Univ. of Sistan and Baluchestan AVERVARA K

Ira N. Levine, Quantum Chemistry

Operators

Operators:

= Basis of quantum mechanics set up around
two things:
o Wave function, which contains all information
about the system.

o Operators which are rules whereby given some
function, we can find another.
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Operators:

—5— =5 T V()| (@) = EY(z)

h* d?
{ 2m dx?
The entity in brackets is operators. The
equation suggests that we have an energy
operator, which operating on the wave
function, given us the wave function again,
but multiplied by the allowed values of the
energy.

Operators:

Operator is a rule that transforms a given
function into another function

Df(x) = f'(x)
D(x* + 3¢*) = 2x + 3¢*
3(x? + 3¢¥) = 3x% + 9¢*

cos (x2 + 1)

Af(x) = g(x)
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Operators:

A

aZ

- is a derivative operator
d X
A is called circumflex to indicate the operator.

In quantum mechanics, the momentum
operator is:

P=—ih—
X

Operators:

The sum and the difference definition

(A+ B)f(x) = Af(x) + Bf(x)
(A - B)f(z) = Af(z) - Bf(x)

Example

D =d/dx
(D+3)(2®—5)=D®-5)+3x*-5) =

322 4+ (32 —15) =323 + 322 — 15
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Operators:
The product of A and B operators
ABf(x) = A[Bf()]
Example
3Df(z) = 3[Df(2)] = 3f'(x) = 3f'(x)
Maybe: AB # BA

Df(x) = = [xf(x)] = £(x) + xf'(x) = (I+ D))

£D7() = £ 2 109)| = <

Operator algebra

A and B are equal if Af = BJ':

1 is the unit operator
O is the null operator

We can transform an operator from one side of
operator equation to other side
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‘ Operator algebra

Operators obey the association law of multiplication

A(BC) = (AB)C

The proof: letA=d/dx,B=x,and C=3.

(AB)=Di=1+2D, [(AB)C)f=(1+iD)3f=3f+3zf"
(BC) = 3z, [A(BO)f = D3xf) = 3f + 3z f’

‘ Operator algebra

The major difference between operator algebra and ordinary algebra:
Commutation law

Commentator of A [A B’] = AB - BA
and B operators

A,Bl]=0 — AB=BA - AandB commute

—

AB+BA — A and B do not commute
examples
~ d A d d " d . .
Sl i - =l L &\ =Di—2h=
[ (lu‘:} dr dx I:d.’L"T] Dz —zD =1
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Operator algebra

EXAMPLE

Find [z3, d/dz].

To find [z, d/dZ], we apply this operator to an arbitrary function
g(z). Using the commutator definition and the definitions of the
difference and product of two operators, we have

(2, d/dz]g = [2(d/dz) — (d/d2)z’)g = 2(d/dz)g — (d/dz)(Z’g)
=7’g' — 37%g — °g’ = —37%g

(2%, d/dz] = —37%

Operator algebra

The square of an operator is defined as the product with itself

~

Al=AA
example

D*f(z)=D(Df)=Df = §"
D? = d?/dz*

A'is a linear operator if and only if:

Af(x) + g(x)]) = Af(x) + Ag(x)
Alcf(x)) = cAf(x)
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‘ Operator algebra

EXAMPLE

Is d/dx a linear operator? Is \ a linear operator?
We have

(d/dx)[f(x) + g(x)] = df/dx + dg/dx = (d/dx)f(x) + (d/dx)g(x)
(d/dx)[cf(x)] = c df(x)/dx

a linear operator.

Vf(x) + glx) # Vf(x) + Vg(x)

is nonlinear.

Operator algebra

[Ax)D" + A, (D)D" + - + A(0)D + Af(x)]y(x) = g(x)

Useful identities

For all operators

For linear operators
Prove the above relations:
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Operator algebra

EXAMPLE Find the square of the operator d/dx + Xx.

(D + 2Pf(x) = (D + DD + x)f] = (D + 2)f" + xf)
=f"+ f+xf +xf +xf =D+ 22D + # + 1f(x)
(D+iP=D*+22D+#+1

D+rP=D+5D+3=DD+32)+xD+53
=D+ Di+iD+#=D*+iD+1+iD+ 3
=D?+2xD + x> +1

Eigenfunction and Eigenvalue

Suppose that the effect of operating on some
function f(x) with the operator A is simply to
multiply f(x) by a certain constant k:

Af(z) = kf(z)

an eigenfunction of A an eigenvalue of A

(Eigen is a German word meaning Characteristic).
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| Eigenfunction and Eigenvalue

(d/dx)e* = 2e*

Operator: d/dx Eigenfunction: e Eigenvalue: 2

(d/dx) (sin 2x) = 2 cos 2x

Operator: d/dx This is not an Eigenvalue relation

Example

If f(x) is an eigenfunction of the linear operator A and c is any constant,
prove that cf(x) is an eigenfunction of A with the same eigenvalue as
f(x).

The given information:
Af = kf
A(f +g)= Af + Ag and A(bf) = bAf
C = a constant
We want to prove:

A(cf) = k(ef)
A(ef) = cAf = ckf = k(cf)
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Example

(a) Find the eigenfunctions and eigenvalues of the operator d/dx. (b) If
we impose the boundary condition that the eigenfunctions remain
finite as x > +oo, find the eigenvalues.

a) df (x) /dz = kf(x)
df/f = kdz

In f = kx + constant
f = econstantekx

f=ce k £ eigenvalue
b) k can be complex k=a + bi
>
: < 8 } f goes to infinity
a=0

operators and quantum mechanics

Schrddinger equation is an eigenvalue
problem

# d?
For a one particle [—— —— T V(x) [¢(x) = E¥(x)
one dimension 2m dx
problem

operator eigenvalue

. . eigenfunction
Hamiltonian operator 9
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| operators and quantum mechanics

For conservative systems:

The classical mechanical Hamiltonian function =
the total energy (in terms of coordinates and conjugated momenta)

Conjugated moenta p,, p,, and p, — For Cartesian coordinates x, y, and z
Px = mv,, py = mv,, p, = mvy,

E = Kinetic energy + Potential energy

operators and quantum mechanics

For a particle of mass m moving in one dimension and subject to V(x):

Kinetic energy = p%/2m

Potential energy = V(x)

H = Kinetic energy + Potential energy
/7

H: o + 4 Hamiltonian function
For that system: "

B s

_"2'5 d—xg'-f- V(:c) Hamiltonian operator
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operators and quantum mechanics

A postulate of quantum mechanics:

To every physical property there corresponds a
quantum-mechanical operator, such that the
operator for physical property B is obtained by
writing the classical-mechanical expression for B
as a function of Cartesian coordinate and
corresponding momenta and then making the
following replacements

1= q- ), = — — = —1h —
4 Ee i Oq Haq

i =+/-1 li=ifi* =if(-1)=—i

operators and quantum mechanics

==z Y=Y+ and 2 =2
N N R )
P« =7 8z’ Vo u oy’ £ 4 0z
g (PO _hBhO 0
Pz i dxr) i Oxidr Oz
V(z) = az® - V(z) = ax®
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T =p2/2m

The classical-mechanical
Expression for kinetics energy

| operators and quantum mechanics

For a particle of mass m moving in one dimension and subject to V(x):

K2 92

2m d0x?

K2 2
2m dx?

T =

The corresponding operator

H=T+V =p2/2m+ V(z)

The classical-mechanical
Hamiltonian

The quantum-mechanical
Hamiltonian operator

In agreement with the Schrodinger equation

If B is a physical property:

Bﬁ = biﬁ’
of the operator B

For example:

operators and quantum mechanics

A measurement of the property B must yield one of the eigenvalues b,

i=1,23,..

Hlﬁi = Ey;
# d?
[_ % E + V(")]‘/’i = Eu;
Ali Ebrahimi
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operators and quantum mechanics

It is postulated that:

If ¥ is an eigenfunction of B with eigenvalues
b,, then a measurement of B is certain to
yield the value b,.

For example: ifB=E

The eigenfunctions of E are solutions of time-
independent Schrodinger equation W(x)

operators and quantum mechanics

Suppose the system is in a stationary state:
W(x, t) = e By (x)
Is W(x,t) an eigenfunction of A?
HY(x,t) = He "E/y(x)
HY(x,t) = e ErHy(x) = Ee Blhy(x) = E¥(x, 1)
HY = E¥Y

For a stationary state, ¥ is an eigenfunction of H and we
certain to obtain the E value when we measure the energy.
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| operators and quantum mechanics

Momentum?
ﬁmg = kg
hdg _
i dr

g = Aeik.z/ﬁ

kg

—o0 < k< oo

| operators and quantum mechanics

The momentum of a particle in a box
. 2\
W(x,t) = e“E’/ﬁ(—) sin(—mrx)
I l
E = n*h*/8mli*

Does the particle have a definite value of p,,
That is, is ¥(x,t) an eigenfunction of p,,

RO ) N, i nwL nmh . 2\ /2 nwL
Ho — __/7ZEt/ﬁ - H Y e 2 /—1'Et/h = i
Pe i Dz l s'"( l ) i C l COS( l )

p,¥ # constant * ‘~P|
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| operators and quantum mechanics

Are the particle-in-a-box stationary-state wave functions
eigenfunctions of p,? ?

. ¥ . N2 narx
pqu: —ﬁzye lEt/h<7> SIH<T

232
n*h
_ ﬁfi’fe-m/ﬁ(%)”sm(@> PR = O

A=F+V=1=p2m

N 1}2
HY =FE¥V =2 ¢
2m

21,2 212
) _ o n-h _ nh

| operators and quantum mechanics

Example:

The energy of a particle of mass m in a one-dimensional box of length / is
measured. What are the possible values that can result from the
measurement if (a) at the time the measurement begins, the particle's
state function is ¥ = (30/15)"2x(I-x) for 0 < x < [; (b) at the time the
measurement begins, ¥ = (2/1)"2sin(3rmx/l) for 0 < x < 1?

nh?
B 8mi*

a) Hy=zcte xy
One of above values

_ 2
b) n=3 Ee 9h2
8ml
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' The three dimensional many-particle

Schrédinger equation

The time dependent Schrodinger equation i o — ¥
for time development of the state functionis LE -
postulated to have the form:

Hy = Ey
For one-particle, three- dlmefwsmnal system:
H=T+V= e (03 + P} +p2) + V(z, ¥, 2)
A= 02+02+62 +V(z,y,2)
T 2m \Ox2  Oy? 022 e
Ve & 8- + B ' Laplaci t
= 522 82/" 522 aplacian operator

—h—vzw + Vi = Ey
2m

' The three dimensional many-particle
Schrédinger equation

For three-dimensional, n particle system

T= 2m (pz, + Py, +1%,)

1 2 2 2 1 2 2 2
 omg Woa P +P5) ot oo (02, 41y, +02)

A R L A N LR
T omy (3.51 = dy? T 821) T (52'_;’; i dyz B 3_2,2:)
LA 2 52 92
T=—_ 2 2_ O O O
,Z 2m; Vi Ve = dz? + dy} g 022
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'The three dimensional many-
particle Schrédinger equation

T——i s i
- i=1 2m;

n 2

] h 2 7
H = —Z 2m; Vi +V (Il,...,zn)

V =V(z1,%1,%1,--:Tn, Yns Zn) p p p

‘ If the potential energy depends only on the 3n coordinates

' The three dimensional many-particle
Schrédinger equation

n_ B2 ; )
—Z Vi + V(z1,...,20) | ¥ = EY

i=1

d’ = U)(:Ehylw‘zla'“:mna Yn, Zn)

Two particles interact so that the potential energy is inversely proportional to the distance
between them:

R 92 8 8 R /82 8 8
[‘m(m*@f*ﬁ)‘m(@*@g*@)

C
+[(:£1 —z2)% 4+ (g1 —y2)? + (21 — 22)%]'/2

J1f2=E1/)

111 = w($l7y17zlax23y2az2)
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' The three dimensional many-particle
Schrédinger equation

V4
\ dy
dz

Born postulate:

y .
>y For one-particle, three-
dimensional system

X e |® (=, ¥, i)| dr dy dz

* / f / |¥(z, y, 2, t)|* dedydz = 1

' The three dimensional many-particle
Schrédinger equation

For a three-dimensional, n-particle system:

j ; YT
[P (2], Y15 215 T Yoy 2oy ey Ty Yoy 20y E)|“dzy diyy d 2y dxodyadzy - - - depdyndzy,

[s o] o0 o0 o0 o0 [e ]
/ f f / / / |‘IJ[2dx| dyy dxy - - -dx, dy, dz, = 1
~o0J—00 /-0 —00 J —00 J—o00

For a stationary state
[¥|%dr =1

/|\m2dr =1

[ef? = [¢)?
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‘ The particle in a three dimensional box

b
! O0<z<a
Viz,y,2) =0 in the region {O <y<hb
O<z<e
V= elsewhere

‘ The particle in a three dimensional box

O e VR VAN
(8:::2 Tt (')22) =&

" 2m
We assume the the solutions can be written as: Separation of variables
U(z, y, 2) = f(z)g(y)h(2)
02 ) " a‘.z ) " 02’ ) "
o = ' @eWhE), 5 = @) Whe), Gy = f@alh" (@)

—(h?/2m) f"gh — (h*/2m) fg"h — (h*/2m) fgh" — Efgh =0

hzf“ .’12_11” h2h"

— = = -E=0
2mf  2mg 2mh
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‘ The particle in a three dimensional box

Wf(@) _ giy) | R

£ ¢
“2mf(z)  2mg(y) = 2mh(z) T

E, = —h*f"(z)/2mf(z)
E, = —h*g"(y)/2mg(y).

E, = —h*h"(2)/2mh(z)

E,+E,+E, =E

‘ The particle in a three dimensional box

l 7!':::]12 & L)
E, = =, n, = 123..
8mc?

2 12 Ny TE
' &) = (—) sin ( = )
d*f(z) 2m a a
a2 =+ ?E.:f(m) =0 n2h?
T E'I = ___8rza2, Ny = 1,2,3...
2\ /2 Ty TY
9(y) = (-) sin | —%—
d’g(y) 2m | b ( b )
-+ oz Eygly) = 0. nzh*
dy h Ty = =& ny = 1,2.3
8mb?’ T
2\1/? . (MT2Z
d*h(z) 2m h(z) = (F) sm( c )
— 4 —z—lz;h(z) =0
dz? h
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‘ The particle in a three dimensional box

Yz, y, 2) = f(z)g(y)h(

I

)

([ 8 L/ L (METT\ | (M, TY\ . [(NT2
z,b(x,y,z)_(@> sm( . )sm( 2 )sm( . )

‘ The particle in a three dimensional box

[[[ Fecwn sy - [ Fes [ ey [ e

00 00 00 a b c
/ f f [ dzx dy dz :/ lf(u:)|2(1J:/ |g(y)|2dyf |h(z)|?dz = 1
—o0 J =00 ] 0 0 0

Since x, y, and z factors of wave function are each independently normalized,
the wave function is normalized:

What are the dimensions of wave function?

Ali Ebrahimi vy



Univ. of Sistan and Baluchestan AVERVARA K

‘ The particle in a three dimensional box

If a=b=c E = (h*/8ma®)(n2 + "::-; +n?)

ngnyn. |111]211]121]112[122|212|221|113|131|311|222]
E@ma*/h?)| 3|66 [6[9]9]9[11]11|11}12]

3/2
(2) . (nxfzx) . (nyﬂy] . (I’lZﬂZ]
w=|=| sin sin sin
a a b c

_(2)7, 2_706)(2)(5\
211 V= Sin sin b sin
N (w30 (=
121 w=|—| sin —)sin[Tﬂylsin[—
N Yo
112 w=[—]| sin —)sin(ﬂ)sm(—
a a b c

‘ The particle in a three dimensional box

122 212 221 } these eigenvalues
Energia } are said to be
201 121 12 degenerate

111

1

The degree of degeneracy of an energy level is the number of states that
have that energy

The degree of degeneracy = Degeneracy
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| Degeneracy

If Hyy = wipy, Hipa =wipy, -+, Hipp = wipy

® will be an eigenfunction of H with eigenvalue w
o=y +catpa + -+ cpPn

We must show A® = wo

H(c1¥) + coths + -+ + cphn) = w(er¥y + c2v2 + - - + en¥Pn)

H((,l P14+ e+ -+ ey wr!) = H(('I'l,l‘”l) + f{(('z'(/ﬂ) s H(('n@f)u)
Blevtn +cat 4o+ catn) = By + i+ + cufl,

= ciwy + caws + -+ + iy,

H(cithy + caa + - -+ + enthn) = w(erthy + catha + -+ + cnthn)

| Degeneracy

Hy,, =Ey,,
Hy, = Eypy,
Hy,, =EW,,

A\ 4

H(ey it + W) = Ey (e, + Wy, +6W,)

~ 6h*
H(ew,, + e, teyy)= W(Q'/’zn + W+ W)

Degree of degeneracy
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| Degeneracy

Linearly independent functions
fiyeeosfn are independent functions if:

(flfl +"'+cnf-n =0

Only be satisfied with all the constants c1, c2, ..., ¢, equal to zero
fl:35£:f2:55£2_1’.f:l=12 f2=5f3—%f]

fjl=1,!lz=1’,y;i=$2

’ Degree of degeneracy = ? ‘

| Average values

Probability density for a one-particle one-dimensional system

|‘-I—‘(x, z‘)|2

(z) = /_’C z|¥(z,t)|*d

o0

Probability density for a one-particle three-dimensional system

¥ (x, p,2,0)[

(z) = /_i L/_Z [i I\Il(;zr,y,z,y)|2dydz] rdr

oo oo o0 .
(z) = / / / W (x,y,2,t)|* vdedy dz
—00 J—00 J—o00
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| Average values

The average value of some property B(x,y,z) that is a function of particles
coordinates

(B(z, y, 2)) :f / f |¥(z, y, z, t)|*B(z, y, 2) de dy dz
-0 J—00 J—c0

(B(z, y, 2)) = / / f U*BY dr dydz

In general B depends on coordinates and momenta

B = B(z,y, z, pz, Py, P:)

For the one particle, three-dimensional case

| Average values

We postulate that < B> for a system in state W is :

bl Sl L o ho ho ho ”
(B)._/_:x/_m/_oc'lf B (,L,y,z,?ax,?ay, iaz)ll'd.Ldydz

(B) = f f f U BY dz dy dz
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| Average values

For the n-particle case:

(B) :/\IJ*B\MT
Bo*¥ and P*P B are not the same as \IJ*B\II

For a stationary state:

U*BY = ¢iEt/Mp* BemiEtNyy = Oy* By = v* By

(B) = / " Bijpdr
|

Time independent

| Average values

where V¥ is an eigenfunction of B BY = k¥
(B) :/'I"'Btllch—:/W‘k@drzk/W'Wflr:k
(B+C) =(B) +(C)

(BC) # (B){C)

Ali Ebrahimi Yv



Univ. of Sistan and Baluchestan AVERVARA K

Average values

Example:
Find <x> and <p,> for the ground stationary state of a particle in a three-
dimensional box.

() =Jw*£¢/ dr = j C

b ra
J Jf*g*h*xfghdxdydz
0 ‘0 ‘0

a b < a
() = | i dx [ loOF dy | (e dz = [ Ay ax
0 0 (U] (]

2 (™) ax = 2
(x)—aJ; xsm(a)dx—2

(p) = | Wb dr - j J [ “prens ek dx dy dz

i ox

a b ¢
(pd =2 [ roreo ax [ lgopay folmz)lz dz

0 0

=0

() = 5[ @ = 5110

a
0

Well-behaved functions

we require:

vy to be continuous.

vy to be quadratically integrable.
it must be single-valued.

we usually also require that all the partial derivatives be
continuous.

it is sometimes stated that the wave function must be
finite everywhere, including infinity. (the fundamental
requirement is quadratic integrability, rather than
finiteness.)

acceptable (well-behaved) functions.
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Not acceptable
(has infinite value
at x = o)

x

prevent y from being acceptable.

Well-behaved functions

Not acceptable
{a)
(not single valued) (b)

Not acceptable

/\ (not continuous)
L

x

Xq

Acceptable

(a) y is triple valued at x,. (b) g is discontinuous at x,. (c) g grows
without limit as x approaches +« (i.e., g “blows up,” or “explodes”). (d)
y is continuous and has a “cusp” at x,. Hence, first derivative of y is
discontinuous at x; and is only piecewise continuous. This does not
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