xn | Fm) ≥ Xm for all m ≤ n ≤ 0,

or, equivalently,

E(Xn | Fn−1) ≥ Xn−1 for all n ≤ 0,

and a reversed supermartingale if

E(Xn | Fm) ≤ Xm for all m ≤ n ≤ 0,

or, equivalently,

E(Xn | Fn−1) ≤ Xn−1 for all n ≤ 0 �

Remark 16.2. The important difference between forward martingales and re-
versed ones is that, whereas the former have a first element but not necessarily
a last element, the opposite is true for reversed martingales. �

Note that if {(Xn,Fn), n ≥ 0} is a reversed martingale, it follows from the
definition that

E(X0 | Fn) = Xn for all n ≤ 0,

which suggests that

Theorem 16.1. Every reversed martingale is uniformly integrable.

Proof. Since {(Xk,Fk)} with k running from −n to 0, behaves, in reality, as
a forward martingale, the proof of Theorem 11.1 carries over directly. �

Exercise 16.1. Write down the details. �

By the same argument we may consider the Kolmogorov-Doob inequality,
Theorem 9.1, and the Doob maximal inequalities, Theorem 9.4. For example,
for non-negative reversed submartingales,

λP ( max
−n≤k≤0

Xk > λ) ≤ E X0,

so that, since the right-hand side does not depend on n, we obtain

λP (sup
n≤0

Xn > λ) ≤ E X0.

For convenience we collect the results in a theorem and urge the reader to
check the details.
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Theorem 16.2. (The Kolmogorov-Doob inequality)
Let λ > 0.
(i) Suppose that {(Xn,Fn), n ≤ 0} is a non-negative, reversed submartingale.
Then

λP (sup
k≤0

Xk > λ) ≤ E X+
n ≤ E X0.

(ii) Suppose that {(Xn,Fn), n ≤ 0} is a reversed martingale. Then

λP (sup
k≤0

|Xk| > λ) ≤ E|X0|.

Theorem 16.3. (The Doob maximal inequalities)
Let p ≥ 1.
(i) If {(Xn,Fn), n ≤ 0} is a non-negative, reversed submartingale, then

E(sup
k≤0

Xk)p ≤
{

( p
p−1 )pE Xp

0 , when p > 1,
e

e−1 + e
e−1E X0 log+ X0, when p = 1.

(ii) If {(Xn,Fn), n ≤ 0} is a reversed martingale, then

E(sup
k≤0

|Xk|)p ≤
{

( p
p−1 )pE|X0|p, when p > 1,
e

e−1 + e
e−1E|X0| log+ |X0|, when p = 1.

The main theorem for martingales extends to reversed ones, in fact, to all
reversed martingales, since all of them are uniformly integrable, and, hence,
regular.

Theorem 16.4. Suppose that {(Xn,Fn), n ≤ 0} is a reversed martingale.
Then

(a) {Xn, n ≥ 1} is uniformly integrable;
(b) Xn → X−∞ a.s. and in L1 as n → −∞;
(c) {(Xn,Fn), −∞ ≤ n ≤ 0} is a martingale.

Proof. Uniform integrability has already been established in Theorem 16.1.
The proof of the a.s. convergence – Garsia’s proof – is essentially the

same as in the forward case (Subsection 10.10.1), except that the first step is
easier. Namely, if {Xn} is L2-bounded, we first conclude that Xn converges
in L2 and in probability as in the forward case. However, since the limit
X−∞ ∈ F−∞ ⊂ Fn for all n ≤ 0 it follows, for m ≤ n ≤ 0, that

E(Xn −X−∞ | Fm) = E(Xn | Fm)−X−∞ = Xm −X−∞,

so that {Xn − X−∞, n ≤ 0} is a martingale, which, by Fatou’s lemma is
L2-bounded. Thus {(Xn − X−∞)2, n ≤ 0} is a submartingale, so that an
application of the Kolmogorov-Doob inequality, Theorem 16.2, yields
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P (sup
n≤0

|Xn −X−∞| > ε) ≤ E(X0 −X)2

ε2 ,

which shows that Xn
a.s.→ X−∞ as n → −∞.

The remaining assertions then follow as in the forward case. �

The following two results correspond to Theorems 12.2 and 12.4, respec-
tively.

Theorem 16.5. Let p > 1. Suppose that {(Xn,Fn), n ≤ 0} is an Lp-bounded
reversed martingale. Then

(a) {|Xn|p, n ≥ 1} is uniformly integrable;
(b) Xn → X−∞ a.s. and in Lp as n → −∞.

Proof. An application of Theorem 16.3 shows that Y = supn |Xn| dominates
X1, X2, . . . and has a moment of order p. This proves (a). Almost sure conver-
gence follows from the general convergence theorem for reversed martingales,
which, together with Theorem 5.5.2 finishes (b). �

Theorem 16.6. Suppose that Z ∈ L1, and set Xn = E(Z | Fn), n ≤ 0. Then

Xn → X∞ = E(Z | F−∞) a.s. and in L1 as n → −∞,

in other words {Z, X−∞, . . . , Xn, . . . , X−2, X−1, X0} is a martingale.
In particular, if Z ∈ F−∞, then X−∞ = Z a.s.

There exist, of course, analogs to the convergence theorem and to Theorem
16.4 for reversed submartingales. We confine ourselves to stating the results
(parts (iia) ⇒ (iib) ⇒ (iic) ⇒ (iid) are very much the same as before).

Theorem 16.7. Suppose that {(Xn,Fn), n ≤ 0} is a reversed submartingale.
Then
(i) Xn

a.s.→ X−∞ as n → −∞, where −∞ ≤ X−∞ < ∞.

(ii) Moreover, the following are equivalent:

(a) {Xn, n ≥ 1} is uniformly integrable;
(b) Xn → X−∞ in L1 as n → −∞;
(c) {(Xn,Fn), −∞ ≤ n ≤ 0} is a submartingale;
(d) lim−n→∞ E Xn > −∞.

16.1 The Law of Large Numbers

A nice application of reversed martingales is provided by the law of large
numbers. Let Y1, Y2, . . . be i.i.d. random variables with finite mean µ, and
set Sn =

∑n
k=1 Yk, n ≥ 1. For n ≤ −1 we define
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X−n =
Sn

n
, and F−n = σ

{Sk

k
, k ≥ n

}
.

Since knowing the arithmetic means when k ≥ n is the same as knowing Sn

and Yk, k > n, we have (cf. Problems 1.6.4 and 17.1),

F−n = σ{Sn, Yn+1, Yn+2, Yn+3 , . . .}.
This, together with the fact that the summands are i.i.d. yields

E(X−n | F−n−1) = E
(Sn

n
| σ{Sn+1, Yn+2, Yn+3 , . . .}

)
= E

(Sn

n
| σ{Sn+1}

)
= E

(Sn

n
| Sn+1

)

=
1
n

n∑
k=1

E(Yk | Sn+1) =
1
n

n∑
k=1

Sn+1

n + 1
=

Sn+1

n + 1
,

which shows that the sequence of arithmetic means is a reversed martingale
({(Xn,Fn), n ≤ −1} is a martingale), and, hence, is uniformly integrable.
The convergence theorem for reversed martingales therefore tells us that X−n

converges almost surely and in L1 as n →∞, which, rewritten, is the same as
Sn

n
→ a.s. and in L1 as n →∞.

It remains to establish the limit. However, the limit is an element of the tail-
σ-field, and therefore constant. Since the expected value equals µ, the limiting
constant must, indeed, be equal to µ.

This proves the strong law of large numbers, including mean convergence.
Remark 16.3. Note also the following alternative proof of the martingale prop-
erty:

Sn

n
= E

(Sn

n
| F−n

)
=

1
n

n∑
k=1

E(Yk | Sn) =
1
n
· nE(Y1 | Sn) = E(Y1 | Sn),

which exhibits the reversed martingale in the form

X−n =
Sn

n
= E(Y1 | Sn), n ≥ 1.

�

The following result shows that the Doob maximal inequality is sharp for
p = 1, in the sense that one cannot dispense with the additional logarithmic
factor in general. The original proof of the implication (a) =⇒ (b), due to
Marcinkiewicz and Zygmund [180], does not use martingale theory. The other
implications are due to Burkholder [32].

Theorem 16.8. Let p ≥ 1. Suppose that Y, Y1, Y2, . . . are independent, iden-
tically distributed random variables. The following are equivalent:

(a) E|Y | log+ |Y | < ∞ when p = 1 and E|Y |p < ∞, when p > 1;

(b) E supn

∣∣Sn

n

∣∣p < ∞;

(c) E supn

∣∣Yn

n

∣∣p < ∞.
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Proof. (a) =⇒ (b): Immediate from Theorem 16.3, since the sequence of arith-
metic means constitutes a reversed martingale.
(b) =⇒ (c): This implication rests on the fact that

|Yn|
n

≤ |Sn|
n

+
|Sn−1|
n− 1

· n− 1
n

,

followed by an application of cr-inequalities, Theorem 3.2.2.
(c) =⇒ (a): To begin with, E|Y |p < ∞ (choose n = 1). For p > 1 there is
nothing more to prove, so suppose for the remainder of the proof that p = 1.

If the variables are bounded there is nothing more to prove, so suppose
they are unbounded. Moreover, via scaling, it is no restriction to assume that
P (|Y | < 1) > 0.

By Theorem 2.12.1(i), E|Y | < ∞ implies that
∑∞

n=1 P (|Y | > n) < ∞,
and hence, by Lemma A.4.1 that

A =
∞∏

j=1

P (|Y | ≤ j) < ∞.

Now, since

P

(
sup

n

∣∣∣Yn

n

∣∣∣ > m

)
=

∞∑
n=1

P
(
{|Yj | ≤ jm, 1 ≤ j ≤ n− 1} ∩ {|Yn| > nm}

)

=
∞∑

n=1

n−1∏
j=1

P (|Yj | ≤ jm)P (|Yn| > nm)

≥
∞∑

n=1

∞∏
j=1

P (|Y | ≤ j)P (|Y | > nm)

= A

∞∑
n=1

P (|Y | > nm),

another application of Theorem 2.12.1(i) shows that

∞ >

∞∑
m=1

∞∑
n=1

P

(
sup

n

∣∣∣Yn

n

∣∣∣ > m

)
≥ A

∞∑
m=1

∞∑
n=1

P (|Y | > nm).

An appeal to Theorem 2.12.7 concludes the proof of (a). �

Remark 16.4. In other words, if E|Y | < ∞ only, then

sup
n

E
∣∣∣Sn

n

∣∣∣ = E|Y1| < ∞, but E sup
n

∣∣∣Sn

n

∣∣∣ = ∞. �

For more on this, see [60, 183], where, in addition, equivalences to moments
of randomly indexed arithmetic means are added.
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16.2 U-statistics

Let X1, X2, . . . , Xn be independent, identically distributed random variables.
Suppose further that h : Rm → R is a function that is symmetric in its
arguments, that is, h(σ(x)) = h(x), for any permutation σ of the coordinates
of x. The U -statistic is defined as

Un(X) = Un(X1, X2, . . . , Xn) =
1(
n
m

)∑∗
h(Xi1 , Xi2 , . . . , Xim), n ≥ m,

where
∑∗ denotes that summation extends over all

(
n
m

)
combinations of dis-

tinct indices 1 ≤ i1 < i2 < · · · < im ≤ n. The application one should have in
mind is that the kernel h is an unbiased estimator of some unknown parameter
θ, that is, that

Eθh(X1, X2, . . . , Xm) = θ.

A preliminary observation is that if h is unbiased, then so is Un.
The connection to the present context is the following: Set, for n ≤ −m,

X−n = Un, and F−n = σ{Uk, k ≥ n}.

Then
{(Xn,Fn), n ≤ −m} is a martingale,

that is {(Un,Fn), n ≥ m} is a reversed martingale.

Exercise 16.2. Check this. �

The simplest possible kernel would be h(x) = x, so that

Un =
1
n

n∑
k=1

Xk = X̄n,

in which case the U -statistic coincides with the sample mean. The following
choice with m = 2 relates U -statistics to the sample variance.

Example 16.1. Let X1, X2, . . . be independent, identically distributed ran-
dom variables with mean µ, and finite variance σ2, and, let as usual, X̄n and
s2

n denote sample mean and sample variance, respectively:

X̄n =
1
n

n∑
k=1

Xk and s2
n =

1
n− 1

n∑
k=1

(Xk − X̄n)2.

Consider the kernel h(x1, x2) = 1
2 (x1 − x2)2.

Set Yk = Xk − X̄n, and note that
∑n

k=1 Yk = 0. Then

∑
1≤i<j≤n

(Xi −Xj)2 =
∑

1≤i<j≤n

(Yi − Yj)2 =
1
2

n∑
i,j=1

(Yi − Yj)2

= n

n∑
k=1

Y 2
k = n(n− 1)s2

n,



548 10 Martingales

so that
Un =

1(
n
2

) 1
2
n(n− 1)s2

n = s2
n.

From Chapter 6 we know that s2
n

a.s.→ σ2 as n → ∞, so that a proper exami-
nation of the U -statistic should produce the same conclusion ...

From the convergence theorem for reversed martingales we know that Un

converges almost surely and in L1, and from the Kolmogorov zero-one law we
know that the limit is almost surely constant. This summarizes into

Un → E U2 a.s. and in L1 as n →∞.

It remains to compute the limit (which ought to be E s2
n = σ2):

E U2 = E
( ∑

1≤i<j=2

1
2
(Xi −Xj)2

)
=

1
2
E(X1 −X2)2 = σ2.

This finally tells us that

Un → σ2 a.s. and in L1 as n →∞,

that is, that
s2

n → σ2 a.s. and in L1 as n →∞,

thereby re-proving almost sure convergence of the sample variance, however,
adding L1-convergence, i.e., E|s2

n − σ2| → 0 as n → ∞, which is more than
the trivial fact that E s2

n = σ2.
Via Theorem 16.5 we may further conclude that if E(U2)r < ∞ for some

r > 1, then Un
r→ σ2 as n →∞, which, restated, tells us that if E|X|2r < ∞,

then
E|s2

n − σ2|r → 0 as n →∞,

in particular,
E s2r

n → σ2r as n →∞.
�

We close by observing that it follows from the Rao-Blackwell theorem, Theo-
rem 1.5, that if U is a U -statistic and V is a sufficient statistic for the unknown
parameter θ, then E(U | V ) is an unbiased estimator for θ, and

Var
(
E(U | V )

)
≤ Var U,

provided the variances are finite, that is, E(U | V ) is an unbiased estimator
with an expected square loss which is smaller than that of U .

For an introduction to the theory of U -statistics and further examples, we
refer to the monograph by Serfling [219].

17 Problems

1. Let Y1, Y2, . . . be random variables, and set Xn =
∑n

k=1 Yk, n ≥ 1. Show
that

σ{Y1, Y2, . . . , Yn} = σ{X1, X2, . . . , Xn}.
♣ Remember Problem 1.6.4.
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2. Suppose that Y is a random variable with finite variance and that G is a
sub-σ-algebra of F . Prove that

Var Y = E Var (Y | G) + Var (E(Y | G)).

3. Suppose that {(Xn,Fn), n ≥ 0} is a martingale. Set Y = Xn+1 and
G = Fn. Insert this into, that is, verify, the relations in Problem 17.2.

4. Let {X(n), n ≥ 0} denote the number of individuals in generation n in a
Galton-Watson process (X(0) = 1), and suppose that the mean off-spring
is finite = m.
(a) Show that E X(n) = mn.

Suppose, in addition, that the off-spring variance is finite = σ2.
(b) Show that

Var X(n) = mn−1σ2 + m2Var X(n− 1).

(c) Show that

Var X(n) = σ2(mn−1 + mn + · · ·+ m2(n−1)).
5. Suppose that G is a sub-σ-algebra of F , and that X and Y are random

variables with the property that

E(X | G) = Y and E(X2 | G) = Y 2.

Show that X = Y a.s.
6. Let Y be an integrable random variable. Prove that{

E(Y | G) : G is a sub-σ-algebra of F
}

is uniformly integrable.
7. Let X and Y be independent random variables with mean 0.

(a) Show that
E|X| ≤ E|X + Y |.

(b) Suppose, in addition, that E|X|r < ∞ and that E|X|r < ∞ for some
r > 1. Show that

E|X|r ≤ E|X + Y |r.
♣ This is Proposition 3.6.5, but in a different context.

8. Let X and Y be independent, identically distributed random variables
with finite mean. Show that

E(X | X + Y ) =
X + Y

2
.

9. Suppose that V ∈ Exp(1). Find

E(V | min{V, t}) and E(V | max{V, t}), t > 0.

10. Consider Example 3.5 – Double or nothing. Prove that
• the expected duration of the game is 2;
• the expected amount of money spent at the time of the first success is

infinite;
• the total gain when the game is over is +1.
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11. Let Y1, Y2, . . . be an adapted sequence, and let cn ∈ R, n ≥ 1.
(a) Suppose that E(Yn+1 | Fn) = Yn +cn. Compensate suitably to exhibit

a martingale.
(b) Suppose that E(Yn+1 | Fn) = Yn · cn. Compensate suitably to exhibit

a martingale.
12. Toss a symmetric coin repeatedly and set

Yn =

{
1, if the nth toss is a head,
0, otherwise,

so that Sn =
∑n

k=1 Yk equals the number of heads in n tosses. Set

Xn = 2Sn − n, n ≥ 1.

Since n− Sn equals the number of tails in n tosses, it follows that Xn =
the number of heads minus the number of tails, that is the excess of heads
over tails in n tosses. Show that {Xn, n ≥ 1} (together with the sequence
of natural σ-algebras) is a martingale.

13. Let Y, Y1, Y2, . . . be independent, identically distributed random vari-
ables.
(a) Suppose that E|Y |3 < ∞. How can (

∑n
k=1 Yk)3 be made into a mar-

tingale?
(b) Suppose that E Y 4 < ∞. How can (

∑n
k=1 Yk)4 be made into a mar-

tingale?
14. Generalize Theorem 9.1 and prove that, for any sub- or supermartingale,

{(Xn,Fn), n ≥ 0},

P ( max
0≤k≤n

|Xk| > λ) ≤ 3 max0≤k≤n E|Xk|
λ

.

♣ For martingales and non-negative submartingales the maximal expectation
equals the last one, and 3 is superfluous.

15. The Riesz decomposition, Theorem 5.3, stated that any supermartin-
gale, {(Xn,Fn), n ≥ 0}, such that infn E(Xn) > −∞, can be uniquely
decomposed into a martingale, {(Mn,Fn), n ≥ 0}, and a potential,
{(Zn,Fn), n ≥ 0};

Xn = Mn + Zn.

(a) Prove that there exists a martingale, {(Vn,Fn), n ≥ 1}, such that

Xn = Vn −An, n ≥ 1.

(b) Check that E An ≤ − infn E Xn + E V0.

(c) Prove/check that An
a.s.→ A∞, say, as n →∞.

(d) Set

Mn = Vn − E(A∞ | Fn) and Zn = E(A∞ | Fn)−An,

and prove that this is a decomposition of the desired kind.
(e) Prove that the decomposition is unique.
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16. Prove that, if Xn = Mn − An, n ≥ 1, is the Doob decomposition of a
potential, then

Xn = E(A∞ −An), n ≥ 1.

17. This is an addendum to Problem 6.13.18, where a stick of length 1 was
repeatedly randomly broken in the sense that the remaining piece each
time was U(0, Y )-distributed, where Y was the (random) previous length.
Let Yn denote the remaining piece after the stick has been broken n times,
and set Fn = σ{Yk, k ≤ n}.
(a) Compute E(Yn | Fn−1).
(b) Adjust Yn in order for (a suitable) {(Xn,Fn), n ≥ 0} to become a

martingale.
(c) Does Xn converge almost surely? In L1?

18. Another non-regular martingale. Let Y, Y1, Y2, . . . be independent ran-
dom variables with common distribution given by

P
(
Y =

1
2

)
= P

(
Y =

3
2

)
=

1
2
,

and set Xn = Y1 · Y2 · · ·Yn, n ≥ 1. Show that this produces a martingale
of product type with mean one that converges almost surely to 0.

19. In Example 3.7 we found that the likelihood ratios, {Ln, n ≥ 1}, consti-
tute a martingale (of the product type) with mean 1 (if H0 is true).
(a) Consider the log-likelihood ratios {log Ln, n ≥ 1}. Prove that

log Ln
a.s.→ −∞ as n →∞.

♠ Remember Problem 3.10.8.
(b) Prove that Ln

a.s.→ 0 as n →∞.
(c) Is {Ln, n ≥ 1} closable? Uniformly integrable?

20. Show that a predictable martingale is a.s. constant: Formally, show that
if {(Xn,Fn), n ≥ 0} is a martingale, such that Xn ∈ Fn−1 for all n, then
Xn = X0 a.s. for all n.

21. (a) Construct a martingale that converges to −∞ a.s. as n →∞.
♠ Sums of independent random variables with mean 0 are usually a good try.
(b) Construct a non-negative submartingale that converges to 0 a.s. as

n →∞.
22. Prove that a non-negative, uniformly integrable submartingale that con-

verges to 0 a.s. as n →∞ is identically 0.
23. Let Y1, Y2, . . . be random variables, such that

sup
n
|Yn| ≤ Z ∈ L1,

and suppose that Yn
a.s.→ Y∞ as n →∞. Show that

E(Yn | Fn) a.s.→ E(Y∞ | F∞) as n →∞,

where Fn, n ≥ 1, and F∞ is the usual setup of σ-algebras.
♣ This generalizes Theorem 12.4.
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24. Prove that stopping times with finite mean are regular for martingales
with uniformly bounded increments.

25. Let Y1, Y2, . . . be independent standard normal random variables, and
set Sn =

∑n
k=1 Yk, n ≥ 1. Prove that

(a)
{
eSn−n/2, n ≥ 1

}
is a martingale.

(b)Xn
a.s.→ 0 as n →∞.

(c) E(Xn)r → 0 as n →∞ ⇐⇒ r < 1.
26. Replacement based on age. This model was described in Subsection 2.16.6:

The lifetimes of some component in a machine are supposed to be indepen-
dent, identically distributed random variables, Y1, Y2, . . . . Replacement
based on age means that components are replaced at failure or at some
given age, a, say, whichever comes first. The inter-replacement times are
Wn = min{Xn, a}, n ≥ 1.
By introducing Zn = I{Yn ≤ a}, n ≥ 1, the quantity V (t) =

∑τ(t)
k=1 Zk,

where τ(t) = min{n :
∑n

k=1 Wk > t} describes the number of components
that have been used “at t o’clock”. Set µw = E W1 and µz = E Z1.
(a) Prove that

E τ(t) < ∞ and that E V (t) = E τ(t) · µz < ∞ .

(b) Prove that, as t →∞,

τ(t)
t

a.s.→ 1
µw

and that
V (t)

t

a.s.→ µz

µw
;

E τ(t)
t

→ 1
µw

and that
E V (t)

t
→ µz

µw
.

(c) Find explicit expressions for µw and µz and restate the claims.
27. Continuation. In practice it might be of interest to determine the value of

a in the previous problem in order to minimize some quantity of interest,
such as cost. Let us, as an example, consider exponentially distributed
lifetimes; Yk ∈ Exp(λ), k ≥ 1.
(a) Compute µw and µz for that case.
(b) Restate the conclusions.
(c) The limit results for V (t) then become

V (t)
t

a.s.→ 1
λ

and
E V (t)

t
→ 1

λ
as t →∞ .

(d) The limits turn out to be independent of a. Interpret this fact.
28. Let {(Xn,Fn), n ≥ 0} be an L2-martingale, and let Sn(X) and sn(X) be

the square function and the conditional square function, respectively, as
introduced in connection with Theorem 9.5. Show that

{X2
n − (Sn(X))2, n ≥ 0}, {X2

n − (sn(X))2, n ≥ 1}, and
{(Sn(X))2 − (sn(X))2, n ≥ 1}

are martingales.
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29. Let Y1, Y2, . . . be independent random variables with partial sums Xn,
n ≥ 1.
(a) Translate the conclusions of the previous problem into this setting.
(b) The same if, in addition, Y1, Y2, . . . are equidistributed.

30. Let {Yn, n ≤ −1} be random variables, such that

sup
n
|Yn| ≤ Z ∈ L1,

and suppose that Yn
a.s.→ Y−∞ as n → −∞. Show that

E(Yn | Fn) a.s.→ E(Y−∞ | F−∞) as n → −∞,

where Fn, n ≤ −1, and F−∞ are the usual σ-algebras.
♣ This generalizes Theorem 16.6.
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Some Useful Mathematics

In this appendix we collect a number of mathematical facts which may or may
not be (or have been) familiar to the reader.

1 Taylor Expansion

A common method to estimate functions is to use Taylor expansion. Here are
a few such estimates.

Lemma 1.1. We have,

ex ≤ 1 + x + x2 for |x| ≤ 1, (A.1)

− 1
1− δ

x < log(1− x) < −x for 0 < x < δ < 1, (A.2)

|ez − 1| ≤ |z|e|z| for z ∈ C, (A.3)
|ez − 1− z| ≤ |z|2 for z ∈ C, |z| ≤ 1/2, (A.4)

| log(1− z) + z| ≤ |z|2 for z ∈ C, |z| ≤ 1/2. (A.5)

Proof. Let 0 ≤ x ≤ 1. By Taylor expansion, noticing that we have an alter-
nating series that converges,

e−x ≤ 1− x +
x2

2
.

For the other half of (A.1),

ex = 1 + x + x2
∞∑

k=2

xk−2

k!
≤ 1 + x + x2

∞∑
k=2

1
k!

= 1 + x + x2(e− 2) ≤ 1 + x + x2.

To prove (A.2), we use Taylor expansion to find that, for 0 < x < δ < 1,
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log(1− x) = −
∞∑

k=1

xk

k
≥ −x− x

∞∑
k=2

δk−1

k

≥ −x− x

∞∑
k=1

δk = −x− x
δ

1− δ
= −x

1
1− δ

,

which proves the lower inequality. The upper one is trivial.
Next, let z ∈ C. Then

|ez − 1| ≤
∞∑

k=1

|z|k
k!

= |z|
∞∑

k=0

|z|k
(k + 1)!

≤ |z|
∞∑

k=0

|z|k
k!

= |z|e|z|.

If, in addition, |z| ≤ 1/2, then

|ez − 1− z| ≤
∞∑

k=2

|z|k
k!

≤ |z|2
2

∞∑
k=2

|z|k−2 =
|z|2
2

· 1
1− |z| ≤ |z|2,

| log(1− z) + z| ≤
∞∑

k=2

|z|k
k

≤ |z|2
2

∞∑
k=2

|z|k−2 ≤ |z|2.
�

We also need estimates for the tail of the Taylor expansion of the expo-
nential function for imaginary arguments.

Lemma 1.2. For any n ≥ 0,

∣∣∣eiy −
n∑

k=0

(iy)k

k!

∣∣∣ ≤ min
{

2
|y|n
n!

,
|y|n+1

(n + 1)!

}
.

Proof. Let y > 0. By partial integration,∫ y

0
eix(y − x)k dx =

yk+1

k + 1
+

i
k + 1

∫ y

0
eix(y − x)k+1 dx, k ≥ 0 . (A.6)

For k = 0 the first formula and direct integration, respectively, yield

∫ y

0
eix dx =

⎧⎪⎨
⎪⎩

y + i
∫ y

0
eix(y − x) dx,

eiy − 1
i

,

so that, by equating these expressions, we obtain

eiy = 1 + iy + i2
∫ y

0
eix(y − x) dx. (A.7)

Inserting (A.6) into (A.7) iteratively for k = 2, 3, . . . , n−1 (more formally, by
induction), yields
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eiy =
n∑

k=0

(iy)k

k!
+

in+1

n!

∫ y

0
eix(y − x)n dx, (A.8)

and, hence,

∣∣∣eiy −
n∑

k=0

(iy)k

k!

∣∣∣ ≤ 1
n!

∫ y

0
(y − x)n dx =

yn+1

(n + 1)!
.

Replacing n by n− 1 in (A.8), and then adding and subtracting (iy)n

n! , yields

eiy =
n−1∑
k=0

(iy)k

k!
+

in

(n− 1)!

∫ y

0
eix(y − x)n−1 dx

=
n∑

k=0

(iy)k

k!
+

in

(n− 1)!

∫ y

0

(
eix − 1

)
(y − x)n−1 dx,

so that, in this case, noticing that |eix − 1| ≤ 2,

∣∣∣eiy −
n∑

k=0

(iy)k

k!

∣∣∣ ≤ 2yn

n!
.

The proof is finished via the analogous estimates for y < 0. �

Another estimate concerns the integral
∫ t

0
sin x

x dx as t →∞. A slight deli-
cacy is that the integral is not absolutely convergent. However, the successive
slices

∫ nπ

(n−1)π
sin x

x dx are alternating in sign and decreasing in absolute value
to 0 as n →∞, which proves that the limit as t →∞ exists.

Lemma 1.3. Let α > 0. Then∫ t

0

sin αx

x
dx

{
≤

∫ π

0
sin x

x dx ≤ π for all t > 0,

→ π
2 as t →∞.

Proof. The change of variables y = αx shows that it suffices to check the case
α = 1.

The first inequality is a consequence of the behavior of the slices mentioned
prior to the statement of the lemma, and the fact that sin x ≤ x.

Since 1
x =

∫∞
0 e−yx dy, and since, for all t,

∫ t

0

∫ ∞

0
| sin xe−yx|dy dx ≤

∫ t

0

| sin x|
x

dy ≤
∫ t

0
dy = t,

we may apply Fubini’s theorem to obtain∫ t

0

sin x

x
dx =

∫ t

0
sin x

(∫ ∞

0
e−yx dy

)
dx =

∫ ∞

0

(∫ t

0
sin xe−yx dx

)
dy.
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In order to evaluate the inner integral we use partial integration twice:

It(y) =
∫ t

0
sin xe−yx dx =

[
− cos xe−yx

]t
0 −

∫ t

0
cos x · ye−yx dx

= 1− cos te−yt −
[
sin x · ye−yx

]t
0 −

∫ t

0
sin x · y2e−yx dx

= 1− cos te−yt − sin t · ye−yt − y2It(y),

so that
It(y) =

1
1 + y2

(
1− e−yt(cos t + y sin t)

)
.

Inserting this into the double integral yields∫ t

0

sin x

x
dx =

∫ ∞

0
It(y) dy =

π

2
−
∫ ∞

0

1
1 + y2 e−yt(cos t + y sin t) dy,

so that, finally, ∫ ∞

0

sin x

x
dx = lim

t→∞

∫ t

0

sin x

x
dx =

π

2
,

(since
∫∞
0

1
1+y2 e−yt(cos t + y sin t) dy → 0 as t →∞). �

2 Mill’s Ratio

The function e−x2/2, which is intimately related to the normal distribution,
has no primitive function (expressable in terms of elementary functions), so
that integrals must be computed numerically. In many situations, however,
estimates or approximations are enough. Mill’s ratio is one such result.

Lemma 2.1. Let φ(x) be the standard normal density, and Φ(x) the corre-
sponding distribution function. Then(

1− 1
x2

)φ(x)
x

< 1− Φ(x) <
φ(x)

x
, x > 0.

In particular,

lim
x→∞

x(1− Φ(x))
φ(x)

= 1.

Proof. Since (φ(x))′ = −xφ(x), partial integration yields

0 <

∫ ∞

x

1
y2 φ(y) dy =

φ(x)
x

− (1− Φ(x)).

Rearranging this proves the right-most inequality. Similarly,

0 <

∫ ∞

x

3
y4 φ(y) dy =

φ(x)
x3 −

∫ ∞

x

1
y2 φ(y) dy,

which, together with the previous estimate, proves the left-hand inequality.
The limit result follows immediately. �
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Remark 2.1. If only at the upper estimate is of interest one can argue as
follows:

1− Φ(x) =
∫ ∞

x

y

y
φ(y) dy <

1
x

∫ ∞

x

yφ(y) dy =
φ(x)

x
. �

3 Sums and Integrals

In general it is easier to integrate than to compute sums. One therefore often
tries to switch from sums to integrals. Usually this is done by writing

∑
∼
∫

or
∑

≤ C
∫

, where C is some (uninteresting) constant. Following are some
more precise estimates of this kind.

Lemma 3.1. (i) For α > 0, n ≥ 2,

1
αnα

≤
∞∑

k=n

1
kα+1 ≤

1
α(n− 1)α

≤ 2α

αnα
.

Moreover,

lim
n→∞

nα
∞∑

k=n

1
kα+1 =

1
α

as n →∞.

(ii) For β > 0,

nβ

β
≤

n∑
k=1

kβ−1 ≤ nβ

β
+ nβ−1 ≤

( 1
β

+ 1
)
nβ ,

and

lim
n→∞

n−β
n∑

k=1

kβ−1 =
1
β

.

(iii)

log n +
1
n
≤

n∑
k=1

1
k
≤ log n + 1,

and

lim
n→∞

1
log n

n∑
k=1

1
k

= 1.

Proof. (i): We have

1
αnα

=
∫ ∞

n

dx

xα+1 =
∞∑

k=n

∫ k+1

k

dx

xα+1

⎧⎪⎨
⎪⎩

≤
∑∞

k=n
1

kα+1 ,

≥
∑∞

k=n
1

(k+1)α+1 .

The proof of (ii) follows the same pattern by departing from
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nβ

β
=
∫ n

0
xβ−1 dx,

however, the arguments for β > 1 and 0 < β < 1 have to be worked out
separately.

The point of departure for (iii) is

log n =
∫ n

1

dx

x
. �

Exercise 3.1. Finish the proof of the lemma. �

Remark 3.1. An estimate which is sharper than (iii) is

n∑
k=1

1
k

= log n + γ + o(1) as n →∞,

where γ = 0.5772 . . . is Euler’s constant . However, the corresponding limit
coincides with that of the lemma. �

4 Sums and Products

There is a strong connection between the convergence of sums and that of
products, for example through the formula∏

(· · · ) = exp
{∑

log(· · · )
}

.

One can transform criteria for convergence of sums into criteria for conver-
gence of products, and vice versa, essentially via this connection. For example,
if a sum converges, then the tails are small. For a product this means that the
tails are close to 1. Here are some useful connections.

Lemma 4.1. For n ≥ 1, let 0 ≤ an < 1. Then

∞∑
n=1

an converges ⇐⇒
∞∏

n=1

(1− an) converges.

Convergence thus holds iff

n∑
k=m

ak → 0 ⇐⇒
n∏

k=m

(1− an) → 1 as m, n →∞.

Proof. Taking logarithms, shows that the product converges iff

∞∑
n=1

log(1− an) < ∞.
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No matter which of the sums we assume convergent, we must have an → 0
as n → ∞, so we may assume, without restriction, that an < 1/3 for all n.
Formula (A.2) with δ = 1/3 then tells us that

− 3
2an ≤ log(1− an) ≤ −an. �

Lemma 4.2. For n ≥ 1, let 0 ≤ an < δ < 1. Then

(1− an)n → 1 as n →∞ ⇐⇒ nan → 0 as n →∞.

Moreover, in either case, given δ ∈ (0, 1), we have nan < δ(1 − δ) < 1 for n
large enough, and

(1− δ)nan ≤ 1− (1− an)n ≤ nan/(1− δ).

Proof. The sufficiency is well known. Therefore, suppose that (1− an)n → 1
as n →∞. Recalling (A.2),

1 ← (1−an)n = exp{n log(1−an)}
{

≤ exp{−nan},
≥ exp{−nan/(1− δ)},

as n →∞,

which establishes the preliminary fact that

(1− an)n → 1 as n →∞ ⇐⇒ nan → 0 as n →∞.

With this in mind we return to the upper bound and apply (A.1). Choose n
so large that nan < δ(1− δ) < 1. Then,

(1− an)n ≤ exp{−nan} ≤ 1− nan + (nan)2 ≤ 1− nan(1− δ).

For the lower bound there is a simpler way out;

(1− an)n ≥ exp{−nan/(1− δ)} ≥ 1− nan/(1− δ).

The double inequality follows by joining the upper and lower bounds. �

5 Convexity; Clarkson’s Inequality

Convexity plays an important role in many branches of mathematics. Our con-
cern here is some inequalities, such as generalizations of the triangle inequality.

Definition 5.1. A real valued function g is convex iff, for every x, y ∈ R,
and α ∈ [0, 1],

g(αx + (1− α)y) ≤ αg(x) + (1− α)g(y).

The function is concave if the inequality is reversed. �
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In words, g is convex if a chord joining two points lies on, or above, the
function between those points.

Convex functions always possess derivatives from the left and from the
right. The derivatives agree on almost all points. The typical example is |x|,
which is convex but does not possess a derivative at 0, only left- and right-hand
ones.

A twice differentiable function is convex if and only if the second derivative
is non-negative (and concave if and only if it is non-positive).

For x, y ∈ R the standard triangular inequality states that |x+y| ≤ |x|+|y|.
Following are some analogs for powers.

Lemma 5.1. Let r > 0, and suppose that x, y > 0. Then

(x + y)r ≤

⎧⎪⎨
⎪⎩

2r(xr + yr), for r > 0,

xr + yr, for 0 < r ≤ 1,

2r−1(xr + yr), for r ≥ 1.

Proof. For r > 0,

(x + y)r ≤ (2 max{x, y})r = 2r(max{x, y})r ≤ 2r(xr + yr).

Next, suppose that 0 < r ≤ 1. Then, since x1/r ≤ x for any 0 < x < 1, it
follows that( xr

xr + yr

)1/r

+
( yr

xr + yr

)1/r

≤ xr

xr + yr
+

yr

xr + yr
= 1,

and, hence, that
x + y ≤ (xr + yr)1/r,

which is the same as the second inequality.
For r ≥ 1 we exploit the fact that the function |x|r is convex, so that, in

particular, (x + y

2

)r

≤ 1
2
xr +

1
2
yr,

which is easily reshuffled into the third inequality. �

Lemma 5.2. Let p−1 + q−1 = 1. Then

xy ≤ xp

p
+

yq

q
for x, y > 0.

Proof. The concavity of the logarithm, and the fact that ex is increasing, yield

xy = exp{log xy} = exp
{1

p
log xp +

1
q

log xq
}

≤ exp
{

log
(xp

p
+

yq

q

)}
=

xp

p
+

yq

q
. �
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Remark 5.1. The numbers p and q are called conjugate exponents.

Remark 5.2. The case p = q = 2 is special, in the sense that the number 2 is
the same as its conjugate. (This has a number of special consequences within
the theory of functional analysis.) In this case the inequality above becomes

xy ≤ 1
2
x2 +

1
2
y2,

which, on the other hand, is equivalent to the inequality (x− y)2 ≥ 0. �

Clarkson’s inequality [50] generalizes the well-known parallelogram iden-
tity, which states that

|x + y|2 + |x− y|2 = 2(|x|2 + |y|2) for x, y ∈ R,

in the same vein as the Lemma 5.1 is a generalization of the triangle inequality.
We shall need the following part of [50], Theorem 2.

Lemma 5.3. (Clarkson’s inequality) Let x, y ∈ R. Then

|x + y|r + |x− y|r
{
≤ 2(|x|r + |y|r), for 1 ≤ r ≤ 2,

≥ 2(|x|r + |y|r), for r ≥ 2.

Proof. For r = 1 this is just a consequence of the triangular inequality. For
r = 2 it is the parallelogram identity. We therefore assume that r �= 1, 2 in
the following.

First, let 1 < r < 2. If x = y, or if one of x and y equals 0, the result
is trivial. Moreover, if the inequality is true for x and y, then it is also true
for ±x and ±y. We therefore suppose, without restriction, that 0 < y < x.
Putting a = y/x reduces our task to verifying that

(1 + a)r + (1− a)r ≤ 2(1 + ar) for 0 < a < 1.

Toward that end, set g(a) = 2(1 + ar)− (1 + a)r − (1− a)r. We wish to prove
that g(a) ≥ 0 for 0 < a < 1. Now,

g′(a) = 2rar−1 − r(1 + a)r−1 + r(1− a)r−1

= r(2− 2r−1)ar−1 + r
(
(2a)r−1 + (1− a)r−1 − (1 + a)r−1) ≥ 0.

Here we have used the fact that 0 < r − 1 < 1 to conclude that the first
expression is non-negative, and Lemma 5.1 for the second one.

Next, let r > 2. The analogous argument leads to proving that

(1 + a)r + (1− a)r ≥ 2(1 + ar) for 0 < a < 1,

so that with g(a) = (1 + a)r + (1− a)r − 2(1 + ar),
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g′(a) = r
(
(1 + a)r−1 − (1− a)r−1 − 2ar−1), and

g′′(a) = r(r − 1)
(
(1 + a)r−2 − (1− a)r−2 − 2ar−2)

= r(r − 1)
(
[(1 + a)r−2 + (1− a)r−2 − 2] + 2[1− ar−2]

)
≥ 0,

beacuse the first expression in brackets is non-negative by convexity;

1
2
(1 + a)r−2 +

1
2
(1− a)r−2 ≥

( (1 + a) + (1− a)
2

)r−2
= 1,

and because the second expression is trivially non-negative (since r − 2 > 0).
Now, g′′(0) = 0 and g′′(a) ≥ 0 implies that g′ is non-decreasing. Since

g′(0) = 0, it follows that g′ is non-negative, so that g is non-decreasing, which,
finally, since g(0) = 0, establishes the non-negativity of g. �

Remark 5.3. A functional analyst would probably say that (ii) trivially follows
from (i) by a standard duality argument. �

6 Convergence of (Weighted) Averages

A fact that is frequently used, often without further ado, is that (weighted)
averages of convergent sequences converge (too). After all, by abuse of lan-
guage, this is pretty “obvious”. Namely, if the sequence is convergent, then,
after a finite number of elements, the following ones are all close to the limit,
so that the average is essentially equal to the average of the last group; the
first couple of terms do not matter in the long run. But intuition and proof
are not the same. However, a special feature here is that it is unusually trans-
parent how the proof is, literally, a translation of intuition and common sense
into formulas.

Lemma 6.1. Suppose that an ∈ R, n ≥ 1. If an → a as n →∞, then

1
n

n∑
k=1

ak → a as n →∞.

If, in addition, wk ∈ R+, k ≥ 1, and Bn =
∑n

k=1 wk, n ≥ 1, then

1
Bn

n∑
k=1

wkak → 0 as n →∞.

Proof. It is no restriction to assume that a = 0 (otherwise consider the se-
quence an − a, n ≥ 1). Thus, given an arbitrary ε > 0, we know that |an| < ε
as soon as n > n0 = n0(ε). It follows that, for n > n0,

∣∣∣ 1
n

n∑
k=1

ak

∣∣∣ ≤ ∣∣∣ 1
n

n0∑
k=1

ak

∣∣∣+ n− n0

n

∣∣∣ 1
n− n0

n∑
k=n0+1

ak

∣∣∣ ≤ 1
n

n0∑
k=1

|ak|+ ε,
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so that

lim sup
n→∞

∣∣∣ 1
n

n0∑
k=1

ak

∣∣∣ ≤ ε,

which does it, since ε can be made arbitrarily small.
This proves the first statement. The second one follows similarly. �

Exercise 6.1. Carry out the proof of the second half of the lemma. �

Example 6.1. If an → a as n →∞, then, for example,

1
log n

n∑
k=1

1
k

ak → a,

1
log log n

n∑
k=1

1
k log k

ak → a,

nα
n∑

k=1

1
kα+1 ak →

a

α
, α > 0.

�

Next, an important further development in this context.

Lemma 6.2. (Kronecker’s lemma) Suppose that xn ∈ R, n ≥ 1, set a0 = 0,
and let an, n ≥ 1, be positive numbers increasing to +∞. Then

∞∑
n=1

xn

an
converges =⇒ 1

an

n∑
k=1

xk → 0 as n →∞.

Proof. The essential tools are partial summation and Lemma 6.1.
Set, b0 = 0, and, for 1 ≤ n ≤ ∞,

bn =
n∑

k=1

xk

ak
.

Since xk = ak(bk − bk−1) for all k, it follows by partial summation that

1
an

n∑
k=1

xk = bn −
1
an

n−1∑
k=0

(ak+1 − ak)bk.

Now, bn → b∞ as n →∞ by assumption, and

1
an

n−1∑
k=0

(ak+1 − ak)bk → b∞ as n →∞,

by the second half of Lemma 6.1, since we are faced with a weighted average
of quantities tending to b∞. �
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Example 6.2. Let xn ∈ R, n ≥ 1. Then

∞∑
n=1

xn

n
converges =⇒ x̄n =

1
n

n∑
k=1

xk → 0 as n →∞.
�

The following continuous version is proved similarly.

Lemma 6.3. Suppose that {gn, n ≥ 1} are real valued continuous functions
such that gn → g as n → ∞, where g is continuous in a neighborhood of
b ∈ R. Then, for every ε > 0, there exists h0 > 0, such that

lim sup
n→∞

∣∣∣ 1
2h

∫
|x−b|<h

gn(x) dx− g(b)
∣∣∣ < ε for all h ∈ (0, h0).

Exercise 6.2. Prove the lemma.

Exercise 6.3. State and prove version for weighted averages. �

7 Regularly and Slowly Varying Functions

Regularly and slowly varying functions were introduced by Karamata [152].
Since then, the theory has become increasingly important in probability the-
ory. For more on the topic we refer to [21, 88, 123, 217].

Definition 7.1. Let a > 0. A positive measurable function u on [a,∞) varies
regularly at infinity with exponent ρ, −∞ < ρ < ∞, denoted u ∈ RV (ρ), iff

u(tx)
u(t)

→ xρ as t →∞ for all x > 0.

If ρ = 0 the function is slowly varying at infinity; u ∈ SV. �

Typical examples of regularly varying functions are

xρ, xρ log+ x, xρ log+ log+ x, xρ log+ x

log+ log+ x
, and so on.

Typical slowly varying functions are the above when ρ = 0. Moreover, every
positive function with a finite limit as x → ∞ is slowly varying. Regularly
varying functions with a non-zero exponent are ultimately monotone.

Exercise 7.1. Check that the typical functions behave as claimed. �

The following lemma contains some elementary properties of regularly and
slowly varying functions. The first two are a bit harder to verify, so we refer to
the literature for them. The three others follow, essentially, from the definition
and the previous lemma.

Lemma 7.1. Let u ∈ RV (ρ) be positive on the positive half-axis.
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(a) If −∞ < ρ < ∞, then u(x) = xρ�(x), where � ∈ SV.
If, in addition, u has a monotone derivative u′, then

xu′(x)
u(x)

→ ρ as x →∞.

If, moreover, ρ �= 0, then sgn (u) · u′ ∈ RV (ρ− 1).
(b)Let ρ > 0, and set u−1(y) = inf{x : u(x) ≥ y}, y > 0. Then u−1 ∈

RV (1/ρ).
(c) log u ∈ SV.
(d)Suppose that ui ∈ RV (ρi), i = 1, 2. Then u1 + u2 ∈ RV (max{ρ1, ρ2}).
(e) Suppose that ui ∈ RV (ρi), i = 1, 2, that u2(x) → ∞ as x → ∞, and set

u(x) = u1(u2(x)). Then u ∈ RV (ρ1 · ρ2). In particular, if one of u1 and
u2 is slowly varying, then so is the composition.

Proof. As just mentioned, we omit (a) and (b).
(c): The fact that u(tx)

u(t) → xρ as t →∞ yields

log u(tx)
log u(t)

=
log u(tx)

u(t)

log u(t)
+ 1 → 0 + 1 as t →∞.

(d): Suppose that ρ1 > ρ2. Then

u1(tx) + u2(tx)
u1(t) + u2(t)

=
u1(tx)
u1(t)

· u1(t)
u1(t) + u2(t)

+
u2(tx)
u2(t)

· u2(t)
u1(t) + u2(t)

→ xρ1 · 1 + xρ2 · 0 = xρ1 as t →∞.

If ρ1 < ρ2 the limit equals xρ2 , and if the exponents are equal (to ρ) the limit
becomes xρ.
(e): An application of Lemma 7.2 yields

u(tx)
u(t)

=
u1(u2(tx))
u1(u2(t))

=
u1(

u2(tx)
u2(t)

· u2(t))

u1(u2(t))
→
(
xρ2
)ρ1 = xρ1·ρ2 as t →∞. �

Remark 7.1. Notice that (c) is contained in (e). �

In the definition of regular and slow variation the ratio between the argu-
ments of the function is constant. However, the limits remain the same if the
ratio converges to a constant.

Lemma 7.2. Suppose that u ∈ RV (ρ), −∞ < ρ < ∞, and, in addition, that
u is (ultimately) monotone if ρ = 0. Moreover, let, for n ≥ 1, an, bn ∈ R+ be
such that

an, bn →∞ and
an

bn
→ c as n →∞ (c ∈ (0,∞)).

Then
u(an)
u(bn)

→
{

1, for ρ = 0,

cρ, for ρ �= 0,
as n →∞.
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Proof. Suppose that ρ > 0, so that u is ultimately non-decreasing, let ε > 0,
and choose n large enough to ensure that

bn(c− ε) < an < bn(c + ε).

Then
u((c− ε)bn)

u(bn)
≤ u(an)

u(bn)
≤ u((c + ε)bn)

u(bn)
,

from which the conclusion follows from the fact that the extreme members
converge to (c± ε)ρ as n →∞.

The case ρ < 0 is similar; the inequalities are reversed. In the slowly
varying case (ρ = 0) the extreme limits are equal to 1 (= cρ). �

Suppose that u ∈ RV (ρ), where ρ > −1. Then, since the slowly varying
component is “negligible” with respect to xρ, it is reasonable to believe that
the integral of u is regularly varying with exponent ρ + 1. The truth of this
fact, which is supported by Lemma 7.1(a) in conjunction with Lemma 3.1, is
the first half of the next result.

Lemma 7.3. Let ρ > −1.

(i) If u ∈ RV (ρ), then U(x) =
∫ x

a
u(y) dy ∈ RV (ρ + 1).

(ii) If � ∈ SV, then
∑

j≤n jρ�(j) ∼ 1
ρ+1nρ+1�(n) as n →∞.

There also exists something called rapid variation, corresponding to ρ =
+∞. A function u is rapidly varying at infinity iff

u(tx)
u(t)

→
{

0, for 0 < x < 1,

∞, for x > 1,
as t →∞.

This means that u increases faster than any power at infinity. The exponential
function ex is one example.

8 Cauchy’s Functional Equation

This is a well known equation that enters various proofs. If g is a real valued
additive function, that is,

g(x + y) = g(x) + g(y),

then it is immediate that g(x) = cx is a solution for any c ∈ R. The problem
is: Are there any other solutions? Yes, there exist pathological ones if nothing
more is assumed. However, under certain regularity conditions this is the only
solution.

Lemma 8.1. Suppose that g is real valued and additive on an arbitrary inter-
val I ⊂ R, and satisfies one of the following conditions:
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• g is continuous;
• g is monotone;
• g is bounded.

Then g(x) = cx for some c ∈ R.

Proof. For x = y we find that g(2x) = 2g(x), and, by induction, that

g(n) = ng(1) and g(1) = ng(1/n).

Combining these facts for r = m/n ∈ Q tells us that

g(r) = g(m/n) = mg(1/n) = m
(
g(1)/n

)
= rg(1),

and that
g(rx) = rg(x) for any x.

The remaining problem is to glue all x-values together.
Set c = g(1). If g is continuous, the conclusion follows from the definition

of continuity; for any x ∈ R there exists, for any given δ > 0, r ∈ Q, such that
|r − x| < δ, which implies that |g(x)− g(r)| < ε, so that

|g(x)− cx| ≤ |g(x)− g(r)|+ c|r − x| ≤ ε + cδ.

The arbitrariness of ε and δ completes the proof.
If g is monotone, say non-decreasing, then, for r1 < x < r2, where r2−r1 <

δ,
cr1 = g(r1) ≤ g(x) ≤ g(r2) = cr2,

so that
|g(x)− cx| ≤ c(r2 − x) + c(x− r1) = c(r2 − r1) < cδ.

Finally, if g is bounded, it follows, in particular, that, for any given δ > 0,
there exists A, such that,

|g(x)| ≤ A for |x| < δ.

For |x| < δ/n, this implies that

|g(x)| = |g(nx)/n| ≤ A

n
.

Next, let x ∈ I be given, and choose r ∈ Q, such that |r − x| < δ/n. Then

|g(x)− cx| = |g(x− r) + g(r)− cr − c(x− r)| = |g(x− r)− c(x− r)|
≤ |g(x− r)− c(x− r)| ≤ |g(x− r)|+ c|x− r|

≤ A

n
+ c

δ

n
=

C

n
,

which can be made arbitrarily small by choosing n sufficiently large. �
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The following lemma contains variations of the previous one. For example,
what happens if g is multiplicative?

Lemma 8.2. Let g be a real valued function defined on some interval I ⊂ R+,
and suppose that g is continuous, monotone or bounded.

(a) If g(xy) = g(x) + g(y), then g(x) = c log x for some c ∈ R.

(b) If g(xy) = g(x)g(y), then g(x) = xc for some c ∈ R.

(c) If g(x + y) = g(x)g(y), then g(x) = ecx for some c ∈ R.

Remark 8.1. The relation in (b) is called the Hamel equation. �

Proof. (a): A change of variable yields

g(ex+y) = g(exey) = g(ex) + g(ey),

so that, by Lemma 8.1, g(ex) = cx, which is the same as g(x) = c log x.
(b): In this case a change of variables yields

log g(ex+y) = log g(exey) = log
(
g(ex) · g(ey)

)
= log g(ex) + log g(ey),

so that log g(ex) = cx, and, hence, g(x) = ec log x = xc.
(c): We reduce to (b) via

g(log xy) = g(log x + log y) = g(log x)g(log y),

so that g(log x) = xc, and, hence, g(x) = ecx. �

9 Functions and Dense Sets

Many proofs are based on the fact that it suffices to prove the desired result
on a dense set. Others exploit the fact that the functions under consideration
can be arbitrarily well approximated by other functions that are easier to
handle; we mentioned this device in Chapter 1 in connection with Theorem
1.2.4 and the magic that “it suffices to check rectangles”. In this section we
collect some results which rectify some such arguments.

Definition 9.1. Let A and B be sets. The set A is dense in B if the closure
of A equals B; if Ā = B. �

The typical example one should have in mind is when B = [0, 1] and A =
Q ∩ [0, 1]:

Q ∩ [0, 1] = [0, 1].

Definition 9.2. Consider the following classes of real valued functions:

• C = the continuous functions;
• C0 = the functions in C tending to 0 at ±∞;
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• C[a, b] = the functions in C with support on the interval [a, b];
• D = the right-continuous, functions with left-hand limits;
• D+ = the non-decreasing functions in D;
• JG = the discontinuities of G ∈ D.

�

Lemma 9.1. (i) If G ∈ D+, then JG is at most countable.
(ii) Suppose that Gi ∈ D+ i = 1, 2, and that G1 = G2 on a dense subset of
the reals. Then G1 = G2 for all reals.

Proof. (i): Suppose, w.l.o.g. that 0 ≤ G ≤ 1. Let, for n ≥ 1,

J
(n)
G =

{
x : G has a jump at x of magnitude ∈

( 1
n + 1

,
1
n

]}
.

The total number of points in J
(n)
G is at most equal to n + 1, since G is non-

decreasing and has total mass 1. The conclusion then follows from the fact
that

JG =
∞⋃

n=1

J
(n)
G .

(ii): We first show that a function in D+ is determined by its values on a
dense set. Thus, let D be dense in R (let D = Q, for example), let GD ∈ D+

be defined on D, and set

G(x) = inf
y>x

y∈D

GD(y). (A.9)

To prove that G ∈ D+ we observe that the limits of GD and G as x → ±∞
coincide and that G is non-decreasing, so that the only problem is to prove
right-continuity.

Let x ∈ R and ε > 0 be given, and pick y ∈ D such that

GD(y) ≤ G(x) + ε.

Moreover, by definition, G(y) ≤ GD(u) for all u ≥ y, so that, in particular,

G(y) ≤ GD(u) for any u ∈ (x, y).

Combining this with the previous inequality proves that

G(u) ≤ G(x) + ε for all u ∈ (x, y).

The monotonicity of G, and the fact that u may be chosen arbitrarily close
to x, now together imply that

G(x) ≤ G(x+) ≤ G(x) + ε,

which, due to the arbitrariness of ε, proves that G(x) = G(x+), so that
G ∈ D+.

Finally, if two functions in D+ agree on a dense set, then the extensions
to all of R via (A.9) does the same thing to both functions, so that they agree
everywhere. �
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Lemma 9.2. Let G and Gn ∈ D+, n ≥ 1, and let J(x) = G(x)−G(x−) and
Jn(x) = Gn(x)−Gn(x−) denote the jumps of G and Gn, respectively, at x.
(i) Suppose that G ∈ D+ ∩ C[a, b], where −∞ < a < b < ∞. If

Gn(x) → G(x) as n →∞, for all x ∈ D,

then Gn → G uniformly on [a, b];

sup
a≤x≤b

|Gn(x)−G(x)| → 0 as n →∞.

Moreover,
sup

a≤x≤b

x∈JG

|Jn(x)| → 0 as n →∞.

(ii) Suppose that G ∈ D+ ∩ C. If, for some dense subset D ⊂ R,

Gn(x) → G(x) as n →∞, for all x ∈ D,

Gn(±∞) → G(±∞) as n →∞,

then

sup
x∈R

|Gn(x)−G(x)| → 0 as n →∞,

sup
x∈R

x∈JG

|Jn(x)| → 0 as n →∞.

(iii) Suppose that G ∈ D+. If, for some dense subset D ⊂ R,

Gn(x) → G(x) as n →∞, for all x ∈ D,

Jn(x) → J(x) as n →∞, for all x ∈ JG,

Gn(±∞) → G(±∞) as n →∞,

then

sup
x∈R

|Gn(x)−G(x)| → 0 as n →∞,

sup
x∈JG

|Jn(x)| → 0 as n →∞.

Proof. (i): Since G is continuous on a bounded interval it is uniformly contin-
uous. Thus, for any ε > 0, there exists δ > 0, such that

ωG(δ) = sup
a≤x,y≤b

|x−y|<δ

|G(x)−G(y)| < ε.

Given the above ε and the accompanying δ we let a = y0 < y1 < · · · < ym = b,
such that yk − yk−1 < δ for all k. For any x ∈ [yk−1yk], 1 ≤ k ≤ m, it then
follows that
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Gn(yk−1)−G(x) ≤ Gn(x)−G(x) ≤ Gn(yk)−G(x),

so that

|Gn(x)−G(x)| ≤ |Gn(yk−1)−G(yk−1)|+ |Gn(yk)−G(yk)|
+|G(yk−1)−G(x)|+ |G(yk)−G(x)|

≤ 2 max
1≤k≤m

|Gn(yk)−G(yk)|+ 2ωG(δ),

so that
lim sup

n→∞
sup

a≤x≤b
|Gn(x)−G(x)| ≤ 2ωG(δ) ≤ 2ε.

As for the second statement, noticing that J(x) = 0, we obtain

sup
x∈J

|Gn(x)| ≤ sup
x∈J

(
|Gn(x)−G(x)|+ |G(x−)−Gn(x)|

)
≤ 2 sup

a≤x≤b
|Gn(x)−G(x)| → 0 as n →∞.

(ii): Since convergence at the infinities is assumed, we have, using (i),

sup
x∈R

|Gn(x)−G(x)| ≤ sup
|x|>A

|Gn(x)−G(x)|+ sup
|x|≤A

|Gn(x)−G(x)|

≤
(
G(∞)−Gn(A)

)
+
(
Gn(−A)−G(−∞)

)
+
(
G(∞)−G(A)

)
+
(
G(−A)−G(−∞)

)
+ sup

|x|≤A

|Gn(x)−G(x)|.

Thus, for ±A ∈ C(G), we obtain, recalling (i),

lim sup
n→∞

sup
x∈R

|Gn(x)−G(x)| ≤ 2
(
G(∞)−G(A)

)
+
(
G(−A)−G(−∞)

)
+ 0,

which can be made arbitrarily small by letting A →∞.
The second statement follows as in (i).

(iii): Assume that the conclusion does not hold, that is, suppose that there
exist ε > 0 and a subsequence {nk, k ≥ 1}, nk ↗∞ as k →∞, such that

|Gnk
(xk)−G(xk)| > ε for all k.

The first observation is that we cannot have xk → ±∞, because of the second
assumption, which means that {xk, k ≥ 1} is bounded, which implies that
there exists a convergent subsequence, xkj → x, say, as j →∞. By diluting it
further, if necessary, we can make it monotone. Since convergence can occur
from above and below, and Gnkj

(xkj
) can be smaller as well as larger than

G(xkj ) we are faced with four different cases as j →∞:

• xkj ↘ x, and G(xkj )−Gnkj
(xkj ) > ε;
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• xkj
↘ x, and Gnkj

(xkj
)−G(xkj

) > ε;

• xkj
↗ x, and G(xkj

)−Gnkj
(xkj

) > ε;

• xkj
↗ x, and Gnkj

(xkj
)−G(xkj

) > ε.

Choose r1, r2 ∈ D, such that r1 < x < r2. In the first case this leads to

ε < G(xkj )−Gnkj
(xkj ) ≤ G(r2)−Gnkj

(x)

≤ G(r2)−G(r1) + G(r1)−Gnkj
(r1) + Jnkj

(x)

→ G(r2)−G(r1) + 0− J(x) as j →∞.

Since r1, r2 may be chosen arbitrarily close to x from below and above, re-
spectively, the right-hand side can be made arbitrarily close to 0 if x ∈ C(G),
and arbitrarily close to J(x)−J(x) = 0 if x ∈ JG, which produces the desired
contradiction.

The three other cases are treated similarly:
In the second case,

ε < Gnkj
(xkj )−G(xkj ) ≤ Gnkj

(r2)−G(x) → G(r2)−G(x) as j →∞,

and the contradiction follows from the right-continuity of G by choosing r2
close to x.

In the third case,

ε < G(xkj )−Gnkj
(xkj ) ≤ G(x−)−Gnkj

(r1) → G(x−)−G(r1) as j →∞,

after which we let r1 approach x−.
Finally,

ε < Gnkj
(xkj )−G(xkj ) ≤ Gnkj

(x−)−G(r1)

≤ −Jnkj
(x) + Gnkj

(r2)−G(r2) + G(r2)−G(r1)

→ −J(x) + G(r2)−G(r1) as j →∞,

from which the contradiction follows as in the first variant. �

We close with two approximation lemmas.

Lemma 9.3. (Approximation lemma) Let f be a real valued function such
that either

• f ∈ C[a, b], or
• f ∈ C0.

Then, for every ε > 0, there exists a simple function g, such that

sup
x∈R

|f(x)− g(x)| < ε.
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Proof. Suppose that f ∈ C[a, b], and set

g1(x) =

{
k−1
2n , for k−1

2n ≤ f(x) < k
2n , a < x < b,

0, otherwise,

and

g2(x) =

{
k
2n , for k−1

2n ≤ f(x) < k
2n , a < x < b,

0, otherwise.

Then, for i = 1, 2,

|f(x)− gi(x)| ≤ g2(x)− g1(x) =
1
2n

< ε,

as soon as n is large enough. In addition, f is sandwiched between the g-
functions; g1(x) ≤ f(x) ≤ g2(x) for all x.

If f ∈ C0, then |f(x)| < ε for |x| > b, so that g1 and g2 may be defined
as above for |x| ≤ b (that is, a = −b) and equal to 0 otherwise. By a slight
modification the sandwiching effect can also be retained. �

Lemma 9.4. Let −∞ < a ≤ b < ∞. Any indicator function I(a,b](x) can be
arbitrarily well approximated by a bounded, continuous function; there exists
fn, n ≥ 1, 0 ≤ fn ≤ 1, such that

fn(x) → I(a,b](x) for all x ∈ R.

Proof. Set, for n ≥ 1,

fn(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, for x ≤ a,

n(x− a), for a < x ≤ a + 1
n ,

1, for a + 1
n < x ≤ b,

1− n(x− b), for b < x ≤ b + 1
n ,

0, for x > b.

One readily checks that {fn, n ≥ 1} does the job. �

Exercise 9.1. Please pursue the checking. �
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84. Feller, W. Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrech-

nung II. Math. Z. 42, 301–312 (1937).
85. Feller, W. Fluctuation theory of recurrent events. Trans. Amer. Math. Soc.

67, 98–119 (1949).



References 581

86. Feller, W. An extension of the law of the iterated logarithm to variables
without variance. J. Math. Mech. 18, 343–355 (1968).

87. Feller, W. An Introduction to Probability Theory and Its Applications, Vol
1, 3rd ed. Wiley, New York (1968).

88. Feller, W. An Introduction to Probability Theory and Its Applications, Vol
2, 2nd ed. Wiley, New York (1971).

89. Fisher, R.A., and Tippett, L.H.C. Limiting forms of the frequency of the
largest or smallest member of a sample. Proc. Camb. Phil. Soc. 24, 180–190
(1928).

90. Friedman, N., Katz, M., and Koopmans, L.H. Convergence rates for the
central limit theorem. Proc. Nat. Acad. Sci. USA 56, 1062–1065 (1966).

91. Galambos, J. The Asymptotic Theory of Extreme Order Statistics, 2nd ed.
Krieger, Malabar, FL (1987).

92. Garsia, A.M. Topics in Almost Everywhere Convergence. Markham, Chicago
(1970).

93. Garsia, A.M. Martingale Inequalities. Seminar Notes on Recent Progress.
W.A. Benjamin, Inc., Reading MA (1973).

94. Gilat, D. Every nonnegative submartingale is the absolute value of a martin-
gale. Ann. Probab. 5, 475–481 (1977).

95. Gnedenko, B.V. Sur la distribution limite du terme maximum d’une série
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itéré. Fund. Math. 4, 82–105 (1937).

182. Marcinkiewicz, J., and Zygmund, A. Quelque théorèmes sur les fonctions
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σ-algebra, 6

approximation, 14
filtration, 477, 541

natural, 477
generator, 7, 10
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minimal, 7
of sets, 10
pre-τ -σ-algebra, 493
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union, 6, 22, 477

absolute central moments, 62
absolute continuity, 470
absolute moments, 62
absolutely continuous distribution, see

distribution, absolutely continuous
algebra, 6, 10
almost sure convergence, 48, see

convergence
alternating renewal process, 379
amart, 514
Anscombe’s theorem

central limit theorem, 346, 348
law of the iterated logarithm, 416

stable distributions, 440
antrax cells, 87
asymptotic martingales, 514
availability, 379

Bayes’ formula, 18
Bernoulli random walk, 88
Berry-Esseen

Hartman-Wintner, 412
law of the iterated logarithm, 412

Berry-Esseen theorem, 355, 356
counting process

records, 364
renewal theory, 364

Bible code, 100
Bonferroni inequalities, 23
Borel
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generator, 15
on Rn, 16

space, 15
Borel-Cantelli lemmas, 96–113
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second, 97
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Burkholder inequalities, 506, 507
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Cantelli’s inequality, 154
Cantor

distribution, 40, 73
mean, 73
variance, 73

set, 41
Cantor distribution

characteristic function, 159, 167
cardinal number, 3
Cauchy convergence

almost sure, 256
in r-mean, 257
in distribution, 258
in probability, 257

Cauchy’s functional equation, 568
Cauchy-Schwarz inequality, 130
central limit theorem, 329–381

Anscombe, 346
generalized, 348

Berry-Esseen, 355, 356
convergence rates, 366
domain of attraction, 439
Edgeworth expansions, 363
empirical correlation coefficient, 380
Esseen’s lemma, 357
first passage times, 351
functional, 376, 451
i.i.d. case, 330
Lindberg conditions, 330
Lindeberg-Lévy-Feller, 331
Lyapounov’s condition, 339, 378
martingales, 515
moment convergence, 353
non-uniform remainder term

estimates, 363
pair-wise independence, 344
random indices, 346
records, 351
remainder term estimates, 355, 356
sample variance, 380
sums of dependent random variables,

450
triangular array, 345
triangular arrays, 377
uniformly asymptotically negligible,

340
central moments, 62
change of variables formula, 60

characteristic function, 157–184
absolutely continuous distributions,

159
inversion, 161, 252

Cantor distribution, 159, 167
continuity theorem, 238, 239, 251
degenerate distribution, 164
discrete distributions, 159

inversion, 163
infinite divisibility, 444
inversion, 160, 161, 163, 252
lattice distribution, 163, 164
moments, 176–178
multiplication theorem, 164
multivariate normal, 182
Pólya’s theorem, 262
random vector, 180, 246
stable distribution, 171
stable distributions, 426, 427
sums of a random number of random

variables, 193
surprise, 173, 174
uniqueness, 160, 173, 250

Chebyshev’s inequality, 121
truncated, 121

Clarkson’s inequality, 138, 563
closed set, 15
closing random variable, 517, 518, 520,

544
cluster set, 416, 417

definition, 405
law of the iterated logarithm, 405,

411
subsequences, 405, 406, 411

complement, 3
complete convergence, 312

definition, 203
law of large numbers, 312, 315
partial maxima, 312
random indices, 322, 323

completeness, 12
concentration function, 155
conditional

density, 80
distribution function, 79
probability, 17
probability function, 79

conditional expectation
defining relation, 468
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properties, 471
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conditional inequalities, 476, 477
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Hölder, 476
Jensen, 477
Lyapounov, 477
Minkowski, 477

conditional probability, 468
conditional square function, 506
conditional variance, 475
confidence interval, 249
conjugate exponents, 132
consistency, 51
continuity point, 202, 203
continuity set, 30, 202, 204
continuity theorem, 238–243

characteristic function, 238, 239
cumulant generating function, 240
generating function, 241
moment generating function, 242

continuous distribution, 36
continuous mapping theorem, 246, 260,

264
continuous singular distribution, 37, 40
continuum hypothesis, 3
convergence, 201–264

almost sure, 48, 218, 244, 292
definition, 202
Fatou’s lemma, 218
martingales, 508, 517, 520
random indices, 302, 303
reversed martingales, 543, 544
reversed submartingales, 544
submartingales, 508, 518
upcrossings, 512

Cauchy, see Cauchy convergence
complete, see complete convergence
conditional

dominated, 473
Fatou’s lemma, 473
monotone, 473

continuity theorem, see continuity
theorem

continuous mapping theorem, see
continuous mapping theorem

Cramér’s theorem, 249
definition, 202

almost sure (a.s.), 202
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in distribution, 202, 203
in probability, 202
in square mean, 202
in total variation, 227
vague, 231

dependence, 450, 462
dominated, 57
equivalence, 266

distributional, 268
expectation, 54
Fatou’s lemma, 56
functions of random variables,

243–246
in L1

martingales, 517, 520
reversed martingales, 543
reversed submartingales, 544
submartingales, 518

in Lp

martingales, 517
reversed martingales, 544

in r-mean
definition, 202

in distribution, 222–224, 227, 232,
235, 246, 292

continuity point, 202, 203
continuity set, 202, 204
definition, 202, 203, 225
Fatou’s lemma, 223
random indices, 345
uniqueness, 226

in probability, 221, 244, 245, 292
definition, 202
Fatou’s lemma, 220
random indices, 303

in square mean
definition, 202

in total variation, 227, 461
definition, 227

infinite divisibility, 446, 447
Kolmogorov criterion, 286
martingales, 508–515, 517

Garsia’s proof, 508–511
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of moments, 218–225, 309–311, 353
of series, 284–294

bounded random variables, 287
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three-series theorem, 289

Pratt’s lemma, 221
pseudo-distribution
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random indices, 302, 346, 348, 440
relations

between concepts, 209–213, 227,
232, 235, 292, 377

converses, 212, 237, 253, 255
reversed martingales, 544
reversed submartingales, 544
Scheffé’s lemma, 227, 228
Skorohod’s representation theorem,

258
stable distributions

first passage times, 441
Stein-Chen method, 459–464
submartingales, 518

Garsia’s proof, 508–511
upcrossings proof, 511–513

subsequences, 212
sums of sequences, 247, 248

independence, 247
tight, 236
uniform integrability, see uniform

integrability
uniqueness, 208
vague, 231–237

definition, 231
weak, 203

convergence rates
central limit theorem, 366
law of large numbers, 312, 316, 321

last exit times, 321
law of the iterated logarithm, 418
partial maxima, 312
random indices, 322, 323

convergence to types theorem, 428, 431,
452, 453

convexity, 132, 487, 561–564
definition, 561

convolution formula, 67
convolution table, 113, 170
correlation, 130

independence, 130
multivariate normal, 182, 183

countable additivity, 11
counting process

records, 93, 101, 308, 351, 364
precise asymptotics, 374

renewal, 89, 90, 364
counting variable, 418

law of large numbers, 315
moments, 321

law of the iterated logarithm
moments, 418

coupling, 460, 464
coupon collector’s problem, 115
covariance, 130

matrix, 181
cr-inequality, 127

conditional, 476
Cramér’s theorem, 249
Cramér-Wold device, 246
cumulant generating function, 184

continuity theorem, 240
multiplication theorem, 185
uniqueness, 185

cumulants, 185
moments, 185

D, 30, 46, 571
D+, 30, 570–574
D[0, 1], 46
de Morgan formulas, 4
defining relation

conditional expectation, 468
martingales, 479
submartingales, 479
supermartingales, 479

degenerate
characteristic function, 164
distribution, 181
distribution function, 30
random variable, 27, 30

Delta method, 349
dense, 31, 233, 511

sets
definition, 570
properties, 570–574
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density, 36
conditional, 80
joint, 43
multivariate normal, 182

dependence
convergence, 450
Poisson approximation, 462

dependence concepts, 448–451
α-mixing, 450
φ-mixing, 450
ψ-mixing, 450
ρ-mixing, 450
(m + 1)-block factor, 449
m-dependence, 448
measures of dependence, 449
mixing, 450

determining class, 16
difference of sets, 3
discrete distribution, see distribution,

discrete
disjoint sets, 4, 10
distribution, 30

absolutely continuous, 36, 40
characteristic function, see char-

acteristic function, absolutely
continuous distributions

mean, see mean, absolutely
continuous distributions

variance, see variance, absolutely
continuous distributions

Cantor, 40, 73
continuous, 36
continuous singular, 37, 40
decomposition, 36
degenerate, 181
discrete, 36, 39

characteristic function, see char-
acteristic function, discrete
distributions

mean, see mean, discrete distribu-
tions

variance, see variance, discrete
distributions

empirical, see empirical distribution
extremal, 451, 452
function

sub-probability, 31
lattice, see lattice distribution
marginal, 44, 181

max-stable, 451, 452
mean, see mean
perverse, 42, 63
pseudo-, 231
singular, 36
stable, see stable distribution
sub-probability, 231
variance, see variance
with random parameters, see random

parameter
distribution function, 30

conditional, 79
degenerate, 30
joint, 43
marginal, 44
non-degenerate, 30

distributional equality, 27
domain of attraction, 430–441

central limit theorem, 439
definition, 431
extremes, 456, 457

definition, 456
moments, 436
normal distribution, 432, 439
regular variation, 432
slow variation, 432
stable distributions, 431, 432

dominated convergence, 57
conditional, 473

Donsker’s theorem, 375, 451
Doob decomposition, 489, 551
Doob’s maximal inequality, 505, 543
Doob’s optional sampling theorem, 495,

497
double or nothing, 482, 519
Dynkin system, 6

generator, 7
Dynkin’s π-λ theorem, 10

Edgeworth expansions, 363
elementary event, 10
elementary random variable, 25
empirical

correlation coefficient, 324, 380
distribution, 276, 306

empty set, 4, 11
entropy, 379
equality

distributional, 27
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point-wise, 27
equivalence

class
conditional expectations, 470
random variables, 26, 468, 470

convergence, 266
distributional, 268

moments/tail probabilities, 75
Esscher transform, 541
Esseen’s lemma, 357
estimator

unbiased, 116, 475, 476
Etemadi’s inequality, 144
Euler’s constant, 560
events, 2, 10

elementary, 10
independence, 16
independence of collections, 18
pair-wise independent, 19
remote, 21

excess, 186
expectation, 32, 46

basic properties
general case, 53
non-negative random variables, 50
simple random variables, 48

conditional, see conditional expecta-
tion

convergence, 54
definition

general case, 48
non-negative random variable, 47
simple random variable, 47

indefinite
general case, 59
non-negative random variables, 58

martingale differences, 481
martingales, 480
submartingale differences, 481
submartingales, 480
supermartingale differences, 481
supermartingales, 480

exponential
martingales, 483, 525, 527

exponential bounds
lower, 386
upper, 386

exponential tilting, 540
extended random variable, 26

extremal distribution, 452
definition, 451
Gnedenko, 452
record values, 457
types, 452

extremes, 93, 107–109, 451–458
domain of attraction, 456, 457

definition, 456
extremal distribution, see extremal

distribution

Fatou’s lemma, 56, 218, 220, 223, 473
conditional, 473
stopping times, 513

filtration, 477, 541
natural, 477

finite additivity, 11
first entrance times, 492
first passage times, 90, 535–541

central limit theorem, 351
complete convergence, 323
convergence

stable distributions, 441
convergence rates, 323
expectation, 536
law of the iterated logarithm, 417
local limit theorem, 365
martingales, 499
moments, 537
precise asymptotics, 373
regularity, 536
strong law, 306

Fourier
series, 158
transform, 158

Fréchet distribution, 452
Fubini’s theorem, 65
functional central limit theorem, 376,

451
functions of random variables, 28

Galton-Watson process, 86
martingales, 483, 519

gambler’s ruin problem, 526, 541
expected duration, 528

Garsia
(sub)martingale convergence, 508
reversed martingale convergence, 543

generating function, 186



Index 595

continuity theorem, 241
moments, 188
multiplication theorem, 187
random vector, 188
sums of a random number of random

variables, 194
uniqueness, 186

generator, 7, 31
σ-algebra, 7
Borel sets, 15
Dynkin system, 7
monotone class, 7

Glivenko-Cantelli theorem, 306
Gumbel distribution, 452

Hájek-Rényi’s inequality, 125
Hamel equation, 425, 570
harmonic series

Euler’s constant, 560
random, 288

Hartman-Wintner
Berry-Esseen, 412
law of the iterated logarithm, 384,

387
Hausdorff dimension, 74
Helly’s selection principle, 232
Hoeffding’s inequality, 120
Hölder’s inequality, 129

conditional, 476
Hsu-Robbins-Erdős strong law, 312

Ibragimov conjecture, 450
Ibragimov-Iosifescu conjecture, 451
inclusion-exclusion formula, 24
increasing process, 477
independence

σ-algebras, 71
collections of events, 18
correlation, 130
events, 16
functions of random variables, 71
pair-wise

Borel-Cantelli lemmas, 104
Chebyshev’s inequality, 122
events, 19
random variables, 71
zero-one law, 105

random variables, 68, 70
induced probability measure, 26

induced probability space, 26
inequalities, 119–155

Burkholder, 506, 507
Cantelli, 154
Cauchy-Schwarz, 130
Chebyshev, 121

truncated, 121
Clarkson, 138, 563
conditional, see conditional inequali-

ties
cr, 127
Doob’s maximal, 505, 543
Etemadi, 144
Hájek-Rényi, 125

martingales, 503
Hájek-Rényi-Chow, 503
Hoeffding, 120
Hölder, 129
Jensen, 132
Kahane-Hoffmann-Jørgensen, 141
Khintchine, 147, 149
KHJ, 141
Kolmogorov, 122

the other, 123
Kolmogorov-Doob, 501, 543
Lévy, 139, 140

extended, 140
Lyapounov, 129
Marcinkiewicz-Zygmund, 150, 151

martingales, 506
Markov, 120
median/moments, 133
Minkowski, 129
Ottaviani, 145
Rosenthal, 152, 507
Skorohod, 145
symmetrization

strong, 134
weak, 134

infinite divisibility, 442–447
characteristic function, 444

finite variance, 444
characterization, 442, 444

finite variance, 444, 447
convergence, 447

finite variance, 446
definition, 442
properties, 443
random indices, 466
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triangular array, 442
finite variance, 447

infinitely often (i.o.), 96
insurance risk theory, 87
integral

Lebesgue, 32, 34, 35
Riemann, 32, 33
Riemann-Stieltjes, 32, 33

integration, 32
partial, 66

intersection, 3
invariance principle, 376, 451

Jensen’s inequality, 132
conditional, 477

JG, 571
joining

martingales, 486, 497, 498
stopping times, 494
submartingales, 486
supermartingales, 486, 498

joint
density, 43
distribution function, 43
probability function, 43

Kahane-Hoffmann-Jørgensen inequality,
141

Kertész, 480
Ad kudarc, 480

Khintchine’s inequality, 147, 149
Kolmogorov, 2

axioms, 10, 26
convergence criterion, 286
inequality, 122, 502

the other, 123, 502
law of the iterated logarithm, 384,

396
strong law, 295
sufficient condition, 288
three-series theorem, 289
zero-one law, 20, 21, 72, 521

Kolmogorov-Doob inequality, 501, 543
Kolmogorov-Feller weak law, 279, 281
Krickeberg decomposition, 490
Kronecker’s lemma, 565

random, 284

large deviations, 366

last exit times, 321, 418, 492
law of large numbers, 321

moments, 321
logarithmic moments, 418
moments, 418, 538

lattice distribution, 163
characteristic function, 163, 164
span, 163

law of large numbers, 265–327, 544–546
convergence rates, 321
counting variable, 321
last exit times, 321
precise asymptotics, 371
reversed martingales, 544–546
strong, see strong law of large

numbers
weak, see weak law of large numbers

law of the iterated logarithm, 383–421
Anscombe, 416
Chung, 419
cluster set, 405, 406, 411, 416, 417
convergence rates, 418
converse, 396

Strassen, 384
counting variable, 418
exponential bounds

lower, 386
upper, 386

first passage times, 417
Hartman-Wintner, 384, 387

Berry-Esseen, 412
Kolmogorov, 384, 396
last exit times, 418
precise asymptotics, 419
random index, 416
records, 417
subsequences, 398–413

cluster set, 405, 406, 411
dense, 399, 406, 411
sparse, 400, 402, 403, 405, 406, 414

the other LIL, 419
law of total probability, 18
Lebesgue

decomposition theorem, 37
dominated convergence theorem, 57

conditional, 473
integral, 32, 34, 35
integration, 46
measure, 35
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Lévy
convergence of series, 292
distance, 264
inequalities, 139, 140

likelihood ratio test, 91
martingales, 483
regularity, 538

limits
of probabilities, 11
of sets, 4

Lindberg condition, 330
Lindeberg-Lévy-Feller central limit

theorem, 331
local limit theorem, 365

first passage times, 365
log-likelihood, 91, 154
log-likelihood ratio, 551
Lp-spaces, 131

conjugate exponents, 132
norm, 131

Lyapounov’s condition, 339, 378
Lyapounov’s inequality, 129

m-dependence, 448
Marcinkiewics-Zygmund strong law

precise asymptotics, 372
Marcinkiewicz-Zygmund

inequality, 150, 151
strong law, 298

r-mean convergence, 311
weak law, 272

marginal distribution, 44, 181
function, 44

Markov’s inequality, 120
martingale

transform, 485
martingale differences

definition, 478
expectation, 481
orthogonality, 488

martingales, 467–553
almost sure convergence, 517, 520
asymptotic, 514
branching process, 483
Burkholder inequalities, 506, 507
central limit theorem, 515
closable, 517
closing random variable, 517, 520
complete, 517

convergence, 508–515
almost sure, 508
Garsia’s proof, 508–511
in L1, 517, 520
in Lp, 517
upcrossings proof, 511–513

convex functions, 487
defining relation, 479
definition, 478, 480, 496
Doob’s maximal inequality, 505
double or nothing, 482, 519
exit times, 534
expectation, 480
exponential, 483, 525, 527
first passage times, 499
Galton-Watson process, 483, 519
Hájek-Rényi-Chow inequality, 503
inequalities, 501–508, 550
joined, 486, 497, 498
Kolmogorov-Doob inequality, 501
Krickeberg decomposition, 490
L1-convergence, 517, 520
Lp-convergence, 517
likelihood ratio test, 483
main convergence theorem, 517
maximal function, 506
moment generating function, 483
non-convergent, 515
non-regular, see regular martingales
optional stopping, 495, 497
orthogonal increments, 488
powers, 487
predictable, 551
products of independent random

variables, 482
regular, see regular martingales
regular stopping times, see regular

stopping times
reversed, see reversed martingales
square function, 506, 552

conditional, 506, 552
stopped, see stopped martingales
sums of independent random

variables, 482, 483, 507
uniform integrability, 484, 495, 497,

515, 517, 544
Wald, 539

non-regular, 541
matching problem, 24
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max-stable distribution, 452
definition, 451

maximal function, 506
mean, 46, 62

absolutely continuous distributions,
62

Cantor distibution, 73
discrete distributions, 62
first passage times, 536
perverse distributions, 63
random vector, 181
stopped random walks, 523
sums of a random number of random

variables, 84, 194
measurability, 26–28, 205
measurable function, 25
measurable space, 14
measures of dependence, 449
median, 133, 140
mesh, 33
metatheorem, 9, 10, 13, 18
method of moments, 237
Mill’s ratio, 109, 558
Minkowski’s inequality, 129

conditional, 477
mixing coefficients, 450
moment generating function, 189

continuity theorem, 242
moments, 190
multiplication theorem, 190
random vector, 191
sums of a random number of random

variables, 194
uniqueness, 189

moment problem, 194, 237
sums of a random number of random

variables, 196
moments, 62

absolute, 62
absolute central, 62
and tail probabilities, 74–79, 268

subsequences, 77, 78
central, 62
characteristic function, 176–178
convergence, see convergence
correlation, 130
covariance, 130
cumulants, 185
domain of attraction, 436

first passage times, 537
generating function, 188
last exit times, 538
Lp-spaces, 131
mean, 62
moment generating function, 190
norm, 131
stable distributions, 426
stopped random walks, 521, 522, 530,

536
last summand, 536
stopping times, 530

variance, 62
monkey and typewriter, 99
monotone class, 6

generator, 7
theorem, 8

monotone convergence, 55, 56, 213
conditional, 473

multiplication theorem
characteristic function, 164
cumulant generating function, 185
generating function, 187
moment generating function, 190

multivariate
random variable, 43

multivariate normal distribution, 181,
375

characteristic function, 182
density, 182
independence

sample mean, variance, 183
uncorrelation, 182, 183

marginal, 181

non-degenerate
distribution function, 30
random variable, 27

norm, 131
normal numbers, 305, 383
null set, 12

open set, 15
Ottaviani’s inequality, 145

pair-wise independence
Borel-Cantelli lemmas, 104
central limit theorem, 344
Chebyshev’s inequality, 122



Index 599

events, 19
random variables, 71
strong law, 297
weak law, 276
zero-one law, 105

Parseval’s relation, 172
partial integration, 66
partial maxima, 93, 94, 268

complete convergence, 312
convergence rates, 312
random indices, 466
weak law of large numbers, 270

partition, 17
mesh, 33

peak numbers, 448
perverse distribution, 42, 63
point-wise

equality, 27
Poisson process, 89
Poisson approximation, 364, 459

counting process
records, 364, 462

dependence, 462
Stein-Chen method, 459

Pólya’s theorem, 262
potential

definition, 478
Doob decomposition, 551

power set, 4, 6
Pratt’s lemma, 221
pre-τ -σ-algebra, 493
precise asymptotics

first passage times, 373
law of large numbers, 371
law of the iterated logarithm, 419
Marcinkiewics-Zygmund strong law,

372
records, 374

predictable, 477, 551
probability function, 36

conditional, 79
joint, 43

probability generating function, see
generating function

probability measure, 10
probability space, 2, 10

complete, 12
probability triple, 2, 10
probablity measure

induced, 26
probablity space

induced, 26
pseudo-distribution, 231, 235

function, 232–234

quadratic variation, 148
queueing models, 88

Rademacher functions, 146
Radon-Nikodym

derivative, 470
theorem, 470

random element, 45
random experiment, 1
random index, 81–93, 192–194, 301–308

central limit theorem, 346
complete convergence, 322
convergence

almost sure, 302
in distribution, 345
stable distributions, 440

convergence rates, 322
infinite divisibility, 466
law of the iterated logarithm, 416
partial maxima, 466

random parameter, 81–83
random variables, 25, 27

closing, 517, 518, 520
degenerate, 27, 30
elementary, 25
equivalence class, 26, 468, 470
extended, 26
functions of, 28

independence, 71
independence, 68, 70

of functions, 71
pair-wise, 71, 276

multivariate, 43
non-degenerate, 27
non-negative, 29
simple, 25, 29
sums of a random number, see sums

of a random number of random
variables

symmetrized, 133
truncation, 121
with random indices, see random

index
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with random parameters, see random
parameter

random vector, 43
characteristic function, 180, 246
covariance matrix, 181
generating function, 188
mean, 181
moment generating function, 191
normal, see multivariate normal

distribution
random walks, 88

Bernoulli, 88
first passage times, see first passage

times, 535–541
renewal theory, 90, 306, 351, 417, 441
simple, 88

recurrence, 103
symmetric, 88
transience, 103

stopped, see stopped random walks
Rao-Blackwell theorem, 476, 548
rapid variation, 568
records

counting process, 93, 101, 364
central limit theorem, 351
law of the iterated logarithm, 417
precise asymptotics, 374
strong law of large numbers, 308

double records, 101
ranks, 94, 95
record times, 93, 101

central limit theorem, 351
law of the iterated logarithm, 417
precise asymptotics, 374
strong law of large numbers, 308

record values, 93, 94
types, 457

William’s representation, 418
recurrence, 103
regular martingales, 517, 520, 532, 533

non-regular, 519, 551
regular reversed martingales, 543
regular stopping times, 531–541

exit times, 534
definition, 532
first passage times, 536
likelihood ratio test, 538
stopped random walks, 532, 539

regular variation, 281, 566–568

remote events, 21
rencontre problem, 24
renewal

alternating process, 379
counting process, 89, 364
process, 89
theory, 89

for random walks, see random walks
replacement

based on age, 92
cost, 92

replacement based on age, 552
reversed martingales, 541–548

almost sure convergence, 543, 544
closing random variable, 543
convergence

Garsia’s proof, 543
in L1, 543
in Lp, 544

definition, 542
Doob’s maximal inequality, 543
Kolmogorov-Doob inequality, 543
L1-convergence, 543
Lp-convergence, 544
law of large numbers, 544–546
main convergence theorem, 543
U -statistics, 547–548
uniform integrability, 542, 543

reversed submartingales
almost sure convergence, 544
closing random variable, 544
convergence

in Lp, 544
definition, 542
L1-convergence, 544
main convergence theorem, 544
uniform integrability, 544

reversed supermartingales
definition, 542

Riemann integral, 32, 33
Riemann-Lebesgue lemma, 162
Riemann-Stieltjes integral, 32, 33
Riesz decomposition, 491, 550
r-mean convergence, 310, 311
Rosenthal’s

inequality, 152
runs (of zeroes), 117

sample mean
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U -statistics, 547
sample space, 2, 10, 25, 43
sample variance, 116, 380

U -statistics, 548
Scheffé’s lemma, 227, 228
self-normalized sums, 380
semi-invariants, 185
sequential analysis, 91, 483, 538
sets, 3

boundary, 15
Cantor, 41
cardinal number, 3
closed, 15
collection, 5
complement, 3
countable, 3
dense, 31, 570–574
difference, 3
disjoint, 4, 10
empty, 4, 11
i.o., 96
intersection, 3
liminf, 4, 96
limits, 4
limsup, 4, 96
non-decreasing, 4
non-increasing, 4
null set, 12
open, 15
operations, 3
power set, 4
subset, 4
symmetric difference, 3
union, 3

Shakespeare, 99
simple

function, 34
random variable, 25
random walks, 88

recurrence, 103
symmetric, 88
transience, 103

singular distribution, 36
skewness, 185
Skorohod’s inequality, 145
Skorohod’s representation theorem, 258
slow variation, 281, 566–568
smoothing, 474
square function, 506, 552

St. Petersburg
game, 283
paradox, 283

stable distribution, 171, 424–427
Anscombe, 440
characteristic function, 426, 427
definition, 424
domain of attraction, 431
first passage times, 441
Hamel equation, 425
moments, 426
random indices, 440
strictly, 424

Stein-Chen method, 459–464
coupling, 460, 464
Poisson approximation, 459

Stirling’s formula, 350
stopped martingales, 485, 495, 497,

521–541
bounded stopping, 496, 497

stopped random walks, 521–531
gambler’s ruin problem, 526

expected duration, 528
last summand

moments, 536
mean, 523
moments, 521, 522, 536

converse, 530
regular stopping times, 532, 539
variance, 523

stopping time, 145
stopping times, 491–495

definition, 492
Fatou’s lemma, 513
joined, 494
pre-τ -σ-algebra, 493
properties, 493
regular, see regular stopping times

strong law of large numbers, 288,
294–301

complete convergence, 315
convergence in L1, 309
convergence rates, 316, 321
counting variable, 315
first passage times, 306
Hsu-Robbins-Erdős, 312
Kolmogorov, 295
Kolmogorov sufficient condition, 288
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Marcinkiewicz-Zygmund, see
Marcinkiewicz-Zygmund

pair-wise independence, 297
random indices, 302
records, 308
r-mean convergence, 310, 311

sub-probability distribution, 231
function, 31

submartingale differences
definition, 478
expectation, 481

submartingales
almost sure convergence, 518
closing random variable, 518
convergence

almost sure, 508
Garsia’s proof, 508–511
in L1, 518
upcrossings proof, 511–513

convex functions, 487
defining relation, 479
definition, 478, 480
Doob decomposition, 489
expectation, 480
inequalities, see martingales
joined, 486
Krickeberg decomposition, 490
L1-convergence, 518
main convergence theorem, 518
powers, 487
reversed, see reversed submartingales
uniform integrability, 518

subsequence, 77, 78, 212, 235
Borel-Cantelli lemmas, 98
Helly’s selection principle, 232
law of the iterated logarithm, 399,

400, 402, 403, 405, 406, 411, 413,
414

principle, 229, 230
tight, 237

subset, 4
sufficient statistic, 475, 476, 548
sums of a random number

mean, 84
variance, 84

sums of a random number of random
variables, 83–93, 192–194

characteristic function, 193
generating function, 194

mean, 194
moment generating function, 194
moment problem, 196
variance, 194

sums of dependent random variables
central limit theorem, 450
invariance principle, 451

supermartingale differences
definition, 478
expectation, 481

supermartingales
defining relation, 479
definition, 478, 480
expectation, 480
joined, 486, 498
potential, see potential
Riesz decomposition, 491, 550

symmetric difference, 3
symmetrization, 133, 134, 255, 256, 291
symmetrization inequalities, 134

tail-σ-field, 20, 72, 520, 521
tight, 236, 375

subsequence, 237
uniform integrability, 236

transience, 103
triangular array, 344

central limit theorem, 345
infinite divisibility, 442, 447

truncation, 121

U -statistics, 547–548
reversed martingales, 547–548
sample mean, 547
sample variance, 548

unbiased estimator, 548
uniform integrability, 214–218, 309–311,

353
convergence of moments, 218, 221,

224
definition, 214
martingales, 484, 495, 497, 515, 517

reversed, 542
products of sequences, 217
reversed martingales, 543, 544
reversed submartingales, 544
submartingales, 518
sums of sequences, 217
tight, 236
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uniformly asymptotically negligible, 340
union, 3
uniqueness

characteristic function, 160, 250
continuity theorem, 251
convergence, 208
cumulant generating function, 185
generating function, 186
moment generating function, 189

upcrossings, 511
almost sure convergence, 512
expectation, 512
lemma, 511

random, 512
Uppsala telephone directory, 99

vague convergence, see convergence
variance, 62

absolutely continuous distributions,
62

Cantor distibution, 73
conditional, 475
discrete distributions, 62
perverse distributions, 63
stopped random walks, 523
sums of a random number of random

variables, 84, 194

variational distance, 227, 459, 461
Vieta’s formula, 198

Wald
equations, 523
fundamental identity, 539
martingale, 539

non-regular, 541
weak convergence, see convergence
weak law of large numbers, 270–284

general, 274
Kolmogorov-Feller, 279, 281

St Petersburg, 279
Marcinkiewicz-Zygmund, 272
pair-wise independence, 276
partial maxima, 270

Weibull distribution, 452, 453
Weierstrass approximation theorem,

277
Wiener process, 375
William’s representation, 418

zero-one law, 21, 97, 287, 290
Kolmogorov, 20, 21, 72, 521
pair-wise independence, 105
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