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Abstract. In this article, we present some operator inequalities via arbitrary

operator means and unital positive linear maps. For instance, we show that if

A,B ∈ B(H ) are two positive invertible operators such that 0 < m ≤ A,B ≤ M

and σ is an arbitrary operator mean, then

Φp(AσB) ≤ Kp(h)Φp(Bσ⊥A),

where σ⊥ is dual σ, p ≥ 0 and K(h) = (M+m)2

4Mm is the classical Kantorovich

constant. We also generalize the above inequality for two arbitrary means σ1, σ2

which lie between σ and σ⊥.

1. Introduction and preliminaries

In this paper, B(H ) denote the C∗-algebra of all bounded linear operators on a

complex Hilbert space (H , 〈·, ·〉). I stands for the identity operator. A self-adjoint

operator A ∈ B(H ) is said to be positive if 〈Ax, x〉 ≥ 0 for all x ∈ H , and in this

case we write A ≥ 0. For self-adjoint operators A,B ∈ B(H ), the order relation

A ≤ B means that B − A ≥ 0. A linear map Φ is positive if Φ(A) ≥ 0 whenever

A ≥ 0. It is said to be unital provided that it preserves the identity operator, that

is, Φ(I) = I.

The axiomatic theory for pairs of positive operators has been developed by Kubo

and Ando [9].

If A,B ∈ B(H ) be two positive invertible operators, then the ν−weighted arith-

metic mean, geometric mean and harmonic mean of A and B denoted by A∇νB,

A]νB A!νB, respectively, are defined follows as

A∇νB = νA+ (1− ν)B, A]νB = A
1
2

(
A−

1
2BA−

1
2

)ν
A

1
2 ,

and

A!νB = (νA−1 + (1− ν)B−1)−1,
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respectively. When ν = 1
2
, we write A∇B, A]B and A!B for the arithmetic mean,

geometric mean and harmonic mean, respectively. The ν−weighted arithmetic-

geometric (AM-GM) operator inequality, which is proved in [15] says that if A,B ∈
B(H ) are two positive operators and 0 ≤ ν ≤ 1, then A]νB ≤ A∇νB. For a

particular case, when ν = 1
2
, we obtain the AM-GM operator inequality

A]B ≤ A+B

2
. (1.1)

For two positive operators A,B ∈ B(H ), the Löwner–Heinz inequality states that,

if A ≤ B, then

Ap ≤ Bp, (0 ≤ p ≤ 1). (1.2)

In general (1.2) is not true for p > 1.

Lin [12, Theorem 2.1] showed a squaring of a reverse of (1.1), namely that the

inequality

Φ2

(
A+B

2

)
≤
(

(M +m)2

4Mm

)2

Φ2(A]B) (1.3)

as well as

Φ2

(
A+B

2

)
≤
(

(M +m)2

4Mm

)2

(Φ(A)]Φ(B))2 (1.4)

where Φ is a positive unital linear map.

The Löwner–Heinz inequality and two inequalities (1.3) and (1.4) follow that for

0 < p ≤ 2,

Φp

(
A+B

2

)
≤
(

(M +m)2

4Mm

)p
Φp(A]B) (1.5)

and

Φp

(
A+B

2

)
≤
(

(M +m)2

4Mm

)p
(Φ(A)]Φ(B))p (1.6)

In [6], the authors showed that inequalities (1.5) and (1.6) for p ≥ 2 hold.

For more improvements and refinements on the above inequalities see [13, 14] and

references therein.

Let σ be an operator mean with the representing function f . The operator mean

with the representing function t
f(t)

is called the dual of σ and denoted by σ⊥. For

A,B ∈ B(H ),

Aσ⊥B = (B−1σA−1)−1.
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It is trivial that for two invertible operatorsA,B ∈ B(H ), A∇⊥B = A!B and A!B ≤
A]B.

Let 0 < m ≤ A,B ≤M, Φ be a positive unital linear map and σ, τ be two arbitrary

means between the harmonic and arithmetic means. In [7], the authors obtained

the following inequality:

Φ2(AσB) ≤ K2(h)Φ2(AτB), (1.7)

where K(h) = (h+1)2

4h
with h = M

m
is the Kantorovich constant.

The authors in [5] generalized inequality (1.7) for the higher powers as follows:

Φp(AσB) ≤ Kp(h)Φp(AτB), (1.8)

where p > 0.

Motivated by the above discussion, in this paper we first obtain the following in-

equality:

Φ2(AσB) ≤ K2(h)Φ2(Bσ⊥A) (1.9)

where 0 < m ≤ A,B ≤ M, σ is an arbitrary mean and σ⊥ is its dual and K(h) =
(M+m)2

4Mm
is the Kantorovich constant. Then, we generalize inequality (1.9) for two

arbitrary means σ1 and σ2 between σ and σ⊥.

2. Main results

To obtain the main results we need to recall the following Lemmas.

Lemma 2.1. [3](Choi’s inequality) Let A ∈ B(H ) be positive and Φ be a positive

unital linear map. Then

Φ(A)−1 ≤ Φ
(
A−1

)
. (2.1)

Lemma 2.2. [15] Suppose that 0 < m ≤ A ≤M. Then

A+MmA−1 ≤M +m.

Lemma 2.3. [4, 1, 2] Let A,B ∈ B(H ) be positive and λ > 0. Then

(i) ||AB|| ≤ 1
4
||A + B||2.

(ii) If λ > 1, then ||Aλ +Bλ|| ≤ ||(A+B)λ||.
(iii) A ≤ λB if and only if ||A 1

2B−
1
2 || ≤ λ

1
2 .
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Lemma 2.4. [8] Let X ∈ B(H ). Then ‖X‖ ≤ t if and only if(
tI X

X∗ tI

)
≥ 0.

Theorem 2.5. Let 0 < m ≤ A,B ≤M such that 0 < m < M and σ be an arbitrary

mean. Then

Φ2(AσB) ≤ K2(h)Φ2(Bσ⊥A), (2.2)

where σ⊥ is dual σ and K(h) = (M+m)2

4Mm
is the Kantorovich constant.

Proof. It follows from 0 < m ≤ A,B ≤ M that (M − A)(m − A)A−1 ≤ 0 and

(M −B)(m−B)B−1 ≤ 0. Therefore

A+MmA−1 ≤M +m and B +MmB−1 ≤M +m.

Now, the subadditivity and monotonicity properties of the operator mean to con-

clude that

AσB +Mm(A−1σB−1) ≤ (A+MmA−1)σ(B +MmB−1)

≤ (M +m)σ(M +m)

= M +m.

Using the linearity and positivity of Φ and the latter inequality, we get

Φ(AσB) +MmΦ(A−1σB−1) ≤M +m. (2.3)

Applying two inequalities (2.1) and (2.3), respectively, we have

Φ(AσB) +MmΦ−1(Bσ⊥A) ≤ Φ(AσB) +MmΦ(Bσ⊥A)−1

≤ Φ(AσB) +MmΦ(A−1σB−1)

≤M +m.

By Lemma 2.3(i) and the latter inequality, we get∥∥Φ(AσB)MmΦ−1(Bσ⊥A)
∥∥ ≤ 1

4

∥∥Φ(AσB) +MmΦ(Bσ⊥A)−1
∥∥2

≤ Φ(AσB) +MmΦ(A−1σB−1)

≤M +m.

This proves the assertion as desired. �

Remark 2.6. In special case, when σ = ∇, since σ⊥ =! and ! ≤ ], inequality (2.2)

becomes inequality (1.3).
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Corollary 2.7. Let 0 < m ≤ A,B ≤ M such that 0 < m < M, σ be an arbitrary

mean and let p ≥ 0. Then

Φp(AσB) ≤ Kp(h)Φp(Bσ⊥A), (2.4)

where σ⊥ is dual σ and K(h) = (M+m)2

4Mm
is the Kantorovich constant.

Proof. If 0 ≤ p ≤ 2, then 0 ≤ p
2
≤ 1. Applying inequality (2.2) we obtain the desired

result. If p > 2, then∥∥∥Φ
p
2 (AσB)M

p
2m

p
2 Φ−

p
2 (Bσ⊥A)

∥∥∥
≤ 1

4

∥∥∥Φ
p
2 (AσB) +M

p
2m

p
2 Φ−

p
2 (Bσ⊥A)

∥∥∥2 (by Lemma 2.3 (i))

≤ 1

4

∥∥Φ(AσB) +MmΦ−1(Bσ⊥A)
∥∥p (by Lemma 2.3 (ii))

≤ 1

4

∥∥Φ(AσB) +MmΦ((Bσ⊥A))−1
∥∥p (by (2.1))

=
1

4

∥∥Φ(AσB) +MmΦ(A−1σ⊥B−1)
∥∥p

≤ 1

4
(M +m)p (by inequality (2.3)).

Therefore, by Lemma 2.3(iii) we have

Φp(AσB) ≤ Kp(h)Φp(Bσ⊥A).

�

Remark 2.8. Using the same reason as in Remark 2.6 says that inequality (2.4) is a

generalization of inequality (1.5) which is presented in [6].

In the following theorem, we generalize inequality (1.7).

Theorem 2.9. Let 0 < m ≤ A,B ≤ M , σ1 and σ2 be two arbitrary means which

lie between σ and σ⊥ and let p ≥ 0. Then for every positive unital linear map Φ,

Φp(Aσ2B) ≤ Kp(h)Φp(Bσ1A), (2.5)

where σ⊥ is dual σ and K(h) = (M+m)2

4Mm
is the Kantorovich constant.
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Proof. To prove (2.5), let σ1 ≥ σ⊥ and σ2 ≤ σ. Therefore,

Φ(Aσ2B) +MmΦ−1(Bσ1A) ≤ Φ(Aσ2B) +MmΦ(Bσ1A)−1 (by (2.1))

≤ Φ(AσB) +MmΦ(Bσ⊥A)−1

= Φ(AσB) +MmΦ(A−1σB−1)

≤M +m (by (2.3)).

Using the same ideas as used in the proof of Theorem 2.5 and Corollary 2.7, one

can obtain the desired result. �

To find a better bound than the obtained bound in inequality (2.4), we need to

state the following Lemma.

Lemma 2.10. [12] Let 0 < m ≤ A,B ≤ M and σ be an arbitrary mean. Then for

every positive unital linear map Φ

‖Φ2(AσB) +M2m2Φn((AσB)−1)‖ ≤M2 +m2.

Theorem 2.11. Let 0 < m ≤ A,B ≤M, σ be an arbitrary mean and p ≥ 4. Then

Φp(AσB) ≤
(
K(h)(M2 +m2)

2
4
pMm

)p
Φp(Bσ⊥A), (2.6)

where σ⊥ is dual σ and K(h) = (M+m)2

4Mm
is the Kantorovich constant.

Proof. By Theorem 2.5 we have

Φ−2(Bσ⊥A) ≤ K2(h)Φ−2(AσB). (2.7)

A simple computation shows that∥∥∥Φ
p
2 (AσB)M

p
2m

p
2 Φ−

p
2 (Bσ⊥A)

∥∥∥
≤ 1

4

∥∥∥∥∥K p
4 (h)Φ

p
2 (AσB) +

(
M2m2

K(h)

) p
4

Φ−
p
2 (Bσ⊥A)

∥∥∥∥∥
2

( by Lemmas 2.3(i) )

≤ 1

4

∥∥∥∥KΦ2(AσB) +
M2m2

K(h)
Φ−2(Bσ⊥A)

∥∥∥∥ p2 ( by Lemmas 2.3(ii) )

≤ 1

4

∥∥K(h)Φ2(AσB) +M2m2K(h)Φ−2(AσB)
∥∥ p2 ( by (2.7) )

≤ 1

4
K

p
2 (h)

∥∥Φ2(AσB) +M2m2Φ2(AσB)−1
∥∥ p2 ( by (2.1))

≤ 1

4

(
K(h)

(
M2 +m2

)) p
2 ( by Lemma 2.10).
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Therefore ∥∥∥Φ
p
2 (AσB)Φ−

p
2 (Bσ⊥A)

∥∥∥ ≤ 1

4

(
K(h) (M2 +m2)

Mm

) p
2

.

The latter relation is equivalent to

Φp(AσB) ≤
(
K(h) (M2 +m2)

2
4
pMm

)p
Φp(Bσ⊥A).

This proves the desired result. �

Remark 2.12. When p ≥ 4, the derived result in Theorem 2.11 is tighter than

inequality (2.4).

Moreover, we show that Theorem 2.11 holds for 0 ≤ p ≤ 4.

Corollary 2.13. Let 0 < m ≤ A,B ≤M, σ be an arbitrary mean and let 0 ≤ p ≤ 4.

Then

Φp(AσB) ≤
(
K(h) (M2 +m2)

2Mm

)p
Φp(Bσ⊥A),

where σ⊥ is dual σ and K(h) = (M+m)2

4MM
.

Proof. By Theorem 2.5 we have

Φ4(AσB) ≤
(
K(h) (M2 +m2)

2Mm

)4

Φ4(Bσ⊥A).

If 0 ≤ p ≤ 4, then 0 ≤ p
4
≤ 1. With the aid of the latter inequality and inequality

(1.2), we conclude the desired inequality. �

Theorem 2.14. Let 0 < m ≤ A,B ≤M, σ1 and σ2 be two arbitrary means between

σ and σ⊥, 1 < α ≤ 2 and p ≥ 2α. Then for every positive unital linear map Φ

Φp(Aσ2B) ≤ (K
α
2 (h)(Mα +mα))

2p
α

16Mpmp
Φp(Bσ1A) (2.8)

where σ⊥ is dual σ and K(h) = (M+m)2

4Mm
is the Kantorovich constant.

Proof. At once from inequality (2.5) follows that for 1 < α ≤ 2

Φ−α(Bσ1A) ≤ Kα(h)Φ−α(Aσ2B). (2.9)

Using the fact that 0 < m ≤ A,B ≤M, it deduces that 0 < m ≤ Aσ2B ≤M. Now,

the linearity property Φ results that 0 < m ≤ Φ(Aσ2B) ≤M. Since 1 < α ≤ 2, one

can easily prove that

Φα(Aσ2B) +MαmαΦ−α(Aσ2B) ≤Mα +mα. (2.10)
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Therefore∥∥∥M p
2m

p
2 Φ

p
2 (Aσ2B)Φ−

p
2 (Bσ1A)

∥∥∥
≤ 1

4

∥∥∥K− p4 (h)M
p
2m

p
2 Φ−

p
2 (Bσ1A) +K

p
4 (h)Φ

p
2 (Aσ2B)

∥∥∥2 ( by Lemma 2.3(i) )

≤ 1

4

∥∥∥(K−α2 (h)MαmαΦ−α(Bσ1A) +K
α
2 (h)Φα(Aσ2B)

) p
2α

∥∥∥2 ( by Lemma 2.3(ii) )

=
1

4

∥∥K−α2 (h)MαmαΦ−α(Bσ1A) +K
α
2 (h)Φα(Aσ2B)

∥∥ pα
≤ 1

4

∥∥K α
2 (h)MαmαΦ−α(Aσ2B) +K

α
2 (h)Φα(Aσ2B)

∥∥ pα ( by (2.9))

≤ 1

4
K

p
2 (h)(Mα +mα)

p
α ( by (2.10)),

that is ∥∥∥Φ
p
2 (Aσ2B)Φ−

p
2 (Bσ1A)

∥∥∥ ≤ K
p
2 (h)(Mα +mα)

p
α

4M
p
2m

p
2

,

or equivalently

Φp(Aσ2B) ≤
(
K

α
2 (h)(Mα +mα)

) 2p
α

16Mm
Φp(Bσ1A).

�

Remark 2.15. In special case, for α = 2, inequality (2.8) becomes inequality (2.6).

Remark 2.16. By taking σ = ∇ in inequality (2.8), we get inequality (1.8).

Theorem 2.17. Let 0 < m ≤ A,B ≤M such that 0 < m < M and σ be an arbitrary

mean. Then for every positive unital linear map Φ and two arbitrary means σ1 and

σ2 which lie between σ and σ⊥ and p ≥ 0, the following inequality holds

Φp(Aσ2B)Φ−p(Bσ1A) + Φ−p(Bσ1A)Φp(Aσ2B) ≤ 2Kp(h)Φp(Bσ1A) (2.11)

where σ⊥ is dual σ and K(h) = (M+m)2

4Mm
is the Kantorovich constant.

Proof. It follows from (2.5) that

‖Φp(Aσ2B)Φ−p(Bσ1A)‖ ≤ Kp(h). (2.12)

Applying Lemma 2.4 we have(
K(h)pI Φ−p(Bσ1A)Φp(Aσ2B)

Φp(Aσ2B)Φ−p(Bσ1A) K(h)pI

)
≥ 0
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and (
K(h)pI Φp(Aσ2B)Φ−p(Bσ1A)

Φ−p(Bσ1A)Φp(Aσ2B) K(h)pI

)
≥ 0.

Summing up two above inequalities, we obtain the following inequality(
2K(h)pI β1

β2 2K(h)pI

)
≥ 0,

where

β1 = Φ−p(Bσ1A)Φp(Aσ2B) + Φp(Aσ2B)Φ−p(Bσ1A)

and

β2 = Φp(Aσ2B)Φ−p(Bσ1A) + Φ−p(Bσ1A)Φp(Aσ2B).

Again using Lemma 2.4 we get the desired result. �

Remark 2.18. Put σ = ∇, inequality (2.11) reduces to some results in [2]

3. A refined inequality for arithmetic-geometric mean

Let A,B ∈ B(H ) be two invertible positive operators, 0 ≤ ν ≤ 1 and −1 ≤ q ≤ 1.

We use from the notation A]q,νB to define the power mean

A]q,νB = A
1
2

(
(1− ν)I + ν

(
A

1
2BA

1
2

)q) 1
q

A
1
2 .

For more information see [10]. The authors in [11] proved that if 0 < m ≤ A,B ≤M

such that 0 < m < M and 0 < ν ≤ µ < 1, −1 ≤ q ≤ 1. Then for every positive

unital linear map Φ and p ≥ 0, the following inequality holds

Φp

(
A∇νB +

ν

µ
Mm

(
A−1∇µB

−1 − A−1]q,µB−1
))

≤ Kp(h)Φp(A]q,νB), (3.1)

where K(h) = (M+m)2

4Mm
is the Kantorovich constant.

Using the following theorem, we obtain a generalization from inequality (3.1).

Theorem 3.1. Suppose that 0 < m ≤ A,B ≤ M such that 0 < m < M and

0 < ν ≤ µ < 1, −1 ≤ q ≤ 1 and 1 < α ≤ 2. Then for every positive unital linear

map Φ and p ≥ 0, the following inequality holds

Φp

(
A∇νB +

ν

µ
Mm(A−1∇νB

−1 − A−1]q,µB−1)
)

≤
(
K

α
4 (h)(Mα +mα)

) 2p
α

16Mpmp
Φp(A]q,νB), (3.2)
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where K(h) = (M+m)2

4Mm
is the Kantorovich constant.

Proof. For 1 < α ≤ 2, by inequality (3.1), we have

Φα

(
A∇νB +

ν

µ
Mm

(
A−1∇µB

−1 − A−1]q,µB−1
))
5 Kα(h)Φα(A]q,νB) (3.3)

The last inequality deduces using a process similar to inequality (2.10). This shows

that ∥∥∥∥Φ
p
2

(
A∇νB +

ν

µ
Mm

(
A−1∇µB

−1 − A−1]q,µB−1
))

Φ−
p
2 (A]q,νB)

∥∥∥∥
≤ K

p
2 (h)(Mα +mα)

p
α

4M
p
2m

p
2

.

Then

Φp

(
A∇νB +

ν

µ
Mm

(
A−1∇µB

−1 − A−1]q,µB−1
))

≤
(
K

α
4 (h)(Mα +mα)

) 2p
α

16Mpmp
Φp(A]q,νB).

�

Remark 3.2. Taking α = 2, inequality (3.2) becomes inequality (3.1).

Remark 3.3. By putting α = 2, µ = 1
2

and taking q → 0, inequality (3.2) collapse to

the derived result in [2].
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