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Preface

The theory of smooth manifolds is a frequently discussed area in modern mathe-
matics among the broad class of audience. A number of popular books on this
subject are available for general readers with little prerequisite in mathematics. On
the other hand, numerous textbooks and monographs for advanced graduate stu-
dents and research fellows are available as well. The intermediate books, allowing
senior undergraduate students to enter the exciting field of smooth manifolds in a
pedagogical way, are very few.

It is argued that new concepts involved in this field are too complicated to allow
a simple introduction. Thus, the only way to master this theory is to be a time-
consuming effort to accumulate the intelligible parts of advanced textbooks into a
comprehensible collection of notes. No doubt, this approach has the advantage of
making young students, with perseverance to go through such a learning process, a
very well-trained future research worker. But unfortunately, this severely limits the
number of students who ever really master the subject. This book modestly attempts
to bridge the gap between a university curriculum and the more advanced books on
Smooth Manifolds. Actually, the manuscript has evolved from my habit of writing
elaborate proofs of different theorems over the past one decade.

This book intentionally supplies to the readers a high level of detail in arguments
and derivations. More lengthy proofs of various theorems are, in general, outlined
in such a way that they can be digested by an interested senior undergraduate
student with little risk of ever getting lost. This book has been written in such a style
that it invites the young students to fill in the gaps everywhere during its study. It is
another matter that the author is there for the needy students with complete solu-
tions. That is why, supplying a separate list of problems will only deviate us from
the main aim of this book.

In my experience, some common problems for a young university student, trying

ELINNTS

to master mathematics, are the phrases in literatures like “it is clear that ...”, “it is
easy to see that ...”, “it is straightforward”, etc. If a student cannot supply the proof
of such a “clearly,” which most likely is the case, the common reaction under the

time pressure of the studies is to accept the statement as true. And from this point
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on, throughout the rest part of the course, the deeper understanding of the subject is
lost.

I have benefited from a number of advanced textbooks on the subject, and some
unpublished works of my own and my distinguished friends. Some of these sources
are mentioned in the bibliography. However, in an introductory book such as this, it
is not possible to mention all literatures and all the people who have contributed to
the understanding of this exciting field.

It is hoped that our readers (active and passive both) will find that I have
substantially fulfilled the objective of bridging the gap between university curric-
ulum and more advanced texts, and that they will enjoy the reading this book as
much as I did while writing it.

Rajnikant Sinha
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Chapter 1
Differentiable Manifolds

The pace of this chapter is rather slow for the simple reason that the definition of
smooth manifold is itself forbidding for many unfamiliar readers. Although many
young university students feel comfortable with the early parts of multivariable
calculus, if one feels uncomfortable, then he should go first through some parts of
Chap. 3. How verifications are done in various examples of smooth manifolds is a
crucial thing to learn for a novice, so this aspect has been dealt here with some more
detail.

1.1 Topological Manifolds

Definition Let M be a Hausdorff topological space. Let m be a positive integer. If,
for every x in M, there exists an open neighborhood U of x such that U is
homeomorphic to some open subset of Euclidean space R™, then we say that M is
an m-dimensional topological manifold.

Definition Let M be an m-dimensional topological manifold. Let x be an element

of M. So there exists an open neighborhood U of x such that U is homeomorphic to

some open subset of Euclidean space R™. Hence, there exists a homeomorphism
oy : U— oy(U)

such that ¢ (U) is an open subset of R™. Here, the ordered pair (U, @) is called a

coordinate chart of M. (U, @) is also simply denoted by (U, ¢).

Definition Let M be an m-dimensional topological manifold. Let (U, @) be a
coordinate chart of M. So

¢y + U—=oy(U) (CR").

© Springer India 2014 1
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2 1 Differentiable Manifolds

Hence, for every x in U, ¢, (x) is in R™. So there exist real numbers u',. .., u"
such that

oy(x) = (ul, o u’”).

Here, we say that u'(i = 1,...,m) are the local coordinates of the point x. In
short, we write

i

(QDU(X))IAE u.

Lemma 1.1 Let M be an m-dimensional topological manifold. Let (U, ¢y)), (V, @y)
be coordinate charts of M such that U NV is nonempty. Then,

dom(py o (py) ") = @y (UNV),
ran(gy o (¢y) ') = @y(UNV),
oy o (py) " is a function,

-1,

oy (UNV), 0, (UNV) are open subsets of R",

(pyo(py) ) =0yoley)

(py o (q’u)_l) toy(UNV) = @y(UNV), and (¢ 0 (Q’v)_l) toy(UNY)
— @y(UNV) are homeomorphisms.

Nk L=

Proof of 1 Let us take any x in dom(¢y o (¢;)~"). We want to show that x is in
ey (UNYV).

Since x is in dom(¢y, o (@) "), by the definition of domain, there exists y such
that (x,y) is in @y o (@), Since (x,y) is in @y o (@), by the definition of
composition, there exists z such that (x,z) is in (@) ", and (z,y) is in ¢y Since
(x,z) is in (@y) ", (z,x) is in ¢@y. Since (z,x) is in @y, and @y : U — @y (U),
¢@y(z) =x, and z is in U. Since (z,y) is in @y, and @y : V — @y (V), ¢y (z) =,
and zisin V. Here, zisin U, and zisin V,so zisin UNV. Since zis in UNV, and
x = @y(2), xis in @ (U N V). Thus, (see Fig. 1.1),

d0m(<Pv ° ((/’U)_l) Coy(UNYV).

Next, let x be in ¢, (U N'V). We want to prove that x is in dom(¢y, o (@) ").
Since x is in @, (U N V), there exists y in U NV such that ¢, (y) = x. Since y is in
UNV,yisin U,and yisin V. Since yisin U, and ¢ : U — @ (U), there exists z
such that (y,z)isin @ . Since yisin V,and ¢y : V — ¢y (V), there exists w such that

(y, w) is in @y . Since (y, z) is in @y, (z,y) isin (@) ~". Since (z,y) isin (¢y) ", and
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Fig. 1.1 m-dimensional topological manifold

(y,w)isin @y, (z,w)isin ¢y o (@), and hence, z is in dom(¢, o (@) ""). Since
(y,z) is in @y, and ¢y, is a function, ¢y (y) = z. Since @, (y) =z, and @y (y)
)

x = z. Since x = z, and z is in dom(¢y o (¢y) "), x is in dom(qy o (py) ). Thus

ou(UNV) C dom(py o () ").

Proof of 2 On using 1, we have dom(¢gy o (¢y) ") = ¢, (VNU). So
-1
LHS = ran ((Pv ° ((/’U)_l) = dom((</’v ° ((PU)_I) )

—dom (o)) "oton)”")

— dom oy o (¢y) ")
=¢y(VNU)
= ¢,(UNV) =RHS.
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Proof of 3 Since (U, @) is a coordinate chart of M, ¢, is a 1-1 function, and
hence, (¢,) " is a function. Since (¢, )" is a function, and ¢y is a function, their
composite ¢y o (¢) " is a function. O

Proof of 4 Since (U, @) is a coordinate chart of M, ¢ is a 1-1 function, and
hence, (o) is a 1-1 function. Since (V, ¢, ) is a coordinate chart of M, ¢y, is a
1-1 function. Since (¢y) " is 1-1, and @y is 1-1, @y o (@) " is 1-1. d
Proof of 5 Since (U, ¢y) is a coordinate chart of M, ¢, : U — ¢y(U) is a
homeomorphism from open subset U of M onto open subset ¢, (U) of R™. Sim-
ilarly, V is an open subset of M. Since U,V are open subsets of M, UNV is an
open subset of M. Since U, UNV are open subset of M, and UNV C U, UNV is
openin U. Since UNVisopenin U, and ¢, : U — ¢, (U) is a homeomorphism,
@y(UNV)isopenin @y (U). Since ¢,;(UNYV) is open in ¢y (U), and ¢y (U) is an
open subset of R”, ¢,(UNV) is an open subset of R™.

Similarly, ¢, (UNYV) is an open subset of R™. O

Proof of 6

LHS = oy o o) ') = <((‘/’U>1)1) o (py) "= 0y o (py)'=RHS.
O

1

Proof of 7 Since (¢ 0 (py) )™ = @y o (@y) ", it suffices to prove that

(QDV ° (QDU)71) ouy(UNV) = ey(UNV),

and

(0o (on)™) = @u(UNV) = gu(UNV)

are continuous.
Since (U, @) is a coordinate chart of M, ¢, is a homeomorphism, and hence,

(¢y)~" is continuous. Since (V, ¢y) is a coordinate chart of M, ¢, is a homeo-
morphism, and hence, ¢y is continuous. Since ((pU)fl, @y are continuous, their
composite ¢y o (@) is continuous.
Similarly, @, o (@)~ " is continuous. Hence, @y o (¢) " is a homeomorphism.
Similarly, @y o (¢y)"" is a homeomorphism. O
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1.2 Smooth Manifolds

Definition Let M be an m-dimensional topological manifold. Let (U, @), (V, ¢v)
be coordinate charts of M, and let U NV be nonempty. So

(evelen)™) : euUNV) = oy(UNY)

is a homeomorphism from ¢ (UNV) onto ¢, (UNV), where ¢,;(UNV) and
@y (UNV) are open subsets of R”™.

For every (x!,...,x™) in @, (UNYV), put
(ovo(00) ) (s = () (6 ) = (),
where (y!,...,y") is in ¢y, (UNV), and

((on ((pv)_l)(yl,...,ym) = (gl(yl,...,y’"),...,gm(yl,...,y’")) = (xl,...,xm).

Since ¢y o (py)~" is continuous, each f: ¢, (UNV)— R is continuous.
Similarly, each g': ¢, (UNV) — R is continuous.

For fixed i, and for every j = 1,...,m, if (Df")(x',...,x™) exists at every point
(x', .., x™) of iy (UNV), then we get functions Dif* : ¢, (UNV) — R. If every
Dif' : ¢y (UNV) — R is continuous, then we say that f7 is C'.

Similarly, by g is C', we shall mean that each Djg' : ¢, (UNV) —
R (j=1,...,m) is continuous. By (U, ¢, )and (V, ) are C'-compatible, we
mean that

either (U N Visan empty set),

or

(', g" are C' foreveryi = 1,...,m, whenever U N Vis a nonempty set).

For fixed i, and for every j,k = 1,...,m, if D¢(D;f") (= Dyf") exists at every
point of ¢, (UNV), then we get functions Di(D;f?) : @y,(UNV) — R. If each
Di(Dif") :+ ¢y (UNV) — R is continuous, then we say that f7 is C2.

Similarly, by g’ is C?, we shall mean that each Di(Djg') : ¢, (UNV) —
R (j,k =1,...,m) is continuous. By (U, @) and (V, ¢,) are C>-compatible, we
mean that
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either (U N Visanempty set),

or

(', g" are C* foreveryi = 1,...,m, whenever U N Vis a nonempty set).

Similar definitions for (U, ¢;/) and (V, ¢,) are C3-compatible can be supplied,
etc.

It is clear that if (U, )and (V,e,) are C3-compatible, then (U, ¢, )and
(V, py) are C*-compatible, etc.

Definition Let M be an m-dimensional topological manifold. Let r be a positive
integer. Let

A={U,0y), V,0y), W,0w),...}

be a nonempty collection of coordinate charts of M. If

1. {U,V,W,...}is acover of M, that is, U{U : (U, @) isin A} =M,

2. all pairs of members in A are C"-compatible,

3. A is maximal (in the sense that if (U, (p;) is a coordinate chart of M, but not a

member of A, then there exists (U, ¢;,) in A, such that (U, (p;) and (U, oy)

are not C"-compatible),

then we say that A is a C'-differentiable structure on M, and the ordered pair
(M, A) is called a C"-differentiable manifold. Here, members of 4 are called
admissible coordinate charts of M.

Theorem 1.2 Let M be an m-dimensional topological manifold. Let r be a positive
integer. Let

-A = {(Ua (PU)v (V’ (PV)a (Wv (/)W)a c }

be a nonempty collection of coordinate charts of M satisfying

1. {U,V,W,...} is a cover of M, that is, U{U : (U, ¢y)isin A} =M,
2. all pairs of members in A are C"-compatible.

Then, there exists a unique C"-differentiable structure I3 on M which contains A.
(This theorem suggests that in constructing a differentiable manifold, it is enough to
find a collection A of coordinate charts for which conditions 1 and 2 are satisfied.)

Proof Existence Let B be the collection of all coordinate charts (U, ¢y)
of M such that (U, ¢y) is C"-compatible with every member of A. First of all, we
shall try to show that BB contains .A. For this purpose, let us take any (U, @) in A.

By the condition 2, (U, ¢) is C"-compatible with all members of A, so by the
definition of B, (U, @) is in B. Hence, A is a subset of 5. Further since A is
nonempty, and A is a subset of B, B is nonempty.
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Now we want to prove that B is a C’-differentiable structure on M, that is,

1. WU : (U,py)isin B} =M,

2. all pairs of members of B are C"-compatible.

3. B is maximal (in the sense that, if (l~], (pE) is a coordinate chart of M, but not a
member of B, then there exists (U, @) in BB such that (U, (p;) and (U, @) are
not C"-compatible).

For 1: Since A is contained in B, U{U : (U, ¢y)is in A} C U{U : (U, ¢y)
is in B} C M. Now, by the given condition 1, U{U : (U, @) is in B} =M.
For 2: Let us take any (U, ¢y)in B, and (V, ¢y) in B. We have to prove that

(U, py)and (V, @y) are C"-compatible.
Here, two cases arise: either U NV is an empty set, or U NV is a nonempty set.[]

Case I: when UNYV is an empty set. In this case, by the definition of C’-
compatible, (U, ;) and (V, ¢y ) are C"-compatible.
Case II: when U NV is a nonempty set. For every (x!,...,x™) in ¢, (UNYV), put

(ovo(00) ) (& o) = (P () ()

where (y',...,y") is in @, (UNYV), and

((pU o ((pv)_l) (yl, .. .,ym) = (gl(yl, .. .,y’"), .. .,gm(yl, .. .,y’"))
().

We have to show that ', g’ are C" for every i = 1,...,m.

Since U NV is nonempty, there exists an element xin U NV (C M). Since x is in
M, by condition 1, there exists (W, ¢y) in A such that x is in W. Since
(U, @y) is in B,and (W, ¢y ) is in A, by the definition of B, (U, ) and (W, @y)
are C"-compatible. Since x is in W, and x is in UNV(C U), x is in WN U, and
hence, UN'W is a nonempty set. Since (U, @) and (W, ¢y,) are C"-compatible,
and UNW is nonempty, by the definition of C"-compatible, f/, g} are C" for
everyi = 1,...,m, where for every (x',...,x") in ¢, (UNW),

(w0 (0u) ™) (6o o) = (AL ) () = (010
€ QDW(UHW)a

and

(000 (ow) ™) 0o = (@100 ) gl (01 d)) = ().
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Similarly, fi, g} are C” for every i = 1,...,m, where for every (x',...,x™) in
QDV(V N W)v

((pWo ((/)V)fl)(xl,...,xm) = ()El(xl,...,x’"),..., 2’"()(1,...,)('")) = (yl,...,ym)

€ oy(VNW)

and

(v o (ow) ™) (") = (&0 e ¥ g (3 0™)) = (),

Now for every (x!,...,x") in o, (UNVNAW)

R C ) s f"( ))

1! (xl7...,x’”) :gé(fll (xl,...,xm),..., 1’”(x17...,x’”)).

Since gl, and each ff(k = 1,...,m) are C",

agZ(fl (x 7" 7fl (x ))
le
:E”:agé(fll(xl,..wx’”),..., f”(xl,...,x’")) ff(xt, ..
— Off(xt, ..y m) Ox!

exists and is continuous. It follows that

o (x, ..M ( 0gs (i (x e (x ,...,x’")))
Ox! 8x1

. . . .. (A, X . . .
exists and is continuous. Similarly, % exists and is continuous, etc.

So f'is C'. Similarly, f! is C?, etc. Hence, f' is C". Similarly, f? is C", etc. So
each ' is C". Similarly, each g' is C". Thus, we have shown that, in all cases,
(U, py) and (V, ¢y) are C"-compatible.

For 3: We claim that B is maximal. If not, otherwise, let 3 be not maximal. We

have to arrive at a contradiction. Since B is not maximal, there exists a
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coordinate chart (U, ¢, ) of M such that (U, ¢,) is not a member of B, and
(U, py) is C'-compatible with every member of B. Since (U,qy) is
C’-compatible with every member of B, and A is contained in B, (U, ¢y) is
C"-compatible with every member of A, and hence, by the definition
of B, (U, ¢y) is in B, a contradiction.
Thus, we have shown that 3 is a C”-differentiable structure on M, which contains A.
Uniqueness If not, otherwise, let By and B, be two distinct C”-differentiable
structures on M, which contains 4. We have to arrive at a contradiction. Since B;
and B, are two distinct C"-differentiable structures on M, either (there exists a
coordinate chart (U, @) of M such that (U, ¢,) is in By, and (U, ¢y) is not in
B,) or (there exists a coordinate chart (U, ¢y) of M such that (U, ¢y) is in B,
and (U, ¢y) is not in By).

Case I: when there exists a coordinate chart (U, ¢,;) of M such that (U, ¢,) is in

By, and (U, ¢ ) is not in B,. First of all, we shall show that B, is contained in

B, where B is the differential structure constructed above. For this purpose, let

us take any coordinate chart (V, ¢y) of M in B,. We have to show that (V, ¢y)

is in B. Since (V, ¢y) is in By, and B; is a C"-differentiable structure on M

which contains A, (V,¢@y) is C’-compatible with every member of A, and

hence, by the definition of B, (V, ¢y) is in B. Thus, we have shown that B, is

contained in B.

Similarly, B, is contained in B. Since (U, @) is not in B,, and B, is C'-
differentiable structure on M, there exists (V, ¢y) in By, such that (V, ¢y ) and
(U, ¢y) are not C"-compatible. Since (V, ¢y) is in B, and B, is contained in B,
(V,¢y) isin B. Since (U, ¢y) is in By, and B is contained in B, (U, @) is in B.
Since (U, ¢y), (V,@y) are in B, and B is a C"-differentiable structure on M,
(V,oy) and (U, @) are C"-compatible, a contradiction.

Case II: when there exists a coordinate chart (U, ¢;) of M such that (U, ¢y) is
in By, and (U, ¢y) is not in B;. This case is similar to the case L d

Theorem 1.3 Let M be an m-dimensional topological manifold. Let

A= {(Uvqu)v (V, qDV)a (Wv(pW)a o }

be a nonempty collection of coordinate charts of M satisfying

1. {U,V,W,...} is a cover of M, that is, U{U : (U, @) is in A} =M,
2. all pairs of members in A are C*-compatible.

Then, there exists a unique C'-differentiable structure B on M which contains A.

Proof First of all, we shall show that 2': all pair of members in A are C'-compatible.
For this purpose, let us take any (U, @) and (V, ¢y) in A. Here, two cases arises:
either UNV is an empty set, or U NV is a nonempty set. U

Case I: when UNV is an empty set. In this case, by the definition of
C'-compatible, (U, ¢,)and (V, @) are C'-compatible.
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Case II: when U NV is a nonempty set. For every (x',...,x") in ¢, (UNV), put
((pvo ((pU)fl)(xl,...,)c’") = (fl(xl,...,x’"),...,f’”(xl,...,x’")) = (yl,...,ym)7
where (y',...,y™) is in @, (UNYV), and

(@Uo ((pv)_l) (yl,...,ym) = (gl(yl,..,,y"’),...,g'”(yl,...,y’”)) = (xl,.,.,x”’),

It is enough to show that f7, g are C' for every i = 1,...,m.
Since (U, @) and (V, ¢y) in A, by condition 2, (U, ¢,;) is C?-compatible with
(V,@y). Since (U, @) is C2-compatible with (V, ¢y/), and U NV is nonempty, by

the definition of C?-compatible, fi,g' are C?foreveryi=1,...,m. Since,
foreveryi=1,...,m, fi,g" are C?, we have f*, g’ are C'.

Now, on using conditions 1, 2/, and Theorem 1.2, there exists a unique
C'-differentiable structure B on M which contains A. O

Note 1.4 As above, we can prove the following result:

Let M be an m-dimensional topological manifold. Let r,s be positive integers
satisfying 0 <s <r. Let

-’4 = {(U7 @U)v (Vv QDV)’ (W7 (pW)a . }

be a nonempty collection of coordinate charts of M satisfying

1. {U,V,W,...}is a cover of M, that is, U{U : (U, @) isin A} =M,
2. all pairs of members in .4 are C"-compatible.

Then, there exists a unique C*-differentiable structure /3 on M which contains A.

Definition Let M be an m-dimensional topological manifold. Let A be a nonempty
collection of coordinate charts of M. If

1. WU : (U,py)isin A} =M,
2. all pairs of members in A are C*-compatible (in the sense that every pair of
members in A is C"-compatible for every positive integer r),

then we say that A is an atlas on M.

Definition Let M be an m-dimensional topological manifold. Let

A = {(Ua (pU)v (V’ (Pv)a (Wv (/)W)7 c }

be a nonempty collection of coordinate charts of M. If
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1. Ais an atlas on M,
2. Ais maximal (in the sense that if ((7, q);) is a coordinate chart of M, but not a

member of A, then there exists (U, @) in A, such that (U, q);) and (U, o)
are not C*°-compatible),

then we say that A is a C*-differentiable structure on M, and the pair (M, A) is
called a C*-differentiable manifold. C*-differentiable structure is also called
smooth structure, and C*°-differentiable manifold is also called smooth manifold.

Here, members of A are called admissible coordinate charts of M.

Note 1.5 We shall try to prove: if A is an atlas on an m-dimensional topological
manifold M, then there exists a unique C*-differentiable structure 3 on M which
contains A.

Existence Let B be the collection of all coordinate charts (U, @)
of M such that (U, ) is C*-compatible with every member of A.

First of all, we shall try to show that 5 contains .A. For this purpose, let us take
any (U, ¢@y) in A. Since A is an atlas, and (U, @) is in A, (U, @y) is C®-
compatible with all members of A, and hence, by the definition of B, (U, @) is in
B. Hence, A is a subset of B.

Further since A is nonempty, and A is a subset of 15, B is nonempty. Now we
want to prove that 3 is a C*°-differentiable structure on M, that is,

1. WU : (U,py)isin B} =M,
2. all pairs of members of B are C*°-compatible.
3. Bis maximal (in the sense that if ((~J , go;) a coordinate chart of M, but not a

member of B, then there exists (U, @) in BB such that (U, (p;) and (U, @) are
not C*°-compatible.

For 1: Since A is contained in B, U{U : (U, ¢y) is in A} C U{U : (U, ¢y)
is in B} C M. Since A is an atlas, U{U : (U, ¢y) is in A} = M. Thus, U{U :
(U,py)isin B} =M.

For 2: Let us take any (U, ¢y)in B, and (V, ¢y) in B. We have to prove that
(U, @y)and (V, ¢y) are C*-compatible. Here, two cases arise: either UNV is
an empty set, or U NV is a nonempty set.

Case I: when UNV is an empty set. In this case, by the definition of C’-
compatible, (U, @) and (V, ¢ ) are C"-compatible for every positive integer r,
and hence, (U, @) and (V, ¢,) are C>°-compatible.

Case II: when U NV is a nonempty set. For every (x!,...,x™)in ¢, (UNV), put

(v o (00) ) (s o) = (P (o)) = (),

where (y!,...,y™) is in @, (UNV), and
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(@U o (@V)_l) (y'7 .. .,y"’) = (gl (yl, .. .,y’")7 .. .,g"’(yl7 .. .,y”')) = (xl, .. .7x’").

We have to show that f*, g' are C* for every i = 1,...,m.

Since U NV is nonempty, there exists an element xin U NV (C M). Since x is in
M, and A is an atlas, there exists (W, @y ) in A such that x is in W. Since
(U, @y)is in B,and (W, @y ) isin A, by the definition of B, (U, @) and (W, @y)
are C*°-compatible. Since x is in W, and x is in UNV(C U), x is in WN U, and
hence, UNW is a nonempty set. Since (U, ¢y) and (W, ¢y, ) are C*>°-compatible,
and UNW is nonempty, by the definition of C*°-compatible, fi,g! are C* for
every i = 1,...,m, where for every (x!,...,x") in @, (UNW),

(QDWO((,,U)*I)(XI,...,W) = (f ('), x)
= (yl,.“’ym) € QDW(UHW)v

and
(q)Uo (¢W)_l>(yl,...,y’”) = (gi(yl,...,y’”),...,g'ln(yl,...,ym)) = (xl,...,x’").

Similarly, fi, g, are C* for every i = 1,...,m, where for every (x!,...,x") in
¢V(Vﬂw)v

(owo (o)™ ) (o) = (B o) )
= (yl’.”’ym) GQDW(VHW)a

and

((pvo ((pW)fl)(yl,...,ym) = (g%(yl,...,ym),...,g’zn(yl,...,y’")) = (xl,...,x’”).

Now for every (x!',....x") in ¢, (UNVNAW)

(fll (xl,.,.7x'")7...,fl’"(xl,...,x’"))
(B )5 ) (o) ).
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Hence,
11 (xl,...,x”') :g%(ff (xl,...,x'"), .. .,flm(xl,...,x'")).

Since gl, and each ff(k = 1,...,m) are C*,

Agh (FL (X! o™, (™))

Ox!
_ i@gé(fll(xl, e XM (L .,x’”)) (!, .., x™)
f— Off (et .o xm) Ox!

exists and is continuous. It follows that

ot .. xm) _ Og (i (x!, ™), (™)
Ox! Ox!

. . . .. A (™) : :
exists and is continuous. Similarly, % exists and is continuous, etc.

Soflis C!. Similarly, f' is C?, etc. Hence, f' is C*. Similarly, f? is C*, etc. So
each fi is C*. Similarly, each gi is C*°. Thus, we have shown that, in all cases,
(U, @y)and (V, @) are C*°-compatible.

For 3: We claim that 13 is maximal. If not, otherwise, let 3 be not maximal. We
have to arrive at a contradiction. Since B is not maximal, there exists a coordinate
chart (U, @) of M such that (U, @) is not a member of B, and (U, ¢y) is C*-
compatible with every member of B. Since (U, ¢) is C*°-compatible with every
member of B, and A is contained in B, (U, ¢,) is C*>°-compatible with every
member of .4, and hence, by the definition of B, (U, ¢,) is in 15, a contradiction. Thus,
we have shown that 5 is a C*°-differentiable structure on M, which contains A.

Uniqueness If not, otherwise, let 3 and B, be two distinct C*°-differentiable
structures on M, which contains 4. We have to arrive at a contradiction. Since 53,
and B, are two distinct C*°-differentiable structures on M,
either

(there exists a coordinate chart (U, ;) of M such that (U, @) is in B;, and
(U, @y) is not in B;)
or

(there exists a coordinate chart (U, @) of M such that (U, ¢,) is in B,, and
(U, @y) is not in By).

Case I: when there exists a coordinate chart (U, ¢,;) of M such that (U, ¢,) is in
By, and (U, ¢y) is not in B,.

First of all, we shall show that ; is contained in B, where B is the differential
structure constructed above. For this purpose, let us take any coordinate chart
(V,¢@y) of M in B;. We have to show that (V, ¢y) is in B. Since (V, ¢y) is in By,
and B; is a C™-differentiable structure on M which contains A, (V,¢y) is
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C>™-compatible with every member of A, and hence, by the definition of B,
(V,@y) is in B. Thus, we have shown that 5; is contained in 5.

Similarly, B, is contained in 5. Since (U, ¢y) is not in By, and B, is C*-
differentiable structure on M, there exists (V, @y ) in B, such that (V,¢y,) and
(U, ¢y) are not C*°-compatible. Since (V, ¢y) is in By, and B; is contained in B,
(V,y) is in B. Since (U, ¢y) is in By, and By is contained in B, (U, @) is in B.
Since (U, ¢y), (V, @y ) are in B, and B is a C*™-differentiable structure on M,
(V,¢y) and (U, ¢y ) are C*-compatible, a contradiction.

Case II: when there exists a coordinate chart (U, ¢;) of M such that (U, ¢y) is

in By, and (U, ¢y) is not in B. This case is similar to the case I. Thus, in all

cases, we get a contradiction. O

From now on, we shall assume without further mention that in our differentiable
manifold (M, .A), M is a second countable topological space.

1.3 Examples of Smooth Manifolds

Example 1.6 (i) Let G be a nonempty open subset of R™. Let us take G for M.

Since R™ is a Hausdorff second countable topological space, G with the induced
topology is a Hausdorff second countable topological space. For every x in G, G is
an open neighborhood of x. Since the identity mapping

IdG G- G
given by
Idg(x) = x

for every x in G is a homeomorphism from G onto G, G is an m-dimensional
topological manifold. For A, let us take the singleton set {(G,Idg)}. It is easy to
observe that A satisfies the conditions 1 and 2 of Theorem 1.2 for every positive
integer r. Hence, there exists a unique C*°-differentiable structure on G which
contains {(G,Idg)}. This C*-differentiable structure on G is called the standard
differentiable structure of G. Thus, every nonempty open subset of R™ is an
example of a smooth manifold.

(ii) Let M be an m-dimensional smooth manifold, whose topology is O, and
differential structure is A. Let (U, ¢y) € A.

Since (U, @) € A, U is an open subset of M. Let O; be the induced topology
over U, thatis, O; = {G : G C U, and G € O}. Put A; = {(U, ¢y)}. Since M is
an m-dimensional smooth manifold, M is a Hausdorff space. Since M is a Hausdorff
space, and U is a subspace of M, U with the induced topology is a Hausdorff space.
Since M is an m-dimensional smooth manifold, M is a second countable space.
Since M is a second countable space, and U is a subspace of M, U with the induced
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topology is a second countable space. It is easy to observe that A satisfies the
conditions 1 and 2 of Theorem 1.2 for every positive integer r. Hence, there exists a
unique C*°-differentiable structure on U which contains {(U, ¢)}.

Thus for every admissible coordinate chart (U, ¢;) of an m-dimensional smooth
manifold M, U is an m-dimensional smooth manifold.

Example 1.7 Form = 1,23, ..., by the m-dimensional unit sphere S”', we mean
the set

{(xl,...xm“) (o) e R and \/(x1)2—|—---—|- (om+1)? = 1}.

Since R™"! is a Hausdorff second countable topological space, and S” is a subset
of R™! §" with the induced topology is a Hausdorff second countable topological
space. Here,

st = {(xl,xz) : (xl,xz) € R?and \/(x")*+(x2)* = 1},

2= {(xl,xz,)g) . (xl,xz,xS) c R3and \/(x1)2+(x2)2+(x3)2 = 1},etc.

Now we shall try to prove that the unit circle S' is a 1-dimensional topological
manifold. For this purpose, let us take any (a',a?) in S'. We have to find an open
neighborhood G of (a!,a*), and a homeomorphism ¢ : G — ¢(G) such that ¢(G)
is an open subset of R'. Since (0,0) does not lie in S', and (a',a?) is in S', both of
a', a® cannot be 0. So two cases arise: either a' # 0 or a®> # 0.
Case I: when a' # 0
Now two subcases arise: either 0 <a' or a' <0.

Subcase I: when 0<a'. Let us take

{(xl,xz) : (xl,xz) e S'and O<xl}
for Gy. Since (a',a?) € S' and 0<d', (a',a*) € G;. Since
{(xl,xz) : (xl,xz) € S'and 0<x1} = {(xl,xz) : (xl,xz) € R?and O<x1}ﬂS1,
and {(x',x?) : (x',x?) € R*and 0<x'}(= (0,00) x (—00,0)) is open in R?,
{(xh2%) « (x,x%) € S'and 0<x'}(= Gy) is open in S! relative to the induced

topology. Thus, G; is open in S'. Since (a!,a?) € Gy, and G is open in S', G is
an open neighborhood of (a',a?). Since
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G| = {(xl,xz) : (xl,xz) es! and0<x1}
= {(xl,xz) /() (2) = 1and0<x1},

it is clear that {x* : (x',x*) € G} is equal to the open interval (—1,1).
Let us define a function

p1: G — {x2 : (xl,xz) S G}

as follows: for every (x!,x?) in Gy,

pl(xl,xz) =X

Clearly, p; is a 1-1 function from G, onto the open interval (—1, 1). Further,
since projection map is a continuous and open map,

p1: G — (—1,1)

is a homeomorphism. Thus, we have shown that there exist an open neighborhood
G, of (a',a*) and a homeomorphism p; : G; — (—1,1), where (—1,1) is an
open subset of R!.

Subcase II: when a'<0. Proceeding as in subcase I, there exist an open
neighborhood

G, = {(xl,xz) : (xl,xz) € §'and x! <0}
of (a',a*) and a homeomorphism
p2t Gy — (—L1)

defined as: for every (x!,x?) in G,

D2 (xl,xZ) =%

Case II: when a®> # 0
Now two subcases arise: either 0 <a? or a? <0.
Subcase I: when 0 <a?. Proceeding as above, there exist an open neighborhood

Gy = {(x",¥*) : (x',x*) € S'and 0<x*}

of (a',a*) and a homeomorphism

p3 . G3 — (—17 1)
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defined as: for every (x!,x?) in Gs,
D3 (xl,xz) =x'
Subcase II: when a® <0. Proceeding as above, there exist an open neighborhood

Gy = {(x",*) : (x',2*) € §'and x* <0}

of (a',a*) and a homeomorphism

ps: Gy — (—1,1)

defined as: for every (x!,x?) in Gy,
pa(x', ) =x".

Thus, we see that in all cases, there exist an open neighborhood G of (al,az),
and a homeomorphism ¢ : G — ¢(G), where ¢(G) is an open subset of R'.

Hence, by the definition of topological manifold, S' is a 1-dimensional topo-
logical manifold. Here, we get four coordinate charts (Gy,p1), (Ga,p2), (G3,p3),
(G4, ps). Let us take

{(G1,p1), (G2, p2), (G3,p3), (Ga, pa) }

for A. We want to show that .4 has the following two properties:

L. UW{U : (U, ) isin A} =S,
2. all pairs of members in .4 are C*°-compatible.

For 1: Here,
U{U : (U, py); is in A}
=GIUGUG3UGy
:{(xl,xz) : (xl,xz) € S'and 0<x1}U{(xl,x2) : (xl,x2) e S'and x1<0}
U{(xl,xz) : (x],xz) € S'and O<x2}U{(x1,x2) : (x',xz) e S'and x2<0}
=S

For 2: Let us take (Gy,p1), (G2,p2) as a pair of members of A. Since

GINGy = ({(xl,xz) : (xl,xz) e S'and O<xl}ﬂ{(xl,x2) : (x',x2) e S'and x1<0})

is an empty set, by the definition of C"-compatible, (G,p;), (G2, ps) are
C’-compatible for every positive integer r. Hence, (Gi,p1),(Ga,p2) are
C*°-compatible.
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Next, let us take (Gy,p1), (Gs,p3) as a pair of members of A. Here,

GiNGs = {(xlpcz) : (xl,x2) € Stand 0<x1}ﬂ{(x1,x2) : (xl,xz) € S'and 0<x2}
= {(x17x2) : (xl,xz) e S' 0<x'and O<x2}.

We want to prove that

(pro(p5") : p3(GiNG3) = p1(G1NG3)

is C!.

By Lemma 1.1, p; o (p3') is a homeomorphism from open subset p3(G; N G3)
of R! onto open subset p;(G;NG3) of R'. Now let us take any p3(x) in
p3(G1NG3), where x is in G1NG;s. Since x is in G;NGs, and G;NG; =
{(x1,%?) : (x1,x?) € S',0<x!and 0<x?}, there exist real numbers x',x* such
that x = (x!,x?) € S', 0<x!and 0<x?. Since

(xl,xz) est = {(xl,xz) : (xl,xz) € R? and (x1)2—|—(x2)2 = 1},

and 0<x2, x> = /1 — (x1)%. Since 0<x!,0<x2, and (x")* 4 (x2)* = 1, it follows

that 0<x! <1, and 0 <x? < 1. Hence, t = p3(x) = p3(x!,x?) = x' € (0,1). Now it
is clear that p3(G; N G3) is equal to the open interval (0, 1).
Further,

(1o (") (@) = (pro(P3") (p3(x) = pi1((p5") (p3(x)))
=pix)=p(x",¥) =2 =/1— (x1)?
— 1= (s ) = 1= (s = VI =72

or,

(pro(p3"))(6) =/1— ()

for every ¢ in p3(G; N G3)(= (0, 1)). Therefore,

o (n-1 / :; _ t
(1o (0 )0 = 7700 = =5
or,
(Pro(ps') () = (1€ (0,1))
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It follows that z+— (p; o (p3'))(2) is a differentiable function on the open subset
3(G1NG3) of R'. Also, since

(p1o (P;l))/(l) =

t
-2

and t+— \/1%—12 is a continuous function,
(p1o (Pg_l)) : p3(G1NG3) — p1(GiNG3)
is C!. Similarly, we can show that

(pro(p5") : p3(GiNG3) — p1(G1NG3)

is C2, etc. Thus,

(pro(p5")) : p3(Gi1NG3) — p1(G1NG3)

is C” for every positive integer . Hence,

(pro(p5") : p3(GiNG3) = p1(GING3)

is C*. Thus, we have shown that the pair (Gy,p;), (G3,p3) are C*°-compatible.
Similarly, we can show that all other pairs of members in .4 are C*°-compatible.
This proves 2. Hence, by Theorem 1.2, there exists a unique C*°-differentiable
structure B on S! which contains .A. Thus, the ordered pair (S', B) is an example of
a smooth manifold of dimension 1.
Similarly, we can construct a C*°-differentiable structure on S2, etc. In short, the
unit sphere S is a smooth manifold of dimension m.

Example 1.8 Let us define a relation ~ over R? — {(0,0)} as follows:
For every (x',2%), (v!,y*) in R* — {(0,0)}, by

(') ~ (057
we shall mean there exists a real number ¢ such that
(x',2%) =t("»).
We shall try to show that ~ is an equivalence relation over R* — {(0,0)}, that is,

(x', %) ~ (x!,x2) for every (x',x?) in R* — {(0,0)},
if (x',2%) ~ (v',)?%), then (y',y%) ~ (x',2%),
if (x!,x%) ~(¥',¥%), and (y',y?) ~ (z!,2?) then (x',x?) ~ (z', 2?).
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For 1: Since (x',x?) = 1(x",x?), (x',2?) ~ (x!, x?).

For 2: Since (x',x?) ~ (y!,¥?), there exists a real number ¢ such that (x!,x?) =

1(y',5%). Since (x',2%), (¥',»?) are in R* —{(0,0)}, (xl,xz) and(yl,yz) are
nonzero. Since (x!,x?) and( 1'y?) are nonzero, and (x!,x?) = #(y! y ), tis
nonzero, and hence, (y!,)?) = ()c1 x%). Since (y',y?) =1(x", %), O',y*) ~

(x',x%).

For 3: Since (x!',x?) ~ (y y?), there exists a real number ¢ such that (x!',x?) =
1 1

t(y',y?). Since (y',y?)~(z!,z?), there exists a real number s such that

<y17y2) = S(Z 7Z2) Sll’lCC ()C ) = t(yl7y2)7 and (y]7y2) = S<Z17Z2)? (xl’x2) =

t(s(z',2%)) = (st)(z',z?), and hence, (x',x?) ~ (z',2%).
Thus, we have shown that ~ is an equivalence relation over R? — {(0,0)}.
If (x',x?) # (0,0), then the equivalence class of (x',x?) is given by

()] ={0007) = (0h07) ~ (%) }
{0

( ( Y ) t(xl,xZ) for some real 1}

or,
[(xl,x2)] = {t(xl,xz) D t#£ O}.
We shall denote the quotient space
(R* = {(0,0)})/~
of all equivalence classes by P!. Thus,
P' = {[(xl,xz)] : (xl,xz) #(0,0)}
or,
P! = {{t(xl,xz) : t;éO} : (xl,x2) #+ (0,0)}.

The topology of R? — {(0,0)} is the induced topology of the standard topology of
R?, and the topology of the quotient space (R? — {(0,0)})/~ (= P') is the
quotient topology. Thus, a subset G of P! is open means the set

O{[ )]+ [ 2)] € G}
is open in R* — {(0,0)}, that is,

Ol 2) - 1 £0) : [(2)] €G)
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is open in R? — {(0,0)}, that is, either
U{{t(xl,xz) : t;ﬁO} : [(xl,xz)} € G}

or

u{{t(x",2*) : t£0} : [(x',x*)] € G} U{(0,0)}

is open in R?.

Since R? is a Hausdorff space, its subspace R? — {(0,0)} is a Hausdorff space,
and hence, its quotient space (R? — {(0,0)})/~ (= P') is a Hausdorff space.
Since R? is a second countable space, its subspace R* — {(0,0)} is a second

countable space, and hence, its quotient space (R* —{(0,0)})/~ (=P') is a
second countable space. Put

U, = {[(xl,xz)] cxl £ 0}.

We want to show that U, is open in P?.
For this purpose, we must show that

U{{t(xl,xz) : 17&0} : [(xl,xz)] € U1}

is open in R* — {(0,0)}.
Since (see Fig. 1.2),
U{{t(xl,xz) : I#O} : [(xl,xz)] € Ul} = U{{t(xl,xz) : t7é0} ! ;éO}
=R> - {(0,%) : x*is any real},

and R? — {(0,x?) : x%is any real} is open in R? U{{r(x',x?) : t#0} :
[(x',x%)] € Uy} is open in R* — {(0,0)}. Thus, we have shown that U, is open in P'.
x2

xZ A

Fig. 1.2 Hausdorff space
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Now let us define a function
¢, U —-R

as follows: for every [(x',x?)] in U,

o ([ 2) =%

X

We shall try to show that

. @, is well-defined,

. @y is 1-1,

. (@, is continuous,

. ¢,(Uy) is open in R,

. ¢7' @ (U)) — U, is continuous.

D W =

For 1: Let [(x!,2?)] = [(3',y?)], where [(x!,x?)],[(»',»*)] are in U;. Since
[(x, x2)], [0, ¥%)] are in Uy, (x',%%), (y',¥?) are nonzero members of R?, and
x!, ! are nonzero. Since x',y' are nonzero, ;‘—f ,i—? are real numbers.
We must prove that
2
My
Since [(x!,x*)] = [(1,?)], (x', %) ~ (y!,y?). Further since (x',x?), (y!,?) are
nonzero members of R?, there exists a nonzero real number 7 such that

(xl,xz) _ t(yl,yz) _ (tyl,tyz).

So x! =ty!, and x* = 1?. Since x! = ty', x> = 1y?, and x!,y', ¢ are nonzero,

o

2 ¥ .
= ;. This proves 1.
y

B
213

For 2: Let ¢, ([(x",%*)]) = ¢, ([(",¥*)]). We have to prove that [(x!,x?)] =
[(y',¥%)], that is, there exists a real number ¢ such that (x!, x?) = #(y', y?). Here,

2 2

= o (AN = (01 =3

X

Case I: when x> # 0
Since;‘é = 57 and x*> # 0, y*> # 0, and hence, x' = ;’éyl. So (x',x?) = i‘é O, y%).



1.3 Examples of Smooth Manifolds 23

Case II: when x*> =0
Since & =2, and 2 = 0, > = 0. So (x', %) = (', 0) = (31, 0) =% (¢!, »?).
Thus, we see that in all cases, there exists a real number ¢ such that (x',xz) =
t(y',y?). This proves 2.

For 3. Let us note that the equivalence class [(x',x?)] of (x!,x?) is simply the

straight line joining the origin O and (x',x?), but origin O deleted. Further, the

slope (= tan 0) of this line is the ¢,-image of [(x',x?)]. Since tan 0 is a con-
tinuous function over (—7,%), it is clear that

¢ U —R
is a continuous function.
For 4. It is clear that
¢1(U1) = (=00, +00) =R,
and R is an open set, so ¢, (U;) is an open set of real numbers.
For 5. In 4, we have seen that ¢, (U;) = R, so it remains to prove that @7 :

R — U, is continuous.
Since, for every m in R, [(1,m)] is in Uy, and ¢, ([(1,m)]) =% =m,

o1 (m) = [(1,m)].

Since m+ (1,m) is continuous, and (x!,x?)+ [(x',x?)] is continuous, their
composite m — [(1,m)] is continuous, that is, @, is a continuous function. This
proves 5.

Similarly, we can show that
U, = {[(xl,xz)] DX £ 0}
is an open subset of P!, and the function
@, : Uy — R

defined as follows: for every [(x',x?)] in U,

is a homeomorphism from U, onto R. Thus, the open subset U, of P? is
homeomorphic to R.
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Since P! is a Hausdorff space, and {U;, U,} is an open cover of P!, Plisa
1-dimensional topological manifold. Here, we get two coordinate charts (U, ¢,),
(U, ). Let us take

{(U17 (Pl); (U2a (pZ)}'
for A. We want to show that .4 has the following two properties:

1. UyuU, = P!,
2. all pairs of members in .4 are C"-compatible, for every r = 1,2,3,....

For 1: It is clear from the construction of U; and U,.

For 2: Let us take (Uy, @), (Ua, ¢,) as a pair of members in .A. Here,
UinU, = {[(x",2*)] : x' #0, and x* # 0}.

Further
@0 (9”1)71 C o (UiNUz) — ¢(UrNU,)

is a continuous function. Also, for every m in ¢, (U; N U,), there exists [(x!,x?)]
in U; N U, such that

m= o, ([(<'.2)]).

Since [(x',x2)] is in UjNU,, x' # 0and x* # 0. Now m = ¢, ([(x',x2)]) =%
and hence,
(Pz(

1
m

(020 (00" )(m) = 02((00) ™' (M) = 0 ((20) " (1 ([(",2)])))

Now since ¢, (U1 NU2) =R — {0} = ,(U1N12), (9,0 (@1)71) somie %
is C" for every r = 1,2, 3, .. .. This proves 2. Hence, by Theorem 1.2, there exists
a unique C*>-differentiable structure B on P! which contains .A. Thus, the ordered
pair (P!, B) is an example of a smooth manifold of dimension 1. Similarly, we can
construct a C®-differentiable structure on P2, etc.

In short, we say that the projective space P™ is a smooth manifold of dimension m.

Example 1.9 Let M be a 2-dimensional smooth manifold with differentiable
structure A, and let N be a 3-dimensional smooth manifold with differentiable
structure B.



1.3 Examples of Smooth Manifolds 25

Now we want to show that the Cartesian product M x N, with the product
topology, is a (2 + 3)-dimensional topological manifold. For this purpose, we must
prove that

1. M x N, with the product topology, is a Hausdorff topological space,

2. for every (x,y) in M x N, there exists an open neighborhood of (x,y) in M x N
which is homeomorphic to some open subset of the Euclidean space R*™ (see
Fig 1.3).

For 1: Since M is a smooth manifold, the topology of M is Hausdorff. Similarly
the topology of N is Hausdorff. Since the topologies of M and N are Hausdorff,
their product topology is Hausdorff. This proves 1.
For 2: Let us take any (x,y) in M x N, where x is in M, and y is in N. Since x is
in M, and M is a 2-dimensional smooth manifold with differentiable structure A,
there exists a coordinate chart (U, ¢y) € A such that x is in U. Similarly, there
exists a coordinate chart (V, ) € B such that y is in V. Since (U, ¢y) € A,
and A is a differentiable structure on M, ¢, is a homeomorphism from the open
subset U of M onto the open subset ¢ (U) of R?. Similarly, , is a homeo-
morphism from the open subset V of N onto the open subset ¥, (V) of R>.
Since x is in U, and U is open in M, U is an open neighborhood of x. Similarly,
V is an open neighborhood of y. Since U is an open neighborhood of x, and V is
an open neighborhood of y, the Cartesian product U x V is an open neighborhood
of (x,y) in M x N. Since @, (U) is open in R?, and (V) is open in R?, their
Cartesian product (@, (U)) x (Y,(V)) is open in R? x R} (= R>™3).
Now let us define a function

(pu X Wy) : UxV = ((¢y(U)) x (Yy(V)))

as follows: for every (x,y) in U x V,

(pu X Yy)(x,9) = (y(x), ¥y (y))-

It remains to prove that (@, X ) is a homeomorphism, that is,

Py X Py

UxV

Fig. 1.3 Hausdorff topological space
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Py X Py)isl —

@y X Yy)is onto,

@y X Yy )is continuous,
)

1.
X Yy

is continuous.

W I [—

(
(
(
(ou

[~

For 1: Let (oy X ¥ry)(x,y) = (oy X ¥y )(z,w), where x, z are in U, and y, w are
in V. We have to show that (x,y) = (z,w), that is, x = z, and y = w. Since

(0u(x), ¥y (¥) = (@y X Yy)(x,5) = (@y X Yy)(z,w) = (Qu(2), Yy (w)),
Py(x) = @y(z), and Yy (y) = Py (w).

Since ¢, is a homeomorphism, ¢, is 1-1. Since ¢, is 1-1, and @ (x) = @, (z),
x = z. Similarly y = w. This proves 1.
For 2: We have to prove that

(o X Yy) = UxV = ((9py(U)) x (Yy(V)))

is onto. For this purpose, let us take any (s,7) in (@, (U)) x (¥,(V)). Now we
have to find a member of U x V, whose (¢, X Y, )-image is (s, ). Since (s,?) is
n (@y(U)) x (Y, (V)), s is in ¢y (U), and ¢ is in ¥, (V). Since s is in ¢, (U),
there exists an element x in U such that s = @, (x). Similarly, there exists an
element y in V such that + =y, (y). Since x is in U, and y is in V, (x,y) is in
U x V. Further

(Pu X Yy) (%) = (@u(x), ¥y () = (5,).

This proves 2.
For 3: Since ¢ is a homeomorphism, ¢, is a continuous function, and hence,
x— @ (x) is continuous. Since, in the product topology, (x,y)— x is contin-
uous, and x— @(x) is continuous, their composite (x,y) — @ (x) is continu-
ous. Similarly, (x,y)+— () is continuous. Since (x,y) — ¢ (x) is continuous,
and (x,y)—,(y) is continuous, with respect to product topology,
(,3) = (@y(x), ¥y () (= (9 X Yy)(x,)) is continuous, and hence,

(pu xYy) = UxV = ((9y(U)) x Yy (V)))

is a continuous function. This proves 3.

For 4: We have to prove that (¢, x lﬁv)_l  ((op(U) x (Yy(V)) = U xV
is continuous, that is,

(pu xYy) : UxV = ((py(U)) x (Yy(V)))
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is an open mapping. For this purpose, let us take any open subset G x H of
U x V, where G is open in U, and H is open in V. We have to prove that

(py x Yy)(G x H) is open in (¢y(U)) x (¥,(V)). By the definition of
(QDU x ‘pv)»

(pu X Yy)(G x H) = (9y(G) x Yy (H)).

Since ¢y : U — (¢y(U)) is a homeomorphism, and G is open in U, ¢ (G) is an
open subset of ¢, (U). Similarly, ,,(H) is an open subset of y,,(V). Since ¢ (G)
is an open subset of ¢ (U), and ¥, (H) is an open subset of ¥, (V), their
Cartesian product ¢ (G) x Y, (H)(= (¢y X Yv)(G x H)) is an open subset of
the product space ¢y (U) X ¥, (V). This proves 4.

Thus,

(pu X Wy) : UxV = ((¢y(U)) x (Yy(V)))

is a homeomorphism. This proves 2.

Hence, M x N, with the product topology, is a (2 + 3)-dimensional topological
manifold. Since M is a 2-dimensional smooth manifold, M is a second countable
space. Similarly, N is a second countable space. Since M, N are second countable
spaces, their product M x N is a second countable space. Here, for every (U, ¢,) €
A, and for every (V, ) € B, we get the coordinate chart (U x V, (¢, X ¥,)) of
M x N. Let us denote the collection

{U XV, (oy x¥y)) = (U,py) € A (V,¥y) € B}

of coordinate charts of M x N by C.
We want to show that C has the following two properties:

LU{UxV: (UxV,(pyxihy) €C=MXxN,

2. all pairs of members in C are C"-compatible, for everyr =1,2,3,....

For 1: This is clear from the above discussion.

For 2: Let us take any (U x V, (¢y x ), (U x V,(py x ¥y)) as a pair of
members in C. Here,

(UxV)N(UxV)=(UNT) x (VnV).
Now we want to prove that the mapping
((40[/ X l,bv) o (py x ‘//V)_l) oy ‘//V)((U x V)N ( V))
— (g x ¥y) (Ux V)N(U x V))

is C!, that is,
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(((PE/ X Yy) o (py x ‘ﬁv)_l) oy x ) ((UN f]) x (VN ‘7))
= (eg x ¥y) (UNT) x (VN V))

is C'. Here, (U X V,(¢py x ¥y)) is in C, so (U,py) € A and (V) € B.
Similarly, (U, ¢;) € A and (V, ) € B. Since (U, @y) € A, (U, @p) € A, and
A is a differentiable structure, (U, ¢,;) and (U, @) are C"-compatible for every
positive integer r. Since (U, ¢,,) and (U , @) are C"-compatible for every positive
integer r, (U, ) and (U, @) are C'-compatible. Since (U, ¢,;) and (U, ¢;) are
C'-compatible, f!,f%,g',g> are C', where, for every (x',x*) in
ey(UNU)(C R,

(050 (00) ) () = (1 (¢2). L2 (%) = (0%) € 9 (UN D).

and

(pue(00)™)0'9%) = (6'0"52).820"57)) = (. 2).

Similarly, h',h? k3 k' k*>, k> are C', where for every (x',x*,x°) in
Yy (VNV)(CRY),

(lﬁ‘} o (wv)fl) (xl7x2,x3) = (h1 (xl,xz,x3)7hz(xl7x27x3),h3 (xl,xz,x3))
= (y17y27y3) € lPV(VﬁV),

and

(!ﬁv o (W)_l) (' y) = (KON 200 y), B ()
= (xl,xz,x3).

Let us take any (x',x2, 3%, x*,x%) in (¢, x Y,)((UNTU) x (VN V))(C R*). So
there exist x in UN U and x* in VNV such that

(Pu(¥), Yy (x) = (@y x Yy)(x,x") = (&', 22,074, &%),
Hence,
(QDU X !//V)il(x17x27x37x47x5) = (x7x*)7

or
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oy(x) = (x',2%),
and
Uy () = (a4, 2).
Now
((% xy) o (@y X ¥hy)” )(xl oot 20)

= (pg x W)((% X yy)” (xl,xz,x3’x4’xs)>

= (pg x y) (x,x")
(% ((00) " ogyr) ) 01, (W 0 (W) "ewry ) ) ()
00) ") 00y ) (), ((wy o wvrl) Uy ) ()
050 (00) ) (00, (Yy 0 (1)) Wy (x)))
- (q, 00) ") (), (wvo ) (%))
= ((o0o o)) (1.2, (e o ()™ (74",
(F (! xz) F), (R x“ xs) 12 (0,2 0), 1 (o, 2, 10) ))
(F1 (' 2), 2 (61 2) B (8,4, 20), 2 (2, o) 1 (o, o, 29 )

(
o (

Thus, for every (x!,x2,x°,x*,x%) in (¢ X ) (UNT) x (VN V))(C R,
(00 x W) o (oy x ¥y) ") (1,2, 5%, )
= (fl()clpcz),fz(xl,xz),hl(,\73,164,165)7 (x3 x* xs) h3(x3,x4,xs)).

Now we want to prove that F! : (x!,x%, %3, x* x°) — f1(x!,4?) is C!. Here,
F' =f'oua, where o : R> — R? is defined by a(x!,x? 3, x* x5) (x!,x?). So
for x = (x', 2,23, x* %),

(DF')(x) = (D(f! 0 2) ) (x) = (Df") (2(x)) © (D) (x))

or,

or) = [(@) e @]y 000
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Hence,
DF' = [(Dyf')oa (Dyf')oa 0 0 0]

Since f! is C!, (Dif') is continuous. Since (D;f') is continuous, and o is
continuous, their composite (Df') o« is continuous. Similarly, (Daf') o« is
continuous. Since (D;f!) o o, (D,f") o o are continuous, and

DF' = [(Dif"You (Dyf')oa 0 0 0],

F'is C!. Thus, we have shown that (x 2,0, x4 0 = (%) is CL
Similarly, the functions (x!,x? x% x* x° )|—>f2(x x2), (b a2 3 X0
n' (3, x4, x0),

(xl 2,0 5 xs)n—>h2(x X xs) (x 250 x4x)|—>h3(x37x4,x5)
are C'. Since (x!,22,2%,x* ) = f1(x!,22), (x}, 22,3, x4 %) = f2(x!, x?),

23 O (83,4 X ,(xl,xz,x3,x4,x5)»—>h2(x3,x4,x5),
X2 0A 0) =R x3,x4,x5

are C', and

((%XW) (pu X Yv)” )(x‘,xz,x’,x“,x‘)
= (F () L2 () B (8, ) i (0 ) R (8, 1)),

(((PU X '//(/) o (py x ‘pv)il) oy x lpv)((Um i]) x (Vﬂf/))
= (95 x¥y) (UND) x (VvV))

is C!.

Similarly, we can prove that (@; x Yy) o (py X zpv)’l is C?, etc. Hence, the
pair (U x V, (g x ), (U x V, (py % ¥y)) of members in C are C"-compatible,
for every r = 1,2,3,.... This proves 2.

Hence, by Theorem 1.2, there exists a unique C*°-differentiable structure D on
M x N which contains C. Thus, the ordered pair (M x N, D) is an example of a
smooth manifold of dimension (2 + 3). Similarly, if M is an m-dimensional
smooth manifold, and N is an n-dimensional smooth manifold, then the Cartesian
product M x N, with the product topology, becomes an (m + n)-dimensional
smooth manifold. In short, we say that the product manifold M x N is an (m + n)-
dimensional smooth manifold.



Chapter 2
Tangent Spaces

Above dimension three, Euclidean space loses its quality of being visible. So, in order
to investigate higher-dimensional smooth manifolds, we need to generalize the
concept of tangent line in the case of curves in two-dimensional Euclidean space, and
tangent plane in the case of surfaces in three-dimensional Euclidean space, using
abstract tools of algebra, and analysis. This generalized concept has been named the
tangent space. Among many other concepts that facilitate the enquiry into the
properties of higher-dimensional smooth manifolds as we shall see later, the notion of
tangent space is foremost. It is possible to introduce tangent space in various ways.
Because each method has its own merit, we shall introduce it in multiple ways in this
chapter for deeper understanding. Remember that in the process of generalization,
unlike curves and surfaces, smooth manifolds are devoid of any ambient space. It was
in this sense a challenging task for early mathematicians.

2.1 Smooth Functions

Definition Let M be an m-dimensional smooth manifold. Let f : M — R be any
function. Let p be an element of M. If, for every admissible coordinate chart
(U, @y) of M satisfying p € U, (fo (py)"): oy(U) — R is C* at the point
oy (p) in R™, then we say that fis C* at p in M.

Observe that, if fis C* at p in M, then fis continuous at p.

Reason: Since M is an m-dimensional smooth manifold, and p is an element of M,
there exists an admissible coordinate chart (U, @) of M satisfying p € U. Since fis
C®atpin M, (fo(py)"): oy(U) — Ris C® at the point ¢, (p) in R". Since
(fol(py) ) :@u(U) =R is C* at the point ¢y(p) in R”, (fo(py)'):
¢@y(U) — R is continuous at the point ¢ (p). Since (U, @) is an admissible
coordinate chart of M, ¢ : U — ¢y(U) is continuous. Since ¢ : U — ¢, (U) is
continuous, andp € U, ¢y, : U — ¢, (U) is continuous at p. Since ¢, : U — ¢ (U)
is continuous at p, and (f o (¢y) ') : @y (U) — R is continuous at the point ¢ (p),
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their composite function (f o (@) ~") 0 @y (=f o ((¢y) ' o @y) =f) is continu-
ous at p. Thus, fis continuous at p.

Theorem 2.1 Let M be an m-dimensional smooth manifold. Let f : M — R be any
function. Let p be an element of M. If there exists an admissible coordinate chart

(U, py) of M satisfying p € U such that (f o (¢y)"") : ¢y (U) — R is C* at the
point @y (p) in R™, then fis C* at p in M.

Proof Let us take any admissible coordinate chart (V, ¢,) of M satisfying p € V.

We have to show that (f o (¢,) ') : @y (V) — R is C™ at the point ¢y (p) in R
Since

(fo (wv)*l) = (fo (((pu)”o(pu)) o (py) = ((fo ((pu)fl) o wu) o (py)”!
= (fo (@U)il) © (@U © (¢v)7l)a

(¢y o (py) ") is C™ at the point ¢y (p) in R”, and (f o (¢ ) ! is € at the point
¢y(p) in R", their composite (f o (¢y)™") o (oy o (@y) ' )(= (f (o)) is
C™ at the point @y (p) in R”. Thus, we have shown that (f o (@) ") : ¢, (V) — R
is C* at the point ¢y (p) in R™. O

Definition Let M be an m-dimensional smooth manifold. Let f : M — R be any
function. By fis C*™ on M (or f is smooth on M), we mean that fis C*> at every
point p in M. The set of all smooth functions f: M — R on M is denoted by
C*(M).

Observe that, if fis C* on M, then fis a continuous function.

Definition Let M be an m-dimensional smooth manifold, and N be an n-dimen-
sional smooth manifold. Let f : M — N be any continuous function. Let p be an
element of M. If for every admissible coordinate chart (U, @) of M satisfying
p € U, and for every admissible coordinate chart (V) of N satisfying f(p) € V,
each of the n component functions of the mapping

Wvo (folon) ™) ou(Unf™ (V) = dy (V)

is C* at the point ¢y (p) in R” (in short, the mapping

o (folen)™) s ou(UNf (V) = (V)
is C* at the point ¢ (p) in R™); then, we say that fis C* at p in M.
As above we observe that if f : M — N is C* at p in M, then fis continuous at p.

Theorem 2.2 Let M be an m-dimensional smooth manifold, and N be an
n-dimensional smooth manifold. Let f : M — N be any continuous function. Let p
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be an element of M. If there exist an admissible coordinate chart (U, @) of M
satisfying p € U, and an admissible coordinate chart (V,\1y,) of N satisfying f(p) €
V such that each of the n component functions of the mapping

o (folen) ™) ou(Unf™ (V) = dw(v)

is C* at the point @y (p) in R™; then, fis C* at p in M.
Proof Let us take any admissible coordinate chart (& (pa) of M satistying p € U,

and any admissible coordinate chart (V, lﬁ;) of N satisfying f(p) € V. We have to
show that

b0 (ro (o)) s @0 (7)) = 55(0)

is C* at the point ¢ (p) in R™. Since

vy o (f" (9";)71> =vge ((f° ((00)o00)) o (05)

(@y o (¢y)~") is C at the point (p;(p) inR", Yy, 0 (f o (py)~") is C* at the point
oy(p)in R™, and (gb/‘; o (Yy) ") is C at the point Yy, (f(p)) in R”, their composite
(o0 (Wy) ™) o (v of) o (op) ) o (pyolez)™) (=vge(foley) ™) is C
at the point »5 (p) in R™.

Thus, we have shown that i o (f o ((pa)") : (pa(IAJ nfYV)) — W;(XA/) is
C* at the point »5 (p) in R™. d
Lemma 2.3 Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and K be a k-dimensional smooth manifold. Let p be an element

of M. Letf : M — N be C*® atpin M, and g : N — K be C* at f{p) in N. Then,
gofis C* atpinM.

Proof We have to prove that g o f is C* at p in M. By Theorem 2.2, we must find
an admissible coordinate chart (U, @) of M satisfying p € U, and an admissible
coordinate chart (W, x,,) of K satisfying (g of)(p) € W such that the mapping
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two ((of) e (@) ™) sou(Un(ger) (W) = 1, (W)

is C™ at the point ¢ (p) in R™. Since p is in M, and M is an m-dimensional smooth
manifold, there exists an admissible coordinate chart (U, ¢, ) of M satisfying
p € U.Sincef : M — N, and pisin M, f{p) is in N. Since f{(p) is in N, and N is an n-
dimensional smooth manifold, there exists an admissible coordinate chart (V, )
of N satisfying f(p) € V. Since f: M — N is C* at p in M, (U, ¢,) is an
admissible coordinate chart of M satisfying p € U, and (V, ) is an admissible
coordinate chart of N satisfying f(p) € V, the mapping

bvo (Folon)™) : ou(UNS™ (V) =y (V)

is C* at the point ¢y (p) in R™.
Similarly, there exists an admissible coordinate chart (W,y,,) of K satisfying
¢(f(p)) € W such that the mapping

two (80 () ™) 10y (Vg™ (W) = 7,(W)

is C* at the point ¥, (f(p)) in R". Since ¥y o (f o (¢py)~") is C at the point
@y(p) in R”, and z,, 0 (go (y)"") is C™ at the point ¥, (f(p)) in R", their

composite (,, 0 (g© (¥y) ")) o (by o (o (py) " )= 1y 0 (g 0f) 0 (@) ™)) is
C® at the point ¢ (p) in R™. O

Definition Let M be an m-dimensional smooth manifold, and N be an n-dimen-
sional smooth manifold. Let p be an element of M, and let G be an open neigh-
borhood of p in M. Let f: G — N be any continuous function. If for every
admissible coordinate chart (U, @) of M satisfying p € U, and for every admis-
sible coordinate chart (V) of N satisfying f(p) € V, each of the n component
functions of the mapping

bvo (folo) ) u(UNGAF (V) = du(V)

is C* at the point ¢y (p) in R” (in short, the mapping

o (folon)™) s ou(UNGA (V) = (V)

is C* at the point ¢ (p) in R™); then, we say that fis C* at p in M.

Definition Let M be an m-dimensional smooth manifold, and N be an n-dimen-
sional smooth manifold. Let G be a nonempty open subset of M. Let f : G — N be
any continuous function. By fis a smooth map from G to N, we mean that fis C* at
every point p in G.
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Definition Let M and N be m-dimensional smooth manifolds. Let f : M — N be a
1-1, onto mapping. If fis a smooth map from M to N, and f~! is a smooth map from
N to M, then we say that f'is a diffeomorphism from M onto N. We observe that if fis
a diffeomorphism from M onto N, then fis a homeomorphism from M onto N.

Definition Let M be an m-dimensional smooth manifold, and N be an m-dimen-
sional smooth manifold. If there exists a function f: M — N such that f is a
diffeomorphism from M onto N, then we say that the manifolds M and N are
isomorphic (or, diffeomorphic).

Definition Let M be an m-dimensional smooth manifold. Let a and b be any real
numbers such that a < b. Let y be a continuous function from the open interval (a, b)
to M. Recall that the open interval (a, b) is a 1-dimensional smooth manifold. Hence,
it is meaningful to say that y is a smooth map from (a, b) to M. If 7 is a smooth map
from (a, b) to M, then we say that y is a parametrized curve in the manifold M.

Definition Let M be an m-dimensional smooth manifold. Let p € M. Let 7y be a
parametrized curve in the manifold M. If there exists a real number ¢ > 0 such that y
is defined on the open interval (—¢,¢), and y(0) = p, then we say that y is a
parametrized curve in M through p. The set of all parametrized curves in M through
p is denoted by I',(M) (or, simply T,).

Example 2.4 In the Example 1.9, let us define

m:MxXN—-M

as follows: for every (x,y) in M x N,
3 ()C, y) =X.
We want to prove that 7; is a smooth function from the product manifold M x N
onto M. For this purpose, let us take any (p,q) in M x N. Now, there exists a
coordinate chart (U x V, (¢ x ¥y)) of the product manifold M x N such that

(U,py) € A, (V) € B, and (p,q) is in U x V. Hence, (U, ¢y) is a coordinate
chart of M such that p(= n;(p, q)) is in U. We want to show that

Py omo(py X ‘ﬁv)q: (pu X y)(U x V) = ¢y(U)

is € at the point (py X ¥y)(p,@)(= (0y(p), ¥y (q))) in R, Let us take any

(x!, 22,3, %% x°) in (@ x y)(U x V). So, there exist u in U, and v in V such that

(QDU(u)vlpV(V)) = (QDU X lpV)(ua‘)) - (x17x27x3ax47);)~

Hence,

((pU X lpV)_l(xlaxzax3ax4ax5) = (M,V),
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or
o) = (x',27), y(v) = (¥, °).

So

<(pU om o ((pU X l//V)71> (x17x21-x3>x47x5) = ((pU ° nl)(((pU X l//V)il(xl>x27x37x4ax5))

= (pyom)(u,v) = oy(mi(u,v)) = @y(u)
= ().

Hence, (oy om0 (@y x Yy) ') s (6", 22,83, 2%, x%) = (x',x2), which is trivi-
ally C*°.

So, by Theorem 2.2, the natural projection w; of the product manifold M x N is
a smooth map. Similarly, the natural projection m, of the product manifold M x N
is a smooth map.

Definition Let M be an m-dimensional smooth manifold. Let p be an element of
M. By C¥(M) (or, simply C,), we mean the collection of all real-valued functions
f whose domf is an open neighborhood of p in M, and for every admissible
coordinate chart (U, @) of M satisfying p € U,

(Folo0)™)  py((domp)nU) — R

is C* at the point @ (p) in R™. Observe that if fis in C;°(M), then fis continuous
on some open neighborhood of p.

Definition Let M be an m-dimensional smooth manifold. Let f : M — R¥ be any
function. By f is smooth, we mean for every p in M there exists an admissible
coordinate chart (U, @) of M satisfying p € U such that the composite function
fol(py)™" : oy(U) — RFis smooth in the sense of ordinary calculus. Remember,
@y (U) is an open subset of R™ containing ¢ (p).

Note 2.5 Let G be a nonempty open subset of R™. We know that G is an m-
dimensional smooth manifold with the standard differentiable structure containing
{(G,1d¢)}. Let f : G — R¥ be any smooth function in the sense just defined. We
want to show that f : G — R is a smooth function in the sense of ordinary calculus.
Since G is nonempty, there exists a in G. Since a is in G, and f : G — R¥ be any
smooth function in the sense just defined, there exists an admissible coordinate chart
(U, ¢y) of G satisfying a € U such that the composite function f o (¢y) " :
¢y(U) — RF is smooth in the sense of ordinary calculus. Since (U,qy) is in

{(G,1dg)}, U =G, and ¢, =Idg. Since U = G, and ¢, =Idg, fo (py) ' =
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fo(ldg) ™' =foldg =f,and ¢, (U) = 1dg(U) = U = G. Since ¢, (U) = G, and
fol(py) ™ =f.andfo(py) " : @y(U) — R is smooth in the sense of ordinary
calculus, f : G — R* is smooth in the sense of ordinary calculus.

Conversely, let f : G — R* be smooth in the sense of ordinary calculus. We
want to show that f : G — R is a smooth function in the sense just defined. Let us
take any a in G. We have to find an admissible coordinate chart (U, ¢y) of
G satisfying a € U such that the composite function f o (@) " : @y (U) — R is
smooth in the sense of ordinary calculus. Let us take (G,Idg) for (U, ¢,;). Hence,
oy(U) =1dg(U) =U =G, and fo(py) ' =fo(ldg)' =foldg =f. Since
oy(U) =G,fo (qu)*1 =f, and f : G — R* is smooth in the sense of ordinary
calculus, f o (@)

Thus, we have shown that f : G — R¥ is smooth in the sense of ordinary cal-
culus if and only if f : G — R¥ is a smooth function in the sense just defined.

"' ¢y (U) — R¥ is smooth in the sense of ordinary calculus.

Note 2.6 Let M be an m-dimensional smooth manifold. Let f : M — R¥ be any
smooth function. Similar to the proof of Theorem 2.1, it can be shown that for every
p in M, and for every admissible coordinate chart (U, @) of M satisfying p € U,

the composite function f o ((/)U)_l : oy(U) — RF is smooth in the sense of
ordinary calculus.

2.2 Algebra of Smooth Functions

Note 2.7 Let M be an m-dimensional smooth manifold. By C* (M), we mean the
collection of all smooth functions f : M — R. For every f, g in C* (M), we define
(f +g) : M — R as follows: for every x in M,

(f +8)(x) =f(x) + g(x).

For every fin C*(M), and for every real 7z, we define (#f) : M — R as follows:
for every x in M,

(1)(x) = 1(f(x))-

It is clear that the set C*°(M), together with vector addition, and scalar multi-
plication defined as above, constitutes a real linear space. In short, C* (M) is a real
linear space.

For every f, g in C*° (M), we define (f - g) : M — R as follows: for every x in M,

(- 8)(x) = (f(x)(g(x))-
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It is easy to see that

. for every f,g,h in C*(M),
. for every f,g in C*(M), f -
. for every f,g,h in C*°(M),
. for every real ¢, and for eve

g)-h=f-(g-h),
g-f

g) -h=f h+g-h,
g

(f-
g
(f
ry f,g in C*(M), 1(f - 8) = (if) - &-

W N =

+
I
In short, C*°(M) is an algebra.

Note 2.8 Let M be an m-dimensional smooth manifold. Let p € M. Let (U, @) be
an admissible coordinate chart of M satisfying p € U. Lety beinI',(M). Since y is in
I', (M), there exists a real number 6 > 0 such that y is a smooth map from (-4, J) to
M, and y(0) = p. Since 7 is a smooth map from (-9, d) to M, and O is in (—J, J), y is
continuous at 0. Since y is continuous at 0, y(0) = p, and U is an open neighborhood
of p, y"1(U) is an open neighborhood of 0, and hence, (—3,3) Ny~!(U) is an open
neighborhood of 0. Also since dom(¢,,) = U, and dom(y) = (=9, J), dom(¢p, o 7)
= (=0,0) Ny~ (V). Since (py 07) : ((=6,0)Ny~ (V) = R™, (=0,0) Ny~ (V)
is an open neighborhood of 0, ¢, is a smooth, and y is a smooth map, (¢, o )’ (0)
exists and is a member of R™.

Definition Let M be an m-dimensional smooth manifold. Let p € M. Let y, 7, be in
I',(M). By y~7y,, we shall mean that for every admissible coordinate chart
(U, ¢y) of M satisfying p € U, (¢ ©7)'(0) = (¢ ©7,)'(0).

Lemma 2.9 Let M be an m-dimensional smooth manifold. Let p € M. Let 7,7y, be
in T',(M). If there exists an admissible coordinate chart (U, y) of M satisfying
p € U, and (¢y07)'(0) = (@y ©7,)'(0), then y = ;.

Proof Let us take any admissible coordinate chart (V, ) of M satisfying p € V.
We have to prove that (i, 07)'(0) = (Y, 0 7,)(0).

~
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and
RHS = (41, 07,)/(0) = (y o ((90) "o0y) 071) (0)
= (4o (o)) o lowom)) )
= (((wve (@U)il))/(((ﬂy 071)(0))) (05 ©7)(0).
Hence, LHS = RHS. O

Lemma 2.10 Let M be an m-dimensional smooth manifold. Let p € M. Then, = is
an equivalence relation over I',(M).

Proof Here, we must prove

1.
. if y =y, then y; =,
. if y~ 1y, and y; = 7,, then y = y,.

for every y in I',(M), y =,

For 1: Since p € M, and M is an m-dimensional smooth manifold, there exists an

admissible coordinate chart (U,¢@;) of M satisfying p € U. Since

(¢y ©7)'(0) = (9y ©7)'(0), by Lemma 2.9, y = 7.

For 2: Let y ~ 7,. We have to prove that y; ~ 7. For this purpose, let us take any

admissible coordinate chart (U, ;) of M satisfying p € U. We must show that

(¢y©71)'(0) = (@y ©7)'(0). Since y = 71, (¢y©7)'(0) = (@y ©7,)'(0), and
! !

hence, (¢y ©71)(0) = (¢y ©7) (0).

For 3: Let y =~ y, and y; = y,. We have to prove that y ~ y,. For this purpose,

let us take any admissible coordinate chart (U, ¢y) of M satisfying p € U.

We must show that (¢, ©7)'(0) = (¢y ©7,)'(0). Since y = y,, (¢y 07)'(0)

(u ©71)/(0). Since 7, ~ 75, (9y071)'(0) = (py ©7,)'(0). Since (py 07
! ! ! /

(0) = (@y ©71)(0), and (@y 0 71)'(0) = (@y ©7,)(0), (¢y ©7) (0) = (¢y 7,

(0).

/!

~

!

0=

Note 2.11 Let M be an m-dimensional smooth manifold. Let p € M. By the Lemma
2.10, the quotient set I',(M)/~ is the collection of all equivalence classes [y,
where y is in I',(M). Thus,

L,M)/~={[]:7€T,(M)}

where

71

Dl ={n el(M):y, =y}

Intuitively, the Lemma 2.10 says that in I',(M) we will not distinguish between
and y whenever y; ~ 7.
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Definition Let M be an m-dimensional smooth manifold. Let p € M. Let (U, ¢y)
be any admissible coordinate chart of M satisfying p € U. Let v, y, be in I',(M). If
[y] = 71, then y =~ 7;, and hence, (¢; ©7)(0) = (¢y ©7,) (0). This shows that
[7]— (¢y ©7)'(0) is a well-defined function from T',(M)/~ to R™. We shall
denote this function by ¢;,. Thus,

Pus + (Tp(M)/~) — R"
is the function defined as follows: for every [y] in I',(M)/~ where y is in I',,(M),

eu.([7]) = (91 09)'(0).

Lemma 2.12 Let M be an m-dimensional smooth manifold. Let p € M. Let
(U, @y) be any admissible coordinate chart of M satisfying p € U. Then, the
function

oy, (L,(M)/=) — R"
is 1-1 and onto.

Proof 1-1: Let ¢y, ([7]) = @y.([y1]), where y,y, are in I',(M). We have to prove
that [] = [ ]. that is, y~7,. Since (¢ 07)'(0) = ¢u.([7]) = @u.([1]) =
(v ©71)'(0). (@y ©7)'(0) = (9y ©71)'(0), and hence, by Lemma 2.9, 7 ~ 7,.
Onto: Let us take any v in R™. We have to find y in I',(M) such that
@, (IV]) = v; that is, (@y 0 7)'(0) = v; that is, lim,_,o Lel0=(0ueN®) _ . thag js,

t
lim, o 2z —eu((0) 2u(@)=eu() _ , 1 et us define a function
- t t :

7, : (=1,1) — R™ as follows: For every ¢ in the open interval (—1,1),

= y; that is, lim,_

() =tv+ oy(p).

Put

= (py) 'on-
We shall try to prove that
7(0) =p,
. 0 is an interior point of the domain of y,

. 7 is a smooth map from (—4,0) to M for some § > 0,
Py (7)) =9y (p)

t

SRR

lil’nl_,() =V
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For 1: Here,

LHS = 7(0) = ((¢0) "o7)(0) = (00) ' (71(0)) = (90) " (Ov + @y (p)
= (¢y) '(¢y(p)) = p = RHS.

This proves 1.

For 2: By the definition of y,, the function y, : (—1,1) — R™ is continuous.
Since 7y, : (—1,1) — R™ is continuous, and 0 is in the open interval (—1, 1), 7,
is continuous at 0. Since (U, @) is a coordinate chart of M, (o)~ : @y (U) —
U is a 1-1, onto, continuous function, and ¢, (U) is an open subset of R™. Since
p €U, ¢yp) € py(U). Since y,(0) =0v+ ¢y(p) = @y(p) € ¢y(U), and
(py) ™"+ oy(U) — U is continuous, (o) " : ¢y (U) — U is continuous at the
point y,(0). Since y;(0) € @y (U), and ¢ (U) is an open subset of R", ¢ (U)
is an open neighborhood of 7,(0). Since 7, : (—1,1) — R™ is continuous,
¢y (U) is an open neighborhood of y, (0), there exists d > 0 such that d <1 and,
for every t in (—9,0), we have y,(f) € ¢y(U), and hence, y(t) =
((9r) " 0 9)(1) = (9y) "' (7,()) € U. Since y(r) € U for every rin (=9, 9), it
follows that (—J, 0) is a subset of the dom(y). Hence, 0 is an interior point of the
domain of the function 7. This proves 2.

For 3: In 2, we have seen that y is defined over (—d, ¢). Now, it remains to be
proved that y is a smooth map from (—J, d) to M; that is, y is C* at every point
tin (=9, 0). Here, y is defined over (—J, d), so y(¢) is meaningful for every ¢ in
(=0, 0). Since y(¢) is meaningful for every ¢ in (—J,0), and

y(r) = (((PU)AO vl) (1) = (o) (1 (1) = (00) " (v + @u(p)),

(oy) " (v + @y(p)) is meaningful for every ¢ in (—8,0). Since (U, @y) is a
coordinate chart of M, (o) " : ¢, (U) — U. Since (¢,) " : ¢y (U) — U, and
(0y) " (v + @y(p)) is meaningful for every 7 in (—3,9), (¢y) " (v + ¢y (p))
is in U for every 7 in (=8, d). Since (¢y) " (tv + @y (p)) is in U for every ¢ in
(=8,0), and (1) = (¢y) " (v + @y(p)), y(¢) is in U for every t in (=0, ).
Thus, y maps (—9,9) to U.

Now, it remains to be proved that 7y is a smooth map from (—J, d) to M; that is,
y is C* at every point 7 in (—J, ). For this purpose, let us fix any ¢ in (-9, J).
Since y, is C* att, y = (q)U)fl oy, y maps (—=9,0) to U, and ¢ is in (-0, ),
@y o7yis C* att. Since ¢y o yis C™ att, and (U, @) is an admissible coordinate
chart of M satisfying y(r) € U, by Theorem 2.2, y is C* at ¢ in (=9, ). This
proves 3. From 1, 2, and 3, we find that y is a parametrized curve in M through p;
that is, y is in I',(M).
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4. LHS — lim Qe —ou®) _ ou(((90) o)) = 0u®) _ . 1) ~ 0u(p)
: 1—0 t =0 t =0 t
im Wt eu®) —ouP) | pue
1—0 t
This proves that ¢, : (I',(M)/~) — R" is onto. 0

Note 2.13 Let M be an m-dimensional smooth manifold. Let p € M. Let (U, ¢y)
be any admissible coordinate chart of M satisfying p € U.

Since ¢y, : (I',(M)/~) — R" is 1-1 onto, (pp.) " R" — (T'y(M)/~) exists,
and is 1-1 onto. This fact allows us to define a binary operation + over I',(M)/~
as follows:

For every [y],[y;] in T',(M)/~ where y,y, are in T',(M), by [y] + [,]. we
mean

(@0.)" (90D + @ ([]))-

Next, for every [y] in I',(M)/~ where y is in I',(M), and for every real z, by
t[y], we mean

(@u.)” (0. ().

Hence, ¢y, ([7] + [1]) = 00, (D]) + @0 ([1]); and @y, ([7]) = (00 (I7]))-
Now, we want to verify that I',(M)/~ is a real linear space:

1. + is associative: Take any [y], [y,], [,] in T,(M)/ ~ where 7,9, 7, are in
[, (M). We have to show that ([y] + [11]) + [22] = Iv] + ([na] + [2D)-

LHS = (B + [nD) + [a] = ((00.) " (0o DD + 0 ([11)) + [2]

00" (00 ((00) " (00 (L) + 00.([1])) + 00 (D))

=(
= (0u.) " (0o (DD + 00 ([1]) + 00 ([2]))
= (@) (@ (D) + (@ ([1]) + @ue([22]))s

RHS =[] + (] + [2]) = BT+ (o)™ (00 (In]) + 00 (1))
= (00.)" (001D + 00 ((90.) ™ (o (In]) + 00 ([121))
= (00.) " (@0 (BD) + (90 ([1]) + 90 ([72])))-

Hence, LHS = RHS.

2. Existence of zero element: Here ¢, : (I',(M)/ =) — R™ is 1-1 onto, and
0 € R",s0 (¢y,) '(0)isin (T'p)(M)/ =). We shall try to prove that (o) 1 (0)
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serves the purpose of zero element. For this purpose, let us take any [y] in
I',(M)/~ where y is in I',(M). We have to show that

(00.) " (0) + [7] = [

LHS = (¢4,) "' (0) + [7]
= (0u) ™" (00 ((00) 7)) + 00 (BD)
— (pp)” ‘<o+<ou*<m>>
— (¢) " (0.(I])) = ] = RHS.

3. Existence of negative element: Let us take any [y] in I',(M)/ ~ where 7 is in
[, (M). Since [7] is in T(M)/~, and ¢y, : (I,(M)/ =) = R", ¢y.([7]) is

in R”, and hence, —(¢y.([7])) is in R". So (pp.)" (~(¢p.(D) is in
(T',(M)/~). We have to show that

(0u)” (—(@u (D)) + 7] = (@p.) " (0).

LHS = (py.) ™ (~(00. (bD) + b1
(00) ™ (00 (00 (~(00.[LD) + 00 (L))
= (o) (0. (BI) + 0u.(B]) = (9.)"' (0) = RES.

4. + is commutative: Take any [y], [y,] in I',(M)/~ where y, y, are in T',(M). We
have to show that [y] + [y,] = [v:] + [7]-

LHS = [7] + [11] = (@0.) " (90 (D]) + @0.([1])

= (0u.) (0o (In]) + 00.(IVD)
=[] + [»] = RHS.

5. Takeany [y], [y,]inT,(M)/ ~ where y,y, are in I',(M). Take any real number 7.
We have to prove that

t(] + i) = D] + ¢4

LHS = «([y] + [11]) = (¢u.) " (t(@p. (7] + [11])))
= (pu.)" (t(wu* ((wu*)*(w*(ﬂvﬂ) + cou*([[h]])))))

= (0p.) " @y (D]) + @0 ([1i]))),
RHS = ([y] + t[y],= (@u.) " t(@u. (D) + (@u.) " (t(@u. (IV])))-
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So it remains to be proved that

(ou.)” (t@u (7)) + 00, ([11])) = (0u.) " (. ([7])))
+ (ou) " (Hou.([1:])))

that is,

Hoy:(IV]) + @ ([n]) = @u*((fpu*)_l(f(%*([[“/ﬂ))) + (@u*)_l(t(%*([[vlﬂ))))-

RHS = ¢y, ( ou.) " (tlou (D) + (¢U*)71(I(QU*([[V1]]))))

(
= 90 ((00.) " (o (BD))) + 00 (00) ™ (o0 (D))
(
(

= @u.(IV]) + teu.(In])
= (eu:(V]) + @u.([1])) = LHS.

7y
7

6. Take any [y] in I',(M)/~ where y is in I',(M). Take any real numbers s,7. We
have to prove that

(s+ 0[] = sly] +[v].

LHS = (s + )[7] = (@u.) " (s + 1) (0. ([7])))
= (@) (ou (D) + t(ou. (),

RHS =[] + 1] = (90.) "~ (00, (D) + 0. ([])-
So it remains to be proved that

(@0.) " (50 (D) + 1(0u. (D)) = (@0.) " (@u.(sTD) + @0, (t1D)),

that is,

s(@u (VD) + @y (V1) = eu. (SIVD) + @us E[y])-
RHS = ¢y, (s[7]) + @u. (t[7]) = s(ou.([V])) + #(@u.([7])) = LHS.

7. Take any [y] in I',(M)/~ where 7 is in I',(M). Take any real numbers s, 7. We
have to prove that

()] = s([D)-
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LHS = (st)[7] = (o0.) " (1) (00, (I7]))):

RHS = 5(¢[y]) = (@U*)il(s(ﬁou*(f[[“/]]))) = (@U*)il(s(t(@u*([[“/]]))))
= (¢u) " (1) (0 (IVD))-

Hence, LHS = RHS.
8. Take any [y] in I',(M)/~ where y is in I',(M). We have to prove that

1] = DI

LHS = 1[7] = (¢.)” (1(ep.([7])) = (00.) " (@u.([7]) = ] = RHES. O

Thus, we have shown that I',(M)/~ is a real linear space.
Since I',(M)/~ is a real linear space, ¢, : (I',(M)/ =) — R" is 1-1, onto,

o1+ D) = v V) + o [11]); and @y, (1[7]) = t(@u.([7])),

SO @y, is an isomorphism between real linear space I',(M)/~ and the real linear
space R™. Further since the dimension of R is m, I',(M)/~ is a real linear space
of dimension m.

Conclusion: Let M be an m-dimensional smooth manifold. Let p be an element
of M. Then, I',(M)/~ is isomorphic to R™ for some vector addition, and scalar
multiplication over I',(M)/~.

Definition Let M be an m-dimensional smooth manifold. Let p be an element of M.
The set I',(M)/~ is denoted by T,M or T,(M) (see Fig. 2.1).

Note 2.14 Let M be a 2-dimensional smooth manifold. Let p € M. Let (U, ¢) be
any admissible coordinate chart of M satisfying p € U. Let us define functions

W U—R, *:U—R

as follows: for every x in U,

Fig. 2.1 Dimensional smooth manifold
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(In short, we say that u', u? are the component functions of ¢,,.) We shall try to
prove that u' is in C;*(M). By the definition of C;°(M), it remains to be proved that
for every admissible coordinate chart (V, ¢,) of M satisfying p € V,

(“1 °© (</’V)71) toy(UNV) =R
is C* at the point @y (p) in R%.

Since M is a 2-dimensional smooth manifold, and (U, ¢y), (V, ¢y ) are admissible
coordinate charts of M satisfying p € U NV, by the definition of smooth manifold,

((PU ° (@V)il) toy(UNV) =R

is C* at the point @y (p) in R
For every (y!,y?) in @, (UNV), we have (¢,) '(y',y?) e UNV C U, and
hence,

((PUO((/’V) )y y

(PU(((PV y ayz )
(ul( oY ) uz((fpv)*l(yl,yQ)))
(( 'o )(y ), (MZO(wv)_l)(yl7y2))

So (u! o (oy) "), (W2 o (¢y) ") are the component functions of (¢ o (¢y) ).

Next, since (¢ o (¢y) ") is C™ at the point ¢, (p) in R?, its component functions
(u' o (@y) "), (1 o (¢y,) ") are C at the point ¢y (p) in R2. This proves that 1" is
in C;*(M). Similarly, u? is in C*(M).

Theorem 2.15 Let M be an m-dimensional smooth manifold. Let p be an element
of M.

Let ~ be a relation over CI‘,’C(M) defined as follows: for every f and g in
Gy (M), by f ~ g, we shall mean that there exists an open neighborhood H of p
such that f(x) = g(x) for every x in H. Then, ~ is an equivalence relation over
Gy (M).

Proof Here, we must prove

1. for every f in C*(M), f ~f,

2. if f~g, then g~f,
3. if f~g,and g~h, then f ~ h.
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For 1. Let us take any f in C;*(M). So, by the definition of C;°(M), domf is an

open neighborhood of p in M. Since domf is an open neighborhood of p in M,
and f(x) = f(x) for every x in domf, by the definition of ~ , f ~f. This proves 1.
For 2. Let f ~ g where f and g are in C;*(M). So, by the definition of ~ , there

exists an open neighborhood H of p such that f(x) = g(x) for every x in H.
Hence, g(x) = f(x) for every x in H, where H is an open neighborhood of p.
Therefore, by the definition of ~, g~ f, this proves 2.

For 3. Let f ~g, and g~ h, where f, g, h are in C[?O(M). Since f ~ g, by the

definition of ~ , there exists an open neighborhood H of p such that f(x) = g(x)
for every x in H. Similarly, there exists an open neighborhood K of p such that
g(x) = h(x) for every x in K. Since H, K are open neighborhoods of p, HNK is
an open neighborhood of p. Also we have f(x) = h(x) for every H N K. Hence,
by the definition of ~, f ~ h. This proves 3.

Hence, ~ is an equivalence relation over C;°(M). O

Definition Let M be an m-dimensional smooth manifold. Let p be an element of M.

From Theorem 2.15, the relation ~ is an equivalence relation over C,°(M). The
quotient set C°(M)/ ~ , of all equivalence classes is denoted by J,(M) (or, simply
F,). Thus,

o) = {[f]:1 € Gr ) |
where
fl= {g g € CX (M) andgwf},
Intuitively, Theorem 2.15 says that in C;*(M) we will not distinguish between f

and g whenever f ~ g.

Definition Let M be an m-dimensional smooth manifold. Let p be an element of M.
Let f,g be in C}° (M). By the sum f + g, we mean the function whose domain is

(domy) N (dom g), and for every x in (domf) N (domg),
(f +8)(x) =/ (x) + g(x).

By the product f - g, we mean the function whose domain is (domf) N(domg),
and for every x in (domf)N(domg),

(f -8)(x) =f(x) - g(x).

For any real ¢, by the scalar multiple tf, we mean the function whose domain is
domf, and for every x in domf,
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(1)(x) = 1(f(x))-

Theorem 2.16 Let M be an m-dimensional smooth manifold. Let p be an element
of M. If f, g are in C;*(M), then f + g is in C;*(M).

Proof Here, let f, g be in C* (M). We must prove:

1. dom(f + g) is an open neighborhood of p in M,
2. for every admissible coordinate chart (U, @) of M satisfying p € U,

((F+8)0(@0)™) : pu((dom(f +))NU) — R

is C* at the point ¢y (p) in R".

For 1. Since f, g are in C;O (M), domf and dom g are open neighborhoods of p

in M, and hence, their intersection (domf)N(domg) is an open neighborhood
of p in M. Since (domf)N(domg) is an open neighborhood of p in M, and
domain of f + g is (domf) N(dom g), dom(f + g) is an open neighborhood of p
in M. This proves 1.

For 2. Let us take any admissible coordinate chart (U, ¢,) of M satisfying
p € U. Since f is in C;*(M), by the definition of C;*(M),

(Fo(o0)™) s pu((domp)nU) — R
is C* at the point ¢y (p) in R™. Similarly,

(g0 (00) ") : pu((domg) nU) — R
is C* at the point ¢ (p) in R™. Further, since

(Folo0)™)  pu((domp)nU) = R

and

(g0 (@) ™) s pu((omg)n V) — R,

their sum is the function

(ro(eu)™) + (g0 (00)™") : (@u((domf) N U)) N (@y((domeg) NU)) — R,
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and is C* at the point ¢ (p) in R™. Now, since

dom((f o (pp) ") + (g0 (00) ")) = (pu((domp) N V) N

( v((domg) N U))
(domf) N U) N (
(

(¢
(

(
= py(( domg) N U))
= ¢y(((dom ) N (domg)) N V)

~ ¢y((dom(f +¢)) N V)
—dom((f + )0 (py) ")

and, for every x in dom((f+g) o ((PU)A);

((reton) )+ (go o) ™)) = ((Fo o)) )@+ (g0 (00) ™) )0
~f(((o0)™) ) +&(((00) ™) ()
= +8)(((on) ™))
= (+8)0 (o) )@

SO,
(reton) ™)+ (g0 (00) ™) = r +8)0 (00) "

Since  (f o (py) ™)+ (g0 (pu) ™) = (F+g)oley)™, and (fo(py))+
(g0 (py)~") is C at the point @y (p) in R, (f 4+ g) 0 @)~ " is C at the point
@y(p) in R™. This proves 2. Hence, f + g is in C;°(M). O

Theorem 2.17 Let M be an m-dimensional smooth manifold. Let p be an element
of M. If f, g are in C;*(M), then f - g is in C;*(M).
Proof lts proof is quite similar to the proof of Theorem 2.16. O

Theorem 2.18 Let M be an m-dimensional smooth manifold. Let p be an element
of M. If t is a real, and f is in C)X(M), then tf is in C;*(M).

Proof Its proof is similar to the proof of Theorem 2.16. O

Theorem 2.19 Let M be an m-dimensional smooth manifold. Let p be an element
of M. If f, g, h,k are in C¥*(M), f ~g, and h~k, then (f + h)~ (g + k).

Proof Let us take any f, g, h, k in C;Q(M), and let f ~g, h~k. Since f, g are in
C,°(M), by Theorem 2.16, f + h is in C;°(M). Similarly g + k is in C;°(M). We
have to prove that (f + &) ~ (g + k). So, by the definition of ~, we must find an
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open neighborhood H of p such that (f + h)(x) = (g + k)(x) for every x in H.
Since f ~ g, there exists an open neighborhood H; of p such that f(x) = g(x) for
every x in H;. Since h ~ k, there exists an open neighborhood H, of p such that
h(x) = k(x) for every x in H,. Since H,, H, are open neighborhoods of p, H; N H,
is an open neighborhoods of p. Also, for every x in H; N Ha, (f + h)(x) =f(x)+

O

h(x) = 8(x) + k(x) = (8 + k) (x).

Theorem 2.20 Let M be an m-dimensional smooth manifold. Let p be an element
of M. If f,8,h,k are in C;*(M), f ~g, and h~k, then (f - h) ~ (g - k).

Proof Tts proof is quite similar to the proof of Theorem 2.19. U

Theorem 2.21 Let M be an m-dimensional smooth manifold. Let p be an element
of M. If f,g are in C;*(M), f ~g, and t is a real, then (tf) ~ (ig).

Proof Let us take any f, g in C;°(M), and let f ~ g. Since f, g are in C;°(M), by
Theorem 2.18, #f is in C;°(M). Similarly, 7g is in C)°(M). We have to prove that

(#f) ~ (tg). So, by the definition of ~ , we must find an open neighborhood H of p
such that (#f)(x) = (zg)(x) for every x in H. Since f ~ g, there exists an open
neighborhood H of p such that f(x) = g(x) for every x in H. So, for every x in H,

(1) (x) = 1(f (x)) = 1(g(x)) = (28)(x)- O
Note 2.22 Theorems 2.19, 2.20, and 2.21 give guarantee that the following defi-
nitions are legitimate.

Definition For every f, g in C;° (M), and for every real ¢,

1+l = +gl
tlf] = [tf],
fllel = [f - gl.

Theorem 2.23 Let M be an m-dimensional smooth manifold. Let p be an element
of M. The quotient set C;*(M)/~, together with vector addition, and scalar

multiplication is defined as follows: for every f, g in C° (M), and for every real t,
1+ lel =1 +egl, 1lf] =],
constitute a real linear space. In short, F,(M) is a real linear space.

Let us define multiplication operation over C,°(M)/ ~ as follows: for every f, g
in C° (M),

el =1 gl
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Then,

- for every f,g,h in CX(M), ([f][g])[h] =
. for every f,g in C;*(M), [f][g] = [g]lf],
. for every f, g, h in C*(M), (f] + [g])[h] = [f][h] + [g][A],

. for every real #, and for every f, g in C;°(M), t([f][g])

[F1([e] (),

AW N =

(tf)lgl-

In short, F,(M) is an algebra.
Proof The conditions for linear space remain to be verified.

1. + is associative: Let us take any f, g,h in C;°(M). We have to prove that

LHS = ([f]+ [g]) + [h] = [F + gl + [A] = [(f + &) + h] = [ + (¢ + 1)]
= [f1+[g+ A = [f]+ ([¢g] + [1]) = RHS.

2. Existence of zero element: Let us define the constant function 0 : M — R as
follows: For every x in M, 0(x) = 0. We want to prove that 0 is in C;°(M). For
this purpose, we must prove

1. The domain of the function O is an open neighborhood of p in M,
2. for every admissible coordinate chart (U, ¢ ) of M satisfying p € U,

(0 (00)™) s 0u((dom 0)1U) — R

is C* at the point ¢y (p) in R™.
For 1: Here, the domain of the function 0 is M which is an open neigh-
borhood of p in M. This proves 1.
For 2: Let us take any admissible coordinate chart (U, ¢;) of M satisfying
p € U. Now, by the definition of the function 0, (0 o (¢,,) ") is the constant
function 0 defined on the open subset ¢, (U) of R™, which is known to be
C® at the point @ (p) in R™. This proves 2.
Thus, we have shown that 0 is in C;°(M). Now, it remains to be showed that
[0] + [f] = [f] = [f] + [0] for every f in C;*(M). Here,

LHS = [0] + [f] = [0 +f] = [f] = [f + 0] = [f] + [0] = RHS.

This proves 2.



52

3.

4.
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Existence of negative element: Let us take any f in C,° (M). So, by the definition
of C° (M), f is a real-valued function f whose domj is an open neighborhood
of p in M, and for every admissible coordinate chart (U, ¢,) of M satisfying
peuU,

(Fo(o0)™)  pu((domp)nU) = R

is C* at the point @ (p) in R™.

Now, let us define a function (—f) : (domf) — R as follows:

For every x in domf, (—f)(x) = —(f(x)). We want to prove that (—f) is in
Gy (M). For this purpose, we must prove

1. The domain of the function (—f) is an open neighborhood of p in M,
2. For every admissible coordinate chart (U, @) of M satisfying p € U,

(=2 (@0)™) : @ul(dom(~f)) NU) - R

is C™ at the point ¢ (p) in R™.

For 1: Since f is in C;°(M), by the definition of C;°(M), domf is an open
neighborhood of p in M. Since domf is an open neighborhood of p in M, and,
by the definition of (—f), dom(—f) = domf, dom(—f) is an open neighborhood
of p in M. This proves 1.

For 2: Let us take an admissible coordinate chart (U, ¢,;) of M satisfying p € U.

Now, by the definition of the function (—f), (—f) o (¢y) " = —(f o (@y) ).
Since (f o (@) ") is C* at the point @y (p) in R”, —(f o (¢y) ") is C™ at the
point ¢, (p) in R™. Since —(f o (¢) ") is C* at the point @, (p) in R™, and

(=f) o (ou)™" = =(Fo () ™), (=)o (py)™" is € at the point ¢y (p) in
R™. This proves 2.

Thus, we have shown that (—f) is in C;°(M). Now, it remains to be showed
=f

that [(=f)] + [f] = [0] = [f] + [(=f)]. Here,
LHS = [(=A] + [f] = (=) +/1 = [0] = [ + (=] = /] + [(f)] = RHS.

This proves 3.

+ is commutative: Let us take any f, ¢ in C° (M). We have to prove that
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Here

LHS = [f]+ [g] = [f + &] = [¢ +/] = [¢] + [f] = RHS.

This proves 4.
5. For every real s,7, and fin C*(M), (s + 1)[f] = s[f] +1[f] :
Here

LHS = (s +1)[f] = [(s + 0)f] = [(sf) + ()] = [(s)] + [())] = s[f] +7[S]
= RHS.

6. For every real s,7, and f in C;*(M), (st)[f] = s(t[f]) :
Here,

LHS = (s1)[f] = [(s0)f] = [s(sf)] = s[(sf)] = s([f]) = RHS.

7. For every real 1, and for every f,g in C)*(M), 1([f] + [g
Here,

I
=
+
oo

8. For every f in C*(M), 1[f] = [f]:
Here,

LHS = 1[f] = [1f] = [f] = RHS.

Thus, we have shown that quotient set C;°(M)/ ~ is a real linear space.
Now, we want to prove that F,(M) is an algebra.

1. Multiplication is associative:

LHS = ([f]lghln] = [f -gl + M = [(f- &) - h] = [f - (g - h)]
= [fllg -1 = [f1([¢][n]) = RHES.

2. Multiplication is commutative:

LHS = [fllg] = [f - g] = [g - f] = [][f] = RHS.

3. Multiplication distributes over +:

LHS = ([f] + [gD)[h] = [f + g][h] = [(f + &) - Bl = [(f - ) + (g - )]
=[f-hl +[g -l = [F][h] + [g][h] = RHS.

4. LHS = «([f]lg]) = 1If - &] = [1(F - )] = [(¢f) - &] = [f1lg] = (t[f])]g] =RHS. [
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2.3 Smooth Germs on Smooth Manifolds

Definition Let M be an m-dimensional smooth manifold. Let p be an element of M.
Under the vector addition, and scalar multiplication as defined in Theorem 2.23,
F,(M) is a real linear space. The members of F,(M) are called C*-germs at p on
M. Thus, if fis in C;°(M), then the equivalence class [f] is in 7,(M), and hence, [f]

is a C*°-germ at p on M.
Theorem 2.24 Let M be an m-dimensional smooth manifold. Let p be an element
of M. Let y be in I',(M). Let f be in C;°(M). Then,

1. 0 is an interior point of the domain of the real-valued function f o7,
2. lim,_o L= 0oNO) g
. — t ’

3. if f~g, then
L o0+~ (Fon(0) . (809)(0+1) ~ (g07)(0)

1—0 t =0 !

Proof

1: Since y is in I',(M), by the definition of I',(M), there exists a real number
0 >0 such that y: (—0,0) = M, y(0) =p, and y is a smooth map from
(—0,0) to M. Since 7is a smooth map from (—0,5) to M, y is a continuous
map.

Since f is in C;°(M), f : (domf) — R and domf is an open neighborhood of p
in M. Since y(0) = p, and p is in domf, O is an element of the domain of f o y.
Since f is in C}° (M), f is continuous on some open neighborhood U of p. Since
y:(=0,0) — M is a continuous map, y(0) = p, and U is an open neighborhood of
p, there exists ¢ > 0 such that ¢ < and, for every ¢ in (—¢,¢), we have y(r) € U
(C (domy)), and hence, (f o y)(¢) = f(y(¢)) € R. It follows that (—e¢, ¢) is a subset
of dom(f o 7). Hence, 0 is an interior point of the domain of the function f o . This
proves 1.

2: Since 0 is an interior point of the domain of the real-valued function f o y, it is
meaningful to write

oD+~ (Fon)(0)
t—0 t ’

provided it exists. Now we shall try to show that lim,_,ow exists.
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Since p € M, and M is an m-dimensional smooth manifold, there exists an
admissible coordinate chart (U, @) of M satisfying p € U. Since f is in C;°(M),

and (U, @) is an admissible coordinate chart of M satisfying p € U,
(Foou)™") s pul(omp)nv) — R

is C at the point @ (p) in R™. Observe that the domain of (f o (¢,)”"); that is,

pu((domf) N U) is an open neighborhood of ¢y (p) (= ¢ (7(0)) = (9 ©7)(0))
in R™. Since y is a smooth map from (=9, ) to M, and 0 € (=5, 0), yis C* at 0 in
R. Since yis C* at 0 in R, y(0) = p, and (U, @) is an admissible coordinate chart
of M satisfying p € U, (¢ 0y) : (—0,6) — R™ is C* at the point 0 in R. Since

(pyoy):(=6,0) = R"

is C* at the point 0,
(Foto0)™) : pul(domp)n V) = R

is C at the point (¢ 0 7)(0) in R”, and the domain of (f o (¢,) ") is an open
neighborhood of (@, 07)(0) in R™, the composite function (fo (¢,) "')o
(pyoy)(=foy)is C™ at the point O in R. Hence,

d(f o 9)(?)
dr

t=0

that is,

1 FonO0+0) = (Fo7)(0)

t—0 t
exists. This proves 2.
3: Letf~g.

We have to prove that

i F o0+ = (Fo9)(0) _ . (807)(0+1) —(g27)(0)
t—0 t t—0 t

Since f ~ g, there exists an open neighborhood H of p(= y(0)) such that f(x) =
g(x) for every x in H. Since f(x) = g(x) for every x in H, and y(0) is in H,

(fo)(0) =f(7(0)) = g(»(0)) = (g2 7)(0).
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Since y : (—0,) — M is a continuous map, and H is an open neighborhood of
7(0), there exists & > 0 such that & <9, and for every ¢ in the open interval
(—é&1,€1), (¢) is in H. Since 0 is an interior point of the domain of the function f o v,
there exists & > 0 such that &, < J, and the open interval (—¢;, &) is contained in the
domain of the function f o y. Similarly, there exists ¢3 > 0 such that &3 <9, and the
open interval (—es, &) is contained in the domain of the function g o y. Put

¢ = min{ey, &, 63}

Clearly, ¢ > 0. If ¢ is in the open interval (—¢, ¢), then ¢ is in the open interval
(—&2, &), and hence, (f o y)(#) is meaningful. Similarly, if ¢ is in the open interval
(—e¢,¢), then (g o )(r) is meaningful. If 7 is in the open interval (—e¢, ¢), then # is in
the open interval (—é1, ¢ ), and hence, y(¢) is in H. Since, for every ¢ in (—e¢, ¢), 7(¢)
is in H, and since f(x) = g(x) for every x in H, for every ¢ in (—¢,¢),

(Fop)®) =f(r(1) =8(() = (go7)(2).

Hence,
1111(}(fov)(oﬂ)t— (fo)0) _
L oW (o L (Fon) = (o))
1—0 t t—0, t
tin(—eg, &)
_ pm ©en) —(g07)(0)
t— 0, !
tin (—¢,¢)
— m &0+~ (g07)(0)
t—0, !
tin (—¢, )
i 82O+ 1) — (807)(0)
t—0 t
This proves 3. O

Note 2.25 Let M be an m-dimensional smooth manifold. Let p be an element of M.
Let y be in I',(M). Let [f] be in F,,(M) where f is in C;°(M). Let [g] be in F,(M)
where g is in C;°(M). If [f] = [g], then f ~ g, and hence,
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i Lo +1) = (o9)(©0) _ . (807)(0+1) —(g07)(0)

t—0 t t—0 [

So the following definition is well defined.
Definition Let M be an m-dimensional smooth manifold. Let p be an element of M.
Let y be in I',(M). Let [f] be in F,,(M) where f is in C;°(M). Then,

1 FonO0+0) = (Fo7)(0)

t—0 t

exists, and is denoted by <y, [f]>. Thus,

(fon)(0+1) = (fo)(0)

t

<, [f]> =lim

or,

<%m>:“ff@d

Theorem 2.26 Let M be an m-dimensional smooth manifold. Let p be an element
of M. Let y be in I',(M). Let [f] be in F,(M) where f is in C)*(M). Let [g] be in
Fp(M) where g is in C;°(M). Then,

L <, [fl+ [g]> = <, 1> + <, [g]>,
2. <y, alf]> = aky, [f]>> for every real a.

In short, we say that <,>> is linear in the second variable.
Proof
1. Here

(f+8on)O0+1)—((F+8)°7)0)
t

LHS = <, [f] + [s]> = <. [f + g]> = lim

i L TO00) ~ F+8)((0) _ . (FO0) +80(1)) — F(2(0) +(2(0))
t—0 t 1—0 t
i VO 0) = F(2(0))) + (8((1)) — 8(2(0)))
t—0 t
(L1 G100) (560~ O
1—0 t t
— i L0®) —1(:(9)) +lim (g(2(n) — g(2(0)))
1—0 t 1—0 t
i O +0) =£6(0) | (86(+0) - 8(2(0))
1—0 t =0 t

= <, [f]>» + <, [g]> = RHS.
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2. Here

LHS = <415 = <, 1> = g ()2 DOTI = (@) )0
i ENE0) = (GO _ L alf(6(0) = 1 (:(0)

t—0 t t—0 t
(@) —f((0)) (@) —f(2(0))
= tima (M) < DI
_ “(lil%f(y(HO)),_f(y(O))) _ 4y, [f]> = RHS. 0
Note 2.27 Let M be an m-dimensional smooth manifold. Let p € M. Let [[y]], [[7,]]

be in T,M (= I',(M)/~) where y,7, are in I',(M). Let [f], [fi] be in F,(M) where
f, fi are in C;O(M). Let [[y]] = [[y1]], and [f] = [f1]. We shall try to show that

dfon)(@)| _d(fion)(0)

U P dr =0

Since p € M, and M is an m-dimensional smooth manifold, there exists an
admissible coordinate chart (U, ¢,) of M satisfying p € U. Now since [[y]] =

[[72]], 7 = 71, and hence, (@y ©7)'(0) = (¢y ©7,)'(0). Since [f] = [Ai], f ~ g, and
hence, there exists an open neighborhood H of p(= y(0)) such that f(x) = g(x) for
every x in H.

o ((p) o0 03)(0)
t:U_ dr

d(Qb(¢w’ﬁ<%¢uoﬂ>@
dr

e o)™

_d(fen)
LHS = =

=0

((pyo7)(0 )) pyoy)
l v o) )) ®

] !

-1
o

U°/1

o

v((0 ) Pyon)
(¢

")
Q )(w
Q )(w
(Fo(o0) ™) (outp))) ( om(O))
Q )(w
? ¢

-1

((0u () (0u01)'©)
0 07)(0)) (9007 (0))

)O (/’UO)’I))([) _d(foy)()
dt T dt

o

!

(7o oo™

(
(
(
(
(
(
_ (e

= RHS.
=0

t=0
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Hence, the following definition is legitimate:

Definition Let M be an m-dimensional smooth manifold. Let p € M. Let [[y] be in
T,M where y is in I',(M). Let [f] be in F,(M) where f is in C;*(M). By [[y]][f], we

d(f )()

shall mean o (= <, [fI>).

Lemma 2.28 Let M be an m-dimensional smooth manifold. Let p € M. Let [y] be

in T,M where v is in T',(M). Then

L I+ 14D = DI+ [1A] for every [f], [fi] in Fy(M) where £, fi are in
M),

2. [[)ﬁ] (tlf]) = «([][f]) for every [f] in F,(M) where f is in C;*(M), and for every

real t,

3. AFIAD = (WD P)) + (Fe) (1A
for every [f], [fi] in F,(M) where f, fi are in C;*(M).

Proof

I: LHS = [)([F] + [A) = DI +AD = <, [f +A1> = <y + [A1>
=<, [fI> + <, [il> = [f] +7[fi] = RHS.

2: LHS = [](e[f]) = () = <, 2l > = ey, [FI> = 1([7][f]) = RHS.

3. LHS = [IARD = DI -] = S0, di-1)60),

dr |l 0 — dr It 0

_ A0 (@) fl(/(f))))| :d((((foy)(f)) (fion)( ))))|
dr dr =0

((fO/)() d((fi o v)()

AWDO) i o)) + (7 0 o) 2D,

([[V]][f])((fl 0 )(0)) + ((F e »(ON[FT)
(DIFDCAEO))) + FEOIAD
(IR P)) + F@E) (D[R] = RHES. =

2.4 Derivations

Definition Let M be an m-dimensional smooth manifold. Let p be an element of M.
Let D : F,(M) — R be any function. If

D([f] + [fi]) = DIf] + DIfi] forevery [f], [fi] in F,(M) where f, f; are in C;*(M),
2. D(t[f]) = t(DIf]) forevery [f] in F,(M) where f is in C;°(M), and for every real ,
D([f1lA]) = (DN (i (p) + (F(p))(DIfi]) for every [f], [fi] in F,,(M) where f, fi
are in C,*(M),
then we say that D is a derivation at p. Here, the collection of all derivations at p is
denoted by D,(M).
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Example 2.29 Let M be an m-dimensional smooth manifold. Let p € M. Let [y] be
in T,M where y is in I',(M).

By the Lemma 2.28, the mapping [f] — [y][f] is an example of a derivation at p.
We shall denote this derivation by Dy Thus,

Dy (If) = DA
for every [f] in F,(M) where f is in C;°(M). Also
{D,:[y] € T,M} C D,(M).

Note 2.30 Let M be an m-dimensional smooth manifold. Let p be an element of M.

For every D, D, in D,(M), we define D + D, : F,(M) — R as follows: For every

[f] in F,(M) where f is in C;*(M), (D + D1)([f]) = D[f] + Di[f]. We shall try to

show that D + D, is in D,(M), that is,

L (D+D)([f1 + [i]) = (D+ D[] + (D + Dy)lfi] for every [f], [fi] in F,(M)
where f, fi are in C;*(M),

2. (D + D)(t[f]) = t((D + D)[f]) for every [f] in Fp,(M) where f is in C;*(M),
and for every real ¢,

3. (D+D)(ARD = (D + DOFNG(P) + FE)((D+ D] for  every
[f], [i] in F),(M) where f, fi are in C;*(M).

D+ Dy)([f] + [i]) = D(If] + [A]) + D ([f] + /1))
D[f] + D[fi]) + (D1lf] + D1[fi])
= (D[f] + Di[f]) + (D[] + Du[fi])
D+ Dy)[f] + (D + Dy)[fi] = RHS.
For 2: LHS = (D + Dy)(t[f]) = D(t[f]) + D1 (z[f])
= 1(D[f]) + t(D1[f]) = ¢(D[f] + D1 [f])
=t((D + Dy)[f]) = RHS.
For 3: LHS = (D + Dy)([f1[i]) = D([f1[i]) + Di([f1If1])
= (DI (fi(p)) + () (DIAD) + (D) (fi(p)) + (F(P))(D:lfi]))
= ((DIf]) + Di[f)(fi(p)) + (F(p))(DIfi] + D1 [fi])
= ((D+D)[D(fip)) + (F(p))((D + Dy)[fi]) = RHS.

This proves that D + D, is in D,(M).
For every D in D,(M), and for every real 7, we define tD : F,(M) — R as follows:
For every [f] in F,(M) where f is in C)*(M), (tD)([f]) = #(DIf]). We shall try to
show that ¢D is in D, (M), that is,

1. (tD)([f] + [fi]) = (tD)[f] + (tD)[f1] for every [f], [fi] in F,(M) where f, fi are in
C3x(M),

2. (tD)(s[f]) = s((tD)[f]) for every [f] in F,(M) where f is in C;°(M), and for
every real s,

For 1: LHS =

~ ~ —~
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3. ()([1lAD = (D)D) + Fp)(D)[fi]) for every [f],[fi] in F,(M)

where f, fi are in C;O(M).

For 1: LHS = (eD)([f] + [fi]) = «(D([f] + [1]))
=1(D[f] + D[fi]) = 1(D[f]) + «(D[fi]) =

For 2: LHS = (tD)(s[f]) = t(D(s[f])) = #(s(D[f]))
= s(t(D[f])) = s((D)[f]) = RHS.

For 3: LHS = (tD)([f][A]) = «(D([F1Ai]) = «((DI])(fi(p)) + (f () (DIfi]))
= (D) (fi(p)) + (f(p)):(D[fi])
= (D)) (fi(p)) + (F(p))((tD)[fi]) = RHS.

This proves that ¢D is in D,(M).
Now, we shall try to verify that D,(M) is a real linear space.

(tD)[f] + (tD)[f1] = RHS.

1. + is associative: Let us take any D,D;,D, in D,(M). We have to prove that
(D+ D1) + D> =D+ (D + D,), that is, for every [f] in F,(M) where f is in
CX(M), (D + D1) + D2)[f] = (D + (D1 + D2))[f].

LHS = ((D + D1) + D2)[f] = (D + D1)[f] + Da[f] = (DIf] + Di[f]) + D[ f]
D[f]+ (Di[f] + Da[f]) = DIf] + (D1 + D) [f] = (D + (D1 + D2))[f] = RHS.
2. Existence of zero element: Let us define the constant function 0 : F,(M) — R

as follows: for every [f] in F,(M), O[f] = 0. We want to prove that 0 is in

D,(M). For this purpose, we must prove

1. O([fg +)[f1]) = 0[f] + 0[f1] for every [f],[fi] in F,(M) where f, f; are in
(M),

2. 0(t[f]) = #(O[f]) for every [f] in F,(M) where f is in C,°(M), and for every
real ¢,

3. 0([A1lAD = OFD(fi(p)) + (F(p)(Olfi]), forevery [f], [fi] in 7, (M) wheref,
fiare in C°(M).

For 1: LHS = 0([f] + [fi]) = 0 = 0 + 0 = O[f] + O[fi] = RHS.
For 2: LHS = 0(#[f]) =0=1¢-0 = (O[f]) RHS.
For 3: LHS = 0([f][i]) = O([f - fil) = 0 = 0(fi(p)) + (f(»))0 = (OU))(fi(p)) +
(f())(O[fi]) = RHS.
Thus, we have shown that O is in DP(M). Now, it remains to be showed that
0+ D = D for every D in D,(M), that is, for every [f] in F,(M) where f is in
Cc (M), (0+ D)[f] = DIf].

LHS = (0+ D)[f] = 0[f] + D[f] = 0+ D[f] = D[f] = RHS.
Hence, 0 serves the purpose of zero element in D,(M).

3. Existence of negative element: Let us take any D in D,(M). Now, let us define
(—D) : (M) — R as follows: For every [f] in F,(M), (—D)[f] = —(D[f])-
We want to prove that (—D) is in D,(M). For this purpose, we must prove
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L (=D)([f] + [A]) = (=D)If] + (=D)[AA] for every [f], [fi] in F,(M) where f,
fi are in C*(M),

2. (=D)(¢ [f]) t((—D)If]) for every [f] in F,(M) where f is in C,°(M), and for
every real t,

3. (=D)([AIA]) = (D)D) + fP)((=D)Ifi]), for every [f][fi] in

Fp(M) where £, fi are in C;*(M)

For 1: LHS = (=D)([f] + [A]) = = (D([f] + [i])) = —(D}f] + DIfi])
J=

= —(DIf]) + (=(DIA]) = (=D)[f] + (=D)[i] = RHS.
This proves 1.

For 2: LHS = (=D)(¢[f]) = —(D([f])) = —(«(D[f]))
= ((=(D[f])) = «((=D)[f]) = RHS.

For 3: LHS = (=D)([f]lA]) = —(D([]lA])) = —((DFD) (1 (p) + (F(p)(DIfi]))
= (=) P) + FP)(=(D[f])
= (D) h(p)) + FP)(=D)Ifi]) = RHS.

Thus, we have shown that (—D) is in D, (M). Now, it remains to be showed that
(=D)+D =0, that is, for every [f] in F,(M) where f is in C*(M),

((=D) + D)[f] = Off].
LHS = ((=D) + D)[f] = (=D)[f] + D[f] = —=(D[f]) + D[f] = 0 = O[f] = RHS.

Hence, (—D) serves the purpose of negative element of D in D,(M).

. + is commutative: Let us take any D,D; in D,(M). We have to prove that

D+ Dy =D, +D, that is, for every [f] in F,(M) where f is in C;*(M),
(D + D)[f] = (D1 + D)[f].

LHS = (D + D1)[f] = D[f] + Di[f] = Di[f] + D[f] = (D1 + D)[f] = RHS.

This proves 4.

. For every real s, 1, and D in D, (M), we have to prove that (s + #)D = sD + D,

that is, for every [f] in F,(M) where f is in C*(M), ((s+1)D)[f] =
(sD + tD)[f]. Here

LHS = ((s + 1)D)[f] = (s + 1)(D[f]) = s(D[f]) + 1«(D[f]) = (sD)[f] + (:D)[f]
= (sD + tD)[f] = RHS.

. For every real s, ¢, and D in D,(M), we have to prove that (s1)D = s(¢D), that is,

for every [f] in F,(M) where f is in C;°(M), ((st)D)[f] = (s(tD))[f]. Here,
LHS = ((s)D)[f] = (st)(D[f]) = s((D[f])) = s((tD)[f]) = (s(:D))[f] = RHS.
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7. For every real , and for every D,D; in D,(M), we have to prove that
#(D + Dy) =tD + tDy, that is, for every [f] in F,(M) where f is in C;°(M),
(t(D + Dy))[f] = (¢tD + tDy)]f]. Here

LHS = (:(D + D)) [f] = 1((D + D) [f)) = #DIf] + Di[f)) = t(DIf) + ((Di[f])
— (tD)[f] + (tD1)[f] = (1D +1Dy)[f] = RHS.

8. For every D in D,(M), we have to show that 1D = D, that is, for every [f] in
Fp(M) where f is in C;*(M), (1D)[f] = D[f]. Here,

LHS = (1D)[f] = 1(D[f]) = D[f] = RHS.
Thus, we have shown that D,(M) is a real linear space.

Lemma 2.31 Let M be an m-dimensional smooth manifold. Let p be an element of
M. Let D : F,(M) — R be a derivation at p. Let [f] be in F,(M) where f is in
CX(M). If f is a constant function, then D[f] = 0.

Proof Since f is a constant function, there exists a real number ¢ such that f(x) = ¢
for every x in the domain of f. Since

D(1) = 0. Now,

LHS = D[f] = D(c) = D(c1) = ¢(D(1)) =c-0 =0 =RHS. O

Note 2.32 Let M be a 2-dimensional smooth manifold. Let p € M. Let (U, @) be
any admissible coordinate chart of M satisfying p € U. Let u', u?> be the component
functions of ¢. So

W' U—-R, u?:U—R,
and for every x in U,
oy (x) = (' (x), 1 (x)).

Since ' is in C*(M), [u'] is in F,(M). Similarly, [u*] is in F,(M).
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Further, let us observe that

t—0 t

! ((wu) (pu(p) + (1, 0))) —u'(p)
_ hmul(q) - ul(p)

t—0 t

where g = (¢) " (oy(p) + (1,0)), that is,

(u' (@), 4%(q)) = oy(@) = 9u(p) + (1,0) = (' (p),1*(p)) + (1,0)
(u' (p )+t w*(p))-

Hence, u'(gq) = u'(p) + t. This shows that

(D1 (0 () ™)) (0 (p)) = tim D= 2)

t—0 1 t—0 t

Thus,

(D‘ (“1 ° (9"0)71))(%(17)) =1.
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t—0 t

o ((wu) (@u(p) + (0 r))) —u'(p)
— hmul(q) — ul(p)

t—0 t

Hence, u'(g) = u'(p). This shows that

(D2 (Ml ° ((pU)il)) (pu(p)) = lim=

t—0 t

Thus,
(D2(u" o (00) ") ) (0(p)) =O.

Similarly, (Dz(u2 ° ((pU)il))(QDU(P)) —1, and (Dl(bt2 o (QDU)fl))(QDU(p)) —o

Definition Let M be a 2-dimensional smooth manifold. Let p be an element of M.
Let (U, ¢,/ be any admissible coordinate chart of M satisfying p € U. Let u', u® be
the component functions of ¢;. The function %b; : Fp(M) — R is defined as
follows: For every [f] in F,(M),
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- <D1 (fo (%)‘1))«/}0@))-

0
vl

The function %LD : Fp(M) — R is defined as follows: For every [f] in F,(M),

o
ou? »

From the Note 2.32,
( d
ou’ »

)m = (D2(f o (00) ™) ) (00 (p)).

a1 =
)M{o if Q]

Note 2.33 We shall prove that il\ is in D, (M). For this purpose, we must prove

1.

2.

3.

(el ) (1 + 1)) = el U] + Gl ) [A] for every [f], [fi] in 7 (M) where £, f;

are in C,°(M),

(a%|p)(t[f]) = t((%b)[f]) for every [f] in F,(M) where f is in C;C(M), and for
every real ¢,

(aurlp) (F11A]) = (Gl ) D @) + (F @) (Gt )R], for every [f], [fi] in
Fp(M) where f, fi are in C)°(M)

= )([fmm) - (ai ><v+m>— (i (¢ 1)< (00) ")) (00 (p)

= (0u((ro o)) + (Ao (o)) )outo) = (D1 (1 o (00) ") ) (00 (p))
+(Di(fio (00) ")) (00 (p)) = (au )[f] <aa> = RHS.

For 1: LHS = (

° p o(ep
g d
_ ((a ) m) () + () ((6 ) w) ~Ris.
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This proves that %Jp is in D,(M). Similarly, %L; is in D, (M).

Note 2.34 We shall prove that %\ 1 o , are linearly independent. For this purpose,

ou?

let #(z%,) + 12(3%],) = 0. We have to show that 1, = 1, = 0. Since #(;%],) +

() =0, so
el )= (el o) (G )

0
0=0[u] = (ﬁ (ﬁ
= ll(l) +t2(0) =1.
, are linearly

Thus, #; = 0. Similarly, #, = 0. Thus, we have shown that %bﬂ %
independent.

Lemma 2.35 Let M be a 2-dimensional smooth manifold. Let p be an element of
M. Let (U, @) be any admissible coordinate chart of M satisfying p € U. Let us
define functions

W U—-R, *:U—R

as follows: For every x in U,

If oy (p) = (0,0), then {%b’%'z’} is a basis of the real linear space D,(M).

Proof From the above discussion, it remains to be proved that {z&|,, 55|, } gen-
erates the whole space D,(M). For this purpose, let us take any D in D,(M). We
have to find real numbers #,, 7, such that D = #,(;%[,,) + 2(z%|,), that is, for every

[f] in F,(M) where f is in C;°(M), we have
)

- (&]) o

Let us take any [f] in F,(M) where f is in C;°(M). It suffices to prove that

o= (01 (55 ) + 00 (53] ) )i
DUF%DWD<G%?)ﬂ>+@Wﬂw<£%>m>

Let us note that for every ¢, (q)(= (u'(q),u*(q))) in @, (U), where g is in U,

that is,
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(00) ™ (oo (@)

+ («*(9)) (22(9));
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where

and

for every g in U. Hence,

fla) = (1"(9)(81() + (£ () (g2(a)) +£(p) = (u'g1)(q) + («*g2) (q) +f(p)
= (u'gi + 1’ +£(p))(q)

for every g in U. So

f=u'gi+u’g+f(p).

Next

D[f] =D[f(p) + u'g1 + u’g] = DIf (p)] + D[u'g:]| + D[u’g.)]
=0+Du'g ] +D[u’g:] = D[u'g:] + D[u’g]
= ((D[u ])(81(P))+( (p)(Dlg1)) + ((D[w?])(g2(p)) + (4 (p)) (Dlga)))
= ((D[u'])(g1(p)) + (0)(D[1])) + ((P[#*]) (g2(p)) + (0)(D[g2]))
= (D[«'])(s1(P) + (D[]) (82(p))

Q.—
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,,) [f]) L+ (D[w]) <<£2 ,,) [f])l
o0 (&) o (& Jr) =mos. o

Lemma 2.36 Let M be a 2-dimensional smooth manifold. Let p be an element of
M. Then, D,(M) is a 2-dimensional real linear space.

Proof Since M is a 2-dimensional smooth manifold, and p is in M, there exists an
admissible coordinate chart (U, ¢,) of M satisfying p € U. Here, we can find
admissible coordinate chart (U, ) of M satisfying y,(x) = @y (x) — @y (p) for
every x in U. Hence, ,(p) = 0. Let us define functions

W U—-R, w?:U—R
as follows: For every x in U,
(u' (x), (%)) = Yy ().

Then, by Lemma 2.35, {%Lj,%u} is a basis of the real linear space D,(M).
Hence, the dimension of D,(M) is 2.

As above, we can prove the following

Lemma 2.37 Let M be an m-dimensional smooth manifold. Let p be an element of

M. Then, D,(M) is an m-dimensional real linear space. Also, if (U, ¢y) is any

admissible coordinate chart of M satisfying p € U, then {%LD, .. .,%LD} is a basis

of Dp(M), where u',...,u™ are the component functions of ¢y;.
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Theorem 2.38 Let M be an m-dimensional smooth manifold. Let p be an element
of M. Put

Hy(M) = {[f] : [f] € Fp(M), and <y, [f]> =0 forevery yinI,(M)}.

Then, H,(M) is a linear subspace of the real linear space F,(M). In short, we
say that H,, is a linear subspace of F,.

Proof Let us try to prove that H,(M) is nonempty. Let us recall that [0] € F,(M),

where 0 denotes the constant function zero defined on M. Since, for every y in
I,(M)
p 9

00t +0) =0G:O) _ ;. 0=0 _ 0 —o,
t t—0 t =0

<, [0]> = lim

by the definition of H,(M), [0] € H,(M). Hence, H,(M) is nonempty.
Now, it remains to be proved that

L. IF [f] € Hy(M), [¢] € T, (M), then [f] + [g] € 7, (M),
2. For every real o, and for every [f] € H,(M), a[f] € H,(M).

For 1: Let [f] € H,(M), [g] € H,(M). Since [f] € H,(M),[g] € H,(M), and
H,(M) is contained in F,(M), [f]€ F,(M),[g] € Fp(M). Since [f]e€
Fo(M),[g] € Fp(M), and by Theorem 2.23, F,(M) is a real linear space,
]+ [¢] € 7o (M).

Now, let us take any y in I',(M). Since [f] € H,(M), by the definition of
H,(M), <7, [f]>> = 0. Similarly, <y, [¢g]>> = 0. Now, by Theorem 2.26,

<), [f]+[g]> =<, [fI> + <, [g]>=0+0=0.

So, by the definition of H,(M), [f] + [g] € H,(M). This proves 1.

For 2: Let o be any real number, and let [f] € H,(M). Since [f] € H,(M), and
H,(M) is contained in F,(M), [f] € F,(M). Since « is a real number,
[f] € F,(M),and by Theorem 2.23, F,(M) is a real linear space, of] € F,(M).

Now, let us take any 7y in I',(M). Since [f] € H,(M), by the definition of
H,(M), <y, [fI> = 0. Now, by Theorem 2.26,

Ly, o[f]> = aky, [f]> = «(0) = 0.

So, by the definition of H,, (M), a[f] € H,(M). This proves 2. Hence, H, (M) is
a linear subspace of the real linear space F,(M).
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2.5 Cotangent Spaces

Definition Let M be an m-dimensional smooth manifold. Let p be an element of M.
The set

{[f]:[f] € Fp(M), and <y, [f]>> = 0 for every y in I',(M)}

is denoted by H, (M) (or, simply H,,). From Theorem 2.38, H,, is a linear subspace
of the real linear space F,. So it is meaningful to write the quotient space % We

»
know that

I|:

={l1+H,: [fleFp}.

Here, vector addition, and scalar multiplication over % are defined as follows:
P
For every [f], g] € F, and for every real ¢,

(1 +Hp) + (18] + Hy) = ([f] + [8]) + Hp = [f + 8] + H,,
)

t([f1+Hp) = (tlf]) + Hy = [if] + Hy.
The quotient space i—‘p is denoted by T} (M) (or, simply T)) and is called the

cotangent space of M at p. Since % is a real linear space, the cotangent space 7,; of
P

M at p is a real linear space. Intuitively, in 7, we will not distinguish between /]

and [g] whenever [f] — [g] is in H,,.

Definition Let M be an m-dimensional smooth manifold. Let p be an element of M.
Let [f] € F,. [f] +H, is denoted by [f] (or,[f]~) or (df),, and is called the
cotangent vector on M at p determined by the term [f]. Thus, we can write

T, ={fl: 111 € 7}
or,
s ={an,: e}
From the above discussion, we get the following formulae:

{[f]”r[g]N: [f+gl”
1" =[f1"

or,
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(@), +(dg), = (d(f + ),
1((dr),) = @),

Theorem 2.39 Let M be an m-dimensional smooth manifold. Let p be an element
of M. Let [f] be in F,(M) where f is in C;°(M). Let (U, @y) be an admissible
coordinate chart of M satisfying p € U. Then, [f] € H,(M) if and only if

(Di(fo(00) ™) ) (@u(p)) = (D2(F o (00) ") ) (0u(p))

= (Du(r o (o) ™)) (00 ) = 0.

In other words, [f] € H,(M) if and only if (%b})[ﬂ = (%‘p)[ﬂ S
(a7, )[F] = 0.

Proof (if part): Let

Qh(fO(wy)”))(wUUﬁ)=~--==(Dm(f0(¢uf*))(¢uuﬂ)=(l

We have to show that [f] € H,(M), that is, <y, [f]>> = 0 for every y in I',(M).
d(f 2 9)(1)

For this purpose, let us take any 7 in I',(M). Since <y, [f|>> = m

|t:07 we
must prove that

d(f e 7)(1)

=0.
dr

=0

Since y is in I',(M), by the definition of I',(M), y is a parametrized curve in M
through p, and hence, there exists a real number 6 > 0 such that vy is defined on the
open interval (—0, ), y(0) = p, and 7 is a smooth map from (—d,J) to M. As in
the proof of Theorem 2.24, we can show that 0 is an interior point of the domain of
the mapping ¢ o y. Since O is an interior point of the domain of the mapping
@y 7, there exists ¢ > 0 such that ¢ <4, and each of the m component functions of
the mapping

(pyoy): (=& e —R"

is C* at 0 in (—¢, ¢), and hence, each of the m functions F; : (—¢,¢) = R, ... F,, :
(—¢,6) > Ris C* at 0 in (—¢,¢&) where

(F1(2), - Fu()) = (@y ©7)(7)

for every t in (—¢, ¢). Since f is in C;°(M), by the definition of C;°(M), domf is an
open neighborhood of p in M, and
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(Folo0)™)  py((domp)nU) — R

is C* at the point ¢ (p) (= ¢y (7(0)) = (@y ©7)(0)) in R™, and hence, the partial
(

derivatives  (D1(f © (py) ™)) ((@y ©7)(0)), -, (Du(f © (01) ) (¢ ©7)(0))
exist. Now,

s 90 Z)U)I,I a((re <<py>12to (00 °7) )|
- dF,(z)
dr
=[(Dire (o)) (0w on©) .. (Dulfolon)))(ouonO)] ]
dF,,(1)
dr =0
dF(r)
dr
=[(Di(fo (o)) @) - (Pa(Folon)™))(0uo)]|:
dr =0
dFy(r)
d dF (1) dF(1)
=[0 0] ;Fm(t) = {0 < i ) +0-< @ )LO:O:RHS.
dr =0
O
Proof (only if part): Let [f] € H,(M). We have to show that
(Di(foten) ™)) (@ue) =+ = (Du(f o (00) ) ) (@u(p)) = 0.

If not, otherwise, let (D1 (f o (¢y)""))(@y(p)) (for simplicity) be nonzero. We
have to arrive at a contradiction. Let us define a function p, : (—1,1) — R™ as
follows: For every ¢ in the open interval (—1,1),

7(1) = (1,0,...,0) + oy(p).
Put
7= (@) o

We shall try to prove that

1. 9(0) = p,
2. 0 is an interior point of the domain of 7y,
3. y is a smooth map from (—J,0) to M for some 6 > 0.



2.5 Cotangent Spaces 75

For 1: Here,

LHS = 5(0) = ((90) "0 1) (0) = ()™ (1(0)) = (9) " ((0,0,...,0) + 9y (p))
= (¢y) ' (¢y(p)) = p = RHS.

This proves 1.
For 2: By the definition of y;, the function y, : (—1,1) — R™ is continuous.
Since y; : (—1,1) — R™ is continuous, and O is in the open interval (—1, 1), y,
is continuous at 0.
Since (U, @) is a coordinate chart of M, (o)~ : ¢, (U) — U is a 1-1, onto,
continuous function, and ¢ (U) is an open subset of R™. Since p € U, ¢y(p) €

¢y(U). Since 7,(0) = (0,0,...,0) + ¢y (p) = ¢u(p) € ¢y(U), and (py) " :
@y(U) — U is continuous, (¢;) " : ¢y (U) — U is continuous at the point
7,(0). Since 7,(0) € ¢y, (U), and ¢y (U) is an open subset of R™, ¢ (U) is an
open neighborhood of y,(0). Since y, : (—1,1) — R™ is continuous, ¢, (U) is an
open neighborhood of 7, (0), there exists 6 > 0 such that <1 and, for every 7 in
(—=8,0) we have 7y,(t) € ¢@u(U), and hence, y(r) = ((py) ' oy,)(t) =
(oy) " (71(r)) € U. Since y(t) € U for every t in (=4, d), it follows that (—9, d) is
a subset of the dom(y). Hence, 0 is an interior point of the domain of the function
y. This proves 2.

For 3: In 2, we have seen that y is defined over (—d, J). Now, it remains to be

proved that y is a smooth map from (—4, J) to M, that is, y is C* at every point ¢

n (—J,0).

Here, y is defined over (—J,0), so y(¢) is meaningful for every ¢ in (—9,0).

Since y(¢) is meaningful for every 7 in (—J,d), and

1) = ((00) ™0 ) () = (00) ™" (1(0) = (9) ™' ((,0,..-.,0) + @y (p)),

(0y) (1,0, ...,0) + @y (p)) is meaningful for every 7 in (—9,6). Since (U, )
is a coordinate chart of M, (¢;) " : ¢y (U) — U. Since (¢y)"" : oy (U) — U,
and ((/)U)fl((t,O, ..0)+ ¢y(p)) is meaningful for every ¢ in (—0,9),

(o) '(1,0,...,0) + @y(p)) is in U for every ¢ in (—d,8). Since
(00) ' ((2,0,...,0) + @y(p)) is in U for every ¢ in (—4,0), and p(r) =
(o) ' ((1,0,...,0) + @y (p)), y(¢) is in U for every ¢ in (—0,0). Thus, y maps
(=9,9) to U.

Now, it remains to be proved that y is a smooth map from (—d, ) to M, that is, y
is C™ at every point ¢ in (=3, 0). For this purpose, let us fix any ¢ in (=0, ¢). From
the definition of y,, y, is C* at z. Since 7 is in (=9, J), and y maps (-9, ) to U,
7(r) is in U. Since y, is C* at 1, y = (@)~ oy, y maps (—8,0) to U, and 7 is in
(=0,0), pyoyis C™ att. Since @y 0y is C* att, and (U, @) is an admissible
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coordinate chart of M satisfying y(¢) € U, by Theorem 2.2, 7y is C* at ¢ in (=9, ).
This proves 3.

From 1, 2, and 3, we find that y is a parametrized curve in M through p, that is,
yisin I',(M). Since [f] € H,(M), and y is in I',(M), by the definition of H, (M),
<y, [f]> = 0. Put

oy(p) = (ai,. .., am).

Next, let us define m functions F; : (=9,0) = R, ..., Fy : (=9,6) — R such
that for every ¢ in (=9, ),

(F1(2), .., Fu(1)) = (@y 09)(1) = 71(1) = (2,0,...,0) + @y(p)
(#,0,...,0) + (a1, ..,an) = (t+ay,a,...,an).

Hence,
o1 d((folen)™")o(puon))®)
O=<<“/7[f]>>:d(fd,/)(t)170: (< - 2t = /> ‘
0 _d(l+a1)_
dr
d(a2)

=[(2i(rot00)™))uon@) o (Balroon ™))t onO) ]|

d(an)
L dr di=0

= [(Ba(re (o) ™)) @up)) -+ (Du(ro (o) ™)) (0u(r)]

= (D1(fo(00) ™) ) (@ulp)) - 140+ +0= (Di(fo (00)™") ) (00 (p)) #0,

which is a contradiction. O

Theorem 2.40 Let M be a m-dimensional smooth manifold. Let p be an element of
M. Letf',f? € C,°(M). Let G be an open neighborhood of (f'(p),f2(p)) in R%. Let
F: G — R be a smooth function. Then, there exists f in C° (M) such that for every
x in domf,

fx) = F(f'(x).£2(x).
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Proof For this purpose, by the definition of C;°(M), we must find a function f such
that

1. domf is an open neighborhood of p in M,
2. f(x) = F(f'(x),f?(x)) for every x in domf, and
3. for every admissible coordinate chart (U, ¢;) of M satisfying p € U,

(Folo0)™)  pu((domf)nU) = R

is C* at the point ¢y (p) in R™.

Since f! € C;¥(M), by the definition of C;°(M), f' is a real-valued function
whose dom(f!) is an open neighborhood of p in M. Similarly, 2 is a real-valued
function whose dom(f?) is an open neighborhood of p in M. Since dom(f') is an
open neighborhood of p in M, and dom(f?) is an open neighborhood of p in M,
their intersection dom(f') Ndom(f?) is an open neighborhood of p in M. Put

V= dom(fl) ﬂdom(fz).
Let us define a function
g: Vi —»R?

as follows: For every x in V)

g(x) = (f1 (0,2 ().

Since f! € C;*(M), f' is continuous at p. Similarly, f* is continuous at p. Since
f',f? are continuous at p, and g(x) = (f'(x),f>(x)) for every xin Vi, g : V; — R?
is continuous at p. Since g:V; — R? is continuous at p, and G is an open
neighborhood of (f!(p),f%(p))(= g(p)) in R?, there exists an open neighborhood
V(c Vi = dom(f!) ndom(f?)) of p such that g(V') is contained in G. Since g(V) is
contained in G, and F : G — R, for every x in V, F(g(x))(= F(f'(x),f*(x))) is a
real number.

Now, let us define a function

as follows: For every x in V,

Clearly, the conditions 1 and 2 are satisfied.
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For 3, let us take an admissible coordinate chart (U, ¢,;) of M satisfying p € U.
We have to show that the function

(reton) ™) rouvnu) — R

is C™ at the point ¢ (p) in R™. Here, for every ¢, (x) in ¢, (V N U), where x is in
VNU, we have

Since f' € C;°(M), and (U, @) is an admissible coordinate chart (U, @) of M
satisfying p € U, by the definition of C;*(M),

(fl o (q)U)fl) : (pU(dom(fl) nU) =R

is C® at the point ¢,(p) in R™. Since (domf)NU =VNU C dom(f!)
Ndom(f2)NU C dom(f')NU, ¢y ((domf)NU) C ¢y ((dom(f!)) NU). Since ¢y
((domf)NU) C py((dom(f')) NU), and (f' o (py) ") : py(dom(f) N U) — R
is C* at the point ¢y (p) in R”, the restriction of £ o (¢y) " to ¢y ((dom £) N U)
is C™ at the point ¢y(p) in R™. Therefore, for every x in (dom f)NU,

oy(x)— (f‘ o ((pU)’1>((pU(x)) is C*° at the point ¢ (p) in R™. Similarly, for every x
in (dom f) N U, @y(x)— <f2 o (goU)A)(goU(x)) is C* at the point ¢ (p) in R™.
It follows that, for every x in (dom f) N U, ¢y(x)— ((fl o (goU)A)(qu(x)),
(f2 o ((pU)fl)((pU(x))) is C* at the point ¢y (p) in R™. Since, for every x in

(domf) N U, oy(x) = (' o (91) ) @u(), (1% © (0y) ) (9y(x))) is € at the
point @ (p) in R™ G is an open neighborhood of (f!(p),f*(p)) in R?, and F :
G — R is a smooth function, for every x in (domf)NU(= VNU), the function

ou(x) = F((f' o (01) )@y (), (70 (91) )@y ()))(= (F o (91) )(9u(x)))

is C* at the point ¢ (p) in R™, and hence,
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(Fotoo)™) sou(vou) =R

is C* at the point ¢y (p) in R™. This proves 3. d
Theorem 2.41 Let M be an m-dimensional smooth manifold. Let p be an element
of M. Let f',f* € C;*(M). Let G be an open neighborhood of (' (p),f2(p)) in R2.
Let F : G — R be a smooth function. Let f, g be in C° (M) such that for every x in
domf,

f(x) = F(f'(x),£2(x)

and, for every x in dom g,
glx) = F(fl (x),fz(x)).

Then, f ~g.

Proof By Theorem 2.40, the existence of f, g are guaranteed. Since f is in C;° (M),
domf is an open neighborhood of p in M. Similarly, dom g is an open neighbor-
hood of p in M. Since domf is an open neighborhood of p in M, and dom g is an
open neighborhood of p in M, their intersection (domf) N (domg) is an open
neighborhood of p in M. Next, let us take any x in (domf) N(dom g). It remains to
be showed that f(x) = g(x). Since x is in (domf) N(dom g), x is in domf. Since x is

indomf, f(x) = F(f'(x),f*(x)). Similarly, g(x) = F(f'(x),f*(x)). Since f(x) =
F(f' (x),f*(x)) and g(x) = F(f' (x),f*(x)), f(x) = g(x). O
Theorem 2.42 Let M be an m-dimensional smooth manifold. Let p be an element
of M. Let f*,f* € C*(M). Let G be an open neighborhood of (f'(p).f*(p)) in R*.

Let F : G — R be a smooth function. Then, there exists a unique [f] in F,(M),
where f is in C)°(M), such that for every x in domf,

f(x) = F(f'(x),£2(x).

Also

17 = (OEYF )L D) [T+ () (p)-£(p)) [F]

~

Proof Existence: By Theorem 2.40, there exists f in C,°(M) such that for every x
in domf,

f(x) = F(f'(x),£2(x).
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Further, since f is in C;°(M), the C*°-germ [f] is in F,,(M). This proves the
existence part of the theorem.

Uniqueness: For this purpose, let [f], [g] be in F,(M), where f, g are in C;* (M),
such that for every x in domf,

x) = F(f'(x),f*(x))
and, for every x in dom g,
= F(f'(x)./*(x).

We have to prove that [f] = [g].
By Theorem 2.41, f ~ g. Since f, g are in CEO(M),ng, and ~ is an equiva-
lence relation over C;°(M), the equivalence class [f] determined by f, and the

equivalence class [g] determined by g are equal, that is, [f] = [g]. This proves the
uniqueness part of the theorem. O

Since [f] € F,(M), the cotangent vector [f]™ (that is, [f] +H,) on M at p
determined by the germ [f] is a member of the quotient space fl—z (that is,
the cotangent space T, (M) of M atp).

Next, since f! € C,°(M), the equivalence class [f!] determined by f! is a

~

member of F,(M), and hence, the cotangent vector [f!]™ on M at p determined by

the term [f] is a member of the quotient space fl—g Similarly, the cotangent vector

Fp

[f°]~ onM at p determined by the term [f?] is a member of the quotient space T

. ~ ~ . F,
Since [f']™,[f?]~ are in T and > is a real linear space, the linear combination

(DIF)( ()L™ +((D2F)(f‘(p), 2D of [f]7 (7] s in g

Finally, we have to show that

1= (@ )L ] +(0F) L) ]
Since

(D) (p).L2 ) '] +((D2F) (F(p).£2 () []
= [((DiF) (f1 (). L)' +[((DF) (F (). 2 ()]~
= [((D1F)(F' (p). 2 () )f* + ((D2F) (' (p).f*())f*]~

~

we have to show that

7= L@EF)F @)L )+ (D) (). 0)F]
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that is,

f+H, = (D) (p).L2P)f' + (D2F) (F (p).S?(P)))f?) + Hy,

that is,

(DE)Y (' (p) L2 + (D2F) (' (p) f2(P))f?) = f € Hp,

that is, for every y in I',(M),

<, [(((DF)(F () L)) + (D) (F (p).f2(p)) )f2) —f]> =0,

that is, for every y in I',(M),

<9, (DF)(F (). L2 () IF'] + ((D2F) (F (p). L2 (p) IF] = 1> =0,

that is, for every y in I',(M),

(DIF) (£ (p).L2(p)) <, [F' > + ((D2F) (F (p).£2(p))) <, [f7]>
— <, [fI>»> =0,

that is, for every y in I',(M),

(DLF) (' (p).f2(p)) <, [F' > + ((D2F) (F (p).£2(p))) <, [f7]>
=<, [f1>.

For this purpose, let us take any y in I',(M). Since y is in I',(M), there exists a
real number ¢ > 0 such that y is defined on the open interval (—0, J), and y(0) = p.
We have to prove that

((DIF)(F (p).f7 ()<, [F']> + ((D2F) (F (p).f2 (p))) <, [F7]>
=<, [f1>.

LHS = ((DiF) (' (p).S* ()<, [ 1> + ((D2F) (F (p).2 () <, [FP]>
s 264
= () . LE) D (D) (). 2y O

d(f' (v(1) d(f2(v(1))
dr dr

=0
+((D2F) (' (p).f*(p)))

dEGW)| _ dFE G0).L00)
dr

dr =0

t=0

= ((DiF) (' (p).f*(P)))
_d(r o))
dr =0

_dF((f o) (@), (2 27)(1))
dr

=0

RHS = <, [f]>

t=0

=0
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= (@) o)) (o))

(DR 2 7)), (7 o)) 2220

1
= (F) (7 (5(0)). 210 L)

t=0

=0

2(s
+ (D) 6(0)), G (0) D)

=0

(DB (7 (), £ () AL

=0 dt =0

1
= (F) (7 (). £ () L)

Hence, LHS = RHS. O

Note 2.43 Since [f] ™~ is also denoted by (df),, the formula in Theorem 2.17 can be
written as:

(df),= (DIF) (F (), f2 () (df"),+((D2F) (F (p).S* () (df7),-

Since (D1F)(f' (p),f?(p)) is classically written as & (' (p), f2(p)), etc., we can
write:

(@ (), @,= (0 0 0 0) ) @), 4 (35 0 01200 ) (@),

Note 2.44 Since the multiplication operation of real numbers is a smooth function
from R? to R, in Theorem 2.42, we can take multiplication operation in place of F.

So &1 (p),f*(p)) becomes f(p), and &L (f'(p),f*(p)) becomes f'(p). Hence,
we get

@), = @)= (50 0 0) ) @)+ (0 ) ) @),
= () (dr"),+((p) (d@?),

(@t 2)),= (), + () (),
Similarly, for every f*,f%,/* in C;*(M), we have
(@' £2-17),= (@) (P (2) ([d) + () (F () (), +(F () (2 () (),

etc. If we recollect our previous results, we get the following theorem.
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Theorem 2.45 Let M be an m-dimensional smooth manifold. Let p be an element
of M. Let f,g € C*(M). Then,

L (d(f +3)), = (df), + (dg),,

2. (d(¥f)), =t((df),), for every real t,

3. (d(f-g8)), = (g(P)(df), + (f(p))(dg),-

Proof Proofs have already been supplied. U

Theorem 2.46 Let M be an m-dimensional smooth manifold. Let p be an element
of M. Let f'.f2.f3¢ CX(M). Let G be an open neighborhood of

(F' (), f2(p),f*(p)) in R*. Let F : G — R be a smooth function. Then, there exists
a unique [f] in F,(M), where f is in C;°(M), such that for every x in domf,
F0) = F(f1(20).£° (). (x)).

Also

17 = (@F) )L )L D)) ] +(OB)  (0) S ()£ () ]
—+ ((D3F)(fl(p)afz(p)’fs(p))) [f3] h :

Proof Tts proof is quite similar to the proof of Theorem 2.42, etc. O

Theorem 2.47 Let M be a 2-dimensional smooth manifold. Let p be an element of

M. Let (U, @) be an admissible coordinate chart of M satisfying p € U. Let u*, u®
be the component functions of ¢;. Then,

L. u',u? are in G (M),
2. [u']™,[u?]™ are linearly independent in the real linear space Ty (M),
3. for every [f]” in T, (M), where f is in C;*(M),

17 = ((P1(Fo(00) ™)) (@ @) @)) 0] "+ ((D2(F o (00) ™) ) (0! (), (1)) ) ] ™

In other words,

(dh),= ((%

4. {[u']™, [w’]" } is a basis of the real linear space T};(M),
5. dim(T; (M)) = 2.
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Fig. 2.2 Cotangent space

Proof

1. This fact has been shown earlier.

2. In 1, we have seen that u' is in C;°(M). Since u' is in C;¥(M), the C**-germ [f]
is in F,(M), and hence, [u']™ (= [u'] + H,) is in the cotangent space T of M
at p. Similarly, [u?]”~ (= [u*] + H,,) is in the cotangent space T, of M at p (see
Fig. 2.2).

We have to show that [u'] ™, [#?]~ are linearly independent. For this purpose, let

ai[u']” + ay[u*]™ = 0, where aj, a, are real numbers. We have to show that a; =
0, and a;=0. Since 0=a[u']” +a?]” =[au']” +[au?]” =
[aju' + axu?]™, [ayu' + ayu?] is in ‘H,, and hence, by the definition of H,,

<y, [aju' + au*]> = 0 for every 7 in I',(M). Therefore, for every y in T',(M),

0=y, [alul + aguz] > =<, [au'] + [a2u2}>> =<,a [ul] +as [uz] >

d(u! o )(¢ d(u? o y)(t
=a, <, [u1]>> + @Ky, [u2}>> — alw +a2(4/)() ’
dr =0 dr =0
that is,
d(u' o) (¢ d(u? t
QAo aon@]
dr =0 dr =0

for every y in I',(M).

Let us define a function

7 : R — R?

as follows: For every ¢ in R,

n(0) = (u' (p) +1,4%(p))-
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Clearly, y, is a smooth function.

Here, 7, s continuous, 7,(0) = (! (p) +0,#(p)) = (! (p), #(p)) = 9 (p).
and ¢ (U) is an open neighborhood of ¢ (p), so there exists & > 0 such that for
every t in the open interval (—e, &), we have y,(¢) is in ¢, (U), and hence,

(oy) " (3,()) is in U.
Now, let us define a function

y:(—ee) > M

as follows: For every ¢ in (—¢,¢),

1(1) = (00) " (1(0) = ((00)"om ) (1),

We shall try to see that y is in I',(M). By the definition of I',(M), we must prove
that

1. 9(0) = p,
2. yis a parametrized curve in the manifold M, thatis, y : (—¢, &) — M is a smooth
map from (—¢, &) to M, that is, y is C* at every point p of (—¢,¢).

For 1: Here, LHS=7(0)= (¢y)" (11(0)) = (py)” (u' (p) +0,i*(p)) =

(@0)” (W' (p),u2(p)) = (#v)”'(¢u(p)) = p = RHS.

For 2: For this purpose, let us take any 7y in (—¢,&). We have to show that

y:(—¢8) = Mis C™ at 1.
We want to apply Theorem 2.2. Since fy is in (—¢,¢), by the definition of
7, 7(10)(= (0y) ' (71(0))) is in U, and hence, (U, @) is an admissible coordi-
nate chart of M satisfying y(f0) € U. Since @y oy = gyo ((py) oy, =
(py o (py) ") oy, =7y, and 9, is a smooth function, ¢ oy is a smooth func-
tion. Since y : (—¢,8) — M, ty is in (—¢,¢), (U, ¢y) is an admissible coordinate
chart of M satisfying () € U, and ¢, oy is a smooth function so, by Theorem
2.2, yis C*™ at tp in (—e¢,¢). This proves 2. Thus, we have shown that y is in

I',(M). Hence, from (x),

d(u o (o) "on) )| a(o ((00) o)) )
0=a +a

dt ar
=0 —0
- ald(<u1 o ((Pz;)tl) ° 71) (1) » d((u2 ° (tpz/d)tl) ° "/1)(!)
=0 o
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d
s Yo (oo Yo 12T
a " =0

—a[ (21 0 to0) ")) 0D (22(' e 00 ™)) 01 ] ]
van] (510 00 ))r@) (03 o (o0 1))( ],]
=ai((Di(ut o (00) ™)) (1(0) + @ ((Pr (12 0 (00) ™) ) (1(0)))

:al((Dl(u‘o((pu)*))(fpu(m))m((ul(u ° (90) ")) (u(p)) = (1) +ax(0) = a.

Thus, a; = 0. Similarly, a; = 0. Thus, we have shown that [u']™, [u?]~ are lin-
early independent. This proves 2.

3. Let us take any [f] ™, where f is in C;*(M).

We have to find reals aj,a, such that [f]~ = a;[u']™ + ay[u?]”. Since f is in
C,°(M) so, by the definition of C;°(M), f is a real-valued function whose domf is
an open neighborhood of p in M, and

(Folo0)™) s pu((domf)nU) — R

is C at the point @ (p) in R2. Here, ¢y ((domf) N U) is an open neighborhood of

0u(p) (= (4 (p), 12 (p)). Since (f o (9)™") : g ((domf) N U) — R is C* at the
point ¢ (p) in R?, for some open neighborhood G(C ¢, ((domf) NU) C R?) of

oy(p), (fo (py)~") is smooth on G. For every x in (domf) N U, we have
1) = (o (00) ™) (@0) = (£ o (90) ™) (! (1), ().
Now, we want to apply Theorem 2.42. Since, for every x in (domf) N U
) = (Folou) ) (0 (,12(), s € G (u),

G is an open neighborhood of (u'(p),u*(p))(= ¢y(p)) in R? and
(f o (¢y)™") : G — R is a smooth function so, by Theorem 2.42,

7= (P12 (00)™) ) (' (2),20)) ) [ ]+ (D27 0 (00) ™) ) (' (2, 2(p)) ) 2] ™

This proves 3.

4. From 2,3, we find that {[u!]~,[4?]~ } is a basis of the real linear space T;(M).
This proves 4.
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5. From4, {[u']™, [u?]~ } is a basis of the real linear space T, (M), and the number of
elements in the basis is 2, so the dimension of 7, (M) is 2. This proves 5. (]
As above, we can prove the following theorem.

Theorem 2.48 Let M be an m-dimensional smooth manifold. Let p be an element
of M. Let (U, @) be an admissible coordinate chart of M satisfying p € U. Let us
define m functions

u':U—-R,..,u":U—R

as follows: For every x in U,

Then,
L u',...,u™ are in G (M).
2. [u']™,....[w"]" are linearly independent in the real linear space T} (M).

3. For every [f]™ in T, (M), where f is in C*(M),

1™ = ((D1 (fo (%)“))(u‘(p),...,um(p))) [u
+ ((Dm<fo (wu)”))(ul(p),...,um(p)mump,
In other words,

(df),= ((% ,,) [f]) ((dul)p) et ((% )[f]) ((du’")p).

4. {[u']™, ..., [w"]™} is a basis of the real linear space T (M).
5. dim(T;(M)) = m.

P

Proof Its proof is quite similar to the proof of Theorem 2.47. O

Definition Let M be an m-dimensional smooth manifold. Let p be an element of M.
Let (U, ¢y) be an admissible coordinate chart of M satisfying p € U.

The basis {[u!] ™, ..., [«"] "~} of the cotangent space T,(M) of M at p, as defined
in Theorem 2.48, is called the natural basis of T,(M) determined by (U, ¢y).

Note 2.49 Let M be an m-dimensional smooth manifold. Let p be an element of M.
Let y be in T',(M). Let [f]™ = [g] ”, where f, g are in C;°(M). We shall show that

<L), [f]1> = <, [g]>. Since [f]” =[g]”, [f — g] = [f] — [g] € H,, and hence,
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0 =<y, [f] = [g]> =<, [fI>»—-<y,g)>
or,
<), [f1> = <, [g]>.

This shows that the following definition is unambiguous.

Definition Let M be an m-dimensional smooth manifold. Let p be an element of M.
Let y be in T,(M). Let [f]™ be in T (M), where f is in C)°(M). By <7, [f] 7>, we
mean <7, [f]>.

Theorem 2.50 Let M be an m-dimensional smooth manifold. Let p be an element
of M. Let us define a relation ~ over I',(M) as follows: for every y,y" in T',,(M), by
y~7', we shall mean that for every [f]™ in T, (M), <y, [f]”> = <), [f]7>.
Then, ~ is an equivalence relation over I',(M).

Proof Here, we must prove:

1. y~y for every y in I',(M),

2. if y~+9 then y' ~y,

3. if y~9 and y ~”, then y~7".
For 1: Let us take any y in I',,(M). We have to prove that y ~ . For this purpose,
let us take any [f|” in T7,(M), where f is in C)(M). Since
<, [f]7 > = <, [f] 7>, by the definition of ~, y~y. This proves 1.
For 2: Let y ~ 7. We have to prove that y’ ~ 7, thatis, <7/, [f] 7> = <, [f] >
forevery [f]~ in T; (M), wheref isin C,°(M). For this purpose, letus take any [f]~
inT,; (M), wherefisin C,°(M). Sincey ~ 7, by the definition of ~, <y, [f] 7> =
<y, [f] 7>, and hence, </, [f]~ > = <, [f]~ >>. This proves 2.
For 3: Let y~9, and 7 ~7”. We have to prove that y~y)” that is,
<), [f] 7> = <", [f]7 > for every [f] ™ in T (M), where f is in C;°(M). For
this purpose, let us take any [f] ™ in T (M), where f is in C;°(M). Since y ~ 7',
by the definition of ~, <7, [f]” > = </, [f]”>. Since y ~", by the defi-
nition of ~, <y, [f]7> =<', [f]”>. Since <y, [f]"> =<, [f]7>
and <y, [f]7> = <)y", [f] 7>, <, [f]7> = <y, [f]” >. This proves 3.
Thus, we have shown that ~ is an equivalence relation over I',(M). O

Definition Let M be an m-dimensional smooth manifold. Let p be an element of M.
We have seen that the relation ~ , as defined in Theorem 2.50, is an equivalence
relation over I',(M). For any y in I',(M), the equivalence class of y is denoted by
[7]. Thus, for any vy in I',(M),

l={y:7 el,(M)and 7/ ~y}.
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We shall denote the quotient set I',(M)/ ~ by I' (M) (or, simply, I'}). Thus,
OM) ={[)]:yel,M)}.

Intuitively, in I') (M), we will not distinguish between 7’ and y whenever " ~ 7.
Note 2.51 Let M be an m-dimensional smooth manifold. Let p be an element of M.
Let [f]” bein T, (M), where f is in C,°(M). Let [y] = [y'], where y, )" are in I',(M).
We shall show that <y, [f]” > = </, [f]” >. Since [y] = ['], y~7/, and hence,
by Theorem 2.22,

<) 17> =<, 17>

This shows that the following definition is unambiguous.
Definition Let M be an m-dimensional smooth manifold. Let p be an element of M.
Let [f]™ be in T, (M), where f is in C;°(M). Let y be in I',(M). By ([], [f] ), we
mean <7, [f]~ >>. Thus,

L I7) =<0 [f]7> = <, [f1> = w

f(:(0+ 1) =/ ((0))

)

t=0

= lim’
t—0 1

which is a real number.

Theorem 2.52 Let M be a 2-dimensional smooth manifold. Let p be an element of
M. Let (U, @y) be an admissible coordinate chart of M satisfying p € U. Let 7y be
in I'))(M). Let us define 2 functions

W :U—-R, :U—-R
as follows: For every x in U,

oy (x) = (' (x),1 (x)).

(In short, u',u* are the component functions of @.) Then, for every [f]” in

T;(M), where f is in C)*(M),

01107 = (217 o (00 ™)) )2 00) (5 0 09)0) |

= ((oa(r e (00 ™)) W10 (G 6200 0)

t=0
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(b 117 = ((63 _0+<<%

(b1 = <<ai ) m) (G )aonm)
¥ ((aﬁ ) m) (] )weno)

Proof Since v is in I',(M), by the definition of I',(M), there exists a real number
0 > 0 such that y is defined on the open interval (—d,0), y(0) =p, and y is a
smooth map from (—J, §) to M. Also, y is continuous at 0. Since 7 is continuous at
0, U is an open neighborhood of p(= y(0)), there exists ¢ > 0 such that ¢ <9, and
for every ¢ in the open interval (—¢, ¢) we have y(¢) € U. So, for every ¢ in (—¢, ¢),

(v o)1) = u((1) = (! (2(0)), 0> (2(1))) = (" 0 9) (1), (® ) (7).

In other words,

i
t=0

) m) (Geeno)

) m) (Geeno)

Thus, in the open neighborhood (—¢, &) of 0, the component functions of ¢, oy
are u' oy, and u? o y. Also,

(9y ©7)(0) = 0y (7(0)) = y(p) = (u' (p),u*(p)).
Now

d(f o y)(r)

LHS = (), [f]7) = <3, [f] > = <, [f]> = o
=0

d(fo ((wu)”orpu) o V) (1)

- — o
a((roto0) ") o ouom)®
- dr B
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= [(oafro00) ™)) W )a)) (D2(f o (00) ™))l (p). 1P (p))
L op) (o)
Swonm ||,

—((Brro to0™)) ) e)) (0 1)0)

d

+ ((Dz (f o (wu)*l)) (' (p), ”2(19))> <dl (0 9) (t)>

X

t=0

= RHS.
t=0

2.6 Tangent Space as a Dual Space

Note 2.53 Here, we will digress slightly from the current topic. Let V be any real
linear space. Let V* be the collection of all linear functionals of V. We know that
V* is also a real linear space under pointwise vector addition, and pointwise scalar
multiplication operations. V* is called the dual space of V. Let n be the dimension
of V. Let {e',...,¢"} be a basis of V. Let us define a function ¢} : V — R as
follows: For every real 7y, ...,1,

e (tle1 4+t t,,e”) =1.

Clearly, e is in V*. Similarly, we define function ¢; : V — R as follows: For every
real t1,...,t,

ez(tlel 4+ tne") =1,

etc. We shall try to show that {e},...,e’} constitutes a basis of V*. For this
purpose, we must prove

1. e},...,e, are linearly independent, that is, #ie] +---+t,e] =0 implies
t=0,...,t=0.
2. {e},..., €} generates V*, that is, for every f in V*, there exist reals 7,,...,1,

such that tie] + --- + t,e; =f.

For 1: Let tje] +--- 4+ t,¢] = 0. So,

0=0() = (nei -+ 1) () =1~ (6 () 410 (1)
:t1'1+t2'0+"'+tn'0:[1-

Hence, #; = 0. Similarly, t, =0,...,, = 0.
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For 2: Let us take any f in V*. We shall show that (f(e'))e} +---+
(f(e"))e; = f. For this purpose, it is enough to prove that

((F(e"))ei+ -+ (Fl@De)(er) =f(e'), - ((Fe))er + -+ (F(e)ey) (") = f(e").

= ((f(e"))er +---+(fle ”))e*)(e) (Fe"))eiler) +- -+ (F(€"))ep(er)
(F(') -1+ (£(%) -0+ + (f(e") -0=f(e') = RHS,

etc. Thus, we have shown that {e],... e’} constitutes a basis of V*. The basis
{e},...,e'} of the dual space V* is called the dual basis of the basis {e', ..., ¢"}.
Observe that

L e () = 6.
2. dlm(V*) =n =dim(V).

Now, let us consider the mapping v : V — V* defined as follows: For every real
t,..

v(tlel 4+t tne”) =te]+ -+ e,

We shall show that v is an isomorphism from V onto V*. For this purpose, we
must prove

1. vis 1-1

2. v is onto.

3. v(sx +ty) = s(v(x)) + ¢(v(y)), for every real s, ¢, and for every x,y in V.
)

For 1: Let v(x) = v(y). We have to prove that x = y. Let x = sje! + -+ + 5,¢",
and y = tje' + -+ 4+ t,¢". Now, we have

sief + -+ spen = v(sie' + -+ s5,") = v(x) =v(y) = v(tie' + -+ 1,e")
=tej+ -+ e,

and hence, s; =t1,...,5, =1,. Since §| =t,...,5 =1y, x =51 + -+
syt =tel + - 1, = y. This proves 1.

For 2: For this purpose, let us take any f in V*. We have to find an element in V
whose v-image is f. Since f is in V*, and {e], ..., e’} constitutes a basis of V*,
there exist reals 1, ..., 1, such that
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tey+ -+ e =f.

Now
v(tlel —|—--~+t,,e”) =nel+---+ne, =f,

where tie! + - +t,¢" is in V. This proves 2.
For 3: Let us take any x = sje' + --- +s,e", and y = tje' + --- +1,¢". Let us
take any reals s,¢. Now

LHS = v(sx +1y) = v(s(sle1 44 s,,e") + z‘(l‘le1 + et tne”))
=v((ss1 +1t1)e' 4+ (ssy + t1,)€") = (ss1 +1t1)ef + - + (ss, + t1,) €]
= s(sle”[ +-+ s,,e:) + t(tle”f 44 tne:) = s(v(sle1 4+ sne"))
+t(v(te' + -+ 1,"))
= s(v(x)) +t(v(y)) = RHS.

Thus, we have shown that v is an isomorphism from V onto V*. Hence, V and V*
are isomorphic real linear spaces.

Definition Let M be an m-dimensional smooth manifold. Let p be an element of M.
We will denote the dual space of the real linear space 7, (M) by 7,(M). Thus,

T (M) is the collection of all linear functionals defined on 7, (M). It is known that

T ,(M) is a real linear space. Now, let (U, ¢;) be an admissible coordinate chart of
M satisfying p € U.
Let us define m functions

u:U—R,..,u":U—R

as follows: For every x in U,

By Theorem 2.48, {[u']™, ..., [u"]™} is a basis of the real linear space T;(M).
Let us define the function [u)]": T;(M) — R as follows: For every real

By ooy b,
[ul]*(z‘l [u1]~—|—..._|_tm[um}N) =1.

It is easy to see that [u;]" is in 7 ,(M).
As above, we define [up]” : T, (M) — R as follows: For every real 11, .. ., b,
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o] (n[u] "+ "] ) =1,

etc. We know that {[u1]", ..., [u,]"} constitutes a basis of the dual space 7 ,(M) of
T,(M). {[m], ..., ()"} is called the dual basis of the basis {[u']™,..., "]~}
Clearly,

] ([w] ™) =9,

where 6{ denotes the Kronecker delta symbol. In other words,

[wi]” ((du’)p) = 5{
Also,

dim(7,(M)) = dim (7; (M) ) = m.

Theorem 2.54 Let M be a 2-dimensional smooth manifold. Let p be an element of
M. Let y be in T'),(M). Let us define a function

I T,(M) = R,
as follows: For every [f]™ in T,(M), where f is in C)*(M),

BIAT) =LA
Then, [y]" is a linear functional on the real linear space Ty;(M), that is,
{0 =y € T,(M)} is a subset of the dual space T (M) of Ty(M).

Proof Here, we must prove:
For every real o, f3, and for every [f] ™, [¢] ™ in T,(M), where f, g are in C;° (M),

1 (alf1™ +Blel™) = (B (A7) + BB (18] 7))

LHS = [j]" (alf] ™ +5le] ™) = []" (lf]™ +[8] ™) =[] (f + Bl ™) = (), [of + el ™)
=<, [of + Bg] 7> = <, [of + Bel> = <, [of] + [Bg]> = <, alf] + Blgl>
= a<y, [f]> + p<y, [g]> = a<, [f]7> + p<, [e] 7> = (o] []7) + BlD) [g]7)
= (DI (A7) + B(BT ([e]7)) = RHS. O

Lemma 2.55 Let M be a 2-dimensional smooth manifold. Let p be an element of
M. Let (U, @) be an admissible coordinate chart (U, ) of M such that p is in U.
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Let u', u? be the component functions of @, Let T be a linear functional of T, (M).
Let

7 R—R?
be the function defined as follows: For every t in R,

() = (T[] )6 (T (] 7)) + eu(p)-
Then
1. (py) "oy, isin Ty(M)
2. for every f in C;*(M),

(A7) = ([(e) o], 1117

Proof

1: Clearly, y, is a smooth function. Here, 7y, is continuous, 7,(0)=

(T([']7)) - 0,(T([?] ")) - 0) + ¢y (p) = @y(p), and @y(U) is an open
neighborhood of ¢ (p), so there exists ¢ > 0 such that for every 7 in the open

interval (—¢,¢), we have y,(7) in @, (U), and hence, (¢y) ' (y,(2)) is in U.
Now, let us define a function

y:(—ge) =M

as follows: For every ¢ in (—¢, ),
2(1) = (00) " (1) = ((00) " om ) (1),
So,

-1
7= (py) oy

We shall try to see that y is in I',(M). By the definition of I', (M), we must prove
that

L. 9(0) =p.
2. yis a parametrized curve in the manifold M, that is, y : (—¢, &) — M is a smooth
map from (—¢,¢) to M, that is, y is C* at every point of (—¢,¢).
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For 1: Here LHS = 7(0) = (¢y) ' (11(0)) = (¢y) ' (¢y(p)) = p = RHS.
This proves 1.

For 2: For this purpose, let us take any 7y in (—¢,&). We have to show that
y:(—¢€) > M is C* at fp. We want to apply Theorem 2.2. Since #; is in
(—¢,¢), by the definition of 7, y(t0)(= (¢y) ' (y,(t0))) is in U, and hence,
(U, ¢y) is an admissible coordinate chart of M satisfying y(f) € U. Since
pyoy=pyo((¢y) o) =(pyo(py) ) oy =7, and 7, is a smooth
function, ¢y oy is a smooth function. Since y: (—¢,&) — M, ty is in (—¢,¢),
(U, ¢y) is an admissible coordinate chart of M satisfying y(ty) € U, and ¢, oy
is a smooth function, by Theorem 2.2, y is C* at fy in (—¢, ¢). This proves 2.

Thus, we have shown that 7 is in I',(M). This proves 1.

(11~

2: Since [f]” is in T, (M) so, by Theorem 2.47,

= ((2r(rot00)™)) (21 @) (] +((D2(r 2 (00) ") ) (' (p),

=
N
o
—~
<
=
=
~—
—
N
o
N
2

and hence,

LHS = 7([/]7) = T(((Dy
+((D2(f o (90) ) (u )

= ((Di(feo ( )1))(u() w*(p)))

B )

~— Q
e}
/\
\/
~—
—
=,_.
~—
=
~—

! =
o
P
=
~—
~—
~—
;—-

14

Next, by Theorem 2.52,
RHS = ([(00) 'on ], A1) = (B, 1A17)
= ((2afro o0 @ioren) (S en)|
(oo t00)) 0o (62 02)0)

Now, it remains to be proved that

d(u' o ((oy)'on1) ) )

dt

t=0
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and
d(u? o ((gy)"'on ) ) (@) N
e = ) = (1(1]"))
t=0
Here
g4l ((mzjlom)yz) (e (rpud>t* )on)w
=0 1=0 g
=[(oi(u o 00) ™)) (@) (D20 () ™)) (1a(0)) ] [‘g b
S
= [(or( o to0) )00 (Do ) )) o) ] 1
= (1 (0 (00) ™) ) (@upn)) (T[] 7)) + ((D2( e (00) ") (00D ) (T[] 7))
= M(T([«']7) + O (] 7)) = (T([«'] ")) = RHS
Similarly,

d(u2 o (((pu)‘lovl)) (1)
dr

t=0

Theorem 2.56 Let M be a 2-dimensional smooth manifold. Let p be an element of
M. Let T be a linear functional on T,(M). Then, there exists y in I',(M) such that

for every [f]™ in T (M),

Proof Since M is a 2-dimensional smooth manifold, and p is in M, there exists an
admissible coordinate chart (U, ¢;) of M such that p is in U. Let us define 2

functions

W :U—-R, u:U—R

as follows: For every x in U,

Let
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be the function defined as follows: for every ¢ in R,

(@) = (T[] )6 (T([2] 7)) + eu(p)-

Then, by Lemma 2.55, (¢y) " oy, is in T,(M) and for every [f]™ in T;(M),
T(1A17) = {[(0u) o], 1117). O

Theorem 2.57 Let M be a 2-dimensional smooth manifold. Let p be an element of
M. For every vy in I',(M) we define a function

LI T, (M) — R,

as follows: For every [f]™ in T, (M), where f is in C)*(M),

Then, the mapping [y]+— [y]" is a 1-1 mapping from {[y] :y € T,(M)} onto
T,(M).

Proof Here, we must prove

1. [y]—[y]" is a well-defined mapping from {[y] : y € [,(M)} to T ,(M),

2. if [y]" =[], where y,9" € T',(M), then [y] =[],

3. for every T in T,(M), there exists y in I',(M) such that [y]* = T.
For 1: Let [y] = ['], that is, y ~}’. We have to show that [y]* = [y]", that is, for
every [f]™ in T;(M), [yI"([f]) = [']"([f] 7). For this purpose, let us take any
[f]” in T,;(M). Since y~7', and [f]™ is in T,;(M), by the definition of ~,
<y [f17> =<y, [f]” >. Now

LHS = [ ([f]7) = (0], [f17) = <0, 17> = <, 17> = (') [1]7)
= [T ([f17) =RHS.

So [y] = [y]" is a well-defined mapping.

Next, by Theorem 2.54, [y]" is in 7 ,(M) for every y in I',(M). This proves 1.
For 2: Let [y]" = [y']", where 7,7’ € T',(M). We have to prove that [y] =[],
that is, y ~ 7', that is, for every [f]™ in T,;(M), <, [f]” > = <, [f] 7 >. For
this purpose, let us take any [f|™ in 7, (M). We have to show that

<P If17 > =<y, [f] 7>
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Since )] = [/, " : T, (M) = R, [y']" : T,;(M) — R, and [f]™ is in T} (M),

LHS = <7, [f]7> = (), [f]7)
=<y, [f]7> =RHS.

Il
=,
*
P
=
2
~—

[l
=
—
—~
h
2
N—

[l
—
=
=~
2
~—

For 3: Let us take any T in 7 ,(M). Since T is in 7 ,(M), and 7 ,(M) is dual
space of the real linear space 7,(M), T is a linear functional on 7, (M), and

hence, by Theorem 2.56, there exists y in I',(M) such that for every [f]~ in
T, (M)
P )

Since, for every [f]™ in T, (M), we have T([f]”) = (L. [f]7) = BI"([F] ),
T = [y]". This proves 3. O
Similarly, we can prove the following theorem.
Theorem 2.58 Let M be an m-dimensional smooth manifold. Let p be an element

of M. For every vy in I',(M), we define a function

O T,(M) — R,

as follows: For every [f]™ in T, (M), where fis in C;*(M),

BIA7) = B A7)

Then, the mapping [y] — [y]" is a 1-1 mapping from {[y] : y € [,(M)} onto
7,(M).

Proof Tts proof is quite similar to the proof of Theorem 2.57. O

Definition Let M be an m-dimensional smooth manifold. Let p be an element of
M. Let 5 be the mapping [y]+— [y]” from {[y] : y € [,(M)} to T,(M), as defined in
Theorem 2.58. By Theorem 2.58, 7 is a 1-1 mapping from {[y] : y € I',(M)} onto
T,(M), and hence, 7! is a 1-1 mapping from 7,(M) onto {[y] : y € [,(M)}.

Define vector addition, and scalar multiplication over the set {[y] : y € T',(M)}
as follows: For every 7,7’ in I',(M), and for every real ¢,

D]+ 01 =n"" (]) + n(']),
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and

tfy] = 0~ (e(n([7)))-

Since 7,(M) is a real linear space, and n is a 1-1 mapping from
{y] :yeTp,(M)} onto T,(M), {[y]:y€TI,(M)} is also a real linear space.
Clearly, 1 : [y]— [y]” is an isomorphism from real linear space {[y] : y € I,(M)}
onto real linear space 7 ,(M). Thus, we have the following formulae:

n(+ 0D =n(B) + 0D

and

In other words,

and

because 7 is the mapping [y] — [y]" from {[y] : 7 € [',(M)} to T ,(M), as defined in
Theorem 2.58.

Since 7 : [y] — [y]" is an isomorphism from real linear space {[y] : y € I',(M)}
onto real linear space 7 ,(M), n~' : [y]"— [y] is also an isomorphism. Also,

dim{[y] : y € [,(M)} = dim(T ,(M)).

Further, since dim(7,(M)) = dim(7,,(M)) = (the dimension of the manifold),
sO

dim{[y] : y € I[,(M)} = (the dimension of the manifold).

It follows that the real linear space {[y] : y € I',(M)} is isomorphic to R™.

Theorem 2.59 Let M be a 2-dimensional smooth manifold. Let p be an element of
M. Let (U, @) be an admissible coordinate chart of M satisfying p € U. Let
7:(=0,8) = M, and 7' : (=8',0') = M be in T,(M), where 6 >0, and &' > 0.
Then, [y] = [y'] if and only if

d(@y 0 y)(1) d(@y 0 y)(1)

|,

t=0
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In other words, y~7'" if and only if y ="', that is, [y] =y. And hence,
{b] iy el,(M)} =T,M.

Proof of “only if” part: Let [y] = [y']. Since [y] =[], y~7". Let us define 2
functions

W :U—-R, :U—-R

as follows: For every x in U,

By Theorem 2.48, [u'] ™, [u?]~ are in T,(M). Since y ~ 7', and [u']™, [u?]”~ are
. * . . 1 ~ _ 1 ~
in T;(M), by the definition of ~, <y [u']">=<),[u']">, and
<, W] 7> = <y, [u*] > Now

s 40000 dlouG0)| _ d(0).260))
dr =0 dr =0 dr =0
_ (d(ul(v(f))) d(uz(v(f)))> _ <d((ul 0)(1)) d((uzov)(f)))
dt ’ dt -0 dt ’ dt -0
ul oy u? o ~ ~
- <d(( dt/)(t)) t07d(( dt/)(f)) ZO) _ (<<% [ul] > <, [uz] >>)
ul o uz o
() ] ) = (AN D) )
_ <d((u1 o)1) d((w? OV')(f))) _ (d(ul(V'(f))) d(,ﬂ(y/(;))))
dt ’ dt -0 dt ’ dt -0
AW 0).R00) Aot/ _dego 0|
dr =0 dr =0 dr =0 '

Proof of “if” part Let

d(ey 0y)()

=0 dr

d(ey 0 y)(1)
dt

=0

We have to show that [y] = [)'], that is, y ~ 7, that is, for every [f]™ in T, (M),
<, [f17> = <, [f]”>. For this purpose, let us take any [f]~ in 7, (M). We
have to show that <y, [f]~> = <7/, [f]” >. Now, since
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dt

1

dr

d(u' (v/(1)), *(7'(1))

t
r

dr
dr

d(ou(v'(1))
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Note 2.60 Let M be an m-dimensional smooth manifold. Let p be an element of
M. Since {[y]:y eI ,(M)} =T,M, and {[y] : y € T,(M)} is a real linear space,
T,M is a real linear space. Since # : [y] — [y]" is an isomorphism from real linear
space {[y] :y € T,(M)} onto real linear space 7,(M), {[y]:y€T,(M)} and
7 ,(M) are isomorphic, and hence, 7,M and 7 ,(M) are isomorphic.

Definition Let M be an m-dimensional smooth manifold. Let p be an element of M.
The real linear space T,M is called the tangent space of M at p, and the elements of
T,M are called tangent vectors at p.

Theorem 2.61 Let M be a 2-dimensional smooth manifold. Let p be an element of
M. Then, the mapping ([y],[f]1”)— (y], [f]1”) from the real linear space T,(M) x
T; (M) to R is bilinear, that is, linear in each variable.

Proof Let (U, ¢y) be an admissible coordinate chart of M satisfying p € U. We
have to show that

1. Forevery [y]in {[] : y € [,(M)}, for every [f] ", [¢] ~ in T, (M), and for every
real s, ¢,

(] sl +le] ™) = s A7) + 2l le] ™)

2. For every 7,7 in I',(M), for every [f]™ in T, (M),

O1+ L7 =BT + (0 1A7)-

3. For every [f]™ in T, (M), for every y in I',(M), and for every real s,

For 1: LHS = ([}, s[f] ™ +¢[g] ™) = (), [sf]™ + 2] ™)
= (DLl +18]7) = <, [of +1g]>
= sy, [f]> + 1<y, [g]> = s, [f] 7> + 1<y, [g]) 7>
= sl A7) + 2Bl [e] ™)
= RHS.
For 2: Let us take any 7, )" in I',(M). Let us take any [f]™ in T,(M). We have to

show that ([} + ['], [f] ™) = (), [F] ™) + ('], [F17)-

= [y] + [y/] forsomey” inI',(M).
Since ["] = [y] + [], ([V”])*:([V]H 7= ([ )"+ (['])", and hence,
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[, [F]17) + ['], [f] - This proves 2.
take any y in I',(M), and any real s.

v

Thus, we have shown that {[y] + [y'], [f] 7) = (
For 3: Let us take any [f] ™ in 7,;(M). Let us
We have to show that (s[y], [f] y =[], [f17)-

LHS = (s[y], [f] ™) = (], [f] ™) where [y'] = s[y] for some 3" in T',(M).

Since [y'] = sy, ([¥'])" = (s[y])" = s(([])"), and hence,

Thus, we have shown that (s[y], [f]~) = s([y], [f] ). This proves 3. d

Theorem 2.62 Let M be an m-dimensional smooth manifold. Let p be an element
of M. Then, the mapping ([y],[f]17)—([y],[f]”) from the real linear space
T,(M) x T;(M) to R is bilinear, that is, linear in each variable.

Proof lts proof is quite similar to that of Theorem 2.61, etc. O

Definition Let M be a 2-dimensional smooth manifold. Let p be an element of
M. Let (U, ¢,/) be an admissible coordinate chart of M such that p is in U. Let u', u?
be the component functions of ¢. Let us define the function U, : T, (M) — R as
follows: For every real 71,1,

U, (tl [ul] 4 [uz] N) =1.

Clearly, U, is a linear functional on 7;(M), and hence, U, is in 7,(M). Let us
define the function U, : T, (M) — R as follows: For every real t;,1,

ng(tl [ul] "4 [uz] N) = 1.

Clearly, U, is a linear functional on 7,;(M), and hence, U5 is in T ,(M).

Since 77 : [y] — [y]" is an isomorphism from real linear space {[y] : y € T',(M)}
onto real linear space 7 ,(M), and {[y] : y € T,(M)} = T,(M), n : [y]— [y]" is an
isomorphism from tangent space T,(M) onto real linear space 7 ,(M), and hence,
there exists a unique [4,] in 7,(M) such that [4;]" = U,.

Similarly, there exists a unique [4,] in 7,,(M) such that [/,]* = U,. We know that
{Uy,Uy} is a basis of the dual space 7,(M) of T, (M). Further, since [4]" = U\,
and [A]" = U, {[A1]",[42]"} is a basis of T,(M). Also,

([l [w] ™) =[] ([w'] ") = 0].

Since {[A1]", [42]"} is a basis of 7,(M), and 5 : [y]— [y]" is an isomorphism
from tangent space T,(M) onto 7 ,(M), {[A1], [42]} is a basis of T,(M).

Here, we say that {[1,], [12]} is the natural basis of the tangent space T,(M)
under local coordinate system (u'). Similar definitions can be supplied for a 3-
dimensional smooth manifold, etc.
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In continuation with the above discussion for 2-dimensional smooth manifold M,
let us note that for every [f]™ in T, (M),

([l df),) = (M) A7)

= (Du{f o to0)™)) (W ). 070))

Thus, for every [f] ™ in T, (M),

([, ),) = (D1 (f 2 (00) ™) ) (! (0. (p) = (a

So

Similarly, we have

(1ol (), = (aa

)[f}-

So, for every i = 1,2, and for every [f] in F,(M),

)[f]-

Hence, when there is no confusion, we denote [4;] by 2 -
Further, since {[41],[42]} is the natural basis of the tangent space T,,(M) under

local coordinate system (u'), {%b,%bj} is the natural basis of the tangent space

(1, 177 = (a—

T,(M) under local coordinate system (u'). Thus, for every [f] in F,(M),
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Also, we have

0 . .
P J =/
<6ui ; (du )p> 07.

Theorem 2.63 Let M be a 2-dimensional smooth manifold. Let p be an element of
M. Let (U, @) be an admissible coordinate chart of M satisfying p € U. Let y be in
[,(M). Let u', u* be the component functions of ¢. Then,

(S enw)| (S6enm)

are the components of the tangent vector [y] at p, with respect to the natural basis

(o

of the tangent space T,(M) under local coordinate system (u').

t=0

0

)
» Ou

Proof Let us take any [f]™ in 7, (M), where fis in C;°(M). Since

b1 (117) = (L7 = (P2 (Fo (00) ™)) (! (), (1)) (% (' 09) (t))

+((oa(ro o0 )) 60120 (5 6200 0)|

= al. @) (6 o) 0)| e, (5 6o

_ ) ;

(G onw)| Yoy ((§eonm)| e
= (o) Jwrarn+ ((Seeno) waran

((@e=no)l,) ((ateno)],
= (G ono)] Jur)om+ (((Geeene)| o))
(G wen)| Je) e+ (((Geeno)| Yl )
(G onm)| Jwl) +(((56eno)| Jea) Yan
(G onw)| o+ ((Ge2eno)| Jal)
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= ( (5 on0)
Further, since
a6 = b= (6 o) Yo+ ((§eonm)| )
() o (- )yl
and 1 is a 1-1 mapping from T,,(M) onto T ,(M),
= (G o) Jur+ ((Geronm)| )i
~((Lwenm)] ) (ai) ((Ewenm)| ) (ai
Further, since {[4;], [42]} is a basis of the tangent space T,(M), that is,
1ECN)
|, )\,
is a basis of the tangent space T,(M),

(6 enw)| (S6enm)

are the components of the tangent vector [y] at p, with respect to the natural basis.[]

SO

)

=0

Note 2.64 As above, for m-dimensional smooth manifold M, we get the formula:

b= ((Ccill () )) zo) (62‘ p) e <<§t e y)(l)> t0> (62”1 p>'

Further, since {[4,],...,[4x]} is a basis of the tangent space 7,(M), that is,
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is a basis of the tangent space T,(M),

(Swono)| o (Gureno)

are the components of the tangent vector [y] at p, with respect to the natural basis.

t=0

Note 2.65 When there is no confusion, we generally avoid writing the lower index
p of the tangent vectors, cotangent vectors, etc.

Theorem 2.66 Let M be an m-dimensional smooth manifold. Let p be an element
of M. Let (df),, (dg), be in T,, where f,g are in C,°. Let X be in T,M. Let s,t be

any real numbers. Then,

L (X, (d(sf +18)),) = s - (X, (df),) +1- (X, (dg),),
2. (X, (d(f-8)),) =f(p) - (X, (dg),) +&(p) - (X, (df),)-

Proof

1: By Theorem 245, (X, (d(sf +1g)),) = (X,s- ((df),) +1-((dg),)). Further,
since the mapping ([y], [f]™) = ([y], [f] *) from the real linear space 7, x T, to
R is linear in the second variable, (X, s - ((df),) +1-((dg),)) =s- (X (df)p
t-X,(dg),), and hence,

(X, (d(sf +12)),) = s - (X, (df),+1 - X, (dg),)-
This proves 1.

2: By Theorem 2.45, (X, (d(f - 8)),) = (X. (¢(p))(df), + ((p))(d),). Further,

since the mapping ([y], [f]™) = ([y], [f] *) from the real linear space 7, x T, to

R is linear in the second variable, (X, (g(p))(df)p + (f(p))(dg)p> = (g(p)) -
(X,(df),) + (f(p)) - (X, (dg),), and hence,

(X, (d(f-8),) = (&(p)) - (X, (df),) + (F(P)) - (X, (dg),)-

This proves 2. U

2.7 Contravariant Vectors and Covariant Vectors

Definition Let M be an m-dimensional smooth manifold. Let p be an element of
M. Let (df), be in T,;, where fis in C,°. Let X be in T,M. By Xf, we mean (X, (df),,).
and is called the directional derivative of the function f along the tangent vector X.
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Now, the Theorem 2.66 can be restated as follows:

Theorem 2.67 Let M be an m-dimensional smooth manifold. Let p be an element
of M. Let X be in T,M. Then, for every f,g in C,°, and for every real s,1,

1. X(sf+1g) =s- (Xf) +1- (Xg),
2. X(f-g) =f(p) - X(f) +8(p) - X(g)

Theorem 2.68 Let M be a 2-dimensional smooth manifold. Let p be an element of
M. Let [y] be in T,M, where 7 is in y € I',(M). Let (U, py), (U, @) be two
admissible coordinate charts of M satisfying p € U, and p € U'. Let u',u* be the
component functions of ¢y. Let u'",u”® be the component functions of ¢,. Then,

(Gwonm)| =(G5)(Gwenn)| +(3)(§weonn)

)

where

= (a0 (o)) ) 0) = (ai ) .
and

= (Do o (o) ™)) ()12 (p) = (;) .
Proof Here

(% (u' 07)0)) . (% (u 0 7) (t))

are the components of the tangent vector [y] at p, with respect to the natural basis

(o

of the tangent space 7,M under local coordinate system (u'). Also,

(Gwono)| . (Swronn)

t=0

0

)
pﬁu

t=0
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are the components of the tangent vector [y] at p, with respect to the natural basis

0

of the tangent space T,M under local coordinate system (u"'). Since y is in T, (M),

7(0) = p. We have to prove that
' (d, ,
() (@0 en0)

(we=n0)| = (G (G =n0)],

0

! 2
» Ou

t=0

LHS = (% (! ov)(t)) e (%((w’u ov)l)(t))
= (5 (oo (000 00) 07)) )0
(G (o) o wuon) Jo)|
- (5 (o) o toson)i)|
= [(o((ovet00)) ) o) (22 (0t o 00)™)') Jttowonion|
) [ (£ (wwon)o) ]10}
(& (o)) ,
~[(2((e e 0™)") ) eostom (22( (6o 00)'") ) outoon) |
) (& ((woon)0)] ]
(& (0oen)o)]
= [(o((ovot00) ) )outon (22 (o0 t00)'") )0t
) (& ((owon)0)] ]
(& (0oon)o)]
= [(o((ovot00) ) )outon (22 (910 t00)'") )0t
TG () oy)m)\,o}
(& (@) er) )],
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riant Vectors and Covariant Vectors

2.7 Contrava

—_ o~ o~ = = = = ~—

~— ~— e}

RHS.

Hence, LHS
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Note 2.69 Similarly, under the same conditions as in theorem 34, we get

(o) = (55)(Ewenn)| +(E)(§wenn)

In short, we write

(o) = (5) (Gwenn)|
(ateno)| =2 (G wen0)

and we say that tangent vectors are contravariant vectors.

t=0

)

t=0

Similar results can be obtained for 3-dimensional smooth manifold, etc.

Theorem 2.70 Let M be a 2-dimensional smooth manifold. Let p be an element of
M. Let (df), be in T,, where f is in C)°. Let (U, ¢y), (U', ¢y;) be two admissible

coordinate charts of M satisfying p € U, p € U'. Let u',u> be the component
functions of ¢y Let u'',u? be the component functions of ¢,. Then,

of ou' a_f+ ou? %
o'l \ou' ) du! o' ) ou?’

where

Proof By Theorem 2.48,

(o). (5 (2o o)) o). (55) (= (270 00 120)
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are the components of the cotangent vector (df )p at p, with respect to the natural

basis {(du") b (du?) ,} of the cotangent space T, under local coordinate system (uh).
Also,

(s0r), (= (2ot D) mnaron).(55) (= (w00 ) i)

are the components of the cotangent vector (df )p at p, with respect to the natural
basis {(du"),, (du”),} of the cotangent space T under local coordinate system
(u'). We have to prove that

of  (oul\of | [(aP\ o
out (81,{’1) qul <6u’1) u?’
af 7 \—1 1 ”
LHS = 3 = (Dl (fo ((pU) )) (u (p),u (17))

= (Da(fo ((00) o) o (o) ")) (" (2.1 (p)
= (Di((roten)") e (000 (00) ™)) W (2).(p)

= Ist column of the matrix product

~
—
~
S
<
o]
S
<
|
~—
~
—
S
—~
=
~
<
S
—~ o~
=
~
N
N~—
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~— — ~ — >
—_ = T = S
—~ = - & & o
—~ = S S o
— ~ /@: ~— (o] ~
= =57 = g
- J ~—
— S
S S S — L =
S - s ——— ~— /
_° L~ ] / N
| > — — X
Py & S — = <
D = ~ — = /@.
(@\ ~ N —~ D =
~ o —_ = S —
o 5 25—
s & A 5 T
(@.\ ~— > = P—_—
~—~ - —~ = s =
— L L ¢
_\) =) ,\) =) ~— ]
E S E S o e
= o = o @U N
o ~ o = = —
“— S “ T — g
— Q — Q ISR \
Q ~— Q ~— Q

S——

= = =3
DR
= = S
2 2
S 5 &
- S ~
TN —

(\(((/l\

—
—~ =
= &
Ol
5 =
s =
/N —
— |
| )
5 &
N S
| OIS s 2
N
aOTO\I/ N (pf\ I
a TN = = = Q
s =" = = D ] =
— «© —~ ~— —~ ~— N——
S|3 = & A 3 —
Q N = ~ — = ~— —
= < RN s ==
[
I I C ORI
= = ﬂu ~— uu = = % /mw ~—
2R E N2 X2~ = ~
2L N 2
R e N N T - S
clEs 2 e N ~—~ = = o~
— — < | s I s = s
a — /N —~ S —~ — S — — S
S .I_. \w s ~ NS | ~— | D ~—
~ — —
e = € & o & 3 o 3 & o
T - o > o & 5 & o N
+ ~— o > S > S =) S
_ o ~ N ~ g [e) N— o s N———
= — S . o N S
T A < (D\ . _Q /D\ _Q 3 /l\D
= < S N . Q Q —— — Q
S| ~—_ N T —

= RHS.

So, LHS
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Note 2.71 Similarly, under the same conditions as in Theorem 2.70, we get

Y _(a\T (yo
ouw?  \ou?) du! ouw? ) ou?’

In short, we write

ou’
au” Z(@u”) oul’

and we say that cotangent vectors are covariant vectors.
Similar results can be obtained for 3-dimensional smooth manifold, etc.

Note 2.72 Let M be an m-dimensional smooth manifold, and N be an n-dimen-
sional smooth manifold. Let p be an element of M, and let F : M — N be any
smooth map. Then, for every fin Cz ) (N), f o F is in C;*(M).

Reason: Since f'is in Crin) (N), fis a real-valued function such that domf is an
open neighborhood of F(p) in N. Since F : M — N is a smooth map, and p is in M,
F : M — N is continuous at p. Since F' : M — N is continuous at p, and domf is an
open neighborhood of F(p) in N, F~!(domf) is an open neighborhood of p in
M. Since dom(f o F) = F~'(domf), and F~!(domf) is an open neighborhood of
p in M, dom(f o F) is an open neighborhood of p in M. Now, it remains to be
proved that f o F' is C™ at p.

Since F : M — N is a smooth map, and p is in M, F is C*™ at p. Since f is in
C;O(p) (N), f is a real-valued function such that dom f is an open neighborhood of
F(p) in N, and fis C* at F(p) in N. Since the F-image of dom(f o F) is contained
in dom f, F is C™ at p, and fis C* at F(p), the composite function f o F is C* at p.

Hence, f o F is in C;°(M).

Theorem 2.73 Let M be any m-dimensional smooth manifold, and let N be any n-
dimensional smooth manifold. Let F : M — N be any smooth map, and let p be in
M. Let

* * £
F* . TF(p) — Tp

be the function defined as follows: For every (df)p
Crip(N),

) i Tp,), where fis in

F () = @(f 0 F)),.
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Then, F* is linear.

Proof For every fin Cpy, (N), from the above note, f o F is in C;¥(M), and hence,

(d(foF)),isinT,. Slnce for every fin F(p)( )s F*((df ) () (= (d(f 0 F)),) is
in T, F* : Tj,) — T, is a function. Next, let us take any f, g in C77, (N), and any
real s,¢. We have to show that

F (s +6)r) = 5(F(@)rir)) ) +1(F((@0)r) )

On using Theorem 2.45, we have

LHS = F* ((d(sf +18))s(,) ) = (d((sf +18) 0 F)),= (d(((sf) o F + (1g) o F)),
= (d((s(f o F) +1(g 0 F)))),= s ((d(f o F)), ) +1((dlg o F)), )

=s(F (@) ) +1(F () ) ) = RHS. O

Note 2.74 Let M be any m-dimensional smooth manifold, and N be any n-dimen-
sional smooth manifold. Let p be in M. Let F : M — N be any smooth map. Fix any
yin T, (M), where y is in I, (M). As in Theorem 2.73, F* : Ty, , — T,,. So for every

(df) () in Ty, where fis in Czy, (N), F*((df)(,)) is in T, Since F*((df ) () is in
T, and, [y]isin T,(M), ([y], F*((df)p,))) is a real number. We shall try to show that
the mapping (df ) () — ([7], F* ((df ) () )) from real linear space T}, to R is linear,
that is, for every f, g in Cz ) (N), and for every real s, ¢,

01 F (s(@hr) +1(@)ri) ) = 501 F* (@)

+ 1), F ((dg>p<,, )

By Theorem 2.73,
LHS = (1, F* (s (@) ) + 1((d2)(y)) )
= <[VLS(F*<(df)F(p))) + ’(F* ((dg)p(p)>)>-
Further, by Theorem 2.62,

(05 (F (@r) ) +1(F () ) )

= () F (@) )) + 1000, F* () )) = RHS
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so, LHS = RHS. So, (df ), — (7], F*((df ) p(,))) is a linear functional on the real
linear space 77, and hence, the mapping (df)p,) — (v, F*((df)p(,))) is a

member of 7 (). Let us denote the mapping (df)p, — (], F*((df)(,))) by
f([y]) Thus, for every [y] in T,(M), f}([y]) is in 7 p(,). Since I?([y]) is in T p(,),
there exists a unique F.([y]) in Tp(,)(N) such that (F.([y]))" = F([y)), that is, for
every (df)p(,) in Ty, where fis in Cz(, (N),

(FOD) (@h)ri) = (B F (hriy))-

Since for every [y] in T,(M), F.([y]) is a unique member of Tgg)(N),
F,: TP(M) — TF(p)(N).

2.8 Tangent Maps

Definition Let M be any m-dimensional smooth manifold, and N be any n-
dimensional smooth manifold. Let p be in M. Let F : M — N be any smooth map.
Let p be in M. The mapping F., : T,(M) — Tg(,(N), as defined in the Note 2.74, is

called the tangent map induced by F.

We have seen that, for every (df)p(, in Ty, where fis in Cz; ) (N), and for every
[y] in T,(M) where y is in I',(M),

(FB) (@) ) = 01 F (@)

Theorem 2.75 Let M be any m-dimensional smooth manifold, and let N be any n-
dimensional smooth manifold. Let F : M — N be any smooth map, and let p be in
M. Then, the tangent map F, : T,(M) — Tg,(N) induced by F is linear.

Proof Let us take any [y,], [y,] in 7,(M), and any real s,¢. We have to show that

Fo(sll + 1)) = s(Fu([n1])) + 1(Fu([n2]))-

We first try to prove that, for every (df) F(p) N T;i(p),

(F (] + 11D (@) )) = G021 + F (D)) (@ry))-
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LHS

(Folsa) + 12D))" (@) iy ) = (sT1] + tlyal F* (@)
sl F (@) )) + K2l P (@)

s(ED) (@) ) + 1 (F D) (@)

= (s(F DD (@) + CFD)) (@)
(P (1)) + 12 ) (@)

= ((F([]) + 1F (D) (@) ) = RHS.

Hence, LHS = RHS. Thus, we have shown that, for every (df)p(, in i)

(F. (] + 11D (@) )) = G20 + F (D) ((@ry))-
Hence,

(Ful(stn] + tln2]))"= (s(Fe([a])) + t(Fe([21)))"

Now, by the definition of #,

N(Fu(s[n1] + [2]) = Fu(sln] + t1n])) "= (s(Fu([i])) + 1 (Fo([22]))”
= n(s(Fe([n])) + 1(F([22]))

S0,

N(F(si] + 1)) = n(s(F([n])) + 1(F([72])))-

Further, since # is 1-1,
F(s[n] +t[n]) = s(Fu([n1]) + t(F([r2))- O

Note 2.76 Let M be any 2-dimensional smooth manifold, and N be any 3-
dimensional smooth manifold. Let p be in M. Let F : M — N be any smooth map.
Let (U, ;) be an admissible coordinate chart of M satisfying p € U, and let
(V,y) be an admissible coordinate chart of N satisfying F(p) € V. Let u', u? be
the component functions of ¢, and let v!,v?,1? be the component functions of .

Since (V, ) is an admissible coordinate chart of N satisfying F(p) € V, and

v!,v?,v? are the component functions of Yy, {(av') (), (V) ()5 (), } is the

natural basis of the cotangent space 77, (N) determined by (V, lpv) Since (U, ¢y)

2

is an admissible coordinate chart of M satisfying p € U, and u',u? are the com-

ponent functions of ¢, {(du') s (du?) ,} is the natural basis of the cotangent space



2.8 Tangent Maps 119

T,(M) determined by (U,¢y). Since F*: Ty, — T;, and (dvl)F(p), (dv2)F(p),
(dv3)F(p) arein Tp . F*((dvl)F(p>), F*((dvz)F(m), F*((dv3)F<p>) are in 7). Also, by
the definition of F*,

F*((d"l)p(p)) = (d(vl OF))p'

Next, by Theorem 2.48,

Similarly,
2

P (@) = S ((2:((vve (Fot00))7) ) )i 0) ) (@)

i=1

and

P (@) = 32((2( (0o (Foto))) ) 6010 ) @),
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In short, we write

F’ ((d"a)mp)) = i((ﬂ'((lpv ° (F ° (900)71))“» (MI(P)a ”Z(P))) (d(”i))p

or

where

~—~
<
[\
—
=
~
~—

(&) = (e (Foon™)))) o

If there is no confusion, we simply write

2
oF* .
F*(dv*) = —du'.
@) = Y G
If M is an m-dimensional smooth manifold, and N is an n-dimensional smooth
manifold, then as above, we get the formula: For every o = 1,...,n,

" OF* .
F*(av*) = ~du'.

Note 2.77 Let M be any m-dimensional smooth manifold, and N be any n-dimen-
sional smooth manifold. Let p be in M. Let F : M — N be any smooth map. Let
(U, ¢y ) be an admissible coordinate chart of M satisfying p € U, and let (V, ) be
an admissible coordinate chart of N satisfying F(p) € V. Let u',...,u™ be the
component functions of ¢, and let v!,...,v" be the component functions of V.

Fori=1,...,m, and for o = 1,...,n,%
So, by the definition of F,,

() -

, is in T,(M), and ("), is in T,
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Thus,

We want to prove that

(1)) - 52, ()

that is, for every (df)p, in Ty, where fis in C{,(N),

(e (&) ()= (552 (o) ) 1)

Here,

I
-

Il Il
g
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~ ~
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< <
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Hence, LHS = RHS. Thus, we have shown that

QENICA(C

Since, by the definition of 7,

(D)

2))
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(- (E)) (5 ()

Further, since 7 is 1-1,
d " (aFﬂ> (a ) " (aw) (a

Flaal | = 22\aa) \aF =2\%7) \an
<6u p> /}; ou » ovb F(p) ; Ou » ov

F 0\ ~~O0F* 0
\ow') £~ oul o’

In short, we write
Note 2.78 Let M and N be any 3-dimensional smooth manifolds. Let p be in M. Let
F : M — N be any smooth map. Let (U, ¢) be an admissible coordinate chart of

M satisfying p € U, and let (V, ) be an admissible coordinate chart of N satis-

fying F(p) € V. Let u', u?, u® be the component functions of ¢, and let v!,1? v

be the component functions of /. Here,
p }

9| @
Ou!

" oul
, ou
is the natural basis of the tangent space T,,(M) under local coordinate system (u'), and

K
ov! F(p)

is the natural basis of the tangent space T, (N) under local coordinate system (v').
Also, by Theorem 2.75, the tangent map F, is a linear transformation from linear
space T,(M) to linear space Tr(,)(N). From the above note,

d 3 (aw’) <a >
<6u p> ; Ou » ovJ Fip)

So the matrix representation of F under the natural bases

0 0
{aul p} and {avl

S0,

F(l’))

0

133
pau

0

F(p) OV

0

F(p) OV

0

)
pau

0

13
pau

0

F(p) OV

0

F(p) O

F(P)}
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is
T ) 3
Ou » Ou » Ou »
oF2 oF2 oF2
ou! ou? ou3 )
p p P
T y) 3
Ou » Ou » Ou »1avs

where (47), stands for (Di((¥y o (F o (py) ™)) (' (p), #*(p), 1 (p)).
Further, the linear transformation F. : T,(M) — Tg(,)(N) is an isomorphism if
and only if

Note 2.79 Let E be an open subset of R®. Let F : E — R>. Let p be in E. By Example
1.6, E is a smooth manifold with the standard differentiable structure of E. Here,
differentiable structure on E contains {(E,Idg)}. Similarly, R? is a smooth manifold
with the standard differentiable structure of R>. Here, differentiable structure on R>
contains {(R* Idgs)}. Now, let F : E — R* be a smooth function. From the Note
2.78, the tangent map F, induced by F is an isomorphism if and only if

(%), (%)

ou! ou?

P p
oF? oF? oF?

@l (), (%), (%),|#0

oF3 oF3
ou! ou?
P p

where

(5, = (2= (e @07))) 600 = @) o) = 00

Thus, Fx is an isomorphism if and only if

(DiF)(p)  (D2F')(p)
det| (D1F?)(p) (D2F?)(p) (D3F?)(p) | #O.
(D1F?)(p)  (D2F?)(p)



Chapter 3
Multivariable Differential Calculus

In the very definition of smooth manifold, there is a statement like “...for every
point p in the topological space M there exist an open neighborhood U of p, an open
subset V of Euclidean space R”, and a homeomorphism ¢ from U onto V ...”. This
phrase clearly indicates that homeomorphism ¢ can act as a messenger in carrying
out the well-developed multivariable differential calculus of R” into the realm of
unornamented topological space M. So the role played by multivariable differential
calculus in the development of the theory of smooth manifolds is paramount. Many
theorems of multivariable differential calculus are migrated into manifolds like their
generalizations. Although most students are familiar with multivariable differential
calculus from their early courses, but the exact form of theorems we need here are
generally missing from their collection of theorems. So this is somewhat long
chapter on multivariable differential calculus that is pertinent here for a good
understanding of smooth manifolds.

3.1 Linear Transformations

Definition The set of all linear transformations from R" to R™ is denoted by
L(R",R™). By L(R"), we mean L(R",R"). Thus, L(R") denotes the set of all linear
transformations from R” to R".

We know that L(R",R™) is a real linear space under pointwise vector addition
and pointwise scalar multiplication.

Definition Let A be in L(R",R™) and B be in L(R™,R¥). By the product BA, we
mean the mapping

BA :R" — RF
defined as follows: For every x in R",

(BA)(x) = B(A(x)).

© Springer India 2014 125
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It is easy to see that BA is a linear transformation from R" to R¥, and hence, BA
is in L(R", RY).
Note 3.1 Let A be in L(R? R?). Let (,, t,, £3) be any member of R? satisfying
mh@@nsLsmwpq:\ﬂnfgv%g?+mf+m@2=Kmh@nghso

|#1] < 1. Similarly, || <1, and |#3] < 1. Further, since A is a linear transformation
from R? to R?,

|[A((t1,12,13))| = |A(t:1(1,0,0) + 7,(0, 1,0) + £5(0,0, 1))]
= |1 (A((1,0,0))) + 2(A((0,1,0))) + 13(A((0,0, 1)))|
< |1 (A((1,0,0)))| + [12(A((0, 1,0)))| + [13(A((0,0,1)))|
= [n[|A((1,0,0))| + [2[|A((0, 1,0))| + [13]|A((0, 0, 1))]

<1-JA((1,0,0))] + 1 - JA((0, 1,0))| + 1 -]A((0,0, 1))|
— A((1,0,0))] + A((0, 1,0))] + A((0,0, 1))].

Thus, we have seen that for every (11, f,, t3) in R® satisfying |(t;,5,1)| <1, we
have

IA((11, 12, 13)) < (JA((1,0,0))[ + A((0, 1,0))[ +]A((0,0, 1))]).
So, (JA((1,0,0))] 4+ |A((0, 1,0))| + |A((0,0,1))]) is an upper bound of the set
{|A((Z‘1,l‘2,l3))| : (1‘1,1‘2,2‘3) is in R3,and |(l‘1,l‘2,l3)| < 1}

Thus, {|A((t1,12,13))| : (t1,12,23) is in R?,and |(#;,1,,13)| <1} is a nonempty
bounded above set of real numbers, and hence,

Sup{‘A((ll,l27[3))| : ([1,[2, l3) is in R3,and |(l17[27t3)| < 1}
exists. Further, we have seen that

sup{|A((t1,12,13))| = (t1,12,13) is in R®,and |(11,12,83)| < 1}
< (|A((1,0,0))] + A((0, 1,0))| + |A((0,0, 1))]).

Similarly, if A is in L(R",R™), then sup{]A(x)| : xis in R",and |x| < 1} exists,
and

sup{|A(x)| : xis inR", and |x| <1} <(JA((1,...,0))| +--- +|A((0,...,1))]).
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Definition Let A be in L(R",R™). By ||A||, we mean the real number
sup{|A(x)| : xis in R",and |x| <1}.
|A|| is called the norm of A.
From the above discussion, we find that for every A in L(R", R™),
Al < (AL, 0D + -+ A0, .., D)])-
Theorem 3.2
1. If Ais in L(R",R™), then for every x in R",
A)] < [|Al]x].
2. If Ais in L(R",R™), then the mapping
A:R"— R"

is uniformly continuous.

3. If A, B are in L(R",R™), then
|4+ Bl < [|A[| + [IB]|
4. If Ais in LIR",R™), and t is a real number, then
[l2A]] = [zl Al
5. If, for every A, B in L(R",R™),
d(A,B) = ||A— B,

then L(R",R™) is a metric space with the metric d.
6. The mapping A ||Al| from L(R",R™) to R is continuous.
7. IfAis in L(R",R™), and B is in L(R™,RX), then

IBA] < |[BI[|A]l-

Proof
I: Let A be in L(R",R™). Let x be in R".

Case I: when x =0
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[A(x)] = [A(0)] = [0] = 0=<0 = [|A[|0 = [|A[[|0] = [|A[||]-

Case II: when x # 0. Since x 75 0, |x| is a nonzero real number, and hence, - [
is a real number. Also, ||x‘||x| = W |x| =1<1. It follows that
|A(ﬁx)| is a member of the set {\A( )| : yis in R” and |y| <1}, and hence,

from the definition of ||A|| , |A(Lx)| < ||A]l. Now, since

o *

1 =[]t = || = () | <la

[A)] < [[Allx]-

Thus, we see that in all cases, |A(x)| < ||A|||x|. This proves 1.
2: Let us take € > 0.
Case I: when ||A|| # 0. For any x, y in R" satisfying |x — y| < TAT» We have

AG) —AW)| = [AG - )| <[l [~y <[A] (||A|> ;

Case II: when ||A|| = 0. For any x, y in R” satisfying |x — y| <1, we have
A(x) —AW)| = [Ax —y)[ < [[Alllx =y =0 [x —y[ = O<e.
Thus, we see that in all cases, for every € > 0, there exists > 0 such that for

every x, y in R” satisfying |x — y| <J, we have |A(x) — A(y)| <e. So, by the
definition of uniform continuity, A is uniformly continuous. This proves 2.

3: Let A, Bbein L(R",R™). Let us take any x in R" satisfying |x| < 1. Now,

[(A+B)(x)| = [A(x) + Bx)| < |A)[ + [BE)[ < [|A]l[x] + [Bx)[ < [|A]||x]
+ B[]
= (1Al -+ 1IBID 1 < (Al + [1BI]) - 1= [|A]l + [IB]].

So, ||A|l 4+ ||B|| is an upper bound of the set {|(A+ B)(x)|:xisin
R", and |x| < 1}, and hence,

A+ B|| = sup{|(A + B)(x)| : xis in R", and |x| <1} <[|A[| + [|B].

This proves 3.
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4: Let A be in L(R",R™), and let 7 be a real number. Let us take any x in R"
satisfying |x| < 1. Now,

|(1A) ()| = Itfﬁ\f‘c'))l = [lAC)] <[l (A[lx[) = Clel[|AID Xl < (el A[]) - 1
=\t .

So, |#]||A|| is an upper bound of the set {|(A)(x)]| : xis in R",and |x| <1}, and
hence,

1t = sup{|(A)(x)| : xis in R",and |x| < 1} < |7]||A].

So, for every real ¢,

([EA[F < [e[[Af - - - ().

Case I: when ¢ # 0. Since 7 # 0, % is a real number, and hence, by (),

1 1

1
Al = |- (A) || < |-|||A]| = tA||.
11 = ;60 < |3 il = e
Thus, |¢|||A]| <||7A||. Hence, by (*),
Jeall = a1,

Case II: when ¢ = 0. Here,

[leA]]

[|0A[] = [|0]} = sup{|0(x)] : x is in R", and |x[ <1} = sup{[O[}
sup{0} =0 =0-[|A]
= [O[[A[l = [#[[|A]l

Thus, we see that in all cases,
[[A[] = [e[[|A]l-

This proves 4.
5: Here, we must prove

i. For every A in L(R",R™),

|A—A| =0.
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ii. For every A, B in L(R",R™), if |[A — B|| =0, then A = B.
iii. For every A, B in L(R",R™),
A =B = [|B—All.
iv. for every A, B, C in L(R",R™),
A= B[ <|lA—-Cll+]C- Bl

For i: ||A—A| = ||0|| = sup{|0(x)| : xis in R", and |x| <1} = sup{|0|} =
sup{0} = 0.
For ii: Let ||A — B|| = 0. Let us take any x in R". We have to prove that
A(x) =B(x). Since 0<|(A—B)(x)|<|[A—B|lx|=0-]x=0, |A — B)

()| =0, and hence, A(x) — B(x) = (A — B)(x) = 0. Thus, A(x) = B(x).
For iii: By 4,

LHS = [|A = B|| = [|(=1)(B = A)[| = [-1[[[(B=A)[| = 1- B - A|
= ||B—A|| = RHS.
For iv: By 3,
A =Bl =[[(A-C)+(C=B)<|A-C[+]C—BI|.
This completes the proof of iv.

6: Let us take any A in L(R", R™). We have to prove that the mapping A — ||A|| is
continuous. For this purpose, let us take any ¢ > 0. Let us take any B in
L(R",R™) satisfying ||B — A||<e. We have to prove that |||B| — ||Al|| <e.
Since [|B|| = [|(B —A) + A| < |[B — Al| + [|A]l, [|B]| — [[A] <[|B — A]|. Simi-
larly, —(||B]| — [[Al]) = [|All = |B]| < [|[A = Bl| = ||B — Al|. Hence,

IBII = Al = max{[|B]| — [[All, =([[BIl = 1AI)} < [[B — Al <.

This proves 6.

7: Let us take any A in L(R",R") and B in L(R™,R). Let us take any x in R"
satisfying |x| < 1. Since

((BA)(x)] = [BAX))| < [[BI[|AC)[ < 1B - ([IAlllx])
= (IBIlAD < IBlllAll - 1 = [IBI[[[All,

IBA|| = sup{|(BA)(x)| : xis in R",and |x| < 1} < ||B]|||A]l

This proves 7. U
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Theorem 3.3 Let Q be the set of all invertible (i.e., 1-1 and onto) members of

L(R").

1. If A is in Q, then |A™!|| is nonzero.

2. IfAis in Q, then the open sphere S(l/HA i (A) is contained in Q, that is, if A is in
Q, Bisin L(R"), and ||B — A|| < then B is in Q.

3. Q is an open subset of L(R").

4. The mapping A— A~" from Q to Q is continuous.

HA A=

Proof

1: Let us take any A in Q. We claim that |A~!|| is nonzero. If not, otherwise, let
|[A=!|| = 0. We have to arrive at a contradiction. Since A is in Q, by the definition
of Q, A~ exists and A is in Q. Also, AA7! = I, where I denotes the identity
transformation from R” to R”. For every x in R", 0 < |A~!(x)| < [|[A~!]||x| = O
|x| = 0, s0 [A~'(x)| = 0, and hence, A~"(x) = 0. Therefore,

(1,0,...,0) = I((1,0,...,0)) = (AA~)((1,0,...,0))

A(A7H((1,0,...,0)))
A((0,0,....,0)) = (0,0,...,0),

and hence, 1 = 0, a contradiction. So, our claim is true, that is, ||A™!| is
nonzero. This proves 1.

2: Let A bein Q and let B be in L(R").
and hence, is a real number. Also, by the deﬁmtlon of norm |||, i = A is a

A7l is nonzero

HA i
positive real number. Let

18— All <

A=t

We have to show that B is in Q, that is, B : R” — R" is 1-1 and onto.
1-1ness: Let B(x) = B(y). We have to prove that x =y, thatis, x — y = 0. If not,
otherwise, let x — y £ 0. We have to arrive at a contradiction. Since x — y # 0,

O<|x—y|. Since B(x) = B(y), and B is a linear transformation,
0 = B(x) — B(y) = B(x — y). Hence,

=yl =[(A7A) (x = y)| = [(A7) (Al = )] < a7 [lAGx = y)]
=[la7][lA(x = y) - 0]
) =

= A IAGx — ) — B(x— )]
= A7[IA = B)(x =y < [[A7"]|(IA = Bll[x = )
= (|la7"[|lla = BI))]x - y|

)
1
= (a1 = Al =31 < (4 2t Yo =1 = b=
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Thus, |x — y| <|x — y|, which gives a contradiction. This proves that B is 1-1I.
Ontoness: Let us take any y in R". Since B:R" —R" is 1-1, B
(1,0, ..., 0)), ..., B(O, ..., 0, 1)) are n distinct elements of R". Now, we shall
show that B((1, 0, ..., 0)), ..., B((0, ..., 0, 1)) are linearly independent. For this
purpose, let #;(B((1, O, ..., 0))) + --* + #,(B((0, ..., 0, 1))) = 0. We have to show
that 7, =0, ..., ¢, = 0. Here,

B((0,...,0)) = (0,...,0) =0=r(B((1,0,...,0))) + - -
+1,(B((0,...,0,1)))
= B(1(1,0,...,0)) +--- + B(1,(0,...,0,1))
= B((1,0,...,0)) +---+ B((0,...,0,1,))
=B((t;,0,...,0) +---+(0,...,0,2,)) = B((ts,.. ., 1)),

and B is 1-1, so (0,..., 0) = (¢4,..., t,), and hence, t; =0,..., t, = 0. Thus, B
(1, 0,..., 0)),..., B((0,..., 0, 1)) constitute a basis of the n-dimensional real
linear space R". Since B((1, 0,..., 0)),..., B((0, ..., 0, 1)) constitute a basis of
space R", and y is in R", there exist real numbers sy, ..., s, such that

y:_S‘l(B((l,O,,O))) +oee +Sn(B((Oa503 1)))
= B(51(1,0,...,0)) + - - + B(s5,(0,...,0,1))

=B((s1,..,51))-

Thus, B((sy, ..., $,)) =y, where (sy, ..., s,) is in R". This proves that B is onto.
This proves 2.

3: Let us take any A in Q. Since A is in Q, by 1, ||A‘l || is nonzero. Now by 2, the
open sphere {B : B € L(R"),and |B — A| < T H} is contained in Q. Hence, by
the definition of open set, Q is an open subset of L(R"). This proves 3.

4: Let us take any A in Q. We have to prove that the mapping B— B~! is
continuous at A Since A is in Q, by 1, |A7!|| is nonzero. If B is in L(R")

satisfying ||B — A| < HA T then by 2, B is in Q, and hence, B! exists. Now, it

is enough to prove that limp .4 |B~! — A~!|| exists, and its value is 0. Here,

187" =] = [|(a~'4)B™ — a7 (BBT) || = ||A ( ) At (s
= [la™" (aB™" - H = [la~"(a - B)B'|| < [[a™ Il - B[]
= (|la7"][]1A —BH) ~sup{’(B71)(x)} :xis in R", and |x| <1}

or,

1B — A~ < ([]a~"]| 1A - B])
: SUP{|(B”)()C)‘ :xis in R" and |x| < 1} (%)
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Observe that for any x in R” satisfying |x| < 1, we have

B~ )] = [((A7)A) (B ()] = [(A7") (a(B™ ()| < [|a7[|]a (B~ ()]
=[|a7"[|(a = B) (B~ (x)) + x| < [[a™"|[(|(a — B) (B~ (x)) [ + |}
<[~ (1A = BIB~ (0] + |xl) < A7 | (1B — Al |B~" ()| +1)

S0,

B~ )| (1 = [la"][l1B — al)) < []a7]].

Further, since ||B — Al| < ﬁ,

)
[A=HI1B — Al

B <

Hence,

I
L—[|A=1][||B — A]

SUP{|(371)(x)| cxisin R" and |x| < 1} <

Now, from (*),

1 _ -1
I 4 < O =) - e = a1 A
1
=47 (“ Tqas —An)'
Thus, if [|B — Al < ;. then
OSHB"—A"||§HA"||(—1+1 711 — )
[ATE = 4]

By Theorem 3.2, the mapping B+ ||B|| from Q to R is continuous, so
limg_,4 |B — Al| = 0. Also,

. ~1 1 _ -1 _ 1—
Jiml4 ”(‘”1—||A1|||B—A||)‘”A ”( 1+1—|Al||-0)

~ a1+ =0
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Since, for every B satisfying ||B — A|| < m, we have

_ _ _ 1
o<l =4 < W (-1 + )

and

i 1 B
Jim 4 ”(‘1 = ||A1||||B—A||> =0

s0, limp_4 ||B~! — A~!|| exists, and its value is 0. This shows that the mapping
B~ B~! from Q to Q is continuous at A. This proves 4. O

Definition Let {e}, e,, e3} be any basis of real linear space R?, and let {f, f>} be
any basis of real linear space R?. Let A be in L(R? R?). Let

A(er) = anfi + aaifs,
A(er) = anfi + anf,
A(e3) = apfi + axfo.

The matrix

apn Az a3
a1 A 423 |, 3
is denoted by [A].

Similar definition can be supplied for A in L(R",R™).

Theorem 3.4 Let M be the collection of all 2 x 3 matrices with real entries. Let
{e;, es, e3) be a basis of real linear space R, and let {f;, >} be a basis of real
linear space R*. Then, the mapping A — [A] from L(R3,R?) to M is 1-1 and onto.

Proof 1-lness: Let [A] = [B], where

[A]E|:a11 apn a13] and [B]E[bll bia b13} .
ay axn a3 |, 4 byt by by,

We have to prove that the mappings A : R* — R? and B : R® — R? are equal,
that is, for every tje; + tes + t3e3 in R3,
A(tier + tey + t13e3) = B(tie) + hes + Bze3).

For this purpose, let us take any t,e; + tye, + f3e3 in R3. Since [A] = [B], a;=by;
for every i = 1, 2, and for every j = 1, 2, 3. Further,
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[A]:{an an 013} and [B]:[b“ b1 b13:|
A axn a3, ba by by,

SO A(el) = alLfl + aZsz = bllfl + bz]_fz = B(el). Slmﬂarly, A(ez) = B(€2) and A
(e3) = B(es).
So,

LHS = A(t1€1 + her + t3€3) =1 (A(el)) + l‘z(A(ez)) + t3(A(e3))
=1 (B(el)) + 12(3(62))1‘3(3(63)) = B(I]é] + her + 1‘363) = RHS.

This proves that A+ [A] is 1-1.
Ontoness: Let us take any 2 X 3 matrix

ajp ap aps
dzl Gy A3 |, 4
Let us define a function A : R? — R? as follows: For every tie; + frep + tzez in
RB‘

)

A(tier + ey + 3e3) = ti(anfi + anfa) + ta(anfi + anfa) + t3(anfi + anfa).

We shall show that A is in L(R? R?). For this purpose, let us take any

X = sje; + $2ex + s3€3, Y = te + e, + tze3, and any real number . We have to
prove that

1. A(x+y) =A(x) + A(y),
2. A(tx) = 1(A(x)).
For 1: LHS = A(x 4+ y) = A((s1€1 + sz + s3e3) + (tie1 + hea + 13e3))
= A((Sl + t1)61 + (3‘2 + [2)62 + (S3 + 13)63)
= (s1 +t)(anfi + aaifa) + (52 + ) (aafi + axnf)

+ (53 + 83)(a1afi + axfr).
and

RHS = A(x) + A(y) = A(s1e1 + s2e2 + s3e3) + A(t1e1 + hea + 1e3)
si(anfi + aafy) + s2(anfi + anfz) + ss(afi + axnfr)
+ ti(anfi + anfy) + to(anfi + anfr) + t3(aizfi + anp)
= (s1 +t)(anfi +auf) + (s2 + ) (anfi + anfr)

+ (83 + 13)(anafi + anfa).

So, LHS = RHS. This proves 1.
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For 2: LHS = A(tx)
= A(t(s1e1 + s2e2 + s3e3)) = A((ts1)er + (ts2)ea + (53)e3)
= (ts1)(anfi + afa) + (ts2)(anfi + anfs) + (ts3)(@1afi + axf)
= (ts1ay1 + tsrary + ts3ai3)fi + (ts1a21 + tsraz + ts3a23)f>
= t(s1a1 + s2a12 + s3a13)fi + 1(s1a21 + s2a220 + s3a23)f>
= ts1(anfi + anfz) + tsa(annfi + anfr) + tszy(azfi + anf)
= t(si(anfi + anf2) + s2(annfi + anfr) + s3(anfi + anfr)).

and

RHS = 1(A(x)) = 1(A(s1€1 + 5202 + 53€3))
= t(s1(anfi + axifp) + s2(annfi + anfp) + s3(aiafi + axfr)).

So, LHS = RHS. This proves 2.

Finally, it remains to prove that

[A}: apn a2 aps
az1  dp a3

Since
A(ey) = A(le; + 0ez + Oe3)
= l(anfi +anp) + 0(anfi + anfr) + 0(aizfi + anf),

Aler) = anfi + axfs.

Similarly,
A(er) = anfi + anf,
A(es) = ansfi + anf.

Hence,

ap ap a3
[A] = :
dy; daz A

Note 3.5 The result similar to Theorem 3.4 can be proved as above for L(R", R™).

Theorem 3.6 Let {ey, e, e3, €4} be any basis of real linear space R*, let {f1, >, f5)

be any basis of real linear space R?, and let {g,, g} be any basis of real linear
space R%. Let A be in L(R*,R?), and let B be in L(R*>,R?). Then,
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[BA] = [B][A].

Proof Here, A is in L(R* R?) and B is in L(R*,R?), so their product BA (i.e., the
composite B ° A) is in L(R*,R?), and hence, LHS(= [BA]) is a 2 x 4 matrix. Since
A is in L(R*,R?), [A] is a 3 x 4 matrix. Since B is in L(R*,R?), [B]isa 2 x 3
matrix. Since [B] is a 2 x 3 matrix, and [A] is a 3 x 4 matrix, RHS(= [B][A]) is a
2 x 4 matrix. So, matrices in LHS and RHS have the same order. Let

ay dapz da;z a4
Al = |au an axn au
as1 a4y a4z a4 |54

and
bii b1 b3
B| = .
5] [b21 by 1?23}2X3
Hence,

(BA)(e1) = B(A(e1)) = B(anfi + anifo + as1f3) = an(B(fi)) + ax (B(f)) + as1(B(f3))
= a1 (biig + bag2) + an(bingi + brgr) + azi(bizgr + bxg2)
= (anby + azbin + a31biz)g1 + (anba + azby + az1bs)gr.

So the first column of [BA] is

aibiy + axbi + azbiz
ai1byy + azby + azba

Now,

_ ay ap apz ap
bii b bz
[B][A] = ary axn a3 axy
Lbar b b3 ]oys
az1 Ay a3 A34 |4y

- [byiay + bppas +bzaz; -+ - - :|
" byan; + byas + byaz o
_ [anbi +auby+anbi - - e ]
"~ Lanba + arbrn + az1bas s

Hence, first column of [BA] is the same as the first column of [B][A]. Similarly,
second column of [BA] is the same as the second column of [B][A], third column of
[BA] is the same as the third column of [B][A], and fourth column of [BA] is the
same as the fourth column of [B][A]. This shows that [BA] = [B][A]. O
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Note 3.7 The result similar to Theorem 3.6 can be proved as above for A in
L(R",R™) and B in L(R™,R”).

Note 3.8 Let A be in L(R* R?). Let

ay ap a
[A] = | A1 @2 a3
ax ap a4z |, ;

relative to the basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of R3 and the basis {(1,0), (0, 1)}
of R%. Let (t;, t,, t3) be any member of R? satisfying |(#;,1,,73)| < 1. Since A is a
linear transformation from R* to R,

A((t1,1,13)) = A(11(1,0,0) + 1,(0, 1,0) 4 £3(0,0, 1))
1(A((1,0,0))) + 2(A((0,1,0))) + 13(A((0,0, 1)))
= ti(a11,an) + tr(ai, ax) + t3(a13, ax)

= (hia1 + bap + Bag, has + haxn + tas)

= ((t1,2,13) - (@11, a12,a13), (t1, 12, 13) - (@21, a2, a23)),

and hence,

|A((tlat2;t3>)| = |((t17t2at3) . (a117a123a13)a (tlat25t3) . (a21,a22,a23))|

= \/|(l1,lz,l3) (arn, an, an) P+t 12, 5) - (@21, a2, a23)

< \/(\(Il,lz, t3)||(a11,alz,a13)|)2+(|(t1,t2,t3)|\(a21,a22,a23)|)2
</ (U@, @) +(1] (@1, a2, )]

= \/|(a11,a12,a13)|2+|(a21,agg,a23)|2

= \/(a“)2—|—(a12)2+(a13)2—|—(a21)2—|—(a22)2+(a23)2.
This shows that

||A|| = sup{|A((ll,12,l3))| : (ll,l‘z,l3)iSiHRn, and |(11,t2,l3)| < 1}

< (@) @) )+ )+ () s =

Conclusion: If A is in L(R?, R?) and

a a a
[A] = | %11 @2 a3
ax ax a4z |, 4



3.1 Linear Transformations 139

relative to the basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of R? and the basis {(1, 0), (0, 1)}
of R?, then

NE Z(Z())

The result similar to this conclusion can be proved as above for R" in place of R
and R™ in place of R2.

Theorem 3.9 Let X be a metric space. Let © be the 1-1, onto function A — [A] of
Theorem 3.4, relative to the basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)} 0f]R3 and the basis
{(1,0), (0, 1)) of R. If. fori = 1,2, andj =1, 2, 3, each a;: X —Ris
continuous, then the mapping

XHT1<[a11(x) an(x

any ()C) ann (X

Na Ny
Q9
[\
W W
o~
= =
S—
| I
)

X

(9%

~__

from X to L(R*,R?) is also continuous.

Proof Let us observe that for every x, y in X,

ol 5 2B (2 56 2]
where
2= (o) ) o)) <L)
= ([ ) o)) < HEE)
Since
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and hence,

Since A, is in L(R*,R?), and A, is in L(R?,R?), A, — A, is in L(R?,R?), and
hence, by Note 3.1,
A = Ay || < [(Ax = Ay) ((1,0,0))] + [ (Ax = 4,)((0,1,0))]

+](A—A )((0 0,1))|

= [(A«((1,0,0)) — A,((1,0,0)

+ | (Ax((0,0, 1)) — Ay((0,

= [((a11(x), a21(x)) —

+ |((a12(x), azz (x)
(x), a3

+ |((a13(x), az3 (x)

0)))| + | (A:((0,1,0)) — A4,((0,1,0)))]

0,1)))|

(a11(y), a21(»)))|

) = (ann(y), a(y)))|

) — (a3(y), a23(y)))|

= [(a11(x) — a1 (), a21(x) — a1 (y))|

+ [(@12(x) — a2(y), aza (x) — ax2(y))|
+ (a13(x) — a13(y), a23(x) — az3(y))]

< (Jan(x) = an(y)] + lazi (x) — a2 (y)])
+ (la2(x) — a2 (y)] + lazz (x) — ax(y)])

) (

+ (las(x) — a3 ()] + lazs (x) — az (v)])-

Thus, for every x, y in X,

() B (i )|
)

<(lai (x) —an ()| + laz1(x) — a21(y)])
+ (la2(x) — a(y)] + laz(x) — an(y)|)
+ (Ja3(x) = aiz(y)] + lazs (x) — az(y)]) -+ ().

Now, let us fix any x in X.
It is enough to prove that the function
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X0—>‘L'_1<|:all(x) ai(x) a13(x)} )
2x3

asy (x) an(x) ax (x)

from X to L(R?, R?) is continuous at x. For this purpose, let us take any ¢ > 0. Since
each a; : X — R is continuous at x, there exists 6 > 0 such that for every y in the
open neighborhood Bj(x) of x, we have |a;(x) — a;(y)|< ¢ (for every i = 1,
2,and j = 1,2, 3). Hence, for every y in the open neighborhood B(,(x) of x, we have
from (*),

[ ([ s o) = (ey ey o))

< (lan(x) = an ()| + laa1 (x) — a1 () )+ (Jarz(x) — a2 (y)] + laz(x) — an(y)))
+ (lars(0) — an ()| + lan() —anO)) < g +gtetetete=- O

Note 3.10 The result similar to Theorem 3.9 can be proved as above for R" in place
of R® and R™ in place of R?.

3.2 Differentiation

Theorem 3.11 Let E be an open subset of R*. Let f: E — R?. Let f; : E —
R, f5 : E — R be the component functions of f, that is, f(h) = (f|(h), f>(h)) for every
hinE. Let x be in E.

If there exist A and B in L(R*,R?) such that

hm(|h| (Ailx+h),A(x+h) — (Akx),A(x) —A(h))) ~0,

and

hm<|h| ((Alx +h), (x4 h)) = (ilx),f(x) — B(h))) —0,

then A = B.

Proof We have to prove that A = B, that is, for every i in R®, A(h) — B(h) = 0.
For this purpose, let us take any = (hy, hy, h3) in R3.
It is sufficient to prove that |[(A — B)(h*)| =0

Case I: when i* =0
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LHS = |(A4 — B)(h")| = |(4 — B)(0)| = |0 = 0 = RHS.

Case II: when b~ # 0
Since limh_@(ﬁ ((Ailx+h),o(x+h)) — (fi(x),(x)) —A(h)) =0, t—1th* is a
continuous function, and e # 0, and hence,

nm(;,*«fl(x )l 1)) — (i (). ) —A(rh*))) 0.

t—0

Similarly,

nm(th%«flm ) ol + 1)) — () o)) — B<rh*)>) —0.

t—0

Hence,

nm(i«fl(w ), Fae 1)) — (i (1) o)) — A(eh)

—0 |[/’l*|

_%((ﬁ (x+ th*), fo(x + th")) — (fi(x), o(x)) — B(th*))>

exists, and its value is 0 (= 0 — 0). Further, since |4*| > 0,

0 = tig (e (Gl )5 Ca-4087) = G0 a0) = A
e (a4, ) = (60, — BGH) )
—tiy (1 (B0 - A1)
—tiny (1 0B0) = 40)) ) =t (80) — a0 )

Since lim,_ (= ¢((B — A)(h*))) =0,

[e]]7*]
0 = lim| . r<<B—A><h*>>]—nmi|<B—A><h*>|—i|<B—A><h*>|
= 250 [e[[A"] =y G '

Since ﬁ|(B —A)(h*)| =0, LHS = |(A — B)(h*)| = |(B—A)(h*)| = 0 = RHS.
Thus, we have shown that in all cases, LHS = RHS. O
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Note 3.12 The result similar to Theorem 3.11 can be proved as above for R" in
place of R? and R™ in place of R?. According to Theorem 3.11, if there exists A in
L(R?,R?) such that

iy (1 (G334 1)+ 1) = G0 (0) = A1) ) =0,

then such an A is unique.

Definition Let £ be an open subset of R®. Let f: E - R?. Let i : E — R, f5 :
E — R be the component functions of f, that is, f(h) = (fi(h),f>(h)) for every h in
E. Let x be in E.

If there exists A in L(R?, R?) such that
li m<|h| ((filx+h),o(x+ 1)) — (fi(x),(x) —A(h))) —0,

then we say that f is differentiable at x, and we write
fx) = A

Here, f(x) is called the differential of f at x, or the total derivative of f at x. It is
also denoted by Df(x).

In short, f'(x) = A means limhé()(ﬁ (f(x+h) —f(x) —A(h))) = 0.
If f is differentiable at every point of E, then we say that f is differentiable on E.
Similar definition can be supplied for R" in place of R® and R™ in place of R>.
Theorem 3.13 Let E be an open subset of R". Let f : E — R™. Let x be in E. Let A
be in L(R",R™).
f'(x) = A if and only if there exists a function r : {h:x+h € E} — R" such
that
i r(0) =0,
() f(x+h) =f(x)+A(h) + |h|(r(h)) for every hin {h:x+ h € E},
(iii) 7 is continuous at 0.
Proof of “if” part
Suppose that there exists a function r : {h: x +h € E} — R" such that
(i r(0)=0,
(i) fix + h) =flx) + A(h) + |h|(r(h)) for every hin {h:x+ h € E},
(iii) r is continuous at 0.

We have to show that f'(x) = A, that is,

11m<|}1l (Fx+h) —f(x) —A(h))) ~0.
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Since r is continuous at 0,
1
RHS =0 =r(0) = hr% r(h) = hm<|h (flx+h) —f(x) —A(h))> = LHS.

Proof of “only if” part
Let f'(x) = A, that is,

}zlg(l)<|}1;| (fx+h) —f(x) —A(h))> =0--(%).

Let us define r:{h:x+he€E} —-R" as follows:

For every h in
{h:x+heE},

x+h) — f(x) — A(h)), ifh+#0
iy = (U S0 A, itk 20

Clearly, r(0) = 0. Also, it is clear that for every h in {h:x+h € E},
flx+h) =f(x) +A(h) + [h|(r(h)). By (*),

lim r(h) = 11m(|}ll| (f(x +h) —f(x) — A(h))) =0=r(0),

and hence, r is continuous at 0.

O

Theorem 3.14 Let E be an open subset of R®. Let f: E — R?. Let fi : E —

R, f> : E — R be the component functions of f, that is, f(h) = (f,(h), f>(h)) for every
hin E. Let x be in E. Let A € L(R*,R?), where

[A] _ [le le le}
21 A2 23 |44
relative to the basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of R and the basis {(1, 0), (0, 1)}

of R%. f'(x) = A if and only if

lim _ .
ygom h—>0<|/’l| (ilx+h) = fi(x) = (h1,ha, h3) - (a11, a1z, a13))

1 h — (h1,hy, h3) -
i (G G4 ) = £0) = (i, s ) a1 )

~ ~—_
Il
=
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Proof
f'(x) = A means

(0,0) =0 = hm(Vll' (F(x+h) — () —A(h)))

= i H)('h ((fi(x +h), fr(x+h) — (fix),A(x) _A(h))),

Since

A(h) = A((h1, ha, h3))

hi(A((1,0,0))) + h2(A((0, 1,0))) + h3(A((0,0, 1))

= (a1, a) + hy(aiz, ax) + hi(aiz, azs)

= (may + hayp + hzais, hay + haay + hzazs)
((h1,ha,h3) - (@11, @12, a13), (hi, ho, h3) - (ao1, an, a23)),

f'(x) = A if and only if

- (wﬂ (G4 R).folx+ B) = (i), /o))

— ((h1,ha, h3) - (ai1, aiz, a13), (hi, ho, h3) - (a21,a22,a23))>

(07 O) =

1
= lim h — (hy,hy, h3) -
"l o (G O+ 1) = F0) = (i) ),

7l (fz(x+h) —fa(x) = (h1,ha, h3) - (61217612276123))>

1
= lim _ .
((hl My 0|h|(f(x—|—h) ﬁ(x) (hl,hz,h3) (all,alg,a13)),

(fz(x +h) = fo(x) = (hy, ha, h3) - (a1, a, 023))) :

lim
(. )=h—0 | 1]

Thus, f'(x) = A if and only if

i(fl(JH- h) — fi(x) = (hi, ha, h3) - (ai1,a12,a13)) =0,

lim
(hy,hy,h3)=h—0 ‘h|

1
lim —(h(x+h) —fo(x) — (h1,ho, hs3) - (@21, a0, a =0. O
(hl,h23113)5h_>0‘h|(152( ) = fa(x) = (h1,h2, h3) - (@21, a2, az3))

Note 3.15 The result similar to Theorem 3.14 can be proved as above for R” in
place of R? and R™ in place of R>.
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Theorem 3.16 Let E be an open subset of R". Let f : E — R". Let x be in E.
If f is differentiable at x, then f is continuous at x.

Proof Let f be differentiable at x.
We have to prove that f is continuous at x, that is, lim,_o(f(x + ) — f(x)) = 0.
For this purpose, let us take any ¢ > 0.
Since f'is differentiable at x, there exists a linear transformation A from R" to R"
such that 0 = lim;Ho(Wl‘ (f(x+h) —f(x) —A(h))), and hence, there exists d > 0

such that for every A in {h: x+ h € E} satisfying 0 <|h| <J, we have

706 ) =00 = A = | (a4-) =) = A(8) ~ 0] <3,

= \ 1
i 0

Case I: when ||A|| # 0

Now, if i is in {h: x+ h € E} satisfying 0 <|h| <min{1, 57, 8}, then

72‘
(e 1) = 09) = 0 = |1l 0a-+-1) ) —A(h))) +A(h)
< o (e ) = 0) = AGB)| + 4G
< (e 1) = (2) = AR + Al

< 1| a4 1) =) — 4G+

&
<1-= All -
5+ Al

8 p—
2[|A]l

So, fis continuous at x.
Case II: when ||A|| =0

Here, ||A]| =0, so A = 0. Now, if & is in {h:x+h € E} satisfying
0<|h| <min{l, 8}, then

(e 1) = 00) = 01 = [ (G376 4) = 70 = 004 )
= 41 -+ 1) =) — 001 )
<1 (Gl =00 - Aol ) <13 <e.

So, fis continuous at x.
Thus, we see that in all cases, fis continuous at x. O
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Note 3.17 If A € L(R",R™), then A is differentiable on R", and for every x in
R", A'(x) = A.
Reason: Let us take any x in R". Since

limy,_o (ﬁ (A(x+h) —A(x) — A(h))>

=t o 1 (400 + AG) - AC) - A1) )

= limhﬁo(()) = 0, A’(x) = A.

Further, since A is differentiable on R", by Theorem 3.16, A is continuous on R".

Theorem 3.18 Ler E be an open subset of R". Let x be in E. Let f : E — R™ be
differentiable at x. Let G be an open subset of R™, and G contains the range of f. Let
g : G — R? be differentiable at f(x).

Then,

1. the composite function (g of) : E — RP is differentiable at x,

2. (g0f)'(x) = (g N (x))-

Proof Here, f : E — R™ is differentiable at x, so by Theorem 3.13, there exists a
function r: {h:x+ h € E} — R" such that

(i r(0)=0,
(i) f(x+h)=f(x)+ (f'(x))(h) + |h|(r(h)) for every hin {h:x+h € E},
(iii) r is continuous at 0.

Here, g : G — R? is differentiable at f(x), so by Theorem 3.17, there exists a
function s : {k : f(x) + k € G} — R” such that

i s(0)=0,
(i) g(f(x) +k) = g(f(x)) + (¢'(f(x))) (k) + [k|(s(k)) for every k in {k : f(x)+
k € G},
(iii") s is continuous at 0.

We have to show that the composite function (g o f) : E — R” is differentiable

at x, and (gof) (x) = (¢ (f(x)))(f'(x)). By Theorem 3.13, it is enough to find a
function ¢ : {h : x + h € E} — R” such that

@ #(0) =0,
D) (gof)(x+h) = (gof)(x)+ ((¢'(f(x)))(f'(x)))(h) + |h|(:(h)) for every
hin{h:x+h€E},
(IIT) ¢ is continuous at 0.
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Here, for every hin {h:x+ h € E},

(gof)(x+h) = g(f(x+h))

= g(f(x) + (' () (h) + [Rl (r(h)))
= g(f(x) + ((F'(x)) () + |l (r(R))))
= 8(f(x)) + (&' (FN)((F () (h) + Al (r(h)))
1) () + Al (r()|(s((F () () + [B](r(7))))
= 8(f(x)) + (&' (FE((F'(x)) (h))
+ (& (FEN) (Al (r()) + 1(F () () + [RI () (s((F () () + [l (r(R))))
= (g0f)(x) + ((g'(F(x))) o (F'(x))) (h) + [AI (&' (f (x))) (r(R)))
1) (1) + (R (r(W)|(s((F () () + [R](r(1))))
= (gof) )(f( N)(h)

(x) + (('¢F(x)
+ Ih\((g’( () (r(h)) + 0 () ) + \hl(r(h))l(S((f'(X))(h)JrIh\(r(h)))))

So, for every hin {h:x+h € E},

(g of)(x+h) = (g of)(x) + ((¢'(F(X)))(F'(x))) (h)
44MKgU@DX())

MHW(D()+MK()MNUY@X@44MU®DD)
Now, let us define the function 7 : {h: x+ h € E} — R" as follows: For every
hin{h:x+h € E},

() = { (&' (F)) (r(h) + g7 |(F () () + [ (r()|(s((F' (x)) () + [A|(r(R)))), if h#0
0, ifh=0

It suffices to prove that 7 is continuous at 0, that is,

lim () = 0.

For this purpose, let us take any ¢ > 0.

Since (g'(f(x)))(r(h)) = ((g'(f(x))) o r)(h), the linear transformation g’(f(x)) is

continuous, and r is continuous at 0, the mapping h— (g'(f(x)))(r(h)) is contm-

uous at 0. Hence, limy,.o(g'(f(x)))(r(h)) = (¢'(f(x)))(r(0)) = (¢'(f(x)))(0) =

It follows that there exists J; > 0 such that for every hin {h: x+ h € E} satlsfymg
0<|h|<J;, we have

[EENIGONEES

Since, for every nonzero h in {h:x + h € E}, we have
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ﬁl(f’(X))(h) + [Rl(r(h))] < ﬁ(l(f/ X)) ()| +[[R|(r())])

(
= G (G001 1) < UGB+ BlIR)) = G| + 1)

Since lim,_or(h) =0, there exists J; >0 such that for every h in
{h:x+ h € E} satisfying 0< |h| <0,, we have

|r(h)] <1.
So, for every nonzero i in {h : x + h € E} satisfying 0 <|h| <J,, we have

Wﬂl(f’()ﬂ))(h) + [ (r() <[ ()] + 1.

Since limy,_,o r(h) = 0, and lim;_o s(k) = 0, lim,_q s((f'(x))(h) + |k|(r(R))) =
s((f'(x))(0) 4 10](r(0))) = 5(0+ 0) = 5(0) =0, and hence, there exists d3 > 0
such that for every h in {h:x+h € E} satisfying 0<|h|<Jd3;, we have
[s((F" () () + [RI(r())] < sprams -

Hence, for every h in {h:x+h € E} satisfying 0<|h| <min{d;, J2, 3}, we
have

|,17||(f’(X))(h) + () (s((F(x)) () + R (r())))
= |71||(f’()6))(h) + R () [[s((F (x)) () + [ (r(R))]

S UF I+ DIsF ) (R) + [l )< (I ()l + 1) PO "2

Further,
|t(h) = O = [t(R)] = | (&' (F()) (r(R)) + |—,11| |(F'(x)) () + [R](r(M))]
(s(( () () + 1| (r () ) < (8 (F () (r (W)
000 + OO0+ )| < 545 =
This proves that limy,_o #(h) = 0. O

Note 3.19 Theorem 3.18 is known as the chain rule of derivative.

Theorem 3.20 Let E be an open subset of R®. Let f : E — R%. Let f; : E —
R, f»: E — R be the component functions of f, that is, f(h) = (fi(h),f>(h)) for
every h in E. Let x = (x1,x2,x3) be in E. Let f be differentiable at x.
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Then, all the partial derivatives (Df)(x), (D2f1)(x), (Daf1)(x), (D1f2)(x), (Daf2)
(x), (Daf2) (x) exist.

Also,
(f'(0))((1,0,0)) = (D1fi) (x), (D1f2) (x)),
(F'(x))((0,1,0)) = ((Daf1)(x), (Daf2) (x)),
(F'(x))((0,0, 1)) = ((Daf1)(x), (Daf2) (x)),

and for every 4 in R?,

(F())(h) = (Vi) (x) - h, (VL) (X)) - h),
where

(VA)(x) = ((D1f1) (x), (Dafi) (x), (Daf1) (%)),
(V) (x) = ((Dif2)(x), (Daf2) (%), (Daf2) (x)).-

(Here, (Vf1)(x) is called the gradient of fi, etc.)

Proof Since fis differentiable at x, f'(x) is in L(R?, R?). Let

reol= o o ]

ay ax a3
relative to the basis {(1,0,0), (0, 1,0), (0,0, 1)} of R and the basis {(1,0), (0,1)}
of R2. By Theorem 3.14,

lim <i (fl(x+ h) 7f1(x) — (l’ll,hz,//n) . (a117a127a13))) =0.

i
(hy ha b3 )=h—0

il
Hence,
i (g O 30) + (0.0.0) = A(152059)) = (0..0) - g aeans)) ) =0
or,
i (- 32+ 13) (32,3 — ) ) =0
or,

t—0

lim(% (fil(x1, 20 +1,x3)) = fi((x1,x2,%3)) — lan)) =0
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or,

i (3G (132 +1.3) i, 32,30)) a2 ) =0
or,

(Dafi) (x) = }ii%fl((xl,xz + lyxs))l —fi((x1,%2,x3)) —ap.

It follows that (D,f})(x) exists, and its value is a;;.
Similarly, all (D;f;)(x) exist, and (Dyf;)(x) = a;. Hence,

()] = (Difi)(x)  (Dafi)(x)  (Dafi)(x)
(Duf)(x)  (Daf2)(x)  (Daf2)(x) |55

relative to the basis {(1,0,0), (0, 1,0), (0,0, 1)} of R and the basis {(1,0), (0,1)}
of R2. Also,

(f'(0))((1,0,0)) = ((D1f1)(x), (D1£2)(x)),
(f'(x))((0,1,0)) = ((D2f1)(x), (D22) (x)),
(f'(0))((0,0, 1)) = ((D3i) (x), (D3f2) (x)).

Also, for every h in R,

x))(h) = (f'(x)) (71, 7o, 3)

x))(h1(1,0,0) + 7y (0, 1,0) + h3(0,0, 1))

(Difi)(x), (D1f2)(x)) + ha((Daf1) (%), (Daf2) (x))

+ h3((Dafi) (x), (Daf2) (%))

(h1((D1f1)(x)) + ha((Daf1) (x)) + M3 ((Dafi) (%)), i ((D1f2) (%))
+ ha((Daf2)(x)) + h3((Daf2) (%))

= (((D1fi1)(x), (Daf1) (x), (Daf1) (x)) - (A1, 2, h3),

((D1f2) (%), (Daf2) (x), (Daf2) (x)) - (h1, ha, h3))

(

(

LHS =

(r'(
(r'(

hu(
+h

= ((VA)(x
(Vi) (x

(h1,ha, h3), (V) (%)) - (B, ho, h3))

) -
) - b, (Vf2)(x)) - h) = RHS.

O

Note 3.21 The result similar to Theorem 3.20 can be proved as above for R" in
place of R? and R™ in place of R.

Theorem 3.22 Let E be an open subset of R®. Let f : E — R*. Let f; : E —
R, f»: E — R be the component functions of f, that is, f(h) = (fi(h),f>(h)) for
every h in E. Let x = (x1,x2,x3) be in E. Let f be differentiable at x. Let u =
(uy,u2,u3) be a unit vector in R*. Then,
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u- ((VAi)(x)),
u- ((Vf2)(x)),

(Dufi) (%)
(Duf2) (%)

where

(Df1)(x) = yi%fl((xl U, X + tuz,x3t+ tu3)) _fl<<x1,XQ,X3))7

(Df)(x) = yjr(}fz((xl + tuy, xp + tuz,X3t—|- w3)) — f((x1,%2,%3)) .

(Here, (Dyf1)(x) is called the directional derivative of fi in the direction of u, etc.)

Proof Since fis differentiable at x, f'(x) is in L(R*,R?). Let

O

a; dzp dxs

relative to the basis {(1,0,0), (0, 1,0), (0,0, 1)} of R* and the basis {(1,0), (0,1)}
of R%. By Theorem 3.14,

1
lim —(filx+h) — fi(x) — (M, ho, h3) - (a11,a12,a =0.
(hl,hz,h3)—h—»0(|h| (fi( ) —fi(x) = (h1,ha, h3) - (ai1, ain 13)))
Hence,
. 1
1lm< (fi ((xr, 22, x3) + t(uy, w2, u3)) — fi((x1,%2,x3))
=0 \ |1 (uy, Uz, u3)|
—(t(ur,u2,u3)) - (01170127013))> =0
or,
. 1
llm(i (fl((xl + tuy, xy + tup, x3 + tu3)) —f1<(xl,X2,X3))
=0\ [#][(ur, uz, u3)|
—t((ur, uz, u3) - (au,alz,als)))> =0
or,

t—0

. 1
11m<|t|—l (f] (()Cl + tuy,xy + tup, X3 + tu3)) —fl((xl,xz,x3))

—t((ur, up, u3) - (611176112,6113)))) =0
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or,
}E{}(% (fi((x1 + tuy, xo + tuz, x3 + tuz)) — fi((x1,%2,x3))
—t((uy,uz,u3) - (a117a12,a13)))> =0
or,
lim (fl ((X] + tuy,xy + tup, X3 + tu3)) _fl (()Cl 7X27X3))
t—0 t
((u1,uz,u3) - (011701276113))) =0
or,
(Duf)(x) = 1216](‘1((351 + tuy, X2 +1M2,X3t+ tu3)) — fi((x1,x2,x3))
= (M17u27u3) : ((lel)(x)’ (DZfI)(x)’ (DKfl)(x))
= (ur,u2,u3) - (VA)(x) = u- ((VA)(x))
Thus,
(Duf1)(x) = u- (Vi) (x)).
Similarly,

(Duf2)(x) = u - (V) (x))- 0

Note 3.23 The result similar to Theorem 3.22 can be proved as above for R" in
place of R? and R™ in place of R.

Theorem 3.24 Let E be an open subset of R". Letf : E — R. Let x = (x1,...,%,)
be in E Let f be differentiable at x. Then,

max{(D,f)(x) :u € R" and |u| =1} = D( - )))f (x).
88 *

(In short, if f is differentiable at x, then the maximum value of the directional
derivative of f at x is obtained in the direction of the gradient of f at x.)

Proof Let u = (uy,...,u,) be any unit vector in R". We have to prove that

(Duf)(x) < D( (x).

m«wx»)
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By Theorem 3.22, (D,f)(x) = u - ((Vf)(x)). Hence,

(Duf) () < |(Duf) )] = e - (V) ))] < [l [(VF) (%)

= 1V = (96 = g (TP

- (cepr () - (WD)
- D( f) (x).
)

Hence,

(D)) < (D (W((Vf)(x)))f) @

Theorem 3.25 Let a<b. Let 7 : (a,b) — R? be any function differentiable on the
open interval (a,b). Let G be an open subset of R?, and G contains the range of ).
Let f : G — R be differentiable on G Then, for every t in the open interval (a,b),

(o = (60N - (570

Proof Let y, : (a,b) — R, y,: (a,b) — R be the component functions of y, that
is, p(¢) = (y,(2), y2(2)) for every t in (a,b). Let us take any # in the open interval
(a,b). By the chain rule of derivative, we have

(Fop) () =(Fn)NH ).

Hence,
[(Fon) O] = [(FGONG' @) = [(F GONIG (2)]
%Vl(t)
=[@N0@) D)) k2| 4
&Vz(t) el

_ [((mf)(y(rm (gm) + (D)) (%Wﬂ'
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So,

LHS = (703 (1) = (D)60) (510 ) + (@60 (5720

= (DGO NGO - (G710, 570)

t

Note 3.26 The result similar to Theorem 3.25 can be proved as above for R™ in
place of R?.

Note 3.27 Let a be in R". The function 7+ ta from R to R" is denoted by g,
provided that there is no confusion. Here,

|la]] = sup{|ta| : r € Rand |¢f| <1} = sup{|t||a| : t € Rand |t] <1} <|a| = |14|
<sup{|ta| : t € Rand || <1} = ||q].
This shows that

lall = lal.

Theorem 3.28 Let E be an open convex subset of R®. Let f : E — R? be differen-
tiable on E. Let the set {||f' (x)|| : x € E} be bounded above. Then, for every a, b in E,

f(b) = f(@)| < b — al(sup{[lf' ()| : x € E})

Proof First of all, we shall prove the following lemma. O

Lemma 3.29 Let a<b. Let f : [a,b] — R" be any continuous function. If f is
differentiable on (a,b), then there exists a real number ¢ in (a,b) such that

f(b) = f(@)| < (b= a)lf'(1)]-

Proof of Lemma
Case I: when f(a) = f(b). The lemma is trivial in this case.
Case II: when f(a) # f(b). Since f(a) #f(b), 0<|f(b) —f(a)|, and hence,
7o F(B) = f(a)) is in R". Put ¢ = ;50 (F(B) — f(a)). Clearly, [e] = L.
Let us define a function
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g:[la,b] = R

as follows: For every x in [a, b],

Now, we want to apply Lagrange’s mean value theorem on g. Since f : [a, b] —
R" is continuous, g : [a,b] — R is continuous. Since f : [a,b] — R" is differen-
tiable on (a,b), g : [a,b] — R is differentiable on (a, b), and for every x in (a, b),

gx) =c-(f'(x)).

Hence, by the Lagrange’s mean value theorem, there exists a real number ¢ in
(a,b) such that

If (b) = f(a)] = <V( (f(b) —f(a))> (f(b) = f(a)) = c- (f(b) — f(a))

=c-(f(b) —c- (f( ) = 8(b) —gla) = (b—a)g'(t) = (b—a)(c- (f'(1)))
=c-((b=a) M) <lc-((b—a)f ONI<Icll(b—a)(F (1))
=1(b=a)(f' (1) = (b - a)lf' ()]

Thus, there exists a real number 7 in (a,b) such that

If () —f(a)| < (b —a)lf'(1)].
O

Proof of the main theorem Let us take any a = (a1,az,a3),b = (b1,by,b3) in
E. Let us take a nonzero element ¢ = (cy,¢;) in R2. Let fi,/> be the component
functions of f. Let us define a function

y:[0,1] — R?
as follows: For every ¢ in the closed interval [0, 1],
(1) = (1= t)a+b.

Clearly, y is continuous on [0,1]. Also, it is clear that y is differentiable on the
open interval (0,1), and for every ¢ in (0,1),

YY) =b—a.

Since E is convex, a and b are in E, the range of y is contained in E. Since
7:[0,1] — R?, the range of y is contained in E, and f : E — R?, the composite
function f o y is defined on [0, 1].
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We want to apply Lemma 3.29 on f o y. Since f : E — R? is differentiable on E,
fis continuous on E. Since 7 is continuous on [0, 1], the range of y is contained in E,
and fis continuous on E, f o y is continuous on [0, 1]. Since 7 is differentiable on
the open interval (0, 1), the range of y is contained in E, and f : E — R? is dif-
ferentiable on E, by Theorem 3.18, the composite function (f o y) : [0, 1] — R? is
differentiable on the open interval (0, 1), and for every x in (0, 1),

(f o) () = (F' (X)) (' ()

Hence, by Lemma 3.29 and Theorem 3.2, there exists a real number 7 in (0, 1)
such that

If(b) = fla )I = lf( (1) = ( O)] = [(f o7)(1) = (f o 7)(0)]
—0)|(Fen) ()]
| (fon)( !—H(fov 3l

= [F GO O < IF GO @I
= IF GONE = all = If GO)Ib -4
= b —alllF' GO < b — al(sup{[If' ()] : x € E}).

Thus,

If(b) = fla)| < |b = a|(sup{|lf'(x)|| - x € E}). .
Note 3.30 The result similar to Theorem 3.28 can be proved as above for R” in
place of R® and R™ in place of R>.

Theorem 3.31 Let E be an open subset of R. Let f : E — R?. Let f; - E —
R, fo: E — R be the component functions of f, that is, f(x) = (fi(x),f£2(x)) for
every x in E. If f : E — R? is differentiable on E, and the mapping x— f'(x) from
E(C R?) to0 the metric space L(R®,R?) is continuous, then fis C' function (i.e., for
i=1, 2 andj=1, 2, 3, each function Dif; : E — R exists and is continuous).

Proof Let us take any x in E. Since xisin E, and f : E — IR? is differentiable on E,
fis differentiable at x. Since fis differentiable at x, by Theorem 3.20, all the partial
derivatives (D;f;)(x) exist. This shows that each D;f; : E — R is a function for i =1,
2, and j = 1, 2, 3. Now, we shall try to prove that D,f; : E — R is continuous. For
this purpose, let us fix any x in E.

Let us take any & > 0. Since the mapping x — f'(x) from E (C R?) to the metric
space L(R?,R?) is continuous, there exists & > 0 such that for every y in E satis-
fying |y — x| <9, we have [|f'(y) — f' (x)| <e.

Let us take any y in E satisfying |y —x|<J. It is enough to prove that

[(D1f2)(y) — (D1f2)(x)| <e. Since
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o) =@ =[O = F )]
_ [(Dm)(y) (Daft) () (Df1)(y)
(D) (y)  (Daf2)(y)  (Dafi)(y)
_ {(lel)(x) (Daft)(x)  (Dafi)(
(Duf2)(x)  (D2f2)(x)  (Daft)

X
:|2><3

_ [(DLfl)()’) — (Difi)(x)  (Dofi)(y) — (Dofi)(x)  (D3fi)(y) — (Dafi)(x)
Dif) () — (D) (x)  (D2f2) () — (Dafo)(x)  (Dafi) () — (Dafi) (%) |5
SO
|(D1£2)(y) — (D1fa) ()] < [((D1A)(¥) — (D1fi) (%), (D1f2)(y) — (Dif2)(x))]
=[(f"(y) —f'(x))((1,0,0))]
<sup{|(F' () = f'(x) (@) : t e R, 1| <1}
=[If'(y) = f'(x)| <e.
Hence,

[(Dif2)(y) — (Dif2) (x)| <e.

This proves that Df; : E — R is continuous. Similarly, all other partial deriv-
atives are continuous. Hence, fis a C ! function. O

Theorem 3.32 Let E be an open subset of R>. Let f : E — R?. Let fi - E —
R, fo: E — R be the component functions of f, that is, f(x) = (fi(x),f£(x)) for
every x in E. If f is a C' function (i.e., for i = 1,2, and j = 1,2,3, each function
Djfi : E — R exists and is continuous), then f : E — R? is differentiable on E.

Proof Let us take any a = (a;,az,a3) in E. We have to prove that f : E — R? is
differentiable at a. By Theorem 3.14, it is enough to prove that

1
1 lim _—
@ (I a3 =h—0 ( |(h1, b2, h3)]|

+ (h1, ha, h3)) — fi((a1, a2,a3)) — (h1, by, h3)

(fil(ar, a2, a3)

: ((lel)((alvaba.?))v(DZfl)((alva27a3))v(Difl)((alva%a.?))))) =0,
and

1
lim e m——— ay,ap, a:
(i) (hlle‘hs)Eh—‘o(‘(hhh27h3)|(fZ((1 2 63)

+ (hi,ha,h3)) — fo((ar,a2,a3)) — (b1, ho, hs)
'((Dsz)((anam%))a(szz)((al,az,as)),(Dafz)((anaz,as))))) =0.
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For (i): We have to prove that

. 1
0= o tim (s i) + ot ) = ()
—(h1, 2, h3) - (D1fi) (a1, a2, a3)), (Daf1) (a1, a2, a3)), (Dafl)((al,azaaz)))))»
that is,

0= lim (K;(fl((al +h1,a2+h2,a3+h3)) —fl((al,az,ag.))

i
(hy ,ha,h3)=h—0 hl,hz,h3)|

—(m((Dif) (a1, a2, a3))) + ha((Daf1) (a1, a2, @3))) + h3((Dafi) (a1, a2, as))))))

For this purpose, let us take any ¢ > 0.

Since Difi:E—R, D) :E—R, Dify :E—R are continuous at
(a1,as,a3), there exists 6" > 0 such that for every (xj,x;,x3) in E satisfying
|(X1,X27X3) — (al,az,a3)|<5*, we have

|(D}f1)((x1,x2,X3)) - (Djfl)((alva2ﬂa3))| < g(] = 17273) T (*)

Since (a1, ay,a3) is in E, and E is an open subset of R®, we can find 6 > 0 such
that 0<d<o6® and the  Cartesian product K =[a; —d,a; + J)
><[a2 — 5,612 +(3] X [a3 —5,613 +5] CE.

Let wus fix any h=(h,hy,h3) such that [(hy,hy,h3)|<0. Since
|h1| < |(l’l1,h2,h3)|<5, —0<h <5, or aj —o0<aj +h<a; +5, or a;+hy €
[Cll — 57(11 + 5] Slmllarly, a+h € [a2 — 5,02 + 5], and az + h3 € [(13 — 5,a3+
d]. Since ay,a; + hy € [ay — 6,a; + 9|, and for every ¢ in [a; — J,a; + J], (t,ar +
hy, as +h3) S [al —0,a; +5] X [az —0,a, +6] X [Cl3 —0,a3 +5] C E, we can
define a function

81 [Lll —5,611-’-5] — R
as follows: For every ¢ in [a; — J,a; + d],
g1(t) =fA((t,a2 + ha, a3 + h3)).

Now, we want to apply Lagrange’s mean value theorem on g;. For fixed 7y in
[@1 — J,a1 + 0], we have
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lim & (to+1) — g1(00) _ limfl (to+t,a2 + hy, a3 + h3) — fi((to, a2 + ha, a3 + h3))

t—0 t t—0 t

= (Difi)((t0, a2 + hy,a3 + h3)).

Since
limzﬂow = (Difi)((to, a2 + hy,a3 + h3)), (to,az + hy,a3 + h3) is in E,
and Dif; : E — R exists, g; is differentiable at #,. Further,

g (o) = (Difi)((to, a2 + ha, a3 + h3)).

Since g, is differentiable at 7y, g| is continuous at #;.

Thus, we see that g1 : [a; — J,a; + 0] — R is continuous and differentiable on
[a; — d,a; + J]. Hence, by the Lagrange’s mean value theorem, there exists a real
number c; lying between a; + h; and a; such that

fillar + hy a0 + hoy a3 + h3)) — fi((ar, a2 + ha, a3 + h3))
=gi(a +hi) —gi(ar)
= ((a1 +h1) —a1)g'(c1) = hi(g'(c1))
= hi((Difi)((c1, a2 + ha, a3 + h3))).

Thus, we see that there exists a real number ¢, lying between a; + h; and a,
such that

fillar +hi,a0 + hoyaz + h3)) = fi((ar, a0 + ho, a3 + h3))
+hi((Difi)((er, a2 + hayaz + h3))).

Similarly, there exists a real number ¢, lying between a, + h, and a, such that
fillar,az + hy,a3 + h3)) = fi((ar, a2, a3 + h3)) + ha((Daf1) (a1, c2, a3 + h3))).
Again, there exists a real number c3 lying between a3 + h3 and a3 such that
fillar, a2,a3 + h3)) = fi((a1, a2, a3)) + hs((Dsfi)((ar, az, c3))).

On adding the last three equations, we get

fillar + hyya0 + hyyas + h3)) — fi((ar, a2, a3))
= hi((D1f1)((c1, a2 + ha, a3 + h3)))
+ ha(Daf1)((a1, 2, a3 + h3))) + ha((Dafi) (a1, a2, ¢3)))

or,
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fig((ar + hi,ax + ha, a3 + h3)) = fi((a1, a2, a3)) (i ((Difi) (a1, a2, a3)))
+ i ((Daof1)((a1, @2, a3))) + h3((Dafi) (a1, a2, a3))))
= (M ((Difi)((c1, a2 + ha, a3 + h3))) + ha((Daf1) (a1, €2, a3 + h3)))
+ I3 ((Daf1)((a1, a2, 63)))) — (hi((D1i)((a1, a2, a3)))
)
(

—~

+ ha((Daf1)((a1, @2, @3))) + h3((Daf1)((a1, a2, a3))))

= hi((Difi)((c1,a2 + ha, a3 + h3)) — (Difi)((ar1, a2, a3)))
+ ma((Daof1)((ar, ¢2,a3 + h3)) — (Daofi)((a1, a2, a3)))
+ hs((Dafi)((a1, a2, ¢3)) — (Dafi)((a1, a2, a3))).

So,

1
N ‘m(ﬂ((al +hi,az + hayya3 + h3)) — fi((ay, a2, a3))

—(hi((Difi)((a1,a2,a3))) + ha((Dafi) (a1, a2, @3))) + h3((Daf1) (a1, a2, a3)))))

1
- ‘m(’““’)m“cm + a3+ h3)) — (Difi) (a1, a2, 3)))
+ ha((Dafi)((ar, €2, a3 + h3)) — (Dafi) (a1, a2, a3)))

+h3((Dafi) (@1, a2, ¢3)) = (Dafi) (a1, a2, a3))))

|
|(h1, b2, h3)|
|ha
|(h1, ha, 3)
+%|(Daﬁ)((m,az,q)) — (Daf1) (a1, a2, a3))|
= |(D1fi)((c1, a2 4 ha, a3 + h3)) — (Dify) (a1, a2, a3))|
+ [(Dafi)((a1, €2, a3 + h3)) = (Daf1)((a1, a2, a3))|

+ [(Dafi) (a1, a2, ¢3)) — (Dafi)((a1, a2, a3))|-

<

|(Difi)((c1, a2 + ha, a3 + h3)) — (Dufi)((a1, a2, a3))|

+ |(Daof 1) (a1, ¢2,a3 + h3)) — (Dafi) (a1, a2, a3))|

Since ¢, lies between a; + hy and ay, (¢; — al)2 < (h1)2, and hence,
|(c1,a2 + hy,a3 + h3) — (a1, a2,a3)| = |(c1 — a1, hay, h3)|

= J (c1 — ar)*+(hy)*+(h3)* < \/ (1) >+ (B2 )+ (3)?
= |(h1, 2, h3) — (0,0,0)| <5< 5"

Since
[(c1,a2 + ha, a3 + h3) — (a1, a2, a3)| <67, by (%),
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|(Difi)((c1, a2 + ha,az + h3)) — (Difi)((ar, a2, a3))| < g

Similarly,
(Dafi) (@ 2,5+ hs)) = (Dfi)((ar, a2, a5)) < 3.
and
(D3fi) (@, a2,¢3)) = (Do) (a1, a2, 05))] < 5.
Hence,
m(ﬁ((m +hy,ay + hy,az + h3)) — fi((ay, a2, a3))

—(hi((Dif)((a1,a2,a3))) + ha((Dafi) (a1, a2, a3))) + h3((Dafi) (a1, a2, @3)))))

<I(Difi)((e1,a2 + 2, a3 + h3)) — (Difi)((a1, a2, a3))|
+ [(Daf1) (a1, €2, a5 + h3)) — (Dafi)((a1, a2, a3))|
+|(Dafi)((ar, a2, ¢3)) — (Dafi) (a1, a2, a3))|

<E BB
stz +ts=c
3 3 3

This proves (i). Similarly, (ii) is proved. O

Theorem 3.33 Let E be an open subset of R®. Let f: E — R?. Let fi : E —
R, fo : E — R be the component functions of f, that is, f(x) = (fi(x),f£(x)) for
every x in E. fis a C' function (i.e., for i=1,2, and j = 1,2,3, each function
Djf; : E — R exists and is continuous), if and only if f : E — R? is differentiable on
Eand f' : E — L(R*,R?) is continuous.

Proof By using Theorems 3.31 and 3.32, we find that the only part that remains to
be proved is the following:

if fis a C' function, then the mapping f' : E — L(R? R?) is continuous.

For this purpose, let us take any x in E. We have to prove that f” is continuous at x.

Let us take any ¢ > 0. Since, for i = 1,2, and j = 1,2,3, each function Df; :
E — R is continuous at x, there exists a real number ¢ > 0 such that for every y in
E satisfying |y — x| <J, we have

|(Df) () — (le,)(x)‘ < \/2873(f0r every i = 1,2,and j = 1,2,3).

Now, let us take any y in E satisfying |y — x| <. It is enough to prove that
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Here,
[f/(x)]:{(lel)(X) (Daf1)(x) (Daﬁ)(X)]
(Dif2)(x)  (Daf2)(x)  (Daf3) () | 5,5
and
()] = {(lel)(y) (Daof1)(v) (Dsfl)(y)]
(Dif2)(y)  (D2f2)(y)  (Daf3) (V) |55
SO
v [DEG) — (D)) (D))~ (D)) (Dafi)(y) — (Daf) )
Fo) =Fwl= [(Du‘z)(i) T (D) — DA (DIO) <Dafs><x>]zxs’

and hence,

2

o) —F Wil < J j_il@unjﬁ)(y) - (Dm)(x)|2> < J Z<Z(m)> -

O

Note 3.34 The result similar to Theorem 3.33 can be proved as above for R" in
place of R? and R™ in place of R.

3.3 Inverse Function Theorem

Theorem 3.35 Let X be a complete metric space, with metric d. Let f : X — X be
any function. Let ¢ be a real number such that 0<c<1, and for every x, y in X,

d(f(x), f(y)) <c(d(x, ).

Then, there exists a unique x in X such that f(x) = x.
Proof Existence: Let us take any a in X. Since ais in X, and f : X — X, f(a) is in
X. Similarly, f(f(a)) is in X, f(f(f(a))) is in X, etc. Thus, we get a sequence

{a.f(a), f(F(a), f(F(f(a))), .-}

in X. Put ap =a,a; =f(a),ax =f(f(a)), a3 =f(f(f(a))), etc. Here, {ao,ay,
az,as, ...} is a sequence in X. Also, f(a,) = an+1. Let us observe that by using the
given condition,
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d(f(a), f(f(a))) <c(d(a,f(a))).

Also,

d(f(f(a), f(f(f(@))) <c(d(f(a), f(f(a))) <c(c(d(a.f(a) = (d(a,f(a))),
SO

d(f(f(a), f(f(f(a))) <c*(d(a.f(a))).

Similarly,

d(f(f(f(a)), F(f(F(F(a))) < (d(a,f(a))),

etc. Now,

d(f(f(a).fFFF S (@)))) <cld(f(a).f(FF((f(a)))))
<c(e(d(a.f(F(F(f(@) = E(d(a.f(F(F(f(@))))))
< (d(a,f(a)) +d(f(a).f(f(a)) +d(f(f(a).f(f(F(a)))
+d(f(f(f(a)))f(f(f(f( )
((af( ) + c(d(a,f () + ¢*(d(a.f(a))) + ¢ (d(a.f(a))))
(1+c+c +)(dafl@) <1 +c+ P+ +ct + ) (d(a.f(a))

_e (l%) (d(a,f(a))).

Thus, we have seen that

S

c

A FEOEEE@N) < (1 ) last@),

Similarly,

1—c¢

d(f(f(F(@)), FEFFEFF (@) < 63( : )(d(a,f(a))),

ete. Thus, d(az, ac) < (t5)(d(a.f(a)))c*, d(as, a7) < (75)(d(a.f(a)))c?, ete.

We shall try to prove that the sequence {ay,ai,az,as, ...} is Cauchy. For this
purpose, let us take &> 0. Since O0<c<l, lim,HOO ¢"=0, and hence,
lim, . (=) (d(a,f(a)))c" = 0. Therefore, there exists a positive integer N such
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that for every n>N, we have |(%)(d(a,f(a)))c" — 0| <e. Hence, m>n>N
implies

1
1—c¢

1
—c

d(ay, am) < (d(a,f(a)))c" = (d(a,f(a)))c" - 0] <&.
(=) (=)

This proves that {ag,a;, a2, a3, ...} is Cauchy in X. Since {ag, a1, az,as, ...} is
Cauchy in X, and X is a complete metric space, there exists an element b in X such
that

lim a, = b.

n—od

Now, we shall try to show that the function f : X — X is continuous at b. For
this purpose, let us take any ¢ > 0. Now, let us take any y in X satisfying d(y, b) <e.
We have to show that d(f(y),f (b)) <e. Here, by using the given conditions, we
have

d(f(v), f(b)) <c(d(y, b)) <c(e) <le = &.

This proves that the function f : X — X is continuous at b. Since f : X — X is
continuous at b, and lim, .. a, =b, lim, . f(a,) =f(b). Hence, f(b)=
lim, o f(@,) = lim, o @y 41 = lim, o @, = b. Thus, f(b) = b. This proves the
existence part of the theorem.

Uniqueness: If not, otherwise, suppose that there exist x, y in X such that x #
v,f(x) =x, and f(y) = y. We have to arrive at a contradiction. From the given
condition, we have

0 #d(x,y) = d(f(x),f(y)) <c(d(x,y)).
This implies that 1 < ¢, which contradicts the supposition. O

Theorem 3.36 Let E be an open subset of R>. Let f : E — R>. Let a be in E. If

() fisa C" function,
(i) f'(a) is invertible,

then there exists a connected open neighborhood U of a such that

1. U is contained in E,

2. fis I-1 on U (i.e., if x and y are in U, and f(x) = f(y), then x = y),
3. fU) is connected and open in R,

4. the 1-1 function ' from f{U) onto U is a C' function,

5. iffis a C* function, then ' from f(U) onto U is a C* function, etc.

Proof Let fi : E— R, ,: E— R, f3: E— R be the component functions of f,
that is, f(x) = (fi(x), fa(x), f5(x)) for every x in E. Let a = (a1, az, a3). Let Q be
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the set of all invertible (i.e., 1-1 and onto) members of L(R?). Since f'(a) is
invertible, f'(a) is in Q Since f'(a) is in Q, by Theorem 3.3, the open sphere

with center f'(a) and radius

@y

is contained in Q
Since fis a C' function, by Theorem 3.33, ' : E — L(R?) is continuous. Since
f': E — L(R®) is continuous at a, and

S _(f'(a))

Mo T

is an open neighborhood of f’(a) in Q, there exists a real number r > 0 such that the
open sphere S,(a) is contained in E, and for every x in S,(a), we have f’(x) in

S (f(@).
Mo T

For every x in S,(a), we have f'(x) in

S (fla),
e

SO

R

"(x *f/ a

or,
1= (@ @) =||(¢ @ ¢wn) -1 = || (@) o) -1
= (¢@) o) - ((f'(a))*l o (@),
- H(f’ (@) o (f'(x) ~f'(a))|| = ) —F'@)
07w —r@i< 3.

Thus, we see that for every x in S,(a), we have
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Jr- (@ we) <5 e

For every k = (ki, ks, k3) in R?, let us define a function
P2 Sr(a) — R
as follows: For every x = (x1,x,x3) in S,(a),
o) =x = (@) ") (F) + k.
Now, we shall try to show that for every x in S,(a),
o) =1— (@) (f'(x)).
Let
ap  apz a3
ﬁﬂ@)ﬂ_lmlan @4
as; Az a3z 3.3

relative to the basis {(1,0,0), (0, 1,0),(0,0,1)} of R>.
Since

o) =x— ((7(@)) () +k

= (o1,2203) = (@)™ ) (A (). L0, S0)) + (it Kasks)
= (Xl,xz,x3) - ((fl (x))(a11,021,6l31) + (f2(x))(01270227a32)

+ (5(x))(a13, a23,a33)) + (k1, k2, k3)

= (1 — (an(fi(x)) + an(fa(x)) + ai(fB(x))) + ki, x2
— (a2 (fi(x)) + an(f2(x) + ax(f(x))) + k2, x3

— (@31 (fi(x)) + axn(f2(x) + az3(f(x))) + k3)

or,

P(x) = (x1 = (an (fi(x)) + a2 ((x)) + a3 (f(x))) + ki, x2
— (a1 (fi(x)) + an(f2(x)) + ax(f(x))) + k2, x3
— (aa1(fi(x)) + an(h(x) + ax(f(x))) + &)

167
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S0,

(2 (0))((1,0,0)) = (D1 (x1 = (an (fi(x) + ann(f(x) + a3 (f(x
Dy (22 — (a21(fi(x)) + ax(f2(x)) + a3 (3(x))) + k),
Di(x3 — (a31(fi(x)) + axn(f(x)) + as(f(x))) + k3)
= (1 = (an((D1fi)(x)) + an((Dif2) (%)) + a13((D1f3)
) ( )
)

) + ki),

— —

x))),
— (a1 ((D11)(x)) + an((D1f2) (x)) + az3((Duf3) (x

)
(
)
—(a31((D1fi) (%)) + az2((D1f2) (%)) + a33((D1f3)(x))))-

— =

Also,

( (/@)™ (F'(6))) ((1,0,0)) = 1((1,0,0)) = (('(@) ™) (¢ )((1,0,0)))
(1,0,0) = (/@)™ ) (Dufi) (), (Drfa) (x), (D13 (x))
(1,0,0) (((w1 x))(( ) ((1,0,0)) )

<w&x»« (@) ) ((0,1,0))) + () ) (@) ") ((0.0,1)) )
= (1,0,0) = ((D1A)(x))(a11, @21, a31) + ((D1f2)(x)) (@12, @22, a32)
+ ((D1fs)(x)) (@13, @23, a33))
= (1 = (an((D1A) () + an((Dif2)(x)) + ai3((D1f3) (%)),
= (@1 ((D1/)(x)) + ana((D1f2)(x)) + a3 ((D1f3) (x)))
)

= (@1 (D) (x)) + an((Dif2)(x)) + a3 (D) (%))

This shows that

(04/(9)((1,0,0)) = (1= ('(@) " (")) ((1,0,0)).
Similarly,

(9 ()((0,1,0)) = (1= (f'(@) ™" (') ) ((0,1,0)),

(0 ()((0,0,1)) = (1= ('(@) " (")) ((0,0,1)).
Hence, for every y in R®, we have

(0 (N = (1= (F@)” (7'(x)) ).
This shows that for every x in S,(a),
o) = 1= (@) (f ),

and hence, by (x),
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1

!
<.
o @11 < 5

Therefore, 1 is an upper bound of the set {||¢;'(x)| : x € S,(a)}, and hence,

{llo'(x)]] : x € Sx(a)} is bounded above.
Now, we want to apply Theorem 3.28. Since S,(a) is an open convex subset of

R3, ¢ : S,(a) — R is differentiable on S,(a), and the set {||@;/(x)|| : x € S,(a)} is
bounded above, for every x, y in S,(a),

1
|26 () = oI < Iy — x| (sup{[| o () [| : x € S:(@) }) <y x5
Hence, for every k in R?, and for every x, y in S,(a), we have
1
() — @r(x)] < B ly—x| e ().

Next, for every x, y in S,(a), we have

1
= loey) = o) = 5 ly = al-
Hence, for every x, y in S,(a), we have

Syl < | (@) ™)) 1) en )

For 1: We have seen that the open neighborhood S,(a) of a is contained in
E. We will take S,(a) for U. Since S,(a) is connected, U is connected.

For 2: We have to show that fis 1-1 on S,(a). If not, otherwise, let f be not 1-1
on S,(a). We have to arrive at a contradiction. Since fis not 1-1 on S,(a), there
exist b and c in S,(a) such that b # ¢, and f(b) = f(c). So, from (x * ),

0<gle—bl < |((7@) ) () —ro)| = |((7@) ) 0) )|
=|((r'@) )| =0/ =0,

which is a contradiction. Hence, fis 1-1 on S,(a).
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For 3: We have to show that f(S,(a)) is an open subset of R and is connected.
Since S,(a) is connected, and f is continuous, f(S,(a)) is connected. Now, we
want to show that f(S,(a)) is an open subset of R*. For this purpose, let us take
any f(b) in f(S,(a)), where b is in S,(a). We have to find a real number ¢ > 0
such that the sphere

(f(b))

S :
e

is contained in f(S,(a)), that is, we have to find a real number ¢ > 0 such that if

&

ly —f(
2@y ]

then there exists x* in R? such that |x* — a| <r, and f(x*) = y.

Since b is in S,(a), we can find a real number ¢ >0 such that S.[b] =
{x:x€R* and |x — b| <&} C S,(a). Next, let us take any y in R? such that

&

ly —f(b
S 2@ I

Now, we will try to show that
((pta) ) * Selb] = SelB]

Observe that

Thus,

‘9"(0'@)”

Next, let us take any z in S,[b].
We have to prove that ¢ -1y (2) is in S;[b], that is,

"/’(Wa)) Y (@) b’ <z.
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Since z is in S;[b], |z — b| <&, and hence, by (kx),

P (@)Y (@) ~ b’ = “P(Wa))”)(y) () = w((f’(ﬁ))")()’)(b)‘ + “p((f’(u»")(y) (b) = b

< -|lz—0b|+

(@) ) B) ~ ”’

IN
N — o —

1 e
et “”((f’(a))*l)@) (b) — b’ <sets=e
This proves that
P((a) Y Selb] = Si[b]
Since {x:x € R> and |x — b| <e&} is a closed subset of the complete metric

space R, S,[b] is a complete metric space. Also, from (xx), for every s, ¢ in S,[b],
we have

1
() ) () = “”(v/(a))*l)(y)(f)‘ <gls—1l

Hence, by Theorem 3.35, there exists a unique x* in S.[b](C S,(a)) such that
P (@) )0) (x*) = x*. Hence, |x* — a|<r, and

¥ = 0y ) =2 = (@) ) ) + (@) ) o).

Therefore,

(@) )@ =0==(¢"@) ") e+ (@) ™)
= (@) ) =1

Now, since (f'(a))”" is invertible, 0 = y — f(x*), or f(x*) = y. Thus, we have
shown that £(S,(a)) is an open subset of R>.

For 4: We first prove that the 1-1 function f~' from f(S,(a)) onto S,(a) is
differentiable at every point of f(S,(a)). For this purpose, let us take any f(x) in
f(S,(a)), where x is in S,(a). Since f : E — R? is a C' function, by Theorem
3.33, fis differentiable at every point of E. Since f'is differentiable at every point
of E, and x is in S,(a) (C E), f'(x) exists. Observe that if 7 is in S,(a), then

fes . (fla)cs (f'(@) C Q,

1
2| ] [[oren ]

and hence, (f'(¢))”" exists. Thus, if 7 is in S,(a), then
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Since x is in S,(a), from ('), f'(x), (f'(x)) " exist. Now, we will try to prove that
£ ' is differentiable at f{x) and (f~1) (f(x)) = (f'(x)) ", that is,

<|k(f () +4) - (f(x))<(f’(x))l)(k))>o,

that is,
y € f(S:(a))
that is,
o A IR (GO LI
y € £(S,(@)
that is,
yof b- sl 0 = (o s <o
¥ € £(5.(a))

For this purpose, let us take a sequence {f(a,)} in f(S,(a)) such that each a, is
in S,(a), each f(a,) is different from f(x), and lim,_..f(a,) = f(x). We have to
prove that

i e ) 5= () ) ) — )] = 0

that is,

an—x = (7)) (Flan) =G| = 0.

lim

L
n=oc |f(an) — f(x)|

Since x and q, are in S,(a), from (x * %),

Slaw < | (@) ™) (@) 1) < | (@) i) 0,
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and hence,

0< |a

Hlf f@)] (n=1,2,3,---).

This, together with lim, . f(a,) =f(x), implies that lim, . |a, — x| = 0.
Thus,

lim a, = x.

n—oo

Since each f(a,) is different from f(x), x # a,. Since f’(x) exists, each a,, is in
S,(a), x is in S,(a), each a, is different from x, and lim,_ a, = x,

If(an) = f(x) = ((f'(x))(an — x))| = 0.

1
lim
n—oo |a — x‘

Since each a, # x, |a, — x| # 0. Also, each |f(a,) —f(x)| # 0. It follows that
for every positive integer n,

1
lf(an) —f(x) ‘

Now, for every positive integer n, we have

<2

(@)

|a, — x| .

Fa =7l = (™) ttan) — )|
(v%» )vwa—ﬂmﬂ

Hm =

IA

H | : — x| (@n —x) — ((f’(x))q)(f(an) _f(x))‘

JJer -
(o
u|xx|)< l>

IS

IN

(v =)~ (")) (@) )|

IN

H |t : — x| (an = x)) = (f(an) _f(x))))

Hmiﬂ)

2@ o n ™) (- @) ~19 = (0" =01 ).

IN

/wﬁWwwm%—m—v@»fwn

(
(el
(el
(el
(el
=(

Since
P el G (AU (UGN
< (2@ (f’(x))_lH)( : lf(an)—f(X)—((f’(X))(an—X))I),

|an — x|
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and

lim ——— [f(a) — () — ((F'()) (@ —x))| = 0,

n—o0 @, — X|
s0,

lim

b
n=< |f(an) = f(x)]

This proves that ' is differentiable at f(x) and
@) =) )

for every x in S,(a). Hence, f~' is differentiable on the open subset £(S,(a)) of R.

Since ! is differentiable on the open subset f(S,(a)) of R*, £ is continuous on
the open subset f(S,(a)) of R*. Now, we want to prove that the mapping (f~')" :
f(S.(a)) — L(R?) is continuous. Let us take any y in f(S,(a)). Since y is in
f(S:(a)), there exists x in S,(a), such that f(x) =y. Since f(x) =y € f(S.(a)),
f~'(y) = x. Since x is in S,(a), by (+"),

YO =)@ =) = o)
Hence, for every y in f(S,(a)),
) =)

We have seen that y— f~!(y) is differentiable on £(S.(a)), so y—f"1(y) is a
continuous function from f(S,(a)) to S,(a). Since fis a C' function on E, by
Theorem 3.33, x+— f’(x) is continuous on E. Since y+~ f~!(y) is a continuous
function from £(S,(a)) to S,(a), and x+— f’(x) is continuous on E(D S,(a)), by ('),
their composite function y+ f'(f~1(y)) is continuous from f(S,(a)) to Q. Since
y—f'(f~1(y)) is continuous from f(S,(a)) to Q, and by Theorem 3.3, the mapping
A— A~ from Q to Q is continuous, their composite function y — (f'(f~1(y))) " is
continuous from f(S,(a)) to Q. Since y— (f'(f"'(y)))”" is continuous from
f(Sr(a)) to @, and (' (F'(y)))"" = (£~ (y), the function y— (f')(y) is con-
tinuous from £(S,(a)) to Q, and hence, by Theorem 3.33, f ' is a C' function on the
open subset £(S,(a)) of R?.

For 5: Let fbe a C* function. Let g, : f(S,(a)) — R, g2 :f(S.(a)) = R, g3:
f(S.(a)) =R be the component functions of f' that is, f~!(x)=
(g1(x),82(x), g3(x)) for every x in f(S,(a)). We have to prove that ' from
£(S.(a)) onto S,(a) is a C* function, that is, each of the nine second-order partial
derivatives Dj(g;) : f(S,(a)) — R exists and is continuous. Let us take any y in
f(S,(a)). We will try to show that (D12(g3))(y) exists. Since y is in f(S,(a)),

an—x = ((£'() ") (Flan) =G| =o0.
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o))

')

or,

() e m) =1,

and hence, by Theorem 3.6,

S o -
S — O
— o O
I

: o
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Now, since fis a C* function, each of the nine second-order partial derivatives

Djc(fi) : Sy(a) — R of fi exists, and for every y in f(S,(a)), we have
e par) ) .
Oule)0) = 21| =5 O BT ) T | e
D1 ) D)) (Ds(R)(F ()
D1 ) D)) (D3 K)
where
num = (D1 D)) DA () D
DB ) (D) ()
DN ) D20 ) D3R ()
x| (DiR)F' ) (D)) (D3(R)(F ()
DiFE)E ) DB ) DB ()
@) ) D))
DiENE) D2 ()
DA ) D20 ) (Ds(h) ()
(Dl D1 ) (D) () (D3(f2))(fl(y)))
(D1 ) (DZ(f%))(f ') DB )
_ (‘(Dll(fl NEB) DA () ‘ n ‘ (D)) () (D12(fl))(f_l(y))D
DPuENE ) D26 ) DiENE ) PGB 0)
DN ) D200 ) (D3R ()
x| (Di(R)(F') (D)) (D3(R)(F ()
DiFENE ) DB DB ()
‘(Dl(fl) ) D)D)
DiENE ) D26)(FH ()
DO ) D)) (Ds(h)F ()
( DuENEG) D)) (Ds(R) ()
OuE)CE' ) DABENE ) (DsBE)E)
DN ) @) ) (Ds() ()
| DR ) DPuR)()  DsE)F)
DiENEB) @u@BE)E ) (D3(R) ()
D)) (D)) D) ()
x| (Di(R)F'3) (D)) (DR () ),
DiENEB) D)) (D) ()
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and

D)) D)) s o) [
denom = | (D1 (£))(F~'(»)  (D20R)(F7' () (D3R () ]| -
DiBENED) (D)) (D)) ()

It follows that (D12(g3))(y) exists. So Di2(g3) : f(Sy(a)) — R.

Next, since each of the nine second-order partial derivatives Dy (f;) : S,(a) — R
of f; is continuous, and £~ 'is continuous on f(S,(a)), by the above formula for num
and denom, we find that num and denom are continuous functions on f(S,(«a)), and

hence, D12(g3)(= — gaporm) is continuous on £(S(a)).
Similarly, all the other Dy (g;) : f(S-(a)) — R are continuous. This proves that
£ from f{U) onto U is a C* function, etc. O

Note 3.37 The result similar to Theorem 3.36 can be proved as above for R" in
place of R3. This theorem is known as the inverse function theorem.

Theorem 3.38 Let E be an open subset of R". Let f : E — R" be a function. If

1. fisa C" function,
2. f'(a) is invertible for every a in E,

then fis an open mapping (i.e., f-image of every open subset of E in an open set).

Proof Let us take any open subset G of E. We have to prove that f{(G) is an open
set. For this purpose, let us take any f(a) in {G) where a is in G. Since a € G C E,
by the given assumption, f'(a) is invertible. Now, by the inverse function theorem,
there exists an open neighborhood U of a such that U is contained in G and f{U) is
open in R®. Since « € U C G, f(a) € f(U) C f(G). Since f(a) € f(U), and AU) is
open in R*, AU) is an open neighborhood of f(a). Since f{U) is an open neigh-
borhood of fla) and f(U) C f(G), fla) is an interior point of {G), and hence, f(G) is
an open set. O

3.4 Implicit Function Theorem

Definition Let a = (a;,ay,a3) € R*,b = (by, b,) € R?. By the ordered pair (a, b),
we mean (aj,as,as, by, by). Clearly, if a € R?,b € R?, then (a,b) € R*™%. Let
A € L(R*™2 R%). By A,, we mean the function

A RS R

defined as follows: For every (aj,az,a3) in R3,
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A((a1,ay,a3)) = A(ay,az,a3,0,0).

We shall show that A, € L(R?, R?). We must prove

(i) A.la+ b) =A.(a) + A.(b) for every a, b in R?,
(i) A.(ta) = t(A.(a)) for every a in R? and for every real 1.

For (i): Let us take any a = (ay,a2,a3),b = (b, by, b3) in R>.

LHS :A ) ((al 02,613) (b],bz,b3))
(a1 + b1, a2 + by, a3 + b3))
ay +bi,a; + by,a3 + b3,0,0))

la+
(
(
(a1,az,a3,0,0) + (b1, bs,03,0,0))
(
(
(

(
(
((a1,a2,a3,0,0)) + A((by, bs,3,0,0))
(a1, a2,a3)) + A((b1, b2, b3))

(@) + Au(b) = RHS.

A
A
A
A
A
A

For (ii): Let us take any a = (a;, a2, a3) in R? and any real .

LHS :Ax(t ) v( (al,ag,dg)) =A ((tal,taz,ta3))
= ((lal,tag,ta3, )) A(t(al,ag,a3,0,0))
t(A((alva27a370 0))) = t(Ax((alaa27a3)))
t(Ax(a)) = RHS.

Thus, we have shown that if A € L(R*>"? R?), then A, € L(R?,R?).
Again, by A,, we mean the function

Ay R? — R?
defined as follows: For every (a1, a,) in R?,
Ay(a) = A(0,0,0,a1,a,).

We shall show that A, € L(R?, R?). We must prove

(i) Ay(a+b)=A,(a)+A,(b) for every a, b in R?,
(i) A,(ta) = t(A,(a)) for every a in R? and for every real .
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For (i): Let us take any a = (a1, a,),b = (by, by) in R%.

LHS = A,(a+b) = Ay((a1,a2) + (b1,b2)) =Ay((a1 + b1, a0 + by))
— A((0,0,0,a; + by, as + b2)) = A((0,0,0, a1, az) + (0,0,0, b1, by))
=A((0,0,0,a1,a2)) + A((0,0,0,b1,b5)) = Ay((a1,a2)) + Ay((b1,b2))
= Ay(a) + A,(b) = RHS.

For (ii): Let us take any a = (a;,a,) in R? and any real z.

LHS = A, (ta) = Ay(t(a1, a2)) = Ay((tay, taz))
= A((O, O7 O7 tay, lag)) = A(t(O, O7 O7 a17a2))
=1(A((0,0,0,a1,a2))) = t(A((a1,a)))
= t(Ay(a)) = RHS.

Thus, we have shown that if A € L(R**? R?), then A, € L(R* RY).
Now, we will try to prove that for every a in R, and for every b in R?,

A((a, b)) = Ax(a) + Ay(b) - - ().
For this purpose, let a = (a;,a,a3) € R? and b = (b, b,) € R?.

LHS :A((a7b)) :A((al7a27a3ablab2)) = A((al7a2>a370a O) + (0,0,0,bl,bz))
:A((a17a27a37070)) +A((Oa0107b17b2))
= Ax((al,az,a3)) +Ay((b1,b2)) = Ax(a) +Ay(b) = RHS.

Note 3.39 Similar notations and results as above can be supplied for R" in place of
R* and R™ in place of R>.

Note 3.40 Let A € L(R*™2 R?), and let
app ap a3 dig ais

A= |an an a3 au ass
az) azm a3 44 435 |55

So,

Ax((laoao)) A((I,0,0,0,0)) = (a117a217a31)7
Ax((O, 1,0)) A((O, 1,0,0,0)) = (alz,a227a32),
Ax((0,0, 1)) = A((ana 15050)) = (‘”3»“237“33)-
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Hence,
[Ay]
Next,
A)((1,0)) =
Ay((0,1)) =
Hence,

[4,]

api
azy
asg

Conclusion: If A € L(R**? R?), and

apy
[A] = | a2
asg
then
a  ap
A= |an an
aszy  ax

apn
an
asp

as
a3
ass

3 Multivariable Differential Calculus

3x3

A((0,0,0,1,0)) = (a1a, a4, azs),
A((0,0,0,0,1)) = (a5, ass, ass).

ayig  aps
= | d24 dazs
az4  ass 3%2
app a3 a4 dais
dyy Az dy4 Aps y
azy dsz a3 4zs | 3.5
aps a4 ais
ans and [Av] = | A4 Ajs
as3 | 3,3 az4  ass |39

Also, if A, is invertible, then with the usual meaning of symbols,

X a ap ass
[(Ax) } = |axy axn ax3
a3 ax  ass

and hence,

((407)(1,0,0)) =

1

Aqq
Ay

Azg

L
A

T

A Ap | [An Az As
Ay Axp| =4 |Apn An Axn|,
A32 A33 A13 A23 A33

(A11,A12,A13),

((Ax)il)((ov 1,0)) = %(A21,A227A23),

(a0 ) (0.0.1) =5

(A31,A32,A33).
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Conclusion: If A € L(R*™? R?), A, is invertible, and

ayp ap a3 dig  daps
A= |an an a3 au as ;
asy dszx  dsy dz dss | 3.5

then

((407)((1,0,00) = £ (Arr, Az, ),

(407)(0,1,0)) = 5 (A1, Az, 429)

((Ax)_l)((oa 0,1)) = %(A317A327A33)-

Theorem 3.41 Let A € L(R**2 R®). If A, is invertible, then for every k in R,
there exists a unique h in R3, such that A(h,k) =0. The value of h is

-1
—(((A0) ) (A (K)))-
Proof Existence: Let us take any k in R?. Since k is in R?, and A, R? — R,
Ay(k) is in R?. Since Ay(k) is in R?, A,:R® =R’ and A, is invertible,
—(((A) (A, (k))) is in R®. Also, from the formula (),

() ) 8) =4 () 0e) it

= —(a (") ww)) +a®
= (A0 @) (k) + A
= —(Ay(k)) +Ay(k) = 0.

Uniqueness: If not, otherwise, let there exist & in Rz, hin R3, and A in R3 such
that i # hy, A((h,k)) = 0, and A((hy, k)) = 0. We have to arrive at a contradiction.
Since

0 = A((h, K)) = A(h) + Ay (k)
and A, is invertible,
0= ((4)7")(0) = ((4)") (A(h) + 4,(K)
= (0™ (A + ((a0™") (4,0))
= ((@0™) ea) ) + (A (A 0) = 1) + (40 ") (4,4)
=+ ((407") (4,0)-
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It follows that

h=—((a)™") (4®K)).

Similarly,

m=—((A)")aw)).

which contradicts the assumption /& # hy. Further, we have shown that for a given
k, the value of /& is —(((A,)~")(A,(k))). O

Note 3.42 The result similar to Theorem 3.41 can be proved as above for R” in
place of R? and R™ in place of R.

Theorem 3.43 Let E be an open subset of R**?. Let f :E — R3. Leta e R*,b €
R?, and (a,b) € E. If

(i) fisa C' function,

i) (f'((a,b))), is invertible,
(iii) f((a,b)) =0,

then there exist an open neighborhood U(C E) of (a,b) in R3**2, an open neigh-
borhood W of b in R?, and a function

g:W—R?
such that
1. for every y in W, (g(y),y) € U,
2. foreveryy in W, f((g(y),y)) =0,
3. g(b) =a,
4. gis a C' function,
5. for every y* in W, g'(y*) = —((F'((gy),y))).) " (F ((s0),¥))),
6. &'(b) = —((f'((a,0))),) " ('((a,D))),
7. iffis a C? function, then g is a C? function, etc.

Proof Letfi :E— R, ,: E— R, f3: E— R, be the component functions of f,

that is, f((5,7)) = (((63)). 3 (1)), fo((x,))) for every (x,y) in E(C B*2).
Let us define a function

F:E— R¥*?

as follows: For every (x,y) in E, where x = (x1,x2,%3) is in R* and y = (yy,y2) is
in R?,
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F((x,y)) = (F((x,3)),y) = ((A((x,).(06,)./((x,))), (1, 52))
= (fl((X7Y>)7f2((x7Y))aﬁ((XJ))aYhyz)-

Clearly, the component functions of F are

(@ y)=fi(xy), (y)=hL(xY), &y)—=A(xy), &y)=,
(x,y)l—>y2

from E to R.
We want to apply the inverse function theorem on F. For this purpose, we first
prove

(a) Fisa C! function,
(b) F'((a,b)) is invertible.

For (a): Since fis a C! function, for i = 1,2,3 and j = 1,2,3,4,5(= 3 +2),
each function Dif; : E — R exists and is continuous. Also, (x,y)+y; and

(x,y) +— y, are smooth functions. This shows that F is a C' function.
For (b): Here,

det[F'((a, b))]

[Dif)((a,b))  (Dofi)((a,b))  (Dafi)((a, b)) (Dafi)((a, D)) (Dsfi)((a,D))
(Di2)((a,0))  (Daf2)((ab))  (Dafa)((a: b)) (Dafa)((a, b)) (Dsf2)((a, b))
=det| (Dufs)((a,0))  (Dafs)((a,b))  (Dafs)((a,b)) (Dafs)((a,b)) (Dsf3)((a,b))
0
0

L 5x%5

( k)
=det| (D1f2)((a,0)) (D2f2)((a,b)) (Daf2)((a,b)) |.
(

Since (f'((a,b))) € L(R*2 R?), (f'((a,b))), : R — R>.
Also,

('((a, £))),((1,0,0)) = (f'((a, £)))(

= ((Dufi)((a,
)
(

—~

1,0,0,0,0))
))7 (DJfZ)((avb))? (le3)((a7 b)))v
0,1,0,0,0))
), (Daf2)((a, b)), (Daf3)((a, b)),

S

(f'((a,6))),((0,1,0)) = (f'((a, b))
((DZfl)( a,

SN

and

('((a, £))),((0,0, 1)) = (f'((a, )))((0,0, 1,0,0))
= ((Dafi1)((a, b)), (Daf2)((a, b)), (Daf3)((a, ]))),
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S0,

(Difi)((a, b)) (Daf1)((a, b
(Dif2)((a,0))  (Daf2)((a, b)) (Daf2)((a,D)) |-
(Difs)((a, b)) (Dof3)((a, b

[(F'((a,0))),] =

Next, since (f'((a,b))), is invertible,

(D1f1)((a; b)) (Daft)((a, b))  (Dsfi)((a, b))
0 # det[(f'((a,0))),] = det | (D1f2)((a, b)) (D2f2)((a,b)) (Daf2)((a,b))
(Dufs)((a,b))  (Daf3)((a, b)) (Dsf3)((a, b))

= det[F'((a, b))].

Since det[F'((a,b))] # 0, so F'((a, b)) is invertible. Since fis a C! function,

(Duf1)((x,y))  (Dafi))((x,y))  (Dafi)((x,y))
(x,y) = det | (Dif2)((x,9))  (Daf2)((x,))  (Daf2)((x,y))
(Dufs)(x,5))  (Daf3)((x,y))  (Daf3)((x,9))

is continuous. Further, since det[(f'((a, b))),] is nonzero, there exists a neighborhood
U* of (a, b) such that det[(f'((x, y))),] is nonzero for every (x,y) in U*. It follows that
(f'((x,))), is invertible for every (x,y) in U*. Now, by the inverse function theorem
and Theorem 3.38, there exists an open neighborhood U of (a, b) such that

(1) U is contained in E,

(2) Fisl-1on U,

(3) F(U) is open in R

(4) the 1-1 function F~! from F(U) onto U is a C' function,
(5) U is contained in U*.

Put
W= {y:y€R* and for some x* in R*(x*,y) € U,f((x",y)) = 0}.

Since (a,b) € U, and f((a,b)) =0, b € W. Let us observe that

W= {y:y€R? and for some x* in R?, (x*,y) € U,f((x",y)) =0}
={y:y€R? and (0,y) = (f(x*,y"),y") for some (x*,y") in U}
={y:y€R* and (0,y) = F((x*,y")) for some (x*,y*) in U}
={y:ye R? and (0,y) € F(U)}.

Thus,
W={y:yeR? and (0,y) € F(U)}.

Now, we will show that W is an open subset of R?. For this purpose, let us take
any yo € W. Since yo € W, (0,y0) € F(U). Since (0,y0) € F(U), and F(U) is
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open in R3*2, there exist open neighborhood V; of 0 in R and open neighborhood
V, of yo in R? such that V; x Vo C F(U). Since 0 € Vi, and V| x V5 C F(U),
{0} x V, C V; x V, C F(U), and hence, (0,y) € F(U) for every y in V. It fol-
lows that V, C W. Since V, C W, and V; is an open neighborhood of yg, yo is an
interior point of W. Hence, W is an open subset of R2. Since W is an open subset of
R?, and b € W, W is an open neighborhood of 5 in R?. Now, we will try to prove
that if y € W, then there exists a unique x* in R such that

(X*ay) € Uaf((X*’y)) =0.

For this purpose, let us take any y € W. The existence of x* is clear from the
definition of W.

Uniqueness: If not, otherwise, let there exist x*,x** in R® such that (x*,y) €
U,f((x*,y)) =0, (x™,y) € U,f((x**,y)) = 0,x" # x**. We have to arrive at a
contradiction. Here, x* # x**, so (x*,y) # (x**,y). Since (x*,y) # (x**,)y), (x*,y) €
U, (x*,y)€U, and F is 1-1 on U, (0,y) = (f(x",y),y) = F((x",y)) #
F((x*,y)) = (f((x™,¥)),y) = (0,y). Thus, (0,y) # (0,y), which is a contradiction.
Thus, we have shown that if y € W, then there exists a unique x* in R3 such that

(X*7y) € U,f((x*,y)) =0.
Let us denote x* by g(y). Thus, g : W — R? such that for every y in W,

(8(),y) € U,f((g(y),y)) = 0.

This proves 1, 2.

Further, since b € W, (g(b),b) € U, and f(
S D) =7((s0) D), Fi(e,b) = Gl )1
Since F((a,b)) = F((g(b),b)). (a,b) € U, (g(b
(a,b) = (g(b),b), and hence, g(b) = a.

This proves 3.

4:Let g : W —R, g: W—R, g3: W — R be the component functions of
g, that is, g((y1,y2)) = (g1((yl,yz)),gz((yl,yz)),gs((yl,yz))) for every (y1,y2) in
W(C R?). Let

(@,b)) =0 =f((g(b),b)). Since
= (f((e b),b))7b) = F((g(b),D)).
),b) € U, and F is 1

h:FU)—R, hh : FIlU) = R, hs : F(U) > R,hy : F(U) = R, hs: F(U)
— R

be the component functions of F ~1 that is,
(F_l)((x7y>> = (hl((x,y)),hz((x,y)),h3((x,y)),h4((x,y)),h5((x,y)))
for every (x,y) in F(U)(C R**?).

Since the function F~! from F(U) onto U is C', each of the 25 first-order partial
derivatives D;h; : F(U) — R exists and is continuous. We have to prove that g is a
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C! function, that is, each of the six first-order partial derivatives D;g; : W — R
exists and is continuous. Here, we will try to prove that D,g; : W — R exists. For
this purpose, let us fix any y* = (y},»}) in W. We will try to prove that
&1 (073 40) =1 (07.33))

(D2g1)((¥},3)) exists, that is, lim,_ ; exists.

Since y* is in W, (g(y"),y") € U, 0 =f((g(y"),¥")), and hence,

(0,57) = (F((g(¥"),¥)),¥") = F((g(y"),¥")) € F(U).

Since (0,y*) € F(U), and Dsh; : F(U) — R exists, (Dsh;)((0,y*)) exists.
Since F~! is a 1-1 function from F(U) onto U, and for every (x,y) in U, where
x = (x1,%,x3) is in R® and y = (y,y,) is in R?,

F((x,y)) = (F((x,)), ),
(x,y) = (F)((F((x,)),)-

Further, since for every y= (y1,y2) in W, we have (g(y),y) € U,

0=r((g(),y),

(81((r1,¥2)), &2((1,32))5 83((¥1,¥2)), y1,¥2)
(g (()’17)’2)) ((YI,)’Z)) g3((1,32)))s (1532))

1(

= (

= (8,y) = (F Y ((().9),») = (F)((0,y))
(hl(( )) ha((0, )) h3((0,y)), ha((0,¥)), hs((0,))).

Hence, for every y = (y1,y2) in W,
gl((ylvyZ)) = hl((O,)’)) = hl((OaOaO;y17)’2))~
Now,

! (07,25 + f))t —ei(01.33) _ nng}” ((0,0,0,y1,v3 +1)) = 1 ((0,0,0.51,3))
= —

t
= (DShl)(«O’OaO): (yTay§>)) = (DShl)((OJ]*))'

This proves that D,g; : W — R exists. We have seen that for every y* in W,

_ hn&gl (G + f))t &1 ((1,))
1—

(D281)((3)) = (Dsh)((0,y")).

Further, since y* — (0,y*) and (x,y) — (Dsh;)((x,y)) are continuous functions,
their composite function y*— (Dsh;)((0,y*))(= (D2g1)((y*))) is continuous.
Thus, we have shown that D,g; : W — R exists and is continuous. Similarly, all
other D;g; : W — R exist and are continuous.
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This proves 4.
5: Let us fix any y* = (y{,»5) in W. Since y* = (y},y3) is in W, (g(v*),»*) €
U,f((g(y*),y")) = 0. Let us define a function

hy: W — R3+2
as follows: For every y = (y1,y2) in W,

hy-(v) = (8(¥),¥) = (81(01,32)): 82((¥1,52)), 83((1532)), ¥1,32)-

If y is in W, then (g(y),y) € U,f((g(y),y)) = 0. Hence, hy : W — U(C E).
Here, component functions of hy are y— gi(y),y— g2(y),y—g3(),y— yi,
y+y,. Since g is a C! function, y g (y),y+ g2(v),y+ g3(y) are continuously
differentiable functions. Further, y — y;, y— y, are smooth functions. Thus, we see
that all component functions of h,- are continuously differentiable functions, and
hence, hy- is a C! function on W. Since hy is a C! function on W, and y*isin W, hy-
is differentiable at y*. Since fis a C' function on E, and hy-(y*) = (g(b*),y*) €
U C E, fis differentiable at hy-(y*). For every y in W, we have (g(y),y) € U, and

Let us take any y in W. Since h,- is a C! function on W, and yisin W, hy is
differentiable at y. Since y is in W, hy- : W — U(C E), hy+(y) is in E. Since hy-(y)
isin E, and fis a C' function, fis differentiable at &, (y). Now, since y is in W, fis
differentiable at A, (v), and hy« is differentiable at y, by the chain rule of derivative,

(7 ((60)3)) (1) 0)) = (F (e ) ( () ) = 0.
Hence,

(0,0,0) = 0((1,0)) = (' (s ¥ ( () ) ) ((1,0))

= () ( () 0))((1,0))

= (")) (D181, (D1g2) (), (D1g3)(¥), 1,0))

= ((D1ig) (P (), ))((1,0,0,0,0)))
+ ((D1g2) ) ((F ((87):))((0,1,0,0,0)))
+ ((D1g3) ) (' (). )((0 0,1,0 0)))
+1(7((800):1)))((0,0,0,1,0)) +

= (D) M)(Dfi) (g @),y)),(m)((g(y
+ ((D1g2) () (D) ((80). 1)), (Dafs) (g
+ ((D1&3) ) ((Daf1)((2(3),¥)), (Daf2) (g
+ ((Daf1)((g(),2)), (Daf2) ((8(¥),¥))s

(
((1,
( N((
( N((
y) )

—~ —~
NS
~
=

\/
pas
o
Ss
<
=
&
=
<
<
=
=
=
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or,

So, for every i = 1,2, 3, and for every y in W,

(D1g))((D1fi)((g(¥),3))) + ((D1g2)(¥))((D2fi) ((8(3),¥)))

+ ((D1g3) ) ((Dafi) ((g(¥),¥))) + (Dafi) ((&(¥), ¥))-

0=

Now, since y* is in W, for every i = 1,2, 3,

0= ((Dign) )N (Dufi)((e(¥*),¥7))) + ((D182) (¥")) (Dafi) ((8(¥"), ¥7)))

+ ((D1g3) (") ((Dafi) ((g(v),¥%))) + (Dafi) (((Y*),¥")) - -

Next, we will prove that

that is,

((F (&)Y N) (') = =(F (), ),

that is,

@ (" ((e6:), v L, 0)) = (=(F(((r),y)),)((1,0)),

and

() (((F (e ),y )0, 1)) = (=" ((g*):¥))),)((0, 1)).

For (i):

~—
NN

O

% =
Q —
a -~ R
e
-~ —~ % % =
8o mr=
TN
NSNS N a)
%0 — > %0 S0 —
l\”(((f
Q& x==
- = = =
T~ %
ST SR A~

—~ = =
==QA ==
NS = =
- LT~ I~ A
~ A% —_— % %
—~ 2= A X
L i D=
S 2R e =
& ~— &= — %0 S0 T
ll\g/i\lllr.U
To% %444
3= 3 /\Dl(\/\
/I\Uﬂ//.\ |



3.4 Implicit Function Theorem 189
by (). Now,

RHSz(— (e, ) (1,0)) = = ((F (803, ((1,0))
<wumymwmmm»
~(D)(80):3"), (D) (80°): ), (D) (605°),5'))
(—(DA) (0.5, =) (80").")), ~(Daf) ("), ¥))):

This proves (i). Similarly, (ii) holds.
This proves 5.
6: Since b € W, and g(b) = a, by 5,

g'(b) = =((F'(g(). b))~ (' ((8(b), b)), = —((F (@, b))~ (F'((a, D)),

This proves 6.

7: Let fbe a C? function. We have to prove that g : W — R? is a C? function,
that is, each of the 12 second-order partial derivatives Djg; : W — R exists and is
continuous. We will try to prove that D,g3 : W — R exists and is continuous. Let
us take any y in W.

By 5,

so,
(D18 ), (D182) (), (D13) () = (€' ())(1,0))
<ww>>wwwwmy@w
(80, 9))),
"((8(),)

).)
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where

(Dif1)((8(v),y))  (Dafi)((g(¥),y)) (Dafi)((8(¥),¥))
A= (Dif)((g(¥),y) (D2f2)((g(y),y) (Daf2)(((),¥)) |,
(D1f3)((g(y),y))  (Daf3)((g(¥),y))  (Dafs)((8(y),¥))

and Aj; denotes the cofactor of (D;fi)((g(y),y)) in the above determinant. Hence,
(D1g3)(y) = *%(((szfl)((g(y),y)))/*w + ((Daf2) (8 (), ¥)))A2s + (Daf3)((8(¥), ¥)))As33)-

Now, since fis a C? function, and g is a C! function, the second-order partial
derivative (D1,g3)(y) exists and is continuous. Similarly, all other (Djrg;)(y) exist
and are continuous. This proves that g is a C? function. U

Note 3.44 The result similar to Theorem 3.43 can be proved as above for R” in

place of R® and R™ in place of R?. This theorem is known as the implicit function
theorem. As above, we can prove the following theorem:

Theorem 3.45 Let E be an open subset of R*?. Let f : E — R?. Leta € R*,b €
R?, and (a,b) € E. If
(i) fisa C! function,
(i) (f'((a,b))), is invertible,
(iii) f((a,)) =0,
then there exist an open neighborhood U(C E) of (a,b) in R**?  an open
neighborhood W of a in R*, and a function

g: W —R?
such that
1. for every x in W, (x,g(x)) € U,
2. for every x in W, f(x,g(x)) =0,
3. gla) =0,
4. gis a C' function,
5. for every x* in W, g'(x") = —((f' (", g(x)))),) ™" (' (*", 8(x")))),
6. &'(a) = —((f'((&,0))),)”" (*'((a; b)),
7. iffis a C* function, then g is a C* function, etc.
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3.5 Constant Rank Theorem (Easy Version)

Definition Let 1; : R — R™ x R" be the function defined as follows: For every
x in R”

n(x) = (x,0).

Here, 1, is called the first injection of factor into product. Similarly, by the
second injection 1, of factor into product, we mean the function 1, : R* — R” x R"
defined as follows: For every y in R”

12(y) = (0,).

Let m; : R™ x R" — R™ be the function defined as follows: For every x in R™
and for every y in R”

m (x,y) = x.

Here, 7, is called the first projection from product onto factor. Similarly, by the
second projection w, from product onto factor, we mean the function 7, :
R™ x R" — R" defined as follows: For every x in R” and for every y in R"

m(x,y) = y.

Theorem 3.46 Let U be an open neighborhood of (a;b)(= (a1, az,a3;b1,b2)) in
R? x R%. Let f : U — R? be a smooth function. Let f(ay,az,az; by, by) = (0,0). If

(f'(a1,az,az;b1,b3)) 015 R? - R?

is a linear isomorphism, then

1. there exists a local diffeomorphism ¢ at (a1, as2,a3;b1,b,) in R3 x R? such that
fop=m.
(i.e., there exist an open neighborhood V of (ay,as2,a3) in R?, an open neigh-
borhood W of (by,b,) in R?, an open neighborhood U, of (ay,ay,az; by, by) in
R? x R?, and a function ¢ : Uy — V x W such that V.x W C U, ¢ is a diffe-
omorphism, and for every (x1,x2,x3;y1,y2) in Ui, f(o(x1,x,x3;
yi,32)) = (1,52))

2. there exist an open neighborhood Wy of (a1, as,a3) in R?, an open neighbor-
hood W, of (b1, by) in R%, and a smooth function (g1,g,) = g : Wi — R? such
that

(@) for every (x1,x2,x3) in Wy, (x1,%2,x3; g1 (x1,%2,X3), 82(X1,%2,x3)) € U,
(b) forevery (x1,x2,x3) in Wi, f(x1,X2,X3; 81 (X1, X2, X3), 82(x1,%2,x3)) = (0,0),
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(c) g is unique, (i.e., if (hj,hy) =h: W, — R? is a smooth function such that
forevery (x1,x2,x3) in W, (x1, X2, X33 hy (x1,X2,%3), ha (X1, X2, X3)) € U, and
J e, xo, x35 (X1, %2, %3), ho (x1, %2, x3)) = (0,0), then g = h.)

(d) ifo: Wy — £710,0) is the function defined such that for every (x1,x2,x3)
in W1

“(x17x2;x3) = (xlaxz,xﬁ81(xuxz,xs),gz(xl,xz,x3)),

then

(i) o(Wy) is an open neighborhood of (a;b) in f~1(0,0),
(il) o is a homeomorphism from W, onto a(Wy),
(iii) o= @ort, and = = m, on their common domain,
(iv) o,o” ! are smooth functions.

Proof Let f = (fi,f2). Since (f'(ay,as,as;b1,by)) 015 : R — R? is an isomor-
phism, and for every (yi,y,) in R?,

((f'(a1,a2,a3;b1,b2)) © 12)(y1,¥2) = (f'(a1, a2, a3;b1,b2)) (12(y1,¥2))
= (f'(a1,a2,a3;b1,b2))(0,0,0;y1,y2)

0

_ {(DLfl)(%b)(szl)(a,b)(Dafl)(a,b)(DM)(a’b)(Dsﬂ)(a,b)} g
(leZ)(a’ b)(DZfZ)(aa b)(DKfZ)(av b)(Déle)(a’ b)(D‘ifZ)(a7 b) Vi

Y2

_ |:((D4f1)(a7b))yl +((D5fl)(a7b))y2:| _ [(Détfl)(avb)(Difl)(%b)- |:y1:|
) (Daf2)(a,b)(Dsf2)(a,b) | ’
it follows that

(D4fl)(avb) (Difl)(av b)
det[(%)(mb) (Dﬁfz)(ayb)} #0.

Let us define a function  : U — R*® x R? as follows: For every (x,y) in
U where x = (x;,x2,x3) is in R® and y = (y,y,) is in R?

lﬁ(xl,xz,xa;)’h)’z) = W(X,Y) = (x,f(x,y))

= (1, X2, X3, f1 (X1, %2, X33 V1, ¥2), fo (X1, %2, X33 V1, ¥2)) -
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Now, since f : U — R? is a smooth function, VU — R? x R? is also a smooth
function. Further, since

(1000 0
0100 0
det(y/ (a1, az, az; by, by)) =det| 00 1 0 0
0 0 0 (Dafi)(a,b) (Dsfi)(a,b)
00 0 (Daf2)(a,b) (Dsf2)(a,b)
[ D) (i) ab)
L (Daf2)(a,b) (Dsf2)(a,b)

is nonzero, W'(al ,a, as; by, by) is invertible. Hence, by the inverse function theo-
rem, there exist an open neighborhood V of (ay,a,,as3) in R?, an open neighbor-
hood W of (b1,b;) in R?, and an open subset U; of R? x R? such that V x W C U
and  acts as a diffeomorphism from V x W onto U,. Hence, x/fl U —- VW
is a diffeomorphism. Put ¢ = ~'. Clearly, ¢ : U; — V x W is a diffeomorphism.
Now, for every x in V, and for every y in W, we have

(ﬂz o lp)()@y) = 7T2(¢(xay)) = nz((x,f()@y))) :f(xay)'

So, moy =f, and hence, foop=(moyYy)op=mo(Yop)=mo
Woy™) =m.

This proves 1.

Since (f'(a1,a2,a3;b1,b2)) o 17 : R? — R? is an isomorphism,

(D4fl)(a7b) (Difl)(avb)

(Dafs)(a, b) (Dshs)(a,b) | 7 O

det [(f,(ahaz, as; bl,bz))y} = det{

and hence, (f'(a1,a2,a3;b1,b2)), is invertible. Now, by the implicit function the-
orem, there exist an open neighborhood W; of (a;,a,,as3) in R3, an open neigh-
borhood W, of (by,b,) in R?, and a smooth function (g;,g,) = g : W; — R? such

that W; x W, C U and for every (xi,x,x3) in Wy,

(1, X2, %33 81(X1, %2, X3), 82(%1, %2, X3)) € Wy X W,
and

F O, x2, %35 81(x1,%2,%3), 82 (%1, %2, x3)) = (0,0).

This proves 2(a) and 2(b).
Next, let i : W; — R? be a smooth function such that for every x = (x1,x2,x3)
in Wi, (xr,2x2,x3; 1 (x1,%2,%3), Ao (x1,%2,%3)) € U, and f(x,x2,x3; b1 (x1,%2,%3),
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ha(x1,x2,x3)) = (0,0), where i = (hy, h2). We have to prove that g = #, that is, for
every (x1,xz,x3) in Wy,

g(x1,x2,x3) = h(x1,x2,x3).
Since

(f1(x1,x2»x3;gl(xl,xzﬁa)’ 82(x17x2;x3))a fz(x17x2,x3§81(x1,x2,x3), gz(xl,xzﬂca)))
= f(x1,x2,x3; 81(x1,X2,X3), 82(x1,%2,%3)) = (0,0)

S0,
W(x1,x2,x3; 81(x1,X2,%3), g2(x1,X2,X3))
= (x1, X2, X3, f1 (x1, X2, X33 81 (x1, X2, X3), g2(%1, X2, X3) ),
fz(xl,xz,X3;g|(xl,xg,x3),gz(x1,xz,x3)))
= (x17x27x37070)7
and hence,

(31, %2, X35 81 (x1, X2,X3), 82(x1, X2, %3)) = ¥~ (x1,x2,%3,0,0) = (x1,x2,x3,0,0)
for every (x1,xz,x3) in Wy. Similarly,
(x17x27x3;hl(xlax25x3)7h2(x17x27x3)) = (P(X1,X2,X3,0,0)

for every (x1,xz,x3) in Wy. It follows that for every x = (x1,x2,x3) in Wy,

(x,g(x)) = (X1,xz,X3;g1(X1,X2,X3),gz(X1,xz,x:;))
= (o1, 20, x3; 1y (201, 02, X3), B (%1, 20, x3) ) = (x, Aa(x)).

Hence, g = h.
This proves 2(c).
(d) (0): For every (xi,x,x3) in Wy, f(xy,x2,x3;81(x1,%2,%3), 82(%x1,%2,%3)) =
(0,0), so
a(xr, %2, %3) = (x1,%0, %35 81(x1,%2,%3), g2(x1,%2,x3)) € 71(0,0).

Hence, o : Wy — £71(0,0) is a function. Since (ay,as,a3) is in Wy,

a(ay, az,a3) = (ai,a2,a3; g1(ar, a2, a3), g2(ay, az,a3)) = @(ai,az,a3,0,0).
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Further, since

Y(ar, ax,az;b1,by) = (a1, az, a3, fi(ar, a2, a3;b1,by), fo(ar, a2, a3; by, by))
= (al7a27a3;050)

SO
(a,b) = (a1, a2,a3;b1,by) = ¢(ai,a2,a3,0,0) = a(a,az,az) € a(Wy).

Now, we want to show that o:(W;) is an open set.
Let us observe that

a(Wi) = (Wi x R?) Nf'(0,0).

(Reason: For this purpose, let us take any o(x;, xp,x3) € LHS, where (x1,x7,x3)
is in W,. Here,

OC(X],XZ,X?,) = (xlﬂx27-x3;gl(xl7x27x3)7g2(xlax23-x3)) = QD(X],XZ,X?,,0,0)
€ o(W x R?).

Also, since f(o(x1,x2,x3)) = f(x1, X2, x3; 81 (X1, X2, X3), &2(x1,%2,x3)) = (0,0),
a(x1,%2,%3) € £71(0,0). Tt follows that a(xy,x2,x3) € @(W; x R*) Nf~1(0,0) =
RHS. Hence, LHS C RHS.

Next, let us take any (x1,X2,%3;y1,y2) € RHS = (W, x R?*) Nf~1(0,0). We
have to prove that (xy,x,x3;y1,y2) € o(Wy). Since (x1,X2,X3;y1,¥2) €
e(Wy x R?) Nf710,0), (x1,%2,x3;51,¥2) € U, (x1,%2,x3;y1,2) €V x W,

(fi(x1, X2, X331, ¥2), o (01, %2, 03591, ¥2)) = f (X1, X2, X33 91, ¥2) = (0,0),

and there exists (wi,wa,ws;t1,22) € Wi x R? such that @(wi,wa, ws;t1,0) =
(x1,X2,%33y1,¥2). Thus,

(Wi, wa, w3311, 2) = W (X1, X2, %3;¥1,¥2)
= (w1, X2, X3, f1 (%1, X2, X33 Y1, ¥2), fo (X1, X2, X33 V1, ¥2))
= (x17-x27-x3;070)'

Hence, (xl,)C2,X3) = (Wl,Wz,W3) € W, .Also

(x1,X2,X3391,¥2) = @(Wi, w2, w311, 1) = @(x1,X2,%3;0,0)

= (x1,x2,x3; 81 (%1, %2,%3), 82(X1, X2, X3)) = (X1, X2,X3) € a(Wy).

This proves that a(W;) = (W, x R?) N f~1(0,0).)
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Since W; is an open subset of R®, W; x R? is an open subset of R* x R
Further, since ¢ : U — V x W is a diffeomorphism, and W; x R? is an open
subset of R x R?, (W, x RZ) is an open subset of R® x R, and hence,
a(W))(= (W, x R*) Nf~1(0,0)) is open in £~1(0,0). This proves (d)(i).

(d)(i1): Here, we must prove that

(A) o: Wy — a(Wy) is 1-1,

(B) o is continuous,

(C) o' : a(Wy) — Wy is continuous. For (A): Let a(x1,x2,x3) = a(y1,y2,y3)-
We have to prove that (x;,x2,x3) = (y1,y2,y3). Since

(x1,x2,X3;gl(x1,x2,X3),g2(x1,x2,X3)) = OC(X[,XQ,X3) = 0‘()’1a)’2a)’3)

= (y1,¥2,53:81(01,¥2,3),&2(V1,¥2,¥3)),

(x1,%2,%3) = (1,2,3)-
For (B): Since g : W} — R? is a smooth function, and

oz (1,0, X3) = (X1, X2, %35 81(X1, X2, %3), 82(x1, X2, X3)),

each of the component functions of « is continuous, and hence, « is continuous.
For (C): Since for every x = (x1,x2,x3) € Wy,

o (g, X2, 435 81 (X1, X2, 43), 82 (%1, X2, x3) ) = (1, %2,X3)

= 1y (X1, X2, X633 81 (X1, X2, x3), g2 (%1, %2, X3)),

and m; is continuous, o~ ! is continuous. This proves (d)(ii).

(d)(iii) Since for every x = (x1,x2,x3) € Wy,
a(xy,x2,X3) = @(x1,%2,x3;0,0) = @(11(x1,%2,%3)) = (¢ 0 71)(%x1,X2,X3),
o = ¢ o 1;. Next, since

o (31, X2, X33 81 (1, %2, X3 ), g2 (X1, X2,%3) ) = (1, %2, %3)

= 7-El(xtha-x:’);gl (xl7x27x3)7g2(x17x27x3))7

o~ = m; on their common domain. This proves (d)(iii).
(iv) Since ¢ and 7, are smooth functions, their composite ¢ o 7 (= «) is smooth,
and hence, « is smooth. Since 7;(= ot’l) is smooth, o~ ! is smooth. O

Theorem 3.47 Let U be an open neighborhood of (a;b) in R™ x RP. Letf : U —
R? be a smooth function. Let f(a;b) = 0. If

(f'(a;b)) o1y : RP — RP

is a linear isomorphism, then
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1. there exists a local diffeomorphism ¢ at (a;b) in R™ x R” such that f o ¢ = m,.
(i.e., there exist an open neighborhood V of a in R™, an open neighborhood W
of b in R?, an open neighborhood U, of (a;b) in R™ x RP, and a function
@ : U — VX W such that V.x W C U, ¢ is a diffeomorphism, and for every
(x;y) in Uy, f(@(x;y)) = y.)

2. there exist an open neighborhood Wy of a in R™, an open neighborhood W, of b
in R?, and a smooth function g : Wi — R? such that

(@) for every x in Wy, (x;g(x)) € U,

(b) for every x in W, f(x;g(x)) = 0,

(c) g is unique, (i.e., if h : Wy — RP is a smooth function such that for every x
in Wy, (x;h(x)) € U, and f(x;h(x)) = 0, then g = h.)

(d) if o: Wy — £71(0) is the function defined such that for every x in W;

a(x) = (x;g(x)),
then

() o(W)) is an open neighborhood of (a;b) in f~1(0),
(il) « is a homeomorphism from Wy onto a(Wy),
(ii) o= ¢@ort; and o
G(v) o ol

= 1y on their common domain,
are smooth functions.

Proof Its proof is quite similar to the proof of Theorem 3.46. O

Theorem 3.48 Let f : R" x R? — R be a smooth function. Let a be in R™ and b
be in RP. Let f(a;b) = 0. If for every (x,y) in f~1(0), the rank of linear trans-
formation f'(x;y) is p, then f~1(0) is a smooth manifold of dimension m.

Proof Since f : R™ x R” — R” is a smooth function, f is a continuous function.
Since f : R™ x R? — R” is a continuous function, and {0} is a closed subset of R”,
£71(0) is closed subset of R™ x R”. Since R™ x R” is homeomorphic to R"*?, and
R™*" is Hausdorff and second countable space, R™ x R” is Hausdorff and second
countable. Since R” x R” is Hausdorff and second countable, and f~1(0) is a
subspace of R” x R”, f~1(0) is Hausdorff and second countable.

Let us take any (a,b) in f~1(0). Since (a,b) is in £~1(0), f(a,b) = 0. By
assumption, the rank of linear transformation f’(a;b) : R” x R’ — R” is p, and
hence, (f'(a;b)) o1, : R? — R” is a linear isomorphism. Now, by Theorem 3.47,
there exist an open neighborhood W; of @ in R” and a function o : W; — £~1(0)
such that

(i) «(W)) is an open neighborhood of (a;b) in f~1(0),
(ii) o is a homeomorphism from W; onto a(W;),
(iii) o, o ! are smooth functions.
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Hence, o(W; ) is an open neighborhood of (a; b) inf~1(0), and «~" : «(W,) — W, is
a diffeomorphism. This shows that f~!(0) is a smooth manifold of dimension m. []

Definition Let N be a smooth manifold of dimension m + p. Let M C N. If for
every x in M, there exists an admissible coordinate chart (U, ¢ ) in N satisfying
x € U such that

Py(UNM) = (¢y(U)) N (R" x {0})

then we say that M is a smooth m-submanifold of N.

Theorem 3.49 Let N be a smooth manifold of dimensionm +p. Let M C N. If M is
a smooth m-submanifold of N, then M is a smooth manifold of dimension m.

Proof Let us take any a in M. Since a is in M, and M is a smooth m-submanifold of
N, there exists an admissible coordinate chart (U, @) in N satisfying ¢ € U, and

Pu(UNM) = (py(U)) N (R x {0}).

Since a is in M, and a € U, a is in U N M. Since U is open in N, and M C N,
U N M is open in M. Since a is in UN M, and U N M is open in M, U N M is an
open neighborhood of a in M. Since (U, ¢y) is an admissible coordinate chart in
the m + p-dimensional smooth manifold N, ¢, (U) is open in R"*7 (= (R"x
RP) D (R™ x {0})), and hence, ¢, (U NM)(= (¢, (U))N (R™ x {0})) is open in
R™(= (R™ x {0})). Since (U, ¢) is an admissible coordinate chart in N, ¢, is
1-1, and hence, the restriction ¢,y Of @y to UNM, is 1-1.

Thus, the restriction @ |yny, of @y to UNM is a 1-1 mapping from the open
neighborhood U N'M of a in M onto the open set ¢, (U N M) of R™.

Since (U, ¢y ) is an admissible coordinate chart in N, ¢, is continuous, and hence,
the restriction @ | -y, of ¢ to U N M is continuous. Since (U, @) is an admissible
coordinate chartin N, (¢,) " : ¢, (U) — U is continuous, and hence, the restriction
(@) gy of (91) " 10 oy (UNM)(= (0y(U)) N (R" x {0})) is contin-
uous. Further, since (¢y|ymy) ' = (((pU)71)|wU(UﬁM), it follows that the inverse

function (¢y|;ny) " is continuous.

Thus, the ordered pair (U N M, @y |y ) is @ coordinate chart of M satisfying a €
M. Next, let (UNM, ¢ylyn) and (VN M, Yy |yq,) be two coordinate charts of M,
where (U, @) and (V, ) are admissible coordinate charts in N, and (U N M) N

(V N M) is nonempty. We have to prove that (¥ |yr) © (@ylyay) " is smooth.
Since (U, ¢y )and (V, ) are admissible coordinate charts in N, i, o (@) " is

~1 -1 .
smooth, and hence, (Yy|yry) © (Qulyom) (= (by o (@y) ) |(UmM)m(VmM)) 18
smooth. Hence, M is a smooth manifold of dimension m. O
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3.6 Smooth Bump Functions

Theorem 3.50 Let ¢ > 0. Let a be in R*. Let B,(a) = {x:x € R? |x —a|<¢}.
Then, there exists a function h : R®> — [0,1] such that

1. h is smooth,

2. h is onto,

3. for every x in B,(a), h(x) > 0,

4. for every x in {x:x € R?, |[x — a| < £}, h(x) = 1,
5. for every x &€ B,(a), h(x) = 0.

Proof Let us define a function f : R — R as follows: For every x in R,

1
_ Jex if O<uy,
f(x)_{o if x<0.

Thus, f(x) is positive if and only if x is positive, and f(x) is never negative. We
shall first try to prove by induction (a): For every x > 0, and for every nonnegative
integer k, the kth derivative f*)(x) is of the form (py (i))e’% for some polynomial
pax(y) of degree 2k in y. Let us denote the statement, f*)(x) is of the form p2k(%)e’i
for some polynomial py(y) of degree 2k in y, by P(k). We must prove V

1. P(1) holds,
2. if P(k) holds, then P(k + 1) holds.

For 1: P(1) means f'(x) is of the form p,(L)e™+ for some polynomial p;(y) of

1
X

degree 2 in y. From the given definition of f,
1 . 1 |
! = —e x = — x
f(x)_xze p2(x>e )

where p,(y) = y?. Here, p»(y) is a polynomial of degree 2 in y. This proves 1.
For 2: Let P(k) be true, that is, f*) (x) is of the form py; ()—lr)e‘f for some polynomial

pa(y) of degree 2k in y. We have to prove that P(k + 1) is true, that is, f**1) (x) is
of the form pyyi2 (i)e’% for some polynomial py;.»(y) of degree 2k + 2 in y. Here,

74 = (90) = 290 = 1 (pu(2)e)
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where gu2(y) = (par(y) — ph(v))y?, which is a polynomial of degree 2k + 2
in y. This proves 2.

Hence, by the principle of mathematical induction, P(k) is true for every positive

integer k. This proves (a). Now, we shall try to prove (b): fis C* on R and that
F%(0) = 0 for all k> 0. Here, for x<0, f'(x) = 0, and for 0 <x, f'(x)

:%67%:
x%e’%.Next,
fim [0SOy SED 20 SED gy O,
e—0 —¢& e—0 —& e—0 ¢ e—0¢
e>0 e>0 e>0 e>0
and

fm 1049 10) _

0
0
e—0 e—0 ¢
e>0 e>0
1
= lim @: lim i
e—0 ¢ e—0 ¢
e>0 e>0
t 1
=lim—=1lm—-—=0
t—00 ¢ t—00 ¢!

Hence,

that is, f(0) = 0. Thus,

f’(x){o if x<0,

Let if 0<x.
Here, for x<0, f”(x) = 0, and for 0 <x,

d d 1 1 —2 1 1 1 .
1o =g =go(wt) =Tt a (m)

x2 \x2
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Now,
/O_ _ 1 -0 1(_ 0
lim oAl ¢) f(): lim F(=e) =— lim oAl 8>:— lim —
e—0 —¢ e—0 —& e—0 ¢ e—0¢
e>0 e>0 e>0 e>0
:O7
and
fim O =LO) @0 6w i,:limi:nmﬁ
£—0 & e—0 ¢ e—0 & e—0 & g—0&dec 1oxe oo
>0 e>0 >0 >0 e>0
—lim 3'2t Lo
t—oo e 1—00 e
Hence,
/0 h _ 4!
{01 =F0) _
h—0 h
that is, f”(0) = 0. Thus,
0 if x<0,

f(x) = { (Z+LDer if 0<x.

X

Here, for x<0 f”(x) = 0 and for 0 <x,

1 d ., d -2 1\ . 6 —4\ . 1 ./-2 1
f (x>:af (x):a<(x_3+g)e ") = (F+x_5)e "+;e ‘<x—3+g>

_ (6, 6, 1)
T\ B ’

Now,

"o — &) — £(0 "(_g) — 0 " — 0
hmf( ) f(): hmf(s) = — hmf 8):— lim -
e—0 —& e—0 —¢& e—0 ¢ e—0¢
e>0 e>0 e>0 £>0
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and
00 o "e) — 0 1 -2, 1)\,-!
lim f( +£) f(): lim f() — 1im f(): lim (53 84)8
e —0 € e—0 € e—0 ¢ e—0 €
e>0 e>0 e>0 e>0
-2 1\1 264+ 5!
8—)0 & & e: 1—00 el t—00 @
e>0
Hence,

i O SO

h—0
that is, /(0) = 0. Thus,
mr~ O if x <0,
F700) = { (G+=8+L)e ifo<x

Similarly, f*(0) = 0,f°(0) = 0,etc. This completes the proof of (b). Thus,
f :R — R is a smooth function.

Now, let us define a function g : R? — R as follows: For every x = (x1,x2,X3)
in R?,

() = 72 = (6 +)+()))
i (e = (0P n))) (@) ) +H)?) — 1)

Clearly, in the expression for g(x), the denominator
1
f@2—(@g%umf+agﬂ)+f(@mf+@g%umf)—Z§>

is nonzero, and hence, g : R* — R is a well-defined function. Since 0 < f, it is clear
that 0 < g < 1. Further, since fis C*™ on R, g is C* on R. Next, let us observe that if
x = (x1,x2,x3) satisfies

& — ((x1)2+(x2)2+(x3)2) <o, thenf(a2 - ((x1)2+(xz)2+(X3)2)) =0,
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and hence,

s = (2 (') iso.

£ = (040 +06)) ) +7( () +00)+00)°) =42

For every x = (x1,x2,x3) satisfying
((x1)2+(x2)2+(x3)2) - %32 <0, f<<(x1)2+(x2)2+(x3)2> — ig) —0,

and hence,

: )
g(x) _f(62 - ((x1)2+(x2)2+(x3)2 )

£(2 = () +@) +(x)?)

= is 1.

£ = () +00)+(x)?) ) +0

Finally, for every x = (x1,x2,x3) satisfying (x;)> + (x2)> + (x3)> <2, we have
& — ((x1)* + (x2)* + (x3)?) is positive, and hence, £ (2 — ((x1)* + (x%2)* + (x3)?))
is positive. Thus, for every x = (x1,x,,x3) satisfying (x;)* + (x2)> + (x3)> <é&2,
(2 = (@ +HwP +w)) )
(22 = (0P + @ +))) +£( () +0+6)") - 122)

gx) | =

is positive. Since g : R® — [0,1], and g is C* on R, g is continuous. Since g :
R? — [0, 1] is continuous, g assumes 0, and g assumes 1, g assumes all values of
[0,1]. Hence, g:R? — [0,1] is onto. Thus, we have seen that g is a smooth
function from R? onto [0, 1] such that for every x in R?,
1 if  [x] <5,
gx)=<¢0 if e<|x|,
positive if |x| <e.

Next, let us define a function % : R* — [0, 1] as follows: For every x in R?,

h(x) = g(x — a).
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1. Since g is a smooth function, and x+— (x —a) is a smooth function, their
composite & : x+— g(x — a) is also a smooth function.

2. Since x— (x — a) is a function from R? onto R?, and g from R? onto [0, 1], their
composite & : x+— g(x — a) is onto.

3. If x is in B;(a), then |x — a| <&, and hence, h(x)(= g(x — a)) is positive.

4. For every x in {x:x € R’ |x—a|<£}, we have |x—a|<£, and therefore,
h(x) =g(x—a)=1.

5. For every x & B,(a), we have ¢ < |x — a|, and hence, h(x) = g(x—a) =0. O

Note 3.51 We shall try to prove that there exists a smooth function 2 : R — R
such that

1. h(r) =1if £ <1,
2. 0<h(r)<lif 1<r<2,
3. h(r)=0if 2<r.

In the proof of Theorem 3.50, we have seen that the function f : R — R is defined
as follows: For every ¢ in R,

1
et it o<t
f(t)_{o if <0,

is smooth. Now, let us define the function 2 : R — R as follows: For every ¢ in R,

f2-1
fQ=0+f-1)

Ift<1,then —1 < —¢,and hence, 1 <2 —¢. If r < 1, then t — 1 <0, and hence,
f(t—1)=0. Thus, for r <1,

h(r) =

1
e -
W) =—— = 1.
(1) P

If 2<¢, then 2 — <0, and hence, f(2 —¢) = 0. If 2 <¢, then 1 <7 — 1. Thus,
for 2 <t,

0

=——=0.
0+e

h(z)

If 1<t<2, then 0 <z — 1, and hence,

0<e ™1 =f(-1).
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If 1<t<2, then 0<2 — ¢, and hence, 0 <e =5 =f(2 —1). It follows that for
1<r<?2,
L
e 2t

h(t)=————— € (0,1).
()= e O)

It remains to show that A is smooth. Since f'is smooth, and #+— 2 — ¢ is smooth,
their composite 7+ f(2 —¢) is smooth. Similarly, 7+— f(z — 1) is smooth. This
shows that

(= h(1))

is smooth, and hence, % is smooth. O

Here, we observe that

1. h(r) =1 if and only if 1 <1,
2. h(tr) =0 if and only if 2 <1,
3. 0<h(r)<1 if and only if 1 <z<2.

Note 3.52 We shall try to prove that there exists a function H : R* — [0, 1] such
that

1. H is smooth,

2. H(x) = 1,if x is in the closed ball B;[0](= {x:x € R? |x| < 1}),

3. the closure (H'((0,1]))” of H~'((0,1]) is equal to the closed ball
By[0](= {x:x € R? |x| <2}).
Let us define the function H : R* — [0, 1] as follows: For every x = (x1,x2,x3)
in R,

) = (i P )

where h denotes the function as defined in Note 3.51.

For 1: Since x = (x1,x2,x3) — (\/(xl)2 + (x2)* + (x3)?) is a smooth function
over R* — {(0,0,0)}, and & : R — [0, 1] is a smooth function, their com-

posite x»—>h(\/(x1)2 + (x2)* + (x3)*)(= H(x)) is a smooth function from
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R? — {(0,0,0)} to [0,1]. It remains to show that (x;,x,x3)h
(\/(x1)2 + (x2)* + (x3)?) is smooth at (0,0, 0). Here,

h (\/ (0+1)>+(0)° + (0)2> - h(\/ (0)* + (0)° + (0)2>

lim
t—0 4
t>0
— qim MO RO I oo,
t—0 t t—0 I t—0
t>0 t>0 t>0
and
h<\/ (0 — 1)2+(0)> + (0)2> - h(\/ (0)° + (0)° + (0)2>
lim
t—0 —
t>0
= lim (1) = h(0) _ lim == im 0=0.
t—0 —t t—0 ¢ t—0
t>0 t>0 t>0
Since
h <\/ (0 + 1)2+(0)> + (0)2) s <\/ (0)® + (0)* + (0)2)
lim =0
t—0 t
t>0
h<\/ (0 — 12+(0)> + (0)2) - h<\/ (0)° + (0)° + (0)2>
= llm )
t— 0 —t
t>0

(D1H)(0,0,0) exists, and its value is 0. Also, for (x1,x2,x3) # (0,0,0),

(DyH)(x1,x2,x3) = [ B | \/(x1)*4(x2)*+(x3)? ! (2x; 4+ 0+ 0)
( ( >)2 (x1)*+(x2)*+(x3)°

- al (VP 2

(1) +(x2) +(x3)°
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Thus,

—____ X124 (x2) 2+ (x 2) it (xp,x0,x 0,0,0
(Vo ) i () £ 0.0,0
0 if

(DIH)(Xl,)Cz,)Q) = { .

(x1,%2,x3) = (0,0,0)

Now, we want to show that DH is continuous at (0,0, 0).

We recall that the smooth function 2 : R — R is defined as follows: For every
tin R,

. f(2—1) _ e if 0<ux, /
h(t)ff(z_t) +f(t_1).Alsof(x)f {o i x<0 and f(x)

_{0 if x<0,

- 1

Let if O<ux.

So

W) = (F2-0))=DHFC-)+f(t-1) - FC-))(=C - +f - 1))
(F2—0+7f(—1)° 7

and hence,

w0y = FR=NEDER =0 +/0-1) = (2= 0)(=F(2-0) +f(0-1)
(F2=0)+f(0-1))
_ (@YD) +£(=1) = FR)((2) +1/(-1))
(F2)+£(-1))°
_(F@)=D(2) +0) - (F(2)(=f'(2) +0)
(f(2) +0)°

0
(Y

Thus, #'(0) = 0. Since for (x1,x2,x3) # (0,0,0), we have

=0.

X1

V@ )+ x)?

0<

<1

— )

and #'(0) =0,

I D\H
000 D1 012:%)

X1

h< (x1)2+(xz)2+(X3)2) =0 = (D,H)(0,0,0).
(1) +(x2) >+ (x3)

lim
(x1.22,x3)—(0,0,0)



208 3 Multivariable Differential Calculus

This shows that D, H is continuous at (0,0,0). Similarly, D,H is continuous at
(0,0,0), and D3H is continuous at (0,0, 0). Similarly, higher partial derivatives of
H exist at (0,0,0). This shows that H is smooth.
For 2: Let us take any x= (x,x,x3) satisfying [x[<1. So
H(x) = h(\/(xl)2 + @)+ (1)) = h(ld) = 1.

For 3: Let us take any a = (aj,az,a3) in (H1((0,1]))”. We have to show that
V(@) + (@2 + (a3)? < 2. 1f not, otherwise, let 2</ (@) + (a2)? + (as)°.

We have to arrive at a contradiction. Since 2 < \/(a1)2 + (@) + (a3)* = |al,
there exists a real number ¢ > 0 such that the open ball B, (a) contains no point of
B,[0]. Since B;(a) is an open neighborhood of a, and a is in (H~!((0, 1])) ", there
exists b in H~1((0, 1]) such that b is in B.(a). Since b is in H~'((0, 1]), h(|b]) =
H(b) € (0,1]. Since h(|b|) € (0,1], and h(r) = O if and only if 2 <7, |b| <2, and
hence, b is in B;[0]. Since b is in B [0], and B(a) contains no point of B,[0], b is
not in B, (a), a contradiction. Thus, we have shown that (H~((0,1]))” C B,[0].
It remains to prove that B,[0] C (H~'((0,1]))". Let us take any a in B[0]. We
have to prove that @ € (H~'((0, 1])) . Since a is in B,[0], |a| < 2.

Case I: when |a|<2. Since |a|<2, and h(f) =0 if and only if 2 <y,
0<h(la]) = H(a) <1, and hence, a € H'((0,1]) C (H'((0,1]))". Hence,
a e (H((0,1])".

Case II: when |a| = 2. For every positive integer n > 1,

1
li l——Ja=
tim (15 )a=a,

and
(=)= (1= (1-L)=2- L
Since
‘<121n)a € (1,2),
H((l —%)a) :h(‘(l ——)a) €(0,1) C (0,1],
and hence,
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Since, for every positive integer, n > 1,

(1 — Qi)a c H'((0,1)),

n
and
1 » .
Jl_}rr;)(l —Z>a:a, soa € (H'((0,1]))
Thus, we see that in all cases, a € (H~'((0,1]))". O

As above, we can show that there exists a function H : R" — [0, 1] such that

1. H is smooth,

2. H(x) = 1,if x is in the closed ball B,[0](= {x: x € R", |x| <1}),

3. the closure (H'((0,1]))" of H~'((0,1]) is equal to the closed ball
By[0](= {x:x € R", |x| <2}).

Definition Let 2 : R — R be a smooth function. If

1. h(r) =1if <1,

2. 0<h(t)<1if 1<r<2,

3. h(t) =0if 2<1,

then we say that & is a cutoff function. By Note 3.51, there exists a cutoff function.

Definition Let X be a topological space. Let f : X +— R be any function. The clo-
sure (f~'(R — {0}))” of f~1(R — {0}) is called the support of f and is denoted by
suppf. By fis compactly supported, we mean that supp f is a compact set. By the
note 3.52, there exists a function H : R" — [0, 1] such that

1. H is smooth,
2. H(x) = 1,if x is in the closed ball B;[0],
3. supp H = B,[0].

Definition Let X be a topological space. Let f : X — R be any function. Let S be
any nonempty subset of X. If suppf is contained in S, then we say that f is sup-
ported in S.

Definition Let H : R" — [0, 1] be a function. Let F be a closed subset of R”, and
let G be an open subset of R". If

1. H is smooth,
2. H(x) = 1,if xisin F,
3. H is supported in G,
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T

Fig. 3.1 F and K are disjoint

g
P
v

then we say that H is a smooth bump function corresponding to closed set F and
open set G. By Note 3.52, there exists a smooth bump function corresponding to
closed set B;[0] and open set B3(0).

Theorem 3.53 Let F be a nonempty closed subset of R?, and let K be a nonempty
compact subset of R>. If F and K are disjoint, then there exists a function o :
R3 — [0, 1] such that

1. o is smooth,

2. for every x in F, o(x)
3. for every xin K, a(x) =
4. ¢ is onto.

0,
1,

Proof Since F and K are disjoint, K C F° where F¢ denotes the complement of
F. Since F is a closed subset of R?, F¢ is an open set. Let us take any x in K. Since
x € K C F¢,x € F°. Since x € F°, and F* is an open set, there exists a real number
dx > 0 such that x € By; (x) C F*. It follows that the collection {Bj; (x) : x € K} is
an open cover of K. Further, since K is compact, there exist finite many
X1,X2, .. - Xy in K such that K is contained in B (x) U By (2) U= UBys (xn).
Since (see Fig. 3.1)

B%(le (xl) C F¢, B%(jm ()Cz) C F¢,.. '7B%(5xr, ()Cn) C F¢,

(Bys, (x1) UBys (x2) U---UBy; (x,)) C F¢. Now, for every i=1,2,...,n, by
Theorem 3.50, there exist functions /; : R* — [0, 1] such that

h; is smooth,

h; is onto,

for every x in By; (xi), hi(x) >0,

for every x in {x:x € R?, [x — x;| <15, }, hi(x) = 1,

for every x & Bys (x;), hi(x) = 0.

Al
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Now, let us define a function ¢ : R® — [0, 1] as follows: For every x in R®,
o(x) =1 = ((1 = ())(1 = ha2(x)) - (1 = ha(x)))-

Since 0 <h; < 1, for every x in R*, 0 < 1 — hy(x) < 1. Similarly, for every x in
R} o0<l1-— h(x)<1,...,0<1—h,(x)<1. Hence, for every x in R3,
0< (1 —hy(x))(1 = ha(x)) -+ (1 — hy(x)) < 1. Tt follows that for every x in R?,
0<1—((1="hi(x)(1—=ha(x))---(1 = hy(x))) < 1. Thus, we have shown that o :
R3 — [0, 1] is a well-defined function.

1. Since each A; is smooth, g : x— 1 — ((1 — Ay (x))(1 = ha(x)) - - (1 — hy(x))) is
smooth.

2. Let us take any x in F. Since x is in F, and
(B, (x1) UBys (x2) U---UBys (xa)) CF, x & (By, (x1)UBys (x2)U---U
Bis (xa)), and hence, for every i=1,2,...,n, we have x ¢ Bis, (x;). Thus,
ox)=1-((1-0)(1-0)---(1-0)) =0.

3. Let us take any x in K. Since x is in K, and K is contained in Bi; (x) U
B%% ()uU---U Bys, (xn), there exists j € {1,2,...,n} such that x € B%(;Xj (x;)-
For simplicity, let us take 1 for j. Now, since x € Bi; (x1), hi(x) =1, and
hence, a(x) =1 — ((1 = 1)(1 = ha(x)) - - (1 — hy(x))) = 1.

4. Since F is nonempty, there exists « in F. Hence, o(a) = 0. Thus, the function ¢
assumes 0. Similarly, ¢ assumes 1. Since ¢ : R* — [0, 1], and ¢ is smooth, ¢ is
continuous. Since ¢ : R? — [0, 1] is continuous, ¢ assumes 0, and ¢ assumes 1,
o assumes all values of [0, 1]. Hence, o : R — [0, 1] is onto. d

Note 3.54 The result similar to Theorem 3.53 can be proved as above for R” in
place of R?.

Theorem 3.55 Let a be in R3. Let U be an open neighborhood of a in R3. Let
f: U — R be any function. If f is smooth, then there exist an open neighborhood V
of a and a function F : R?> — R such that

1. Vis contained in U,

2. for every x in 'V, F(x) = f(x),
3. for every x ¢ U, F(x) =0,

4. F is smooth.

Proof Since U is an open neighborhood of a, there exists a real number ¢ > 0 such
that B,(a) C U. Since B,3[a](= {x: x € R?, |x — a| < £}) is a closed and bounded
subset of R*, B, s3]a] is compact. Since B,3[a] C B;/»(a), B;s]a] and R? — B, /2(a)



212 3 Multivariable Differential Calculus

are disjoint sets. Since B, ;(a) is an open set, R* — B, »(a) is a closed set. Now, by
Theorem 3.53, there exists a function ¢ : R* — [0, 1] such that

. 0 1s smooth,

. for every x in R’ — B,)5(a), o(x) =0,
. for every x in B, 3]a], o(x) = 1,

. 0 is onto.

W N =

Let us take B,/3(a) for V. Let us define a function F : R* — R as follows: For
every x in R?,

o= (70 1 150

1. Since V = B,3(a) C B;(a) C U, V is contained in U.

2. For every x in V, we have x € V = B;3(a) C B;3]a] C B;(a) C U, and hence,

F(x) = f(x)a(x) =f(x)1 = f(x).

Let us take any x ¢ U. Hence, by the definition of F, we have F(x) = 0.

4. Since f and ¢ both are smooth on the open set U, their product x — f(x)a(x) is
smooth on U. Further, for x € U, we have F(x) = f(x)o(x), so F is smooth over
U. Since for every x in U — B,/»(a), we have F(x) = f(x)a(x) = f(x)0 = 0.
Hence, by 3, for every x in R* — B, »(a), F(x) = 0. This shows that F is smooth

(O]

over the open set R® — B, /»[a]. Since F is smooth over the open set U, and F is
smooth over the open set R? — By [a], F is smooth over the open set U U
(R* — B, 5[a])(= R?). Thus, F : R® — R is a smooth function. O

Note 3.56 The result similar to Theorem 3.55 can be proved as above for R" in
place of R°.

3.7 The Constant Rank Theorem in R”

Theorem 3.57 Let Ay be an open neighborhood of (0,0,0) in R®. Let By be an
open subset of R*. Let F : Ay — By be a function. If

(i) Fisa C? Sfunction,
(il) for every x in Ay, the linear transformation F'(x) has rank 2,
(i) F(0,0,0) = (0,0,0,0),

then there exist an open neighborhood A of (0,0,0) in R?, an open neighborhood B
of (0,0,0,0) in R*, an open subset U of R, an open subset V of R*, a function
G:A — U, and a function H : B — V such that
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1. A is contained in Ay, and B is contained in By,

2. G is a C? diffeomorphism (i.e., G is 1-1 onto, G is a C? function, and G~ is a
C? function),

3. His a C? diffeomorphism,

4. F(A) C B,

5. For every x = (x1,%2,%3) in U, (Ho F o G~ ")(x1,%2,%3) = (x1,x2,0,0).

Proof Let F = (Fy,F,,F3,Fy). Since (0,0,0) is in Ay, the linear transformation
F'(0,0,0) has rank 2. Hence,

(D1F1)(0,0,0)  (D2F1)(0,0,0)  (D3F1)(0,0,0)
rank (D1F>)(0,0,0) (Dy2F,)(0,0,0) (D3F>)(0,0,0) _ 5

(D1F5)(0,0,0) (D2F5)(0,0,0) (D3F3)(0,0,0) '
(D1F4)(0,0,0) (D2F4)(0,0,0) (D3F4)(0,0,0)

This shows that there exists a nonzero 2 x 2 minor determinant of
(DlFl)(Ov 07 0) (DZFI)(()aOaO) (D3F1)(Oa0a0)
(D1F2)<07 07 O) (D2F2)(07070) (D )(0,0,0)
(D1F3)(0,0,0)  (D2F3)(0,0,0) (D5F3)(0,0,0)
(D1F4)(0,0,0) (D2F4)(0,0,0) (D3F4)(0,0,0)

For simplicity, let

(D1F1)(0,0,0) (DyF;)(0,0,0)
4et] (D12)(0,0,0) (D2F2)(0,0,0)| 7 *

Now, let us define a function G : Ay — R® as follows: For every (x1,x,,3) in
A07

G(x1,x2,x3) = (F1(x1,x2,x3), Fa(x1,%2,x3),x3).

Since (Fi,F,,Fs3,Fy) =F : Ag — By C R* is a C? function, each F; : Ag — R
is a C? function, and hence, each component function of G is C2. This shows that
G is a C? function. Also, for every x = (x;,x2,x3) in Ao,

(D1F1) (1, X2,x3) (D2Fy1)(x1,%2,x3) (D3Fy)(x1,%2,X3)
G'(x) = | (D1F2)(x1,%2,%3) (D2F2)(x1,%2,%3) (D3F2)(x1,%2,%3)
0 0 1
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Hence,

(D1F1)(0,0,0) (D2F1)(0,0,0) (D3F1)(0,0,0)

Since det(G’(0,0,0)) is nonzero, G'(0, 0, 0) is invertible. Now, we can apply the
inverse function theorem on G : Ag — R3. There exists an open neighborhood A
of (0,0,0) such that

1. A; is contained in Ay,

2. Gis 1-1 on A, (i.e., if x and y are in A, and G(x) = G(y), then x = y),
3. G(A,) is open in R?,

4. the 1-1 function G~! from G(A;) onto A;is a C? function.

Now, since  (F1(0,0,0), F(0,0,0), F5(0,0,0), F4(0,0,0)) = F(0,0,0) =
(0,0,0,0), each F;(0,0,0) = 0. Next, since (0,0,0) is in Ay, and G : Ay — R,
G(0,0,0) = (F1(0,0,0), F»(0,0,0),0) = (0,0,0). Thus, G(0,0,0) = (0,0,0).
Since G is 1-1 on A, G(0,0,0) = (0,0,0), and (0,0,0) is in A;, G~1(0,0,0) =
(0,0,0). Now, (FoG)(0,0,0)=F(G(0,0,0)) = F(0,0,0) = (0,0,0,0).
Thus, (F o G~1)(0,0,0) = (0,0,0,0). Since A; is contained in A, and F : Ag — By,
(FoG™Y)(G(A))) = F(A;) C By. Thus, FoG™':G(A;) — By. For every
(x1,x2,x3) in G(A;), there exists (yi,y2,y3) in A; such that (x;,x,x3) =
G(v1,y2,¥3) = (Fi(y1,52,¥3), F2(y1,¥2,3),y3). Further, since G is 1-1 on Ay,

(F ) G’l)(xl,xz,x3) = F(Gil(xl,xz,x3)) = F(y1,y2,¥3)
= (F1(v1,52,53), F2(01,52,53), F3 (91,32, 33), Fa(y1, 32, ¥3))
= (x1,x2, F3(y1,52,¥3), Fa(y1,52,¥3))
(x xg,F3( ()Cl,)CQ,Xg,)),F4(G_1()C1,XQ,X3)))
(X],XQ, (Fg oG~ )(xl,xz,x3), (F4 o G’l)(xl,xz,x3)).

Thus, for every (x1,x2,x3) in G(A;),

(F o Gil)(xl,xz,x3) = (xl,xz, (F3 ) Gil)(xl,xz,x3), (F4 o Gil)(xl,xz,xg)).
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Hence, for every x = (x1,x2,x3) in G(A;),

(F30G™1))(x1,x2,x3)

(D3(F3 0 G™)(x1,%2,33) |
(Fa0 G™1))(x1,x2,%3) (

1

N - 0
(FOG )(X) = |: (F30G- 1))()51 2, %3)
3(F4 0 G™1)) (x1,%2,%3)

i(F4°G 1)) (x1, X2, x3)

Also, for every x = (x1,x2,x3) in G(A;),

100
[3 0 ?} =10 = (G067 W = (@6 W) o (6 ):

SO

100
071 =det| 010 = aet((6'(G ) e ((67) )
— (det(@(67' () (det ((G7) ) )-

It follows that det((G~")'(x)) # 0, and hence, (G™')'(x) is invertible for every
x in G(A;). Since for every x= (x,x,x3) in G(A)), (FoG ) (x)=
(F(G™'(x))) o ((G™")(x)), and (G~')'(x) is invertible,

1 0 0

rank 0 ! 0
(D1(F30G™1))(x1,%2,%3) (Da(F3 0 G™"))(x1,%2,%3) (D3(F3 0 G™"))(x1,%2,%3)
(D1(Fy0G 1)) (x1,x2,%3) (

)
1 Dy(F40G™ ))(xl»xzﬁf%) (D3(F40 G~ ))(xl,xzyxz)
= rank(( )/ (x ) rank((F’( ~1(x))) < (x) ) rank(F'(G™'(x))) = 2.
Thus, for every x = (x1,x2,x3) in G(A;),

(D3(F30G™"))(x1, %2, %3)

1 0 0
=det| 0 1 0

-0,
(D1 (F3 0 G™1))(x1,%2,%3) (D2(F30G™"))(x1,x2,%3) (D3(F3 0 G_l))(xhh,xs)]

and

(D3(F4 ° Gil))(xhxz,)%)

1 0 0
=det| 0 1 0

=0.
(Dl(F4 o G*l))(xl,xz,xg) (Dz(F4 o G’l))(xl,xz,x3) (D}(F4 o Gl))(xl,XQ,)C3)]
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It follows that for every x = (x1,x2,x3) in G(A;), F30G~ ! and Fy0 G™! are
functions of x;,x; only.

Since G(0,0,0) = (0,0,0), A; is an open neighborhood of (0,0,0), and G(A)
is open in R®, G(A,) is an open neighborhood of (0,0,0), and hence, G(A;) x R is
an open neighborhood of (0,0,0,0) in R*. Let us define a function 7 : G(A;) x
R — R* as follows: For every (yi,y2,3,y4) in G(A;) x R,

T(v1,y2,3,54) = (V1,523 + (F30 G (v1,92,53), 4 + (F4 0 G ) (31,32, 3)).

Here, each component function of T is C2, so T'is a C? function, and hence, T is
continuous. Here,

((F10G™")(0,0,0), (F20 G ')(0,0,0), (F5 0 G")(0,0,0), (Fs 0 G")(0,0,0))
= (F1(G7'(0,0,0)),F2(G~'(0,0,0)),F3(G'(0,0,0)), F4(G~'(0,0,0)))
= F(G71(070a0>) = (Fo Gil)(oao,o) = (0’0’070),

SO

7(0,0,0,0) = (0,0,0 + (F3 0 G")(0,0,0),0 + (F4 0 G')(0,0,0))
= (0,0, (F; 0 G ')(0,0,0), (Fs 0 G")(0,0,0)) = (0,0,0,0).

Since T : G(A;) x R — R* is continuous, 7(0,0,0,0) = (0,0,0,0), and By be
an open neighborhood of (0,0, 0,0) in R?, there exists an open neighborhood V; of
(0,0,0,0) such that V; is contained in G(A,) x R, and T(V;) is contained in By.

Now, for every y = (y1,¥2,¥3,4) in Vi,

T'(y1,y2,y3,4)
1 0

0
Di(ys + (F30 G ") (y1,52,53)) Da(ys + (F30 G ") (y1,y2,3))

Di(ya+ (F40 G " )(v1,52,3)) Da(ya+ (Fs0 G ")(v1,y2,¥3))
0 0

0 0
Ds(y3 + (F30 G )(y1,52,53))  Dalys + (F30 G ") (y1,y2,3))
D3(y4+ (F40 G N(y1,52,53)) Da(ya + (Fa 0 G (y1,¥2,3))
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1 0
0 1
0+ Di(F30G ) (y1,y2,y3) 04 D2(F30G " )(y1,y2,y3)

0+ Di(F30G ") (y1,y2,y3) 04 Dy(Fy0G ')(y1,2,y3)
0 0

0 0
1+ D3(F30G ") (y1,y2,y3) 0

0+ D3(F40G ") (y1,y2,y3) 1+ Ds(Fs0G ) (y1,y2,3)
1 0

0 1
Di(F30 G Y(y1,y2,y3) D2(F30G 1) (y1,32,53)
Di(F30 G Y(y1,y2,¥3) D2(Fa0 G 1) (y1,32,¥3)

0 0
0 0
1+ D3(F30G ") (y1,y2,y3) 0
D3(Fy0G™")(y1,y2,3) 1+ Dy(Fs0 G ') (y1,y2,¥3)

M1 0 0 0
o I 0 0
| Di(F30G ) (y1,y2,3) Da(F30G ) (y1,y2,y3) 140 0

LD (F30G™")(y1,y2,y3) Da(F40 G ")(y1,y2,y3) 0 1+0

B! 0 00
B 0 00
| Di(F30G ) (1,y2,v3) Da(F30G )(yi,y2,v3) 1 0

LD (F30G™ ) (y1,y2,53) Da(Fao G™)(y1,y2,53) 0 1

Hence, for every y = (y1,¥2,¥3,y4) in Vi,
1 0 00

0 1 00
det(T'(y1,y2,y3, = det _ _ =1+#£0.
(T'Or, 32,33, 34)) Di(F30G ") (y1,y2,y3) D2(F30G ") (y1,y2,3) 1 0 7

Di(F30G ) (y1,y2,y3) Da(F4 0 G )(y1,¥2,¥3) 0 1

Since for every y = (yi,y2,y3,y4) in Vi, det(T'(y1,y2,y3,y4)) is nonzero,
T'(y1,¥2,y3,y4) is invertible, and hence, 77(0,0,0,0) is invertible. Now, we can

apply the inverse function theorem on T : V; — R*. There exists an open neigh-
borhood V of (0,0,0,0) such that

V is contained in Vi,

Tis 1-1 on V (i.e, if x and y are in V, and T(x) = T(y), then x = y),
T(V) is open in R?,

the 1-1 function 7! from T(V) onto V is a C? function.

.
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Here, (0,0,0,0) is in V, and 7(0,0,0,0) = (0,0,0,0), so (0,0,0,0) is in (V).
Further, since T(V) is open in R*, T(V) is an open neighborhood of (0,0,0,0) in
R*. Since G~! is a C? function from G(A;) onto Ay, A; is contained in Ap, and
F : Ay — By is a C? function, their composite function F o G"! G(A;) — By is C°.
Since G(A;) is an open neighborhood of (0,0,0), (0,0,0) is in G(A;). Since
(0,0,0) is in G(A;), and Fo G ' : G(A|) — By is C?, FoG™' : G(A;) — By is
continuous at (0,0,0). Since FoG~!:G(A;) — By is continuous at (0,0,0),
(FoG1(0,0,0) = (0,0,0,0), and T(V) is an open neighborhood of
7(0,0,0,0)(= (0,0,0,0)), there exists an open neighborhood U of (0,0,0) such
that U is contained in G(A;) and (F o G™')(U) is contained in T (V).

Now, let us take the 1-1 function 7~! from T(V) onto V for H, the open set
T(V) for B, and G~!'(U) for A. It remains to prove the following:

(i) A is an open neighborhood of (0,0, 0),
(ii) B is an open neighborhood of (0,0, 0,0),
(iii) U is an open subset of R>,

(iv) Vs an open subset of R4,

v) G:A—Uisl-1,

(vi) G:A — U is onto,
(vii) G:A — Uis C?,
(viii) G':U—Ais C?,
(ix) H:B— Vis 1-1,
(x) H:B— Vis onto,
(xiy H:B— Vis C?,
(xii) H':V = Bis C?,
(xiii) A is contained in Ay,
(xiv) B is contained in By,
(xv) F(A)CB
(xvi) For every x = (x1,x,x3) in U, (Ho F o G 1)(x1,x2,x3) = (x1,%2,0,0).

For (i): Since G : A} — G(A,) is a C? function, and (0,0,0) is in A;, G : A} —
G(A,) is continuous at (0,0,0). Since G is 1-1 on Ay, G:A; — G(A;) is
continuous at (0,0, 0), and U is an open neighborhood of G(0, 0,0)(= (0,0, 0))
such that U is contained in the open set G(A1), G~ (U) is an open neighborhood
of (0,0,0) and is contained in A;. Thus, A is an open neighborhood of (0, 0, 0).
For (ii): Since T(V) is an open neighborhood of (0,0, 0,0) in R*, and B stands
for T(V), B is an open neighborhood of (0,0,0,0) in R*.

For (iii): This has been shown above.

For (iv): This has been shown above.

For (v): Since U is contained in G(A,), and G is 1-1 on A}, G"}(U) is contained
in Aj. Since G is 1-1 on A;, G }(U) is contained in A;, and A stands for
G Y U),G:A— Uis 1-1.

For (vi): Since G: A — U is 1-1, G(A) = G(G'(U)) =U.So G: A — U is
onto.
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For (vii): Since G is C? on Ay, and A = G~ (U) C A; C Ag, G is C*> on A.
For (viii): Since G™'(U) C Ay, and G is 1-1 on Ay, U C G(A,). Since U C
G(A,), and the function G~! from G(A;) onto A; is a C? function, G : U —
G (U) is C?, thatis, G™' : U — A is C%.

For (ix): Since Tis 1-1 on V, T~! : T(V) — V is a 1-1 function. Since H stands
for the function 7~ 'and B stands for 7(V), H : B — V is 1-1.

For (x): Since Tis 1-1 on V, T~! : T(V) — V is onto, and hence, H : B — V is
onto.

For (xi): Since the function 7~! from 7(V) onto V is a C? function, H : B — V
is C2.

For (xii): Since T : G(A;) x R — R*is a C? function, and V is an open subset
of the open set G(A;) x R, T : V — T(V) is a C? function, and hence, H™! :
V — Bis C%.

For (xiii): Since U is contained in G(A;), and G is 1-1 on A, G"(U) is
contained in A;(C Ag) and hence, A is contained in Ay.

For (xiv): Since V is contained in Vi, and T(V)) is contained in By, T(V) is
contained in By, and hence, B is contained in By.

For (xv): Here, F(A)=F(G'(U))=(FoG)(U)CT(V)=B. Thus,
F(A) C B.

For (xvi): Let us take any x = (xj,x2,x3) in U. Since (xj,x2,x3) is in U,
(x1,%2, (F3 0 G7Y) (1, %2, x3), (F4 0 G™V) (x1,%2,%3)) = (F 0o G 1) (x1,x2,%3) €
(FoG™)(U) C T(V). Next, since T : V — T(V) is 1-1 onto,

(HoFoG ") (x1,x2,x3) = H((F o G ") (x1,%2,%3))
=H(x;,x, (F30 Gil)(xuxzyle), (F4o Gfl)(xlyxzﬂﬁ))
= T71 (xl,xz, (Fg o Gfl)(xl,xz,x\;), (F4 o Gil)(xl,xz,x\g)).

It remains to prove that
Tﬁl(xl,xz, (F3 o Gil)(xl,xz,)@), (F4 o Gil)(xl,xg,)q)) = ()C],XQ,0,0).

Let T7'(x,x2, (F30G™")(x1,x2,x3), (Fa 0 G~ ') (x1,%2,x3)) = (y1,¥2 ,3,4)
€V CVICGA) xR,

It follows that (y1,y2,y3) € G(Ay). Since (y1,y2,¥3) € G(A;), and (x1,x2,x3)
e U C G(Ay),

(x1,x2, (F30 G™") (x1,x2,%3), (Fs 0 G ") (x1,%2,x3)) = T(y1,¥2,¥3,4)
= (1,32, 73+ (F30 G ") (31,32,33), 34 + (Fa 0 G ) (1,2, ¥3)).
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Hence,

yi=x1, 2 =%, (F30G ") (x1,x0,x3) = y3 + (F30 G ") (y1,52,3),
and
(Fso G ") (x1,x2,x3) = ya + (F40 G ) (1,2, ¥3).
It follows that

(F3 o Gil)(xhxzvx?l) =y3+ (F3 © Gil)(xlax27y3)1

and
(F4 e} Gil)(xl,X2,X3) = V4 + (F4 o Gil)(X1,XQ,y3).

Since (y1,y2,y3) € G(A1), y1 =x1, y2 =%, (x1,%,y3) € G(Ay). Since for
every (&,m,¢) in G(A)), F30G! is a function of ¢ n only, and
(xl,x27y3), (Xl,)Cz7)C3) S G(Al)7 (F3 o Gil)()q,xz,y:;) = (F3 ¢} Gil)(xh)@,)@).
Since (F30G™ 1) (x1,x2,y3) = (F30 G V) (x1,%2,%3), and (F3 0 G~ ') (x1,x2,%3) =
y3 + (F3 0 G71)(x1,x2,3), y3 = 0. Since for every (&,1,¢) in G(A;), F,0G 'isa
function of &, only, and (x,x2,y3), (x1,X2,%3) € G(A1), (Fa0 G ) (x1,x2,y3) =
(Fy 0 G ) (x1,x0,x3).

Now, since (F4 [} G’l)(xl,xz,y3) S (F4 [} G*I)(xl,xz,x3), and (F4 o G‘l)(xl,xz,X3)
=ya+ (F40 G ") (x1,x2,y3), y4 = 0.Since y; = 0,y4 = 0,y = x1, y, = x5, and
T~ (x1, %2, (F3 0 G (31, %2, %3), (Fa 0 G (x1,x2,x3)) = (y1,2, 3, )4),

T (x1,%2, (F30G7") (x1,%2,%3), (F4 0 G™") (x1,%2,%3)) = (x1,%,0,0). [

Theorem 3.58 Let Ay be an open neighborhood of (0,0,0) in R®. Let By be an
open neighborhood of b = (by, ba, b3, by) in R*. Let F : Ay — By be a function. If

(i) F is a C* function,
(i) for every x in Ay, the linear transformation F'(x) has rank 2,
(iii) F(0,0,0) = b,

then there exist an open neighborhood A of (0,0,0) in R?, an open neighborhood B

of b in R*, an open subset U of R®, an open subset V of R*, a function G : A — U,
and a function H : B — V such that

1. A is contained in Ay, and B is contained in By,

2. Gisa C? diffeomorphism (i.e., G is 1-1 onto, G is a C? Sfunction, and Glisa
C? function),

3. His a C? diffeomorphism,
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4. F(A) C B,
5. For every x = (x1,%2,%3) in U, (Ho F o G~ ')(x1,x2,%3) = (x1,%2,0,0).

Proof Put AO = Ap, and BQ = By — b. Let us define a function F :AO — Bo as

follows: For every x in Ay (since x is in Ag(= Ag), x is in Ao, and hence, F(x) is
defined.)

F(x) = F(x) = b = (T_y 0 F)(x),

where T_p, : y+— (y — D) is a translation. Thus, F= T_,oF. Hence, Tj, o F=F.
Also, F(0,0,0) = F(0,0,0) —b =b —b = (0,0,0,0). Thus, £(0,0,0) = (0,0,0,0).
Since Ay is an open neighborhood of (0,0,0), Ag(= Ap) is an open neighborhood
of 0. Since By is an open neighborhood of b, By(= By — b) is an open neighbor-
hood of 0. Since F is a C? function, and T_, is a C? function, their composite
T_, 0 F(= F) is a C? function. Thus, F is a C? function. For every x in Ay, £”(x) =
(T_poF)(x) = ((T_) (F(x))) o (F'(x)) = I o (F'(x)) = F'(x). Thus, for every
xin Ay, F'(x) = F'(x). If x is in A, then x is in Ao, and hence, F'(x)(= F'(x)) has
rank 2.

Thus, we see that all the conditions of Theorem 3.57 are satisfied for
F : Ay — By. Hence, by Theorem 3.57, there exist an open neighborhood A of
(0,0,0) in R3, an open neighborhood B of (0,0,0,0) in R*, an open subset U of
R3, an open subset V of R4, a function G : A — U, and a function H : B — V such
that

1. A is contained in 12\0, and B is contained in By,

2. GisaC? diffeomorphism (i.e., Gis 1-1 onto, GisaC? function, and Glisa
C? function),

3. Hisa C? diffeomorphism,

4. F(A) C B,

5. For every x = (x1,X2,x3) in U, (H o F o G™")(x1,%2,%3) = (x1,%2,0,0).

PutA=A,B=B+b,U=U,and V = V. Let us define a function G : A — U
as follows: For every x in A, G(x) = G(x). Let us define a function H : B — V as
follows: For every y in B, H(y) = H(y — b) = (H o T_;)(y). Hence, G = G, and
H=HoT._,. Further, H=Ho (T_,) ' =HoT.

It remains to prove the following:

(i) A is an open neighborhood of (0,0,0),
(i) B is an open neighborhood of b,
(iii) U is an open subset of R3,
(iv) Vs an open subset of R*,
v) G:A—Uis 1-1,
(vi) G:A — U is onto,
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(vi)) G:A — Uis C?,
(viii) G':U—Ais C2
(ix) H:B—Vis 1-1,
(x) H:B — YV is onto,
(xiy H:B— Vis C?,
(xii) H':V = Bis C?,
(xiii) A is contained in Ay,
(xiv) B is contained in By,
(xv) F(A) C B,
(xvi) For every x = (x1,x2,x3) in U, (Ho F o G 1) (x1,x2,x3) = (x1,%2,0,0).

For (i): Since A is an open neighborhood of (0,0,0), A(=A) is an open
neighborhood of (0,0, 0).

For (ii): Since B is an open neighborhood of 0, B(= B+ b) is an open neigh-
borhood of b.

For (iii): Since U is an open subset of R?, U(= U) is an open subset of R>,
For (iv): Since V is an open subset of R*, V(= V) is an open subset of R*.
For (v): Since G:A — Uis 1-1, G=G, A=A, and U=U, G:A — U is
1-1.

For (vi): Since G : A — U is onto, G:G,A:A, andU=U,G:A— U is
onto.

For (vii): Since G is C2, and G = G, G is C2.

For (viii): Since G~ is €%, and G = G, G is C%.

For (ix): Since H : B— Vis 1-1,and T_, : B+ b — Bis 1-1, (H=)Ho T_ :
B+b(=B )—»V( V)1s11HenceH B— Vis I-1.

For (x): Since H : B — Visonto,and T_, : B4+ b — Bisonto, (H =)H o T_y :
B+ b(=B) — V(= V) is onto. Hence, H : B — V is onto.

For (xi): Since H:B — Vis C*, and T_ : B+ b — B isC>, (H=)HoT_,:
B+b(=B) — V(=V)is C?. Hence, H: B — V is C2.

For (xii): Here H' = (HoT_;) ' = (T_y) ' o H' =T, 0 H'. Since " :
V(=V)— B is C?, and the translation Tj:B — B+ b(= B) is C?, their
composite (H~' =)T, 0o H™' : V — B'is C?, and hence, H' : V — B is C*.
For (xiii): Since A is contained in Ao, A= A, and Ao = Ay, A is contained in A,
For (xiv): Since B is contained in By, B=B — b, and By =By — b, B — b is
contained in By — b, and hence, B is contained in Bj.

For (xv): Let us take any x in A. We have to prove that F(x) is in B. Here, x is in

A,and A = A, soxisin A. Since xis in A, and F(A) CB=B — b, F(x) —b =
F(x) € B — b, and hence, F(x) is in B.
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For (xvi): Let us take any x = (x1,x2,x3) in U. We have to show that
(Ho FoG Y (x1,x2,x3) = (x1,%2,0,0).

= (X17)C2,0,0) = RHS. ]

Theorem 3.59 Let A, be an open neighborhood of a = (ay, as,a3) in R*. Let By be
an open neighborhood of b = (b, by, b3, by) in R*. Let F : Ay — By be a function.
If
(i) Fis a C?* function,
(i) for every x in Ay, the linear transformation F'(x) has rank 2,
(iii)) F(a) = b,
then there exist an open neighborhood A of a in R?, an open neighborhood B of b

in R*, an open subset U of R, an open subset V of R*, a function G : A — U, and
a function H : B — V such that

1. A is contained in Ay, and B is contained in By,

2. G isa C? diffeomorphism (i.e., G is 1-1 onto, G is a C* function, and G’ is a C*
Sfunction),

3. His a C? diffeomorphism,

4. F(A) C B,

5. For every x = (x1,x,x3) in U, (Ho F o G ) (x,x2,x3) = (x1,%2,0,0).

Proof Put AO =Ay)—a, and Bo = By. Let us define a function F :Ao — Bo as
follows: For every x in A() (since x is in Ao =Ayp —a, x+a is in A, and hence,
F(x + a) is defined.)

F(x) = F(x+a) = (FoT,)(),

where T, : x+— (x4 a) is a translation. Thus, F = F o T,. Hence, FoT_, = F.
Also, F(0,0,0) = F(a) = b. Thus, (0,0,0) = b. Since A, is an open neighbor-
hood of a, 2\0(: Ap —a) is an open neighborhood of 0. Since By is an open
neighborhood of b, By(= By) is an open neighborhood of b. Since F is a C*
function, and T, is a c? function, their composite F o T,(= F ) is a C? function.
Thus, F is a C? function. For every x in AO,

F'(x) = (FoT,) (x) = (F(T.(x)) o (T) (%)) = (F'(x + @) o s = F'(x + a).

Thus, for every x in Ag, F'(x) = F'(x). If x is in Ag, then x +a is in A, and
hence, F'(x)(= F'(x +a)) has rank 2. Thus, we see that all the conditions of
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Theorem 3.58 are satisfied for F : 2\0 — Bo. Hence, by Theorem 3.58, there exist an
open neighborhood A of (0, 0, 0) in R?, an open neighborhood B of b in R*, an
open subset U of R3, an open subset V of R*, a function G : A—=U , and a function
H : B — V such that

1. A is contained in A07 and B is contained in By,

2. GisaC? diffeomorphism (i.e., Gis 1-1 onto, GisaC? function, and Glisa
c? function),

3. Hisa C? diffeomorphism,

4 F(A) C B,

5. For every x = (x1,%,x3) in U, (Ho F o G™")(x1,x2,x3) = (x1,%2,0,0).

PutA=A+a,B=B,U=U,and V = V. Let us define a function G : A — U

as follows: For every x in A, G(x) = G(x —a) = (GoT_,)(x). Let us define a
function H: B — V as follows: For every y in B, H(y) = H(y). Hence, G =
GoT_,, and H=H. Further, G = G o T,

It remains to prove the following:

(1) A is an open neighborhood of a,
(i) B is an open neighborhood of b,
(iii) U is an open subset of R3,

(iv) Vis an open subset of R*,

v) G:A—Uis 1-1,

(vi) G:A — U is onto,
(vi) G:A — Uis C?,
(viii) G':U—Ais C?,
(ix) H:B— Vis 1-1,
(x) H:B — V is onto,
(xiy H:B— Vis C?,
(xii) H':V —= Bis C?,
(xiii) A is contained in Ay,
(xiv) B is contained in By,
(xv) F(A) C B,
(xvi) For every x = (x1,%2,%3) in U, (Ho F oG ")(x1,%,%3) = (x1,%2,0,0).

For (i): Since A is an open neighborhood of (0,0,0), A(= A + a) is an open
neighborhood of a.

For (ii): Since B is an open neighborhood of b, B(= B) is an open neighborhood
of b.

For (iii): Since U is an open subset of R?, U(= U) is an open subset of R>.
For (iv): Since V is an open subset of R*, V(= V) is an open subset of R*.
For (v): Since G:A— U is 1-1, and T_,:A+a—A is 1-1, GoT_,:
A+a— Uis 1-1, and hence, GoT,a :A— Uis 1-1.
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For (vi): Since G : A—Uisonto, and T, :A+a— A is onto, GoT_, :
A+a— Uis onto, and hence, Go T_,:A — U is onto.

For (vii): Since G:A — U is C? and T, Ad+a—A s C?, GoT_y:
A+ta— U isC2?, and hence, Go T_.:A— Uis C2.

For (viii): Since G'=(GoT,) ' =T ,0G', G'=T,0G". Since
G ':U—Ais C? and T,: A — A+a is C?, their composite G~ =T, o
Gl':U—A+ais C2, and hence, G~! : U — A is C2.

For (ix): Since H:B— Vis 1-1, H=H, B=B,and V=V, H:B — V is
1-1.

For (x): Since H : B — V is onto, H:H, B:B, and V=V, H:B—Vis
onto.

For (xi): Since H: B— VisC>, H=H,B=B,andV=V,H:B— Vis C%.
For (xii): Since H ' : V - Bis C},, H=H,B=B,and V=V, H':V - B
is C2.

For (xiii): Since A(= A — a) is contained in Ag(= Ay — a), A is contained in A,.
For (xiv): Since B(= B) is contained in By(= By), B is contained in B,

For (xv): Let us take any x in A. We have to prove that F(x) € B. Since x is in
A=A+a,x—acA. Now,since F(A) C B,F(x) = (FoT_,)(x) = F(x — a)
€ B.

For (xvi): Let us take any x = (x1,x,,x3) in U. Now, since U = U, (x1,x2,x3) is

in U, and hence,

= (x1,x2,0,0) = RHS.

Theorem 3.60 Let Ay be an open neighborhood of a = (ay,az, . . .,a,) in R". Let
By be an open neighborhood of b = (by, b, . ..,by) in R". Let F : Ay — By be a
function. If

(i) Fis a C" function,
(i) For every x in Ay, the linear transformation F'(x) has rank k,
(iii)) F(a) = b,
then there exist an open neighborhood A of a in R", an open neighborhood B of b

in R™, an open subset U of R", an open subset V of R™, a function G : A — U, and
a function H : B — V such that

1. A is contained in Ay, and B is contained in By,
2. G is a C" diffeomorphism (i.e., G is 1-1 onto, G is a ck Sfunction, and Glisa
C* function),
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3. Hisa Ck diffeomorphism,
4. F(A) C B,
5. For every x = (x1,X2,...,%,) in U, (HoFoG V) (x1,x2,...,%,) = (x1,%2,...
xk707...,0).
———

m—k

Proof Tts proof is quite similar to the proof of Theorem 3.59. U

Note 3.61 Theorem 3.60 is known as the constant rank theorem.

3.8 Taylor’s Theorem

Definition Let pec SCR". If for every x in S, the line segment
P, x] ={(1 = A)p+Ax:0<Ai<1} CS, then we say that S is star-shaped with
respect to point p.

Theorem 3.62 Let p € U C R?. Let U be star-shaped with respect to point p =
(p',p?), and let U be an open set. Let f : U — R be C* on U. Then, there exist C*
Sfunctions g1(x), g2(x) on U such that

L. Forevery x = (x' X)anf( ) =)+ (g1(0)) (" = p') + (82(0) (x> = p?),
2. g1(p) = (p) and g2(p) = &= (p)-

Proof Let us take any x in U and any ¢ satisfying 0 <7<1. Now, since U is star-
shaped with respect to point p, (1 — #)p + zx is in S, and hence, f((1 — #)p + tx) is a
real number. Here,

f' + (" =p').p? +1(x* = p?))
A (A
Yoo

(L-op+) 2 -2).

d
—F((1—=1)
dtf(( Hp +tx) =

i
g
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hence,

1

(x' = );<6_f 1—t)p+tx)>dl+(x —p)(/)(aaj;((l—t)p+tx)>dt

Z((a—f (1—1)p +tx)) (x' =p') + <aaf2 (1—1)p +tx)) (¥ p2)>dt
= (1= 1)p + ) Z9=f(x) = f(p).

Now
f@) =fp) + (&' =p")(&1(0)) + (* = p?) (82(x)),
where
1/9 1
g1(x) = /(afl (I=tp+ tx)) dt,and g,(x) = {)(afz —tp+ tx))dt.
It remains to prove that g, g> are C* on U, and g;(p) = ax L (p)(i=1,2).
Here,

91 _ 0 (4
ol ot /0

2o
(@]
\\ 2|
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Thus,
Ogi L [ ©Ff
— = [t 1 —1)p+1x) |de
2 = (a(x (= p 00
0g1 628 . . .
Similarly, — 22 ’6( ) , etc. can be obtained. This proves that g; is C* on U.

Similarly, g, is C* on U. Now,
00) = (25 =0+ Jar= | (L) Jar= () o
(Lo )-Zo.

Thus, g;(p) = axl L (p). Similarly, g>(p) = axz )- =

Note 3.63 The result similar to above is also valid for R*, R*, .. ..

Theorem 3.64 Prove that if f : R* — R is C*, then there exist C* functions
11,812, 822 on R? such that

75 =0.0) + (10,00 v (0,00 )41 9) + (209
+ g (x,y).

Proof Here, f:R> = R is C™, by Theorem 3.62, there exist C> functions
g1(x,y), g2(x,y) on R? such that for every (x,y) in R2, f(x,y) =£(0,0) +
(g1(%,))(x = 0) + (82(x,)) (v = 0) = f(0,0) + xg1(x,y) + yga2(x,y) and £,(0,0)
= %(0,0) £2(0,0) = af 5(0,0). Since gi(x,y) is a C* function, there exist C>
functions g1 (x, y),glz(x, y) on R? such that for every(x,y) in R? g/(x,y) =
£1(0,0) + (g11(x,¥)(x = 0) + (g12(x, 7)) (v = 0) = £(0,0) + xg11 (x,) +yg12(x y)
and g11(0,0) = (agl)(O 0),£12(0,0) = ag‘ £(0,0). Similarly, there exist C* func-
tions g1 (x,y),82(x,y) on R? such that for every (x,y) in R?, g (x,y) =
£2(0,0) + (g21(x,3)) (x = 0)+ (g22(x: ) (v = 0) = & (0,0) + xg21 (x, ) + yg22(x, y)
and 21(0,0) = (%2)(0,0), £22(0,0) = % (0,0). Hence,
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f(x,y) =£(0,0) —|—x< (0,0) + xg11(x,y) + ygi2(x, y))

( (0,0) + xg1(x.y) + yem(x. y>)
—£(0.0)+ (alw 0 )x+ (L 0.0))
+ (g11 (0, 3))F + (g12(x,¥) + 821 (x,))xy + (g22(x, ¥))y*.

Since g12(x,y),g21(x,y) are C* functions, gi2(x,y) + g21(x,y) is also a C*
function. O



Chapter 4

Topological Properties of Smooth
Manifolds

In real analysis, its deep theorems (like Lagrange’s mean value theorem, funda-
mental theorem of integral calculus, etc.) are quite difficult to prove without the help
of topological theorems (like Weierstrass theorem, Heine—Borel theorem, etc.) for
real line. Similar is the situation in complex analysis. Here, in the study of smooth
manifolds, in order to prove its deep rooted theorems, we will need its topological
properties vigorously. So, for smoothening later work, it is better to collect all the
results, to be needed in future, relating to topological properties of smooth mani-
folds at one place. This chapter aims at this end and is largely self-contained. The
pace of this chapter is moderate so that the topic is well assimilated.

4.1 Constant Rank Theorem

Theorem 4.1 Let E be an open subset of R®. Let f : E — R>. Let a be in E. If

(1) fis a smooth function,
(ii) the determinant of the Jacobian matrix of f at a is nonzero, that is,

(D1f')(a) (Daf')(a) (Dsf')(a)
det| (D1f?)(a) (Daf?)(a) (D3f?)(a)| #0,
(D1f)(a) (Daf*)(a) (Dsf3)(a) |5,

where f', f2, f> are the component functions of f. then there exists a connected
open neighborhood U of a such that

1. U is contained in E,
2. f(U) is connected and open in R?,
3. fhas a smooth inverse on f(U).

© Springer India 2014 231
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Proof We want to apply Theorem 3.36. Since f is a smooth function, fis a C!
function. Since

(Dif')(a) (Daof')(a) (Daf!)(a)
det| (Dif?)(a) (Dof?)(@) (Dif*)(a)| #0,
(Dif*)(a) (Dof*)(a@) (Daf*)(a) ] 5.

Q
~—

-1

) (Daf!)(a) (Daf!)(a)
(Dif?)(a) (Daf?)(a) (Daf?)(a)
) (Daf*)(a)  (Dsf*)(a)

exists, and hence, f'(a) is invertible. Hence, by the Theorem 3.36, there exists a
connected open neighborhood U of a such that

1. U is contained in E,

2. fis 1-1 on U (that is, if x, y are in U, and f(x) = f(y), then x = y),
3. f(U) is connected and open in R?,

4. the 1-1 function f~! from f(U) onto U is a C! function,

5. if fis a C* function, then £~ from f(U) onto U is a C? function, etc.

By the conclusions 1, 2, 3, and 4, we find the f‘l is a C! function on f(0).
Now, it remains to prove that f~! is smooth on f(U), that is, f~! is a C" function
for every n=2,3,4,.... Since f is a smooth function, f is a C? function, and
hence by conclusion 5, f —1is a C? function. Again, since fis a smooth function,
fisa C? function, and hence by conclusion 5, f’1 is a C3 function, etc. Hence,
f~!is smooth on f(U). O

Note 4.2 The result similar to Theorem 4.1 can be proved as above for R" in place
of R?.

Theorem 4.3 Let E be an open subset of R®. Let f : E — R>. Let a be in E. If

(1) fis a smooth function,
(ii) the tangent map f. of f at a is an isomorphism,

then there exists an open neighborhood U of a, and an open neighborhood V of
f(a) such that the restriction of f to U is a diffeomorphism from U onto V.

Proof By the Note 2.77, the tangent map f of f at a is an isomorphism if and only if

(Dif')(@)  (Dof')(a) (Daf!)(a)
det| (Dyf?)(a) (Daf?)(a) (Dsf?)(a) | #0.
(Dif*)(a) (Dof*)(a)  (Daf?)(a)
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This shows that we can apply Theorem 4.1. By Theorem 4.1, there exists an
open neighborhood U of a such that

1. U is contained in E,
2. f(U) is open in R?,
3. fhas a smooth inverse on f(U).

This shows that f(U) is an open neighborhood of f(a) such that the restriction of
fto U is a diffeomorphism from U onto f(U). 0

Note 4.4 The result similar to Theorem 4.3 can be proved as above for R" in place
of R%.

Theorem 4.5 Let M and N be 3-dimensional smooth manifolds. Let f : M — N.
Let p be in M. If

(1) fis a smooth map,
(ii) the tangent map f. : T,(M) — Ty, (N) is an isomorphism,

then there exists an open neighborhood U of p in M such that

1. V=f(U) is an open neighborhood of f(p) in N,
2. the restriction of f to U is a diffeomorphism from U onto V.

Proof Here,pisin M, andf : M — N, sof(p)isin N. Since f(p) isin N, and N is a
3-dimensional smooth manifold, there exists an admissible coordinate chart (V, )
in N satisfying f(p) € V. Since f: M — N is a smooth map, f: M — N is a
continuous map. Since f : M — N is a continuous map, and V is an open neigh-
borhood of F(p), there exists an open neighborhood U; of p in M such that f(U,) is
contained in V. Here, p is in M, and M is a 3-dimensional smooth manifold, so there
exists an admissible coordinate chart (U, ¢,,) in M satisfying p € U. Since U and
U, are open neighborhoods of p in M, their intersection U N U; is an open
neighborhood of p in M. Since ¢, is a homeomorphism from open set U onto open
set @, (U), and U N U, is an open set, ¢, (U N U;) is an open set.

Here f : M — N is a smooth map, ((,/)U)*1 is a smooth map, and ¥/, is a smooth
map, so their composite 1y o (fo (¢y)"") is a smooth function on the open
neighborhood ¢, (U N U;) of ¢y (p) in R®. We want to apply Theorem 4.1 on the
function Yy o (f o (¢y)~"). Since the tangent map f, : T,(M) — Ty (N) is an
isomorphism so, by the Note 2.77,
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Jouton (22 (v (o0 ™))') ) uton
Jeouton (22 (v (7o ™)) )uton
Jeouton (22 (v (o0 ™))) )outon
)
)

(pu(p)) | #0,

and hence, the determinant of the Jacobian matrix of ¥, o (f o (@) ') at @y (p) is
nonzero. Hence, by Theorem 4.1, there exists an open neighborhood W of ¢y (p)
such that

1. W is contained in ¢, (U N Uy),
2. (Yy o (fo(py) )W) is open in R,
3. Yy o (fo(@y)~") has a smooth inverse on (y o (f o (¢y) ")) (W).

Since W is contained in ¢, (U N Uy), and ¢y is 1-1, (@)~ (W) is contained in
UNU,. Since @y (p) is in W, p is in (@)~ (W). Since ¢y, is a homeomorphism,
and W is an open subset of open set @y, (U), (@)~ " (W) is open. Thus, (@)~ (W)
is an open neighborhood of p in M.

For 1: We have to prove that f((¢,) ' (W)) is open in N. Since (i, o (fo
(¢)™")) (W) is open, and i is a homeomorphism, (1) (W o (f o () )
(W))(=£((y)" (W) is open.

For 2: Since ¥y, o (f o (py) ") is 1-1, () " is 1-1 and ¢, is 1-1, their com-
posite (Y1) " o (Yy o (fo (py) ")) o @y(=f)is 1-1.Sincefis 1-1, the function
f~" exists. It remains to prove that f~! is smooth. Since (Y, o (f o (@) ")) "
(= @y of'o(hy)") is smooth, (¢,)"" is smooth, and W is smooth, their
composite function (@) " o (py of Lo (Yy)) ") oy (=f1) is smooth. [

Note 4.6 The result similar to Theorem 4.5 can be proved as above for R" in place
of R%.

Theorem 4.7 Let M be an m-dimensional differentiable manifold, N be an n-
dimensional smooth manifold, and F : N — M be a smooth function. Let p be in N.
Let (U, ¢y) be an admissible coordinate chart in N satisfying p € U, (V, ) be an

admissible coordinate chart in M satisfying F(p) € V, and F(U) C V. Let (U, ¢E>
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be an admissible coordinate chart in N satisfying p € ﬁ, (V, lﬁ;) be an admissible
coordinate chart in M satisfying F(p) € V, and F(U) C V. Then, the rank of
Wy 0 F o (00) ™) (0u(p)) and the rank of (Y= o F o (9)"") (0 (p)) are equal.

Proof Here,

(vpore (03) ") (o) = (¥ 27 o (000" o00) = (o) ") (50)

= (e (W ow) o Fo (00 o00) o (95) ) (050)

= (g e (borea™) o (ove (o5) ")) (050)

= (s ™) (((wore@n)e (ove (o)
o ((lﬂv oFo (wu)’l),«q)u o (q);)A) (</>;(p))>> o
(o) (((wveroton™) e (oue(05) ) ) (050)))
((weeroton Y wuen) o ((o0e (o)) (50))

(4500 ) @y o FXED) o (o Fo o)) (wulr))

(oo (o5) ") (o500)):

Since pr (tﬁ )y (V ﬂ V) — sz(V NV) is a smooth function, and
(1//A o(Wy) ) T =yyo0 (¢A) sz(V ﬂ V)= yy(VNV) is a smooth func-
tion, Y0 W) g, (VAV) — Vs (VNV) is a diffeomorphism, and hence
(1///‘; o (npv)fl)'((l,bv o F)(p)) is invertible. It follows that the rank of composite

1\
-1
qDU

(w50 00)) Wy o YN ) o (v 0 Fo (00) ) (0u(p))

and the rank of ((fy o F o (oy)”") (¢y(p))) are equal. Similarly the rank of

(v 00 ™) (o)) o (wv o Fo(ou) ™) (ou(p))

° <<(PU ° (¢g)l>l(¢g(p)))
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is equal to the rank of

(w50 ) ) v o YD) o ((0y 0 F o (00) ) (00(p)).

Hence, rank of

(w5 0w ™) (o)) o (Wv o Fo(on)™) (ou(p))

is equal to rank of (i, o Fo (¢y) ") (0y(p))). O

In light of the above theorem, the following definition is well defined:

Definition Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and F : N — M be a smooth function. Let p be in N. Since
F : N — M is a smooth function, there exist an admissible coordinate chart (U, ¢,)
in N satisfying p € U, and an admissible coordinate chart (V, ) in M satisfying
F(p) € V, such that F(U) C V, and yr, o (F o (¢y)™") : oy (U) = Yy (V) is C
at the point ¢y(p) in R3. Hence, the linear transformation (i o Fo

(00) ™Y (@y(p)) from R” to R™ exists. The rank of (Y, o F o (o) ") (oy(p)) is
called the rank of F at p. Since rank((y o F o (¢y) ) (¢y/(p))) < min{m, n}, the
rank of F at p is less than or equal to min{m,n}.

Definition Let M be an m-dimensional differentiable manifold, N be an n-dimen-
sional smooth manifold, and F : N — M be a smooth function. Let k£ be any non-
negative integer. By F has rank k, we mean that & is the rank of F at every point of N.

Theorem 4.8 Let N be a 4-dimensional smooth manifold, M be a 3-dimensional
smooth manifold, F : M — N be a smooth map, and 2 be the rank of F. Let p be in
M. Then, there exist admissible coordinate chart (U*, @) in M satisfying p € U™,
and admissible coordinate chart (V*,,.) in N satisfying F(p) € V*, such that
F(U*) C V*, and for every (x1,x2,x3) in @y.(U"),

(WV* oFo (q)U*)_l)(xl,)CQ,JQ) = ()C17)C2,0,0).

Proof Since p is in M, and F : M — N is a smooth map, there exist an admissible
coordinate chart (U, ;) in M satisfying p € U, and an admissible coordinate chart
(V, ) in N satisfying F(p) € V such that F(U) C V, and each of the 4 compo-
nent functions of the mapping

o (Foloy)™) : ou(U) = iy(V)

is C* at the point ¢ (p) in R>.
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Now, we want to apply Theorem 3.59. Here, ¢, (U) acts for Ag, ¢, (p) acts for
Wy (V) acts for By, Wy (F(p)) acts for b, r, o (F o (@) ") acts for F. Now, we

must verify the following conditions of the theorem:

9,1

1. ¢y(U) is an open neighborhood of ¢y (p) in R?,

2. Yy(V) is an open neighborhood of y (F(p)) in R,

3.

4. for every x in @y (U), the linear transformation (i o (F o (¢;)"")) (x) has

Yy o (Fo(py) ") : oy(U) — ¥y (V) is a C function,

rank 2,
by o (Fo (0y) )N (euP)) = bv(F(p)).

For 1: Since (U, @) is an admissible coordinate chart in M satisfying p € U,
¢y(U) is an open neighborhood of ¢ (p) in R®.

For 2: Since (V, ) is an admissible coordinate chart in N satisfying F(p) € V
(V) is an open neighborhood of Yy (F(p)) in R?.

For 3: Since F : M — N is a smooth function, (U, ¢y) is an admissible coor-
dinate chart in M satisfying p € U, and (V, ) an admissible coordinate chart

in N satisfying F(p) € V, o (Fo(py)™): ou(U) = hy(V) is a C>
function.
For 4: Let us take any ¢, (q) in ¢ (U) where g is in U. We have to prove that the

rank of (Y o F o (¢y) ") (¢y(q)) is 2. Since 2is the rank of F : M — N, and p s
in N, the rank of F at p is 2, and hence, the rank of (y, o F o (¢) ") (¢y(p)) is 2.

For 5: Here, LHS = (i/y © (F o (¢y) ")) (u(p)) = (by © F)(p) = Yy (F(p)) =
RHS. Hence, by Theorem 3.59, there exists an open neighborhood A of ¢, (p) in

R, an open neighborhood B of (y, o F)(p) in R*, an open subset U of R?, an
open subset V of R*, a function G:A—U ,and a function H : B — V such that

1. A is contained in ¢y (U), and B is contained in v, (V),

2. GisaC® diffeomorphism (that is, Gis 1-1 onto, GisaC>® function, and
G is a C* function),

3. Hisa C>® diffeomorphism,

4. (y o (Fo (o) )(A) C B,

5. For every x=(x;,x,x3) in U, (Ho(fyo(Fo(py) ")oG™
(x1,%2,x3) = (x1,x2,0,0).

Now, let us take G o ¢y, for @y., H oy, for ., (¢y) " (A) for U*, () " (B)

for V*. It remains to prove:

) (@y) '(A) is open in M,
(n) (A 9u)((@y) ' (A)) is open in R,
(iii) Gooy: (py) ' (A) — (Goey)((@y) ' (A)) is a homeomorphism,

Qv
Go
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(iv) (( v) ' (A),G o @) is an admissible coordinate chart in M satisfying
((pU) ! 4\))
(v) ((1//V) "(B),H o) is an admissible coordinate chart in N satisfying
F(p) € (Wy) ' (B),

(vi) for every (xi,x2,x3) in ((A;oq)U)((goU)_l(A)), ((I?Iolpv)oFo((A}o
oy) )(x1,x2,%3) = (x1,12,0,0),
i) F((py) ™ (A)) C (Yy) ' (B).

For (i): Since A is an open neighborhood of ¢ (p) in R*, A is contained in
oy (U), and (U, @) is an admissible coordinate chart in M satisfying p € U,

(py) '(A) is open in M.

For (ii): Since G:A—Uisa diffeomorphism, G :A — U is a homeomor-
phism, and hence, (G o goU)(((pU)fl(A))(: G(A)) is open in R3.

For (iii): Since G:A— UisaC® diffeomorphism, G :A — U is a homeo-
morphism. Since ¢, : (@) (A) — A is a homeomorphism, and G : A — U is
a homeomorphism, G o ¢y : (¢y)" (4) = (G 0 ) ((9)” (A))(= G(4) = D)
is a homeomorphism.

For (iv): Let (W, ) be any admissible coordinate chart in M satisfying

WN((¢y)~ ' (A)) is nonempty.

Since A is an open neighborhood of ¢, (p), @y (p) € A, and hence p € (@) " (A).
Now, we have to prove that 7 o (G o @) ™", and (G o @y) o (z) " are C.
Since (W, zy), (U, ¢y) are admissible coordinate charts in M, yy o (@) is
C*°. Now, since G is a C® diffeomorphism, G!is C®, and hence, yy o
(Gopy) (= (uwo(py) ') 0 G)isC. Similarly, (G o py) o (1) ™" is C.
For (v): Its proof is similar to that of (iv).

For (vi): Let us take any (x1,x2,x3) in (G o ¢y)((¢y) " (A)). We have to prove
that

((ﬁ o ‘pv> oFo (é o (pU)1>(x1,x2,X3) = (x1,%,0,0).
Since (x1,%2,%3) € (G © 9y)((py) "' (A)) = G(A) = U,

LHS = <(ﬁ o ‘pv) oFo (6 o @U)1>(x1,x2,x3)
G

_ (H o (lpv o (Fo (%)*)) o

= (xl,XQ,0,0) = RHS.
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For (vii): Since Yy ((F o (¢y)~')(4) = (Yy o (F o (9y)™"))(A) C B, and ¥y
is 1-1, F((y) ' (4)) C (¥y) "' (B). r

Note 4.9 As in Theorem 4.8, we can prove the following result:

Let N be an n-dimensional smooth manifold, M be an m-dimensional smooth
manifold, F : M — N be a smooth map, and r be the rank of F. Then, for every p in
M, there exist admissible coordinate chart (U, @) in M satisfying p € U, and
admissible coordinate chart (V,y) in N satisfying F(p) € V such that F(U) C V,
and for every (X1, ...,X%;,Xp41, .- Xp) in @(U),

(1//oFo qfl)(xl,...,xr,xr+1,...,xm) =|x..5x,0,...,0
——

This theorem is also known as the constant rank theorem.

Lemma 4.10 Let M be an m-dimensional smooth manifold. Let (U, ¢;) be an admis-
sible coordinate chart of M. Let V be a nonempty open subset of U. Then, (V, 1) is
an admissible coordinate chart of M, where \, denotes the restriction of ¢ on V.

Proof Here, we must prove:

V is open,

Yy (V) is open,
Yy 1 V=, (V) is 1-1 onto,
Yy is continuous,

(¥y) " is continuous,

A e

if (W,zy) is an admissible coordinate chart of M, then yy o ()"
l//V(Wﬂ V) — xw(WNV) is a smooth function,
7.if (W,yy) is an admissible coordinate chart of M, then Wy o ()"
tw(WNV) =y, (WNV) is a smooth function.

For (1): It is given.

For (2): Since (U, @) is a coordinate chart of M, ¢, (U) is open in R*, and
¢y : U— @y(U) is an open mapping. Since ¢, : U — ¢, (U) is an open
mapping, and V is a nonempty open subset of U, ¢,(V) is an open subset of the
open set ¢, (U), and hence, ¢ (V) is an open set. Since ¢, (V) is an open set,
and i, is the restriction of ¢, on V, (V) is an open set.

For (3): Since (U, ¢y) is a coordinate chart of M, ¢ : U — ¢y (U) is 1-1.
Since ¢ : U — ¢, (U) is 1-1, and yy, is the restriction of pyyon V, ¢y, : V —
Wy (V) is 1-1. Further, clearly ¥, : V — (V) is onto.

For (4): Since (U, ¢y) is a coordinate chart of M, ¢y : U — ¢y(U) is con-
tinuous, and hence, its restriction yry, : V — (V) is continuous.
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For (5): Since V is contained in U, ¢y (V)(= ¥ (V)) is contained in ¢, (U).
Since (U, ¢y,) is a coordinate chart of M, (¢,)"" : ¢, (U) — U is continuous,
and hence, its restriction (QDU)_ILM(V)(: (Y)) ") is continuous.

For (6): Let us take any admissible coordinate chart (W, ) of M.

We shall try to prove that yy o (¥y)) " : Yy, (WNV) = 1w (W N V) is a smooth
function. Since (W, yy/), and (U, @) are admissible coordinate charts of M, yy, o

(0)" oy (WNU) — 1w (WNU) is a smooth function. Since V is contained in
U, WNU,is contained in W N U, and hence, ¢, (W N V) is contained in ¢, (W N U).
Since r, is the restriction of ¢ : U — ¢y(U) on V, and WNV is contained in
V. yy(WNV)=y(WnNV). Since y,(WNV)=g@y(WNV), and ¢oy(WNV)
is contained in @y(WNU), ¢,(WNV) is contained in ¢y z(WNU).

Since Yy (WN V) is contained in @, (WNU), and 7y 0 (¢y) " - op(WNU) —

Zw(W N U) is a smooth function, the restriction of zy o (@) " to Y, (WNV) is a
smooth function. If ¥ (x) € Y,(WNV), where x € WNV(C V), then, (yyo

(00) Wy () = Gw 0 (00) ™)@y () = 1w ®) = Gaw o () ™) WPy (x).

It follows that the restriction of yyo (¢y) " to Y, (WNV), and 7y 0 ()"
Yy (WNV) = xw(WnNV) are the same functions. Since the restriction of yy, o
(o) 0 Yy (WA V), and gy 0 (Yy) " : Yy (WNV) = 1 (WNV) are the same
functions, and the restriction of yy o (¢) " to ¥y (WNV) is a smooth function,
awo W) Yy (WNV) = xw(WN V) is a smooth function.

For (7): Let us take any admissible coordinate chart (W, yy,) of M. We shall try
to prove that Yy o ()" = zw(WNV) — Yy (WN V) is a smooth function.

Since (W, yw), and (U, @,) are admissible coordinate charts of M, ¢ o

Gw) ™ xw(WNU) — @u(WNU) is a smooth function. Since V is contained in
U, WNV is contained in WNU, and hence, x,(WNV) is contained in

xw(WNU). Since yy(WNV) is contained in (WM U), and ¢y o () "
1w(WNU) — @y (WNU) is a smooth function, the restriction of ¢y o ()" to
2w (WNV)is a smooth function. If yy (x) € yw(WNV), where x € WNV(C V),
then ¢y (x) =y (x), and hence, (¢ o (XW)_I)(XW(X)) = oy(x) =Yy (x) =
Wy © () ™) ().

It follows that restriction of @ 0 ()™ to yw(WNV), and ¥y o (xw) ' :
tw(WNV) — i, (WNV) are the same the functions. Since the restriction of ¢, o
Gw) " o 7w (WN V), and the function ¥y, o (7)) " xw(WNV) = Yy (WNV)
are the same, and the restriction of ¢, o ( ;(W)71 to yw (W N V) is a smooth function,
Yy o Ow) " w(WNV) = gy, (WNV) is a smooth function. O
Lemma 4.11 Let M be an m-dimensional smooth manifold. Let (U, @) be an
admissible coordinate chart of M. Let G be a nonempty open subset of the open set
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oy (U)(CR™). Then ((py) " (G), ¥ (o) () is an admissible coordinate chart of
M, where Y, 11 denotes the restriction of ¢y on (0y) ' (G).

Proof Since (U, @) is an admissible coordinate chart of M, and G is a nonempty
open subset of the open set ¢, (U), (¢;) ' (G) is a nonempty open subset of U. So,
by Lemma 4.10, ((¢y) " (G), W(¢U>—1<G)) is an admissible coordinate chart of M,

where ¥/, 11, denotes the restriction of ¢ on (0y) H(G). O

Theorem 4.12 Let N be a 4-dimensional smooth manifold, M be a 3-dimensional
smooth manifold, F : M — N be a smooth function, and 2 be the rank of F. Let p be
in M. Then, there exist admissible coordinate chart (U, @) in M satisfying p € U,
and admissible coordinate chart (V,\y) in N satisfying F(p) € V such that

oy(p) =(0,0,0), ¥ (F(p)) = (0,0,0,0) and for every (x1,x2,x3) in @y, (U),
(lﬂv oFo ((pU)_l)(xl,XQ,Xj;) = (X],XQ,0,0).

Further, we may assume @, (U) = (—¢,¢) X (—¢,¢) X (—¢,¢), and ¥, (V) =
(—&,8) x (—&,¢) x (—&,¢) x (—¢, &) for some &> 0. In short, ¢, (U) = C3(0),
and (V) = C(0) for some ¢ > 0.

Proof By Theorem 4.8, there exist admissible coordinate chart (U*, ¢.) in
M satisfying p € U*, and admissible coordinate chart (V*,1.) in N satisfying
F(p) € V* such that for every (x,x2,x3) in @y (U*),

(l,bv* oFo (@U*)_l)(xl,xz,)q) = (x1,%,0,0).

Put U=U" 0y = oy — @p-(p), V=V ¥y = ¢y — ((Q’U‘(P))l» (QDU*(P))zaoa 0).
It remains to prove:

(i) (U, ey) is an admissible coordinate chart in N satisfying p € U,
(i) (V,y) is an admissible coordinate chart in M satisfying F(p) € V,
(i) @y(p) = (0,0,0),
(iv) for every (x1,x2,x3) in @y (U), (Yy o F o (¢y) ") (x1,%2,%3) = (x1,%2,0,0),
(v) lpV<F<p)) = (O’ 0,0, 0)'

For (i): Since (U*, ¢y-) is an admissible coordinate chart in N satisfying p € U*,
U*(= U) is an open neighborhood of p, and hence, U is an open neighborhood
of p.

Since (U*, @) is an admissible coordinate chart in N, ¢.(U*) is open in R>.
Now, since U= U*, ¢, (U) is open in R® and hence, (¢, + @p-(p))
(U)(= @y (U) + ¢y (p)) is open in R3. Since ¢, (U) + ¢y (p) is open in R?,
¢y(U) is open in R®. Since (U*,¢,.) is an admissible coordinate chart in M,
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@y U" — @p.(U*) is a homeomorphism. Since ¢. : U* — @y .(U*) is a
homeomorphism, and the translation

T gpp) : u-(U) = (@y-(U") — @y (p))
is a homeomorphism, their composite

(P =)T gy (py © Pu- : U'(= U) = (00 (U7) = 00 (P))(= (900 = @0 (P))(U7)= 9y (V)

is a homeomorphism. Thus, we have shown that (U, ¢) is a coordinate chart in
M satisfying p € U.
Next, let (W, yy ) be an admissible coordinate chart in M such that UNW is

nonempty. Now, we have to prove that yy o (@) ", and ¢y o0 (xy) " are C.
Here,

- _ —1
xw o (9y) = xw © (@y — oy (p)) = Aw © (quom (p) © (PU*>
= Xw?©° ((¢U*)_IOT¢Ux(p)) = (XW o (@U*)_l) 0Ty, (p)s

SO Jw © ((pU)_l =(ywo ((pU*)_l) 0Ty, Since (W, 2w), and (U*, @) are
admissible coordinate charts in M, yy o (¢y.) " is C. Since yyy o (¢y-) " is C,
and translation T, ., is C*, their composite () o (o) Mo Ty () (= 2w©
(pp)~") is €, and hence, yy o (@)~ is C. Similarly, ¢, o (zy) " is C.

For (ii): Its proof is similar to that of (i).

For (iii): ¢y (p) = (0y- = ¢u-(P))(P) = @u-(P) = @y (P) = (0,0,0). Thus
@u(p) = (0,0,0).

For (iv): Let us take any (x1,x2,x3) in ¢y (U). We have to prove that
Wv oFo (¢U)71)(x1’x27x3) = (xlax%ov 0) Here, (@U)71 = (QDU* - Py
(I’)y1 = (T—mw(p) © (/’U*Y1 = ((PU*Y1 0Ty, (p)- Since @y = @y — @y (p),
oy(U) = @y-(U) — @y (p) = @y (U*) — @y-(p). Now, since (x1,x2,x3) is in

E’U(U)a 1+ (@0 (P)' 22 + (00 ()23 + (91 (p))?) s in @y (U*), and

(-0 F o (ou)™) (31 + (00 (p))' 22+ (00 ()33 + (00 ()

= (51 + (pur ()" 52 + (0 (p))2.0.0).
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Now,

LHS = (wy o Fo (00) ) (m1,32,55) = (W 0 Fo (00 )gl ) ) (51, 02,33)

(v - ( 00-(P)' (90 (p))%,0,0) ) 0 F o ()"0 Ty ) ) (a1,22, )
(T 2700) ol//v*) oFo ((q) 7T, ))(xl,xz,)q)

T 0)700) (W oFo (q,U*)*‘) ° Tq,m(p))(xl,xz,xg)

T (g0 (o) (00017 00) ® (lpv* oFo (%*)*1))

(31 + (20 () 2 + (00 ()33 + (90 ()’

( (o0 (P))' (o0 ))%o.o))(xl+(@u*(p))l,xznt(wUx(p))Q,o, o)
= (x1,x2,0, 0) = RHS.

(v
(
(
(7
(7

For (v): Since p € U, ¢y(p) € ¢y (U), and ((9y(p))", (0u(p))*, (0 (p))?) =
@u(p) = (0,0,0) so

(0,0,0,0) = ((9(P))", (00(p)),0.0) = (¥y 0 F o (9) ") (0 (p))
).

This completes the proof of the main part.

Since (V) is an open neighborhood of v, (F(p))(= (0,0,0,0)) in R?*, and
¢@y(U) is an open neighborhood of ¢y (p)(= (0,0,0)), there exists ¢ > 0 such
that (0,0,0,0) € (—¢,&) x (—&,¢) X (—¢,&) x (—¢,&)(= CH0)) C Yy (V), and
(0,0,0) € (—¢,&) x (—&,¢) X (—&,¢)(= C(0)) C ¢y(U). Now, by Lemma 4.11,
() 1(C*(0)),¥y) is an admissible coordinate chart in N satisfying F(p) €
(Yy) ' (C0)), and ((@y) '(C3(0)), @y) is an admissible coordinate chart in
M satisfying p e ((,/)U)fl(CS(O)). Since @y (p) = (0,0,0) € C3(0), pe
(95) (CH(0)). Next, since yy (F(p)) = (0,0,0,0) € C4(0), 50 F(p) € (y) "
(C*0)). Also since ¢ is 1-1, @y((@y) ' (C3(0))) = C3(0). Similarly,
(1) (CHO)) = CH00).

Now, it remains to prove: for every (x;,x2,x3) in C2(0), (o Fo (¢y)”")
(x1,%2,%3) = (x1,%2,0,0). For this purpose, let us take any (x1,x2,x3) in C>(0).
Since (x1,x2,x3) is in C2(0), and C2(0) C @y (U), (x1,x2,%3) is in ¢y (U), and
hence, (Y, o F o () ") (x1,%2,%3) = (x1,%2,0,0). O
Theorem 4.13 Let M be an m-dimensional smooth manifold, N be an n-dimen-

sional smooth manifold, F : M — N be a smooth function, and k be the rank of F.
Let p be in M. Then, there exist admissible coordinate chart (U, ¢;) in M satisfying
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p € U, and admissible coordinate chart (V) in N satisfying F(p) € V such that
oy (p) =0,y (F(p)) =0, and for every, (x1,%y,....xu) in ¢y (U),

~1
oFo )x,x,...,xm = | x1,%2,..,%,0,...,0
(wvoFo (o)™ ) (rimcotn) = x132, i
n—k

Further, we may assume @y(U) = C™(0), and yr,(V) = C"(0) for some ¢ > 0.
Proof Its proof is quite similar to the proof of Theorem 4.12. O

Lemma 4.14 Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and F : N — M be a 1-1 smooth function. Let O be the topology
of N. Let Ay be the differential structure on N. Put O = {F(G): G € O,} and
A={(F(U),py o F'): (U, ¢y) € Ai}. Then,

I. O is a topology over F(N),
II. A determines a unique differential structure on F(N), and
[I. F is a diffeomorphism from N onto F(N).

Proof of 1

(i) Since ¢ € O, F(¢p)(=¢) is in O, and hence, ¢ € O. Next, since
N € Oy,s0 F(N)is in O.

(i) Let F(G) € O, where G € O,. Let F(H) € O, where H € O;. We have to
prove that F(G) N F(H) € O. Since G € Oy,H € Oy, and O is a topology,
GNH € O, and hence, F(GNH) € O. Since F:N—M is I1-1,
F(GNH)=F(G)NF(H). Since F(GNH)=F(G)NF(H), and
F(GNH) € O, F(G)NF(H) € O.

(ii)) Let F(G;) € O, where G; € O, for every index i in index set I. We have to
prove that Uie; F(G;) € O. Since for every index i, G; € Oy, and O is a
topology, Uie; G; € Oy, and hence, F(Uie; G;)(= Uies F(G;)) € O. Thus,
Uier F(G;) € O. Hence, O is a topology over F(N). O

Proof of II 1tis clear that F'is a homeomorphism from topological space (N, O;) onto
topological space (F(N), Q). Since N is an n-dimensional smooth manifold, and O
is the topology of N, (N, O,) is a Hausdorff topological space. Since (N,O)) is a
Hausdorff topological space, and (N, O) is homeomorphic onto topological space
(F(N),0), (F(N), ) is a Hausdorff topological space. Since N is an n-dimensional
smooth manifold, and O is the topology of N, (N, O,) is a second countable space.
Since (N, ) is a second countable space, and (N, O;) is homeomorphic onto
topological space (F(N), O), (F(N),O) is a second countable space.

We want to prove that (F(N), O) is an n-dimensional topological manifold. For
this purpose, let us take any F(x) in F(N), where x is in N. Since x is in N, and A, is
a differential structure on N, there exists (U, ¢y) € A; such that x € U. It follows
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that F(x) € F(U). Since (U,qy) € A, (F(U),pyoF ') € A It remains to
prove:

(@) F(U) €O,
() (py o F~1)(F(U)) is an open subset of R”,
(¢) @yoF~!is a homeomorphism from F(U) (relative to topology O) onto

(¢y o F7')(F(U)).

For (a): Here, (U, @) € A;, and A, is a differential structure on N, U € Oy,
and hence, F(U) € O.

For (b): Here, U € Oy, and O, is the topology of N, U is contained in N. Since
U is contained in N, F is 1-1, (¢, o F"1)(F(U)) = ¢, (U). Since (U, @) €
Aj, and A, is a differential structure on N, ¢ (U)(= (@, o F~1)(F(U))) is
open in R". Hence, (¢, o F~!)(F(U)) is an open subset of R".

For (c): Since (U, ¢y) € A, ¢y is 1-1. Since ¢y is 1-1, and F is 1-1, the
composite ¢y o F~'is 1-1. Thus, ¢, 0 F~!: F(U) — (@, o F~1)(F(U)) is a
1-1 onto function.

Since (U, ¢y) € Ay, ¢y is a homeomorphism from U onto ¢, (U). Since F is a
homeomorphism from topological space (N, O;) onto topological space (F(N), O),
F~!is a homeomorphism from topological space (F(N), O) onto topological space
(N, ), and hence, the restriction of F~! on F(U) (relative to topology O) is a
homeomorphism from F(U) onto U. It follows that ¢, o F~! is a homeomorphism
from F(U) (relative to topology O) onto ¢, (U)(= (¢, o F~')(F(U))). Thus, we
have shown that (F(N), O) is an n-dimensional topological manifold.

Now we want to prove: All pairs of members in A are C*°-compatible. For this
purpose, let us take any (F(U), @, o F~!) € A, where (U, ) is in A, and
(F(V),yy 0o F7') € A where (V,y,) is in A; satisfying F(U)NF(V) is non-
empty. Since F is 1-1, F(U)NF(V)=F{UNV). Since F(U)NF(V)=
F({UNV),and F(U)NF(V) is nonempty, F(U N V)is nonempty, and hence, U NV
is nonempty. Since U NV is nonempty, A, is a differential structure on N, (U, ¢y)
is in Ay, and (V,¥,) is in Ay, (U, @,)and (V,y,) are C*-compatible, that is,
Wy o (o)) : @y (UNV) = @y (UNV) is a smooth function.

We have to show that (F(U), @, o F~!) and (F(V),y o F~!) are C*-com-
patible, that is, ((Yy o F ') o (@y o F7) ™) : (py o F)(F(U)NF(V)) = (yy o F ')
(F(UYNF(V)) is a smooth function, that is, (Y, 0 F~')o (Fo(py)™"):
(pyo FFYF(UNV)) — (Yyo FY)F(UNV)) is a smooth function, that is,
Yy o (9y)™") s u(UNV) = Y, (UNV) is a smooth function. This has already
been shown. Thus, we have shown that A determines a unique differentiable structure
on F(N) that contains .A. In short, F(N) is an n-dimensional smooth manifold. [J

Proof of Il Now, we want to prove that F is a diffeomorphism from N onto F(N).
For this purpose, let us take any p in N. We have to prove that F'is C* at p. Now let
us take any admissible coordinate chart (U, ¢,) of N satisfying p € U, an
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admissible coordinate chart (F(V),yy o F~') of F(N) satisfying F(p) € F(V)
where (V, ) is in A;. Since F is 1-1, and F(p) € F(V),p € V. Since p € U, and
peV, peUnNYV, and hence, UNV is nonempty. We shall try to prove that
(Yy o F 1Y o Fo(py) " is C* at y(p). Since (U, @y) is in Ay, (V, ) is in Ay,

and UV is nonempty, ry © ()" (= (y 0 F~1) 0 Fo ()" ) is C at oy (p).
Thus (Y, 0 F') o Fo (oy)" is C* at ¢y (p). Thus F is C*. Similarly, F~! is
C®. This proves that F is a diffeomorphism from N onto F(N). O

4.2 Lie Groups

Definition Let G be an n-dimensional smooth manifold that is also a group. Let
m: G x G — G be the mapping defined as follows: for every g, &k in G,

m(g,h) = gh.

Let i : G — G be the mapping defined as follows: for every g in G,

If m is a smooth map from 2n-dimensional product manifold G x G to n-
dimensional smooth manifold G, and i is a smooth map from n-dimensional smooth
manifold G to itself, then we say that G is a Lie group.

Here, m is the binary operation of the group G and is smooth. Further, i is the
(algebraic) inverse mapping of the group G, which is smooth. Since smooth
mappings are continuous mappings, and m, i are smooth mappings, m, i are con-
tinuous mappings. Since the binary operation m of group G is continuous, and the
inverse mapping i of the group G is continuous, G is a topological group. Thus,
every Lie group is also a topological group.

Note 4.15 Let G be an n-dimensional smooth manifold, and M be an m-dimen-
sional smooth manifold. Let a be in G. Let us define a mapping F : M — G X M as
follows: for every & in M,

F(h) = (a,h).

We shall try to show that F'is a smooth mapping. For this purpose, let us fix any
ho in M. We have to prove that F is smooth at Ay in M.

For this purpose, let us take any admissible coordinate chart (V) of M sat-
isfying hop € V, and any admissible coordinate chart (U, ¢,) of G satisfying a € U.
Here, (U, ¢) is an admissible coordinate chart of G satisfying a € U, (V, /) is an
admissible coordinate chart of M satisfying hy € V, and F(hy) = (a,hy) € U x V,
(U x V,(py x yy)) is an admissible coordinate chart of G x M satisfying F(hy) €
U x V. We have to prove that each of the 2 component functions of the mapping
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(9o x W) o (Fo () ™) 1y (VAF (U x V) = (9 X ) (U x V)

is C* at the point (ko) in R™, that is, (r,s)— 1, (((¢y X ¥y) o (Fo (Yy) 1))
(r,s)), and (r,s)—m(((@y X ¥y) o (Fo (Yy) "))(r,s)) are C* at the point
Yy (ho)in R™. For every (r,s) in (VN F~1(U x V)), there exists y in V such that
Yy (y) = (r,5). So y = () ' (r,s). Now, since

(oo x ) o (Fo ) ™) )(rs) = (oy x vi) (F(00) ' (r9)))

= (@y x ¥y)(F(y))
= (pu X ¥y)(a,y) = (py(a), ¥y (),

(r5) = 71 (9 X ) @ (F o (9y) ™)) (,9)) = mi{y(@), ¥y () = @y (a), which is
a constant function. Hence, (r,s)— m,(((oy X Yy) o (Fo () ))(r,s)) is a
smooth function. Next, since (r,s)— 1 (((¢y X ¥y) o (Fo (Yy) ) (r,s)) =
m(py(a), ¥y (y)) =¥y (y) = (r,s) is the identity function, (r,s)+— m(((¢@y X
Yy) o (Fo(Yy) ")) (r,s)) is a smooth function. Thus, we have shown that F is a
smooth mapping, that is, A+ (a, k) is a smooth mapping.

Similarly, & — (h,a) is a smooth mapping.

Note 4.16 Let G, H, K be smooth manifolds. Let f : H — K be a smooth mapping.
Let F: G x H— G x K be the mapping defined as follows: for every (x,y) in
G x H,

F(x,y) = (6.f())-

We shall try to show that F is a smooth mapping. For simplicity, let each of G,H,
K have dimension 2. Let us fix any (xo,yo) in G x H. We have to prove that F is
smooth at (xo, yo)-

For this purpose, let us take any admissible coordinate chart (U X V, (¢y X ¥y))
of the product manifold G x H, where (U, @) is an admissible coordinate chart of
G satisfying xo € U, and (V,y,) is an admissible coordinate chart of H satisfying
yo € V. Next, let us take any admissible coordinate chart (U x V, (¢, x ¥)) of
G x K, where (V, ¥y) is an admissible coordinate chart of K satisfying f(yo) € V.
Here, since xo € U, and f(yo) € V, F(xo,y0) = (x0,f(%)) € U x V. Thus, (U x V,
(py X ¥y))is anadmissible coordinate chart of G x K satisfying F(xo,yo) € U x V.
Now, we have to prove that each of the 4 component functions of the mapping

(90 x Wg) o (Fo oy x¥n) ™)+ (0 x by) (U x V)N F (U x 7))

— ((/’U X lﬁf,)(U X V)
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is C™ at the point (¢ x ¥y)(x0,y0) in R*, that is, (r,s,¢,u)— 7 (((py X Yy)o
(FO ((/)U X lﬁv)_l))(r,& t’ u))’ (}’,S,l‘, Ll) HHZ((((PU X lﬁ(/) o (FO ((PU X lPV)_I))
(r,s, L, u))v (r7s>t7 “) = 7'C3((((PU X WV) © (F © (QDU X ‘//V)il))(r’svt’ u)), and
(rys,t,u) = ma(((py X i) o (Fo (py X 1//V)71))(r,s,t, u)) are C* at the point
(ou X Yy)(x0,¥0) in R*.

For every (r,s,t,u) in (¢, x Yy)((U x V)NF~1(U x V)), there exist x in U,
and y in V such that (oy x¢y)(x,y)=(rst,u). So (rstu)=
(py X Yy)(x,y) = (@y(x), Yy (v)), and hence, @y (x) = (r,5), and ¥y () = (1, u).

Now, since

(((pU X §y) o (Fo (py zpv)_l)>(r, s,t,u)
= ((ou x vy) o (Fo (00 % 1)) ) (00 % Yy)(53)

= (pu x wv) x,y)) = (ou x ¥y) (x.f (7))
= (py(x) ) (0u(x), (by of) (v))

= (r Sv('//vof) ) = (o5 Wy o) (W) (60))

= (5 (byofow ‘r)< ),

(r,s,t, u)|—>n1(<(g0U X Yy) o (Fo (py X x/jv)_l>)(r7s,t, u))
=m(rs (byofo ) ")) =1,

SO

which is a smooth function. Hence, (r,s) — 71 (((¢y X 7)o (Fo (py x ¥y) ™))
(r,s,t,u)) is a smooth function. Next, since

(rys,t,u)— n2(<((pU X w‘;) o (F o (py X lﬁv)71>>(r, s, t, u))
%) (r, s, (x//(, ofo (%,)71) (1, u)) =,

which is a smooth function, (r,s,t,u)— m(((@y X Yy) o (Fo (@y x Yy) )
(r,s,t,u)) is a smooth function. Next,

(rys,t,u) b—>7‘£3(<(q)u X 1//‘7) ) (Fo (py X 1//‘,)71))(r7 s, t, u))
= (s, Yy of o () ™) (1))
=m((byofo b)) (tu)):



4.2 Lie Groups 249

Now, since f : H — K is a smooth mapping, (V, /) is an admissible coordinate
chart of H satisfying yo € V, and (V, ) is an admissible coordinate chart of
K satisfying f(yo) € V,

bo (Fo ) ™) (Vs (#) = v ()

is C* at the point y(yo) in R, that is, (7, u) — m; (Y5 o (f o (Yy,) ") (t,u)), and
(t,u) — (0 (Fo (Yy) ") (r,s)) are C™ at the point y(yp) in R%. Since
(rys,t,u) — (t,u) is smooth, and (z,u)— m; (Y5 o (f o () ")(t,u)) is smooth,
their composite (r, s, t,u) — (5 o (f o (Yy) ") (z,u)) is smooth, and hence,

(rys,t, ”)'_)nS(((QDU X l//f/) o (FO (py x ‘//V)il))(rwgvta ”))

is a smooth map. Similarly, (r,s,z,u)— m4(((¢y X ¥3) o (Fo(py x ¥y)™")
(r,s,t,u)) is a smooth function.

Thus, we have shown that F is a smooth mapping. In short, if y+— f(y) is smooth
map, then (x,y)+— (x,f(y)) is smooth.

Similarly, if x— f(x) is a smooth map, then (x,y) — (f(x),y) is smooth.

Lemma 4.17 Let G be a Lie group. Let a be in G. Then, the mapping F : y+— ay is
a smooth mapping from smooth manifold G to itself. The mapping F is denoted by
L, and is called the left translation by a. Thus, for every y € G, L,(y) = ay.
Observe that L, : G — G is a 1-1, onto mapping, and (La)71 = L,1. Now, since
Lo, Ly (= (Lo) ") are smooth, L, is a diffeomorphism.

Proof Since G is a Lie group, G is a smooth manifold. Hence y — (a,y) is a smooth
map. Since G is a Lie group, (x,y)+ xy is a smooth map. Since y+ (a,y) is a
smooth map, and (x,y)+— xy is a smooth map, their composite map y+— ay is a
smooth map. O

Note 4.18 Let G be a Lie group. Let a be in G. Then, as above, it can be shown that
the mapping F : x — xa is a smooth mapping from smooth manifold G to itself. The
mapping F is denoted by R, and is called the right translation by a. Thus, for every
x € G,R,(y) = ya. Observe that R, : G — G is a 1-1, onto mapping, and (R,) ' =
R,-1. Now, since R,,R,1 (= (Ra)_l) are smooth, R, is a diffeomorphism.

Lemma 4.19 Let G be an n-dimensional smooth manifold that is also a group. If

(g,h)— gh™! is a smooth mapping from 2n-dimensional product manifold G x G
to n-dimensional smooth manifold G, then G is a Lie group.

Proof For simplicity, let n = 2. Next, let e be the identity element of the group. Let
us define a mapping m : G X G — G as follows: for every g, & in G,
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m(g, h) = gh.

Let us define a mapping i : G — G as follows: for every g in G,
i(g)=¢".
We have to show that

(i) i is smooth,
(i) m is smooth.

For (i): Since h+ (e, h) is a smooth mapping, and (g, /) gh~! is a smooth
mapping, their composite h+eh™! = h~! =i(h) is a smooth mapping, and
hence, i is a smooth mapping.

For (ii): Since h+ h~! is a smooth mapping, (g,h)+ (g,h"!) is a smooth
mapping. Since (g, h)+— (g,h™!) is a smooth mapping, and (g,h)— gh~! is a
smooth mapping, their composite (g, ) — g(h~!)~" = gh = m(gh) is a smooth
mapping, and hence, m is a smooth mapping. O

Note 4.20 Let M be an m-dimensional smooth manifold, whose topology is O, and
differential structure is A. Let G be a nonempty open subset of M. Let O; be the
induced topology over G, that is, O; = {G; : G| C G, and G| € O}. Put

Ac ={(U,py) : (U,py) € A, andU C G}.

Since M is an m-dimensional smooth manifold, M is a Hausdorff space. Since
M is a Hausdorff space, and G is a subspace of M, G with the induced topology is a
Hausdorff space. Since M is an m-dimensional smooth manifold, M is a second
countable space. Since M is a second countable space, and G is a subspace of M,
G with the induced topology is a second countable space.

Now, we shall try to show that Ag is an atlas on G that is,

1. WU : (U,ey)isin Ag} = G,
2. all pairs of members in Ag are C*°-compatible.

For (1): By the definition of Ag, it is clear that U{U : (U, ¢ )isin Ag} C G.
So, it remains to prove that G C U{U : (U, ¢y )isin Ag}.

For this purpose, let us take any p in G. Since p is in G, and G is a subset of M,
pisin M. Since p is in M, and M is an m-dimensional smooth manifold, there exists
(U, ¢y)in A such that p is in U. Since (U, ¢y)isin.A, U is an open subset of
M. Since U is open, and G is open, U NG is open. Thus, U NG is an open
neighborhood of p.
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We shall try to show that (U N G, @y|yng)) is in Ag, thatis, (UN G, ¢yl yng))
€A, andUNG C G.Since UN G C G, it remains to show that (U NG, ¢yl yrg))

€ A. Since (U, ¢y)isin A, (U, @) is an admissible coordinate chart of M. Now,
since U N G is a nonempty open subset of U, by the Lemma 4.10, (U N G, ¢y (yng))

is an admissible coordinate chart of M, and hence, (U N G, ¢yl yrg)) € A.

For (2): Let us take any (U, ¢p), (V,¥) € Ag. We have to show that (U, ¢))
and(V, ) are C*-compatible. Since (U, ) € Ag, by the definition of Ag,
(U, py) € A. Similarly (V,y,) € A. Since (U, py) € A, (V,¥y) € A, and A
is a differential structure, (U, @) and (V, ) are C*-compatible. Thus, we
have shown that A is an atlas on G. Hence, Ag determines a unique smooth
structure on G. Thus, the open subset G of smooth manifold M becomes an m-
dimensional smooth manifold. Here, G is called an open submanifold of M.

Example 4.21 Let M(2 x 3,R) be the collection of all 2 x 3 matrices with real
entries, that is,

abc

M(2 x 3,R) = { {def} ca,b,c,d,e,f € R}.
We define addition of matrices as follows:

a b ¢ n a, by ¢ _|ata b+by c+c
d e f dl (4] fl - d+d1 €+€1 f+f1 :

Clearly, M(2 x 3,RR) is a commutative group under addition as binary operation.
We define scalar multiplication of matrix as follows:

e b c¢|_|ta 1t 1
d e f|  |td te tf|
Clearly, M(2 x 3,R) becomes a real linear space of dimension (2 x 3). Here,
one of the basis of M(2 x 3,R) is

1o 0 o)L 0 o [o 0 o[ 0 0o ¥ oo v}

Clearly, the real linear space R**? is isomorphic to the real linear space
M(2 x 3,R). Since R**3 is isomorphic to M(2 x 3,R), we will not distinguish
between
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a b c
{d . f} and (a,b,c,d, e,f).
Now since R?*? is a (2 x 3)-dimensional smooth manifold, M(2 x 3, R) is also
a (2 x 3)-dimensional smooth manifold. Similarly, M(m x n,R) is a mn-dimen-
sional smooth manifold. Clearly,

M(2 x 3,C) (E { B [Z ;} sa,b,c,d, e, f are complex numbers})

is a 2 x (2 x 3)-dimensional smooth manifold. Similarly, M(m x n,C) is a 2mn-
dimensional smooth manifold. The n*-dimensional smooth manifold M(n x n, R)
is denoted by M(n,R). The 2n*-dimensional smooth manifold M(n x n,C) is
denoted by M(n, C). Let GL(2,R) be the collection of all invertible 2 x 2 matrices
with real entries, that is,

_ X1 X2 | | X1 X2 .
GL(2,R) = {[x3 XJ : [X3 XJ € M(2,R) andx x4 — xpx3 # 0}.

It is clear that [il xz] — (X1,X2,X3,X4) is in 1-1 correspondence from
GL(2,R) onto {(xl,x23,x3,§c4) s (x1,%2,X3,%4) € R*and xyxg — xpx3 # 0}. Let us
define a function f : R* — R as follows: for every (1, %2,x3,%4) in R*

F(x1,x0,X3,%4) = X1x4 — X2X3.

We shall try to show that f is a continuous function.

Since (x,x2,X3,%4)— x1, and (x1,x2,%3,X4) — x4 are continuous functions,
(x1,%2,x3,%4) > (x1,%4) is continuous. Since (x1,xp,X3,X4) — (X1,X4) is continu-
ous, and the multiplication operation (x;, x4) — x;x4 is continuous, their composite
function (x1,x,x3,%4) — x1x4 is continuous. Similarly, (x1,x2,X3,X4)— Xpx3 i
continuous. Since (xy, X2, X3,%4) — X1X4 is continuous, and (x1,x;,x3, X4) — XpX3 8
continuous, (xy,X2,X3,%1) — (X1x4,X2x3) 1S continuous. Since (xy,x2,X3,%1) —
(x1x4, x2x3) is continuous, and the difference operation (y, z) — y — z is continuous,
their composite function (xj,x;,x3,%4) — x1X4 — Xpx3 = f(X1,X2,X3,X4) is contin-
uous, and hence, f is a continuous function.

Since {0} is a closed subset of R, R — {0} is an open subset of R. Since R — {0} is
an open subset of R, and f: R* — R is a continuous function, f~'(R — {0})
(= {(x1,x2,%3,x4) & (x1,%2,%3,%;) € R*and x;x4 — xpx3 # 0}) is an open subset of
R*, and hence, {(x1,x2,%3,X3) : (xX1,%2,%3,%4) € R*and x;x4 — xox3 # 0} is an open
subset of R*. Since {(x1,x2,x3,%4) : (x1,%2,x3,%4) € R*and x;x4 — xox3 # 0} is an

open subset of R*, and [il zz}
3

GL(2,R) onto {(x1,x2,x3,x4) : (x1,%2,X3,%3) € R* and x;x4 — xox3 # 0}, GL(2, R)

— (x1,X2,X3,X4) is in 1-1 correspondence from
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is an open subset of M(2, R) (= R*). Since GL(2, R) is an open subset of R*, and R* is
a 4-dimensional smooth manifold, GL(2, R) is a 4-dimensional smooth manifold.

Clearly, {(GL(2,R),IdgL2r))} is an atlas of GL(2,R). This shows that
(GL(2,R) x GL(2,R), (IdgL(2,r) x IdgL(2,r))) is an admissible coordinate chart of
the product manifold GL(2,R) x GL(2,R). Since, for every

([a Z] [2 ];D in GL(2,R) x GL(2,R),

c

we have

s <t ([7 211 1]
- (s ([2 ][ 1)
~([2 0] 0]) mmamaes (2 0] )

IdGL(Z,R) X IdGL(Z,R) = IdGL(ZJR)XGL(Z,R)a and hence, (GL(Z,R) X GL(Z, R),
IdGL(2,R)><GL(2,R)) is an admissible coordinate chart of the product manifold
GL(2,R) x GL(2,R).

We define multiplication of matrices as follows:

a b|le f|_|ae+bg af+Dbh
c d||g h| |ce+dg cf+dh|

We know that GL(2,R) becomes a group under multiplication as binary oper-
ation. Thus, GL(2, R) is a 4-dimensional smooth manifold that is also a group. We
want to show that GL(2,R) is a Lie group. Let us define m: GL(2,R) x
GL(2,R) — GL(2,R) as follows: for every

([a Z] [Z ];;D in GL(2,R) x GL(2,R),

c

we have

a b e fl\_|a b||le f| _|ae+bg af+bh
mcd’gh:cdgh ce+dg cf +dh|

Let us define i:GL(2,R) — GL(2,R) as follows: for every {a Z} in
GL(2,R), ‘
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d —b

il 1¢ b = ! d —b — | ad —bc ad— bc
c d ad —bc|—c a - a

ad — bc ad — bc

We have to show:

(i) m is a smooth map from (4 + 4)-dimensional product manifold GL(2,R) x
GL(2,R) to 4-dimensional smooth manifold GL(2, R),

(i) i is a smooth map from 4-dimensional smooth manifold GL(2,R) to 4-
dimensional smooth manifold GL(2,R).

For (i): For this purpose, let us fix any

({? 3]7 [Z ];;D in GL(2,R) x GL(2,R).

We have to prove that m is smooth at

(e 2[5 3)

For this purpose, let us take the admissible coordinate chart (GL(2,R)x
GL(2,R), IdgL(2r)xGL(2,r)) Of the product manifold GL(2, R) x GL(2,R). Here,

Qa Z}{; ﬂ) € GL(2,R) x GL(2,R).

c

Next, let us take the admissible coordinate chart (GL(2,R),IdgLor)) of
GL(2,R). Clearly,

a b e f __ |ae+bg af +bh
m(L d]’[g h]>_ {ce—kdg cf +dh € GL(2,R).
Now, we have to prove that each of the 4 component functions of the mapping

IdGL(ZA,]R) © (m © (IdGL(Z,R)xGL(2,R))_1> : (IdGL(ZﬁR)xGL(ZJR))
((GL(2,R) x GL(2,R)) nm ™' (GL(2,R))) — IdgLi2)(GL(2, R))

is C* at the point

TS ) G R )
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Letus observe that Idg; (2 ) © (m o (IdgLar)x6rer) ) = m, (IdeLor) <6L2R)
((GL(2,R) x GL(2,R)) nm~!(GL(2,R))) = (GL(2,R) x GL(2,R)) nm~!(GL
(2,R)) = (GL(2,R) x GL(2,R)) N(GL(2,R) x GL(2,R)) = (GL(2,R) x GL(2,R)), and
IdgL2r) (GL(2,R)) = GL(2,R), so we have to prove that each of the 4 component
functions of the mapping

m: GL(2,R) x GL(2,R) — GL(2,R)

| (i)}

X1 X1y 2 Xt X2 (Y1 Y2
— X1y1 + X2y3, = X1y2 + X2)4,
X3 X4 LYys Y4 X3 X4 LY3 Y4
X1 X2 |1Y1 Y2 Xt X2 (Y1 Y2
([ } { D'—Ws)’ﬁrmys, <{ } [ })r—»x3y2+x4y4
X3 X4 LYys Y4 X3 X4|LlY3 Y4
are SmOOth, that iS, (xlax27X37x4a)’17)’27y37)’4) = X1Y1 +-x2y3a (-xlax27-x3ax4aylay25
V3,Y4) = X1Y2 + XoYa, (X1, X2, X3, X4, V1, Y2, V3, V4) > X3Y1 + Xa3, (X1, X2, X3, X4, Y1,

¥2,¥3,Y4) — X3y2 + X4y4 are smooth. Clearly, all these four functions are smooth.
Thus, we have shown that m is a smooth map.

is C* at the point

For (ii): For this purpose, let us fix any

[Z’ Z] in GL(2, R).

We have to prove that i is smooth at
a b
c d|’

For this purpose, let us take the admissible coordinate chart (GL(2,R), IdgL(2,r))
of the smooth manifold GL(2,R). Here,

[? Z} € GL(2,R).
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Next, let us take the admissible coordinate chart (GL(2,RR),IdgL (o)) of the
smooth manifold GL(2,R). Clearly,

d —b
1 _
i([a b}): {d b}: ad_—cbc adgbc € GL(2,R).

c d ad —bc|—c a
ad — bc  ad — bc

Now, we have to prove that each of the 4 component functions of the mapping

ldotm © (io (Marpm) ') : (Movom) ((GLE2,R) Ni~ (GL(2,R)))
- IdGL(ZR)(GL(Z? R))

wonl[2 )L 2o

Let us observe that Idgor) o (io (IdGL(z,R))_l) =1, (IdgLer))((GL(2,R))
Ni~'(GL(2,R))) = (GL(2,R)) Ni~!(GL(2,R)) = (GL(2,R)) N (GL(2,R)) =
GL(2,R), and Idg o,r)(GL(2,R)) = GL(2,R), so we have to prove that each of
the 4 component functions of the mapping

is C* at the point

i: GL(2,R) — GL(2,R)

<

is C* at the point

that is,

X1 X2 - X4 X1 X2 . —X2
) )

X3 X4 X1X4 — X2X3 X3 X4 X1X4 — X2X3

X1 X2 —X3 X1 X2 X1

_ — _—

)

X3 X4 X1X4 — X2X3 X3 X4 X1X4 — X2X3

are smooth, that is,

X4 —X2
(_X],)C2,X3,.X4)|—> ) (_X[,XQ,X3,X4)|—> ’
X1X4 — X2X3 X1X4 — X2X3
—X3 —X2
()Cl,Xz,X3,X4)P—> 5 (X1,X2,)C3,X4)|—>
X1X4 — X2X3 X1X4 — X2X3

are smooth. Clearly, all these four functions are smooth. Thus, we have shown that
i is a smooth map. Hence, GL(2,R) is a 4-dimensional Lie group. Similarly,



4.2 Lie Groups 257

GL(n,R) is a n>-dimensional Lie group. GL(n, R) is known as the general linear
group.

As above, it can be shown that GL(n,C) is a 2n*-dimensional Lie group.
GL(n,C) is known as the complex general linear group.

Example 4.22 Let V be a real linear space. Let GL(V) be the collection of all
invertible linear transformations from V onto V. We shall try to show that GL(V) is
a group under composition o of mappings as binary operation.

(1) Closure law: Let us take any Ty, T» in GL(V). We have to show that Ty o T; is
in GL(V), that is,

(@ TyoT,is 1-1 from Vto V,

(b) Ty oT, maps Vonto V,

(c) for every x,y in V, and for every s,t in R, (T)oT,)(sx+1ty) =
s((Th o Ta)(x)) +1((Ty 0 T2) (y))-

For (a): Since T, is in GL(V), T is invertible, and hence, T} is 1-1. Similarly,
T, is 1-1. Since T} is 1-1, and T, is 1-1, their composite T} o T is 1-1.

For (b): Since Ty is in GL(V), T is invertible, and hence, T maps V onto
V. Similarly, 7, maps V onto V. Since 7| maps V onto V, and T, maps V onto V,
their composite 77 o T, maps V onto V.

For (¢): LHS = (T1 o To)(sx + ty) = T\(Ta(sx + 1)) = T1(s(T2(x)) + ¢(T2(y))) =
S(TUT2()) + HT1(T2(3))) = 5((T1 0 T2)(x)) + 1((Ty o T2)(y)) = RHS.

Thus, we have shown that T; o T is in GL(V).

(2) ois associative: Let Ty, T», T3 be in GL(V). We have to show that (T; o T) o
T; =Ty o (T,0Ts3). Since the composition of mappings is associative,
(Tl o Tz) O T3 = Tl o (Tz o T3)

(3) Existence of identity element: Let us define the mapping Idy : V — V as
follows: for every x in V, Idy (x) = x. It is clear that Idy is an invertible linear
transformation from V onto V, and hence, Idy is in GL(V). Also, for any T in
GL(V), it is clear that Idy o T = T o Idy = T. Hence, Idy serves the purpose
of identity element in GL(V).

(4) Existence of inverse element: Let us take any 7 in GL(V). Since T'is in GL(V),
T is invertible, and hence, T~! exists. Now, we shall try to show that 7~! is in
GL(V), thatis, T~! : V' V is linear. For this purpose, let us take any x,yin V,
and any real s, 7. We have to show that 7~ ! (sx + ty) = s(T~(x)) + t(T~1(y)).
Since x is in V, and T maps V onto V, there exists x; in V such that T(x;) = x.
Hence, T~ !(x) = x;. Similarly T(y;) = y, and T~'(y) = y;. Now,

LHS = T~ (sx +ty) = T (s(T(x1)) + t(T(0))) = T~ (T(sx1 + 1y1)) = sx; + 1y
=s(T""(x)) ++(T"'(y)) = RHS.
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Thus, 77! is in GL(V). It is clear that T-' o T = T o T~! = Idy. Hence, T~!
serves the purpose of the inverse element of 7 in GL(V). Thus, we have shown that
GL(V) is a group.

Next, let V be finite-dimensional real linear space. Let n be the dimension of
V. For simplicity, we shall take 2 for n. Let {e;,e,} be a basis of the real linear
space V. Let us take any T in GL(V). So, T : V= V. Let T(e;) = ajje; + azie,
and T(ey) = aizer + axnes. Since T is in GL(V), T is invertible, and hence, there
exists unique (#1,#,) such that

(anti + ant)er + (ant + ant)er = ti(aner + aziez) + tr(ae; + axes)
=1 (T(e1)) +0(T(e2)) = T(trer + 2e2)
=e; = ley 4 Oes.

Thus, the system of equations

ant +apt =1
ar ity +ant, =0

has a unique solution for (#1,#), and hence, ajjax — appax # 0. Since
ajaxp — apay # 0,

{““ “12} is in GL(2, R).
az; an

Now, we can define a mapping 7 : GL(V) — GL(2,R) as follows:

o= [an o).

az A

We shall try to show that # is an isomorphism from group GL(V) onto group
GL(2,R). For this purpose, we must show:

G nis 1-1,
(i) n maps GL(V) onto GL(2,R),
(iii) for every S,T in GL(V), n(SoT) = (n(S))(n(T)).

For (i): Let n(S) = n(T), where S(e;) = ajje; + azez, S(ex) = anpe; + anes,
T(e1) = bi1e1 + baiez, and T(ey) = bizey + bares. We have to show that § =
T, that is, S(e;) = T(e,), and S(ez) = T(ez). Since

ayp  ap bll b12
— n(S) = 5(T) = ,
[6121 Clzz] 1(8) =n(T) [bZI bzz]

ayn = b]l, and ax = bzl, and hence, S(el) =aje +axye = b1161 + b2162 =
T(ey). Thus, S(e;) = T(ey). Similarly, S(e;) = T(ez).
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For (ii): We have to show that 5 : GL(V) — GL(2, R) is onto. For this purpose,
let us take any

{“” ‘“2} in GL(2,R).
az an

We have to construct invertible linear transformation 7 from V to V such that

= [0 o],

ap; an
Let us define 7 : V — V as follows: for every #,, € R,
T(tiey + trep) = (anth + anntr)er + (axity + anty)es.

It is clear that T is linear. Also T(e;) = T(le; + 0ey) = (aj1 + ap0)e; +
(a211 +(1220)€2 =aje| +azer. ThUS, T(el) =aje) +aze;. Slrmlarly, T(eg) =
an
az
Since T is an invertible linear transformation from V onto V, T is in GL(V). Since
T(el) = daie; +021€2, and T(e‘z) = dajpe) +a22€2,

o) = |4,

. a - .
appe) + aner. Now, since det[ alz} =ajay — apaz # 0, T is invertible.
2

For (iii): Let

a1 ax

(s = o o],

where S(e1) = ajje; + azez, and S(ex) = ajpe; + axnes. Let

by b
T) =
o= e,

where T(el) = by1e1 + byiey, and T(eg) = byye; + bype;. So,
(S o T)(el) = S(T(el)) = S(b]]é‘] + bzle‘z) = bll(S(e‘])) + bz](S(Ez))

= by (a11e1 + az1e2) + bai (arzer + anes)
= (anb11 + anba)er + (an b1y + anbai)er.
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Thus,
(SoT)(er) = (anbi + annbar)er + (aarbi1 + axnbai)er.
Next,

(SoT)(ex) =S(T(e2)) = S(braer + bxner) = bi2(S(er)) + bn(S(er))
= bi(aner + aziez) + bn(anner + anes)
= (anbiz2 + annbxn)e + (a21biz + anbn)es.

Thus,
(SoT)(e2) = (anbia + annbxn)er + (a21b12 + anban)es.
It follows that

LHS = (S0 T) = aibiy +anby  anbiz +012b22} B {an 6112} l:bll b12:|
ax1byy + anby  ax bz + axnbxn by by

= (n(S))(n(T)) = RHS.

azyp A

Thus, we have shown that # is an isomorphism between group GL(V) onto
group GL(2,R). Hence, group GL(V) is isomorphic onto group GL(2,R). Since
GL(V) and GL(2,R) are isomorphic groups, and GL(2,R) is a Lie group, we can
bestow a topology on GL(V) so that GL(V) is also a Lie group. It also shows that
the smooth structure on GL(V) is independent of the choice of basis of V. Thus, if
V is a real linear space of dimension n, then GL(V) is isomorphic to the Lie group
GL(n,R). Similarly, if V is a complex linear space of dimension n, then GL(V) is
isomorphic to the Lie group GL(n,C).

Example 4.23 Observe that (R, +) is a group, and R is a 1-dimensional smooth
manifold. We want to show that R is a Lie group.

By Lemma 4.19, it is enough to show that the mapping f : (x,y)—x—yis a
smooth mapping from 2-dimensional product manifold R x R to 1-dimensional
smooth manifold R. For this purpose, let us fix any (a,b) in R x R. We have to
prove that f is smooth at (a,b). For this purpose, let us take the admissible coor-
dinate chart (R x R, Idgryr) of the product manifold R x R. Here, (a,b) € R x R.
Next, let us take the admissible coordinate chart (R,Idg) of R. Clearly f(a,b) =
a — b € R. Now, we have to prove that the function

Idg o (fo (IdeR)*‘) : (Idg,g) (R x R)Nf ' (R)) — Idg (R)

is C> at the point Idgg(a,b)(= (a,b)) in R Let us observe that Idg o (fo
(ldpxe) ) =f, (ldzxe)((R xR) Nf(R)) = (RxR)Nf(R) = (RxR)N
(RxR) =R xR, and Idg(R) = R, so we have to prove that the function
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fRxR—=R

is C* at the point (a, b). But this is known to be true. Thus, we have shown that
(x,¥)—x —y is a smooth map. This proves that R is a Lie group under addition.

Similarly, R? is a Lie group under addition, R? is a Lie group under addition, etc.
Since each ordered pair (x,y) of real numbers x,y can be identified with the
complex number x + v/—1y, and R? is a Lie group under addition, clearly C is a
Lie group under addition.

Example 4.24 By R* we shall mean the set of all nonzero real numbers. We know
that R* is a group under multiplication as binary operation. Since the elements of
R* can be identified, in a natural way, with the elements of GL(1,R), and
GL(1,R), is a 1-dimensional Lie group, R* is also a 1-dimensional Lie group under
multiplication.

Next, since R* is a 1-dimensional Lie group, R* is a smooth manifold. Since R*
is a smooth manifold, and {x:x € Rand O<x} is an open subset of R,
{x :x € Rand 0<x} is a smooth manifold. We know that {x : x € R and 0 <x} is
a subgroup of the multiplicative group R*. Thus, {x:x € Rand 0<x} is a 1-
dimensional smooth manifold that is also a group. Since the function (x,y) % is

smooth so, by Lemma 4.19, {x:x € Rand 0<x} is a l-dimensional Lie group
under multiplication.

Example 4.25 By C* we shall mean the set of all nonzero complex numbers. We
know that C* is a group under multiplication as binary operation. Since the ele-
ments of R* can be identified, in a natural way, with the elements of GL(1,C), and
GL(1,C) is a 2-dimensional Lie group, C* is also a 2-dimensional Lie group under
multiplication.

Example 4.26 We know that the unit circle S'(= {(x,y): (x,y) € R*and
\/x% 4+ y? = 1}) is a 1-dimensional smooth manifold. Observe that we can identify
(x,y) with the complex number x + v/—1y. Thus, we can identify the unit circle S’
with {z:z € C*and |z| = 1}. Further, we know that {z:z € C*and |z| =1} is a
multiplicative group. Thus, unit circle S' is a 1-dimensional smooth manifold that is
also a group. Since the function (z, w) — Zis smooth, by Lemma 4.19, the circle St
is a 1-dimensional Lie group. The Lie group S is called the circle group.

Example 4.27 Let G| and G, be Lie groups. Since G; and G, are Lie groups, G
and G, are groups. We know that the Cartesian product G; x G, is also a group
under the binary operation given by (g1, 41)(g2, ) = (g182, h1h2). Since Gy and
G, are Lie groups, G| and G, are smooth manifolds, and hence, their Cartesian
product G; x G, is a smooth manifold (called the product manifold of G, and G).
Thus, G; x G; is a 1-dimensional smooth manifold that is also a group.
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We want to show that G; X G, is a Lie group. By Lemma 4.19, it is enough to
show that the mapping ((x,y), (z,w)) — (xz~',yw™!) is smooth. Since the projec-
tion map ((x,y), (z,w))— (x,y) is smooth, and (x,y)+ x is smooth, their com-
posite ((x,y), (z,w)) — x is smooth. Similarly, ((x,y), (z, w)) >y is smooth. Since
((6,3), (2, w)) —x and ((x,), (z,w)) 1z are smooth, ((x,), (z,)) — (x,2) is
smooth. Since G, is a Lie group, and x, z are in Gy, (x,z) — xz~! is smooth. Since
((x,5), (z,w)) = (x,z) is smooth, and (x,z)+— xz ! is smooth, their composite
((x,5), (z,w)) = xz~! is smooth. Similarly, ((x,y), (z,w)) — yw~! is smooth. Since

((X7Y)>(Z>W))HXZ_1 1

and ((x,y),(z,w))—yw™' are smooth, ((x,y),(z,w))
— (xz~!,yw™!) is smooth. Thus, we have shown that G; x G, is a Lie group.
Similarly, if Gy, G,, G5 are Lie groups, then G| X G, x G5 is a Lie group, etc.
Here, G| x G, x Gj3 is called the direct product of Lie groups Gy, G, G3; etc. The
direct product of circle group S; with itself, that is, S; x S is an abelian Lie group
under pointwise multiplication. S; x §; is called the 2-forus and is denoted by T?.
Similarly, by 3-rorus T, we mean the abelian Lie group S; x S| x S, etc.

Example 4.28 Let G be a finite group. Let us bestow discrete topology over
G. Observe that discrete topology over G is Hausdorff and second countable. Here,
G is called a O-dimensional Lie group or discrete group.

Definition Let G and H be Lie groups. Let F : G — H be a mapping. If F is a
smooth mapping, and F is a group homomorphism, then we say that F is a Lie
group homomorphism from G to H.

Definition Let G and H be Lie groups. Let F : G — H be a mapping. If F is a
group isomorphism, and F is a diffeomorphism, then we say that F is a Lie group
isomorphism from G onto H.

Definition Let G and H be Lie groups. If there exists a mapping F' : G — H such
that F' is a Lie group isomorphism from G onto H, then we say that G and H are
isomorphic Lie groups.

Example 4.29 We have seen that the circle S!, and the set C* of all nonzero
complex numbers are Lie groups. Let us define a function 7 : S' — C* as follows:
for every z in !, I(z) = z. Clearly, the inclusion map I is a Lie group homomor-
phism from S! to C*.

Example 4.30 We have seen that R is a Lie group under addition, and R* is a Lie
group under multiplication. Consider the function exp : R — R* defined as follows:
for every x in R, exp(x) = e*. Since x+— €* is a smooth function and is a group
homomorphism from R to R*, exp is a Lie group homomorphism from R to R*.

Observe that the range of exp is {x:x € Rand 0<x}. We have seen that
{x:x € R and 0<x} is a Lie group under multiplication. Here, the inverse function
of expisIn: {x:x € Rand 0<x} — R. Since In is a smooth function and is 1-1
onto, exp is a Lie group isomorphism from R to {x: x € R and 0 <x}.
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Example 4.31 We have seen that C is a Lie group under addition, and C* is a Lie
group under multiplication. Consider the function exp : C — C* defined as follows:
for every z in C,

exp(z) = & = R0 (cos(lm(z)) + \/—_lsin(Im(z))).

Since (x,y) = z+— €* = (e*cosy, e siny) is a smooth function and is a group
homomorphism from C to C*, exp is a Lie group homomorphism from Cto C*.
Observe that the range of exp is C*, exp is a function from C onto C*. Since exp is
not 1-1, exp is not a Lie group isomorphism from Cto C*.

Example 4.32 We have seen that R is a Lie group under addition, and the circle S
is a Lie group under multiplication. Consider the function ¢: R — S! defined as
follows: for every 7 in R,

&(t) = cos(2nt) + v/~ 1 sin(27r).

Since t— (cos(2nt) + v —1sin(2nr)) = (cos(2nt), sin(27t)) is a smooth func-
tion and is a group homomorphism from R onto S', ¢ is a Lie group homomorphism
from R onto S'.

Here, the kernel ker(e) of homomorphism ¢ is given by ker(s) = ¢ !(1) =
{t:rcRande(r) =1} = {r: 1€ Rand cos(2nz) + v/—1sin(2nt) = 1} = {0, +
1,£2,43,...} = Z. We have seen that R? is a Lie group under addition and the
2-torus ']Tz(: Sy x 81) is a Lie group under pointwise multiplication.

Consider the function &2 : R — §; x S, defined as follows: for every s, in R,

& (s,1) = (cos(Zns) + V/—1sin(27s), cos(2mr) + \/—_lsin(2nt)).

Since

(s,1) — (cos(Zns) + V/—1sin(27s), cos(2nt) + \/—_lsin(Znt))
= ((cos(2ms), sin(2ms)), (cos(2nr), sin(2xz)))
= (cos(2ms), sin(27s), cos(2nt), sin(27r))

is a smooth function and is a group homomorphism from R? onto S; x Sy, ¢ is a
Lie group homomorphism from R? onto 2-torus T?(= S} x ;).

Here, the kernel ker(¢?) of homomorphism &2 is given by ker(e2) = (¢2)'(1,1) =
{(s,0) : (5,1) € R? and &*(s,1) = (1, 1)} = {(5,1) : (5,7) € R?, cos(2ms) + v/—1 sin(27s) =
1,and cos(2mt) + v—1sin(2mr) = 1}={0,+1,£2, 43, ...} x {0,£1, 42,43, ...} = 72,
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4

Similar discussion can be given for &, &*, etc.

Example 4.33 We have seen that

GL(2,R) (: { [xm] : [xm] € M(2,R) and x1x4 — xox3 # 0})

X3X4 X3X4

is a Lie group under matrix multiplication, and R* is a Lie group under ordinary
multiplication. Consider the function det : GL(2, R) — R* defined as follows: For
every

[xl XZ] € M(2,R),
X3 X4

we have

X1 X2
det = X1X4 — X2X3.

Since

X1 X2

} = (x1x4 - x2x3)
X3 X4

(xl7x2)x37x4) - |:

is a smooth function, and by a property of determinant det is a group homomor-
phism from GL(2,R) onto R*, det is a Lie group homomorphism from
GL(2,R) onto R*.

Example 4.34 Let us take any n-dimensional Lie group G. Let us fix any a in G.
For simplicity, let us take 2 for n. Consider the mapping C, : G+— G defined as
follows: for every x in G, C,(x) = axa~'. We want to show that C, is a Lie group
homomorphism from G onto G, that is,

1. C, is a group homomorphism,
2. C, is onto,
3. C, is smooth.

For 1: Since for every x,y in G,C,(xy) = a(xy)a! = (axa ') (aya™!) =
(Cua(x))(Cu(y)), C, is a group homomorphism.

For 2: For this purpose, let us take any y in G. Since a~'ya is in G, and
Cu(a 'ya) = a(a 'ya)a™' =y, it follows that C, is onto.

For 3: Since G is a Lie group, and « is in group G, the map x — ax is smooth.

1

Similarly x+ xa~!, is smooth. Since x+ ax is smooth, and x+ xa~!, their

composite x— axa~' (= C,(x)) is smooth, and hence C, is smooth.

Thus we have shown that C, is a Lie group homomorphism from G onto G.
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4.3 Locally Path Connected Spaces

Note 4.35 Let X be a topological space. Let S be a connected subset of X. We shall
try to show that the closure S~ of S is also connected. We claim that S~ is connected.
If not, otherwise, let S~ be not connected. We have to arrive at a contradiction. Since
S” is not connected, there exist open subsets Gy, G, of X such that G, N(S™) is
nonempty, G> N(S™) is nonempty, G; NG, N(S™) is empty, and S~ C G; U Gy.
Since G, N(S™) is nonempty, there exists a € G; N(S™), and hence a € G;. Since
a € Gy and G, is open, G, is an open neighborhood of a. Since a € G N(S7),
a € S . Since a € S~ and G is an open neighborhood of a, G; NS is nonempty.
Similarly, G, NS is nonempty. Since S C S~, and G;NG,N(S™) is empty,
GiNG,NS is empty. Since S C S~ C G1UG,, S C G UG,. Since Gy, G, are
open subsets of X, G; NS is nonempty, G, NS is nonempty, G; NG> N S is empty,
and S C G; UGy, S is not connected, a contradiction.

Note 4.36 Let X be a topological space. Let S be a nonempty subset of X. For every
X,y in S, by x ~y we shall mean that there exists a connected subset C of X such that
C C S,x€ C,and y € C. We shall show that ~ is an equivalence relation over S,
that is,

1. for every x in §, x ~ x,
2. if x~y then y~x,
3. if x~y, and y~z then x~z.

For 1: Let us take any x in S. Since the singleton set {x} is connected subset of
X, and x € {x} C S, by the definition of ~, x~x.

For 2: Let x~y. Now, by the definition of ~, there exists a connected subset
C of X such that C C S,x € C, and y € C. Thus, C is a connected subset of
X such that C C S,y € C, and x € C, and hence, by the definition of ~, y~x.
For 3: Let x ~y, and y ~ z. Since x ~y, so by the definition of ~, there exists a
connected subset C of Xsuchthat C C S,x € C,andy € C. Similarly, there exists
a connected subset C; of X such that C; C S,y € Cy, and z € C;. Since C is a
connected subset of X, C| is a connected subset of X, andy € CNCy,CUC;isa
connected subset of X. Alsox € C C CUCy,andz € C; C CUC;.Since C C S,
and C; C §,s0o CUC; C S. It follows, by the definition of ~, thatx~ z.

Thus, we have shown that ~ is an equivalence relation over S. Hence, S is
partitioned into equivalence classes. Here, each equivalence class is called a
component of S.

Now, we shall try to show that each component of S is a connected subset of X.
Let us take any component [a] of S, where a is in S, and [¢] =
{x:x €S, andx~a}. We claim that [a] is connected. If not, otherwise, let [a] be
not connected, that is, there exist open subsets G, G, of X such that Gy N[a] is
nonempty, G, N[a] is nonempty, G; N G, N[a] is empty, and [a] C G| U G,.

We have to arrive at a contradiction. Since Gy N[a] is nonempty, there exists b in
G N[a]. Similarly, there exists ¢ in G, N[a]. Here, b and c are in [a], and [a] is an
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equivalence class, so b ~ ¢, and hence, by the definition of ~, there exists a connected
subset C of X such that C C S,b € C, and ¢ € C. Thus, b is in G; N C, and hence,
G, N C is nonempty. Similarly, G, N C is nonempty. Clearly, C is contained in [a].

(Reason: If not, otherwise, there exists # € C such that ¢ ¢ [a]. Since C is a
connected subset of X, C C S,b € C,and ¢ € C, b~t. Since b is in G| Na], b~ a.
Since b~t, and b~a, t~a, and hence ¢ € [a], a contradiction.)

Since C is contained in [a], and G| N G2 N[d] is empty, G; NG, N C is empty.
Next since C is contained in [¢] and [a] C G1 UG,, C C G;UGs. Since Gy, G, are
open subsets of X, G; N C is nonempty, G, N C is nonempty, G; N G, N C is empty,
and C C G1 UG, C is not connected, a contradiction.

Thus, we have shown that [a] is a connected subset of S. Clearly, [«¢] is a
maximal connected subset of S.

(Reason: If not, otherwise, let [a] be not a maximal connected subset of S. So,
there exists a connected subset C of S such that [a] is a proper subset of C. So, there
exists ¢ in C such that 7 is not in [a]. Since a € [a) C C C S, tisin C, and Cis a
connected subset of X, t~a, and hence, 7 is in [a], a contradiction.)

Finally, we want to show that every component of X is a closed set. Let us take
any component C of X. Since C is a component of X, C is connected, and hence, C~
is connected. Since C is a component of X, C~ is connected, and C C C~ C X,
C = C7, and hence, C is closed.

Thus, we have seen that

(i) every nonempty subset S topological space X is partitioned into compo-
nents, and
(ii) every component of S is connected.
(iii) if C is a component of S, C; is connected, and C C C; C S then C = C;.
(iv) every component of X is a closed set.

Note 4.37 Let X be a topological space. Let S be a nonempty subset of X. Let a,
b be elements of S. Let f be a function from closed interval [0,1] to S. If

(i) fis continuous,
(i) £(0) = a and f(1) = b,

then, we say that fis a path in S from a to b. Let X be a topological space. Let S be a
nonempty subset of X. If for every a, b in S, there exists a path fin S from a to b,
then we say that S is a path connected subset of X. By X is path connected we mean:
X is a path connected subset of X. In other words, a topological space X is path
connected means for every x, y in X, there exists a continuous function f : [0, 1] — X
such that f(0) = x and f(1) = y.

Let X be a topological space. Let S be a nonempty subset of X. For every x, y in
S, by x ~y, we shall mean that the following statement is true:
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there exists a path f in S from x to y.

We shall try to show that ~ is an equivalence relation over S. By the definition
of equivalence relation, we must prove:

(1) x~x for every x in S,
(2) if x~y, then y~x,
(3) ifx~yand y~z then x~z.

For (1): Let us take any x in S. By the definition of ~, we must find a path fin
S from x to x. For this purpose, consider the constant function f : [0,1] — S
defined by

for every ¢ in [0,1]. Since every constant function is a continuous function, and
f1s a constant function, fis a continuous function. Further, by the definition off,
f(0) = xand f(1) = x. Hence, by the definition of path, fis a path in S from x to
x. This proves (1).

For (2): Let x ~y. So, by the definition of ~, there exists a path fin S from x to
y. Since fis a path in S from x to y so, by the definition of path, fis a function
from the closed interval [0,1] to S such that

(i) fis continuous,

(i) f(0) =xand f(1) = y.

We have to prove: y~x. So, by the definition of ~, we must find a path in
S from y to x, and hence, by the definition of path, we must find a function
g :[0,1] — S such that

(1') g is continuous,
(2') g(0) = y and g(1) = x.

Let us define g: [0,1] — X as follows: g(r) =f(1 —¢) for every ¢ in [0, 1].
Clearly, the range of g is equal to the range of £. Since the range of g is equal to the
range of f; and f : [0,1] — S, g : [0,1] — S.

For (1'): Since r+—1 — ¢ is a polynomial function, this is continuous. Since
t— 1 —tis a continuous function, and f is a continuous function, their com-
posite function 71— f(1 — ¢) = g(¢) is continuous, and hence, g is continuous.
This proves (1).
For (2') : Here, by the definition of g, g(0) =f(1 —0) =f(1) =y, and g(1) =
f(1 —=1) =f(0) = x. This proves 2'.

Thus we have shown: If x ~y, then y ~x. This proves (2).
For (3): Given that x~y and y~z. We have to prove: x ~ z, that is, by the
definition of ~, we must find a path 4 in S from x to z, that is, we must find a
function 4 : [0, 1] — S such that
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(1) h is continuous,
(2") h(0) = x and A(1) = z.

Since x~y, by the definition of ~, there exists a path in S from x to y, and
hence, there exists a function f : [0, 1] — S such that

(1" f is continuous,
(") £(0) = x and f(1) = y.

Since y ~z, by the definition of ~, there exists a path in S from y to z, and
hence, there exists a function g : [0, 1]+— S such that

(1) g is continuous,
(2") g(0) =y and g(1) = z. Let us define a function 4 : [0, 1] — X as follows:

; 1
h(t) = f(20) 1f?§t<2
g2t —1) if 3 <r<1.

Clearly, the range of 4 is the union of the range of f, and the range of g. Further,
since f: [0,1] — S, and g : [0,1] — S, the range of & is contained S, and hence
h:[0,1]—S.

For (1’): we have to prove that / is continuous over [0, 1], that is, % is continuous at

all points of [0, 1]. By the definition of Zover 0 <t < %, h is the composite function

of two continuous functions, namely # — 2t and f so, & is continuous at all points of

{r:0<t<4}. Similarly, h is continuous at all points of {z:3 <t<1}. So, it

remains to prove that /2 is continuous at% . For this purpose, we should calculate the

left-hand limit of h at 1, the right-hand limit of /2 at ; and h(3). If all the three values
are equal, then we can say that 4 is continuous at % In short, we have to prove:

lim h(r) = lim h(f) = h(l)
~() () 2

Here, lim,_ (- h(r) = lim,_,f(21), by the definition of /. Since #+— f(21) is a

continuous function over [0,5], lim,_1f(2) =f(2 x 5) =f(1) =y. Hence,

lim, )~ A(z) = y. Similarly, lim,_ 1)+ h(t) =lim,_, g(21 — 1) = g2() —1) =

8(0) = y.-Hencelim, - h(1) = lim,_ 1)+ h(t) = y. Further, by the definition of

h,h(%) = g(2(3) — 1) = g(0) = y. Hence, lim,_ - (1) = lim,_ 1y h(t) = h(3).
Thus, we have shown that & is continuous over [0,1]. This proves (1’)

For (2'): Here 2(0) = f(2(0)) =f(0) = x, and h(1) = g(2(1) — 1) = g(1) = z.
This proves (2'). Thus, we have shown: If x~y and y~z, then x~z. This
proves (3).

Hence, ~ is an equivalence relation over S. Hence, S is partitioned into
equivalence classes. Here, each equivalence class is called a path component of S.
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Note 4.38 Let X be a topological space. Let S be a nonempty subset of X. Now, we
shall try to prove that each path component of S is a path connected subset of X. For
this purpose, let us take any path component [a] of S, where a € S, [a] =
{x:x €S, andx~a}, and x ~ a stands for: There exists a path in S from x to a. We
have to show that [a] is a path connected subset of S. For this purpose, let us take
any x,y in [a]. We have to find a path in [a] from x to y. Since [a] is a path
component of S, [@] is an equivalence class. Since [a] is an equivalence class, and
x is in [a], x ~ a, and hence, there exists a function f : [0, 1] — S such that

(1) f:]0,1] — S is continuous,
(2") f(0) = x and f(1) = a. Clearly, the range of fis contained in [a].

(Reason: Let us take any b = f(#p) € ran f, where 7y € (0, 1). We have to prove
that b € [a], that is, a ~ b. We must find a function F : [0, 1] — S such that (i) F is
continuous, (ii) F(0) = a and F(1) = b.

Let us define F:[0,1] — S as follows: for every ¢ in [0,1], F(z) =
F(1+ (t — 1)2). Clearly, the range of [0,1] under ¢+— (1 + (o — 1)¢) is [fo, 1], and
hence, the ran F C f([to,1]) C S. Since ran F C f([to,1]) C S, F : [0,1] — S. Since
F is the composite of two continuous functions #+— (1 + (¢p — 1)z), and f; F is con-
tinuous. Clearly, F(0) =f(1+ (to — 1)0) =f(1) =a, and F(1) =f(1+ (1o — 1)1) =
fo) =b)

Since the range of f'is contained in [a], and f : [0,1] — S, f : [0, 1] — [a]. Now,
since f : [0, 1] — S, is continuous, f : [0, 1] — [a]. is continuous. Further, f(0) = x
and f(1) = a. Thus we get a path in [a] from x to a. Similarly, we get a path in
[a] from a to y. Since there exist a path in [a] from x to @, and a path in [a] from a to
y, there exists a path in [a] from x to y.

Let X be a topological space. Let S be a nonempty subset of X. Now, we shall try
to prove that if C is a path component of S, C; is path connected, and C C C; C S,
then C = C;. If C is a component of S, C; is connected, and C C C; C S, then
C = (. Let us take a path component [a] of S, and a path connected set C satis-
fying [a] C C C S. We claim that [a] = C;. If not, otherwise, let [a] be a proper
subset of C. So, there exists 7 in C such that ¢ is not in [a]. Since a € [a] C C, ais in
C. Since aisin C, tis in C, and C is a path connected subset of X, there exists a path
fin C from ¢ to a. Since fis a path in C, and C C S, fis a path in S, and hence,  is in
[a], a contradiction.

Thus, we have seen that

(i) every nonempty subset S of a topological space X is partitioned into path
components,
(i) every path component of § is path connected,
(iii) if C is a path component of S, C; is path connected, and C C C; C S then
Cc=20C.

Note 4.39 Let X be a topological space. Let S be a nonempty subset of X. We shall
try to prove: Each component of S is a union of path components of S. Let us take
any component {y:y € Sandy~a} of S, where a is in S, and y ~a stands for:
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There exists a connected subset A of X such that A C S, and y, a are in A. It is
enough to show that

{y:yeSandy~'a} C{y:yeSandy~a}

where y ~’a stands for: There exists a path in S from y to a. For this purpose, let us
take any y in LHS. We have to prove that y is in RHS, that is, y~a. By the
definition of ~, we should find a connected subset A of X such that A C S, and y,
a are in A. Since y is in LHS, y~'a. Since y~'a, by the definition of ~’, there
exists a path fin S from y to a. Since fis a path in S from y to a, fis a function from
closed interval [0,1] to S satisfying

(D fis continuous,

() f(0) =y and f(1) = a. Since f : [0, 1] — S is continuous, and [0,1] is con-
nected, so the f-image set f([0, 1]) of [0, 1] is a connected subset of X. Since
0 is in [0, 1], £(0) is in f([0,1]). Similarly, f(1) is in f([0,1]). Further,
f(0) =y and f(1) = a. Thus, f([0,1]) is a connected subset of X such that
£([0,1]) C S, and y, a are in £([0, 1]).

Note 4.40 Let X be a topological space. We shall try to show: If X is path con-
nected, then X is connected. If not, otherwise, let X be not connected. We have to
arrive at a contradiction. Since X is not connected, there exist open subsets Gy, G,
of X such that G| is nonempty, G, is nonempty, G; NG, is empty, and X =
G| UG;. Since G is nonempty, there exists a in G,. Similarly, there exists b in G,
Now, since X is path connected, there exists a continuous function f : [0,1] — X
such that f(0) = a, and f(1) = b. Since f : [0, 1] — X is continuous, and [0, 1] is
connected, the image set £([0, 1]) is connected. Here, a is in Gy, and a = f(0) €
£([0,1]), so a € GyNf([0,1]), and hence, G; Nf([0,1]) is nonempty. Similarly,
G>Nf([0,1]) is nonempty. Next, since G; NG, is empty, G; NG, Nf([0,1]) is
empty. Since G, G, are open subsets of X such that G; Nf([0,1]) is nonempty,
G, Nf([0,1]) is nonempty, G;NG>Nf([0,1]) is empty, and f([0,1]) C X =
G1UGa, f([0,1]) is not connected, a contradiction.

Definition Let X be a topological space. If for every x in X, and for every open
neighborhood U of x, there exists an open neighborhood V of x such that

i xeVvVcU,
(ii) Vis a connected subset of X,

then we say that X is a locally connected space.

Definition Let X be a topological space. If for every x in X, and for every open
neighborhood U of x, there exists an open neighborhood V of x such that

i) xevVcCu,
(i) Vis a path connected subset of X,

then we say that X is a locally path connected space.
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Note 4.41 Let X be a topological space. We shall try to prove: If X is locally
connected space, and G is a nonempty open subset of X, then each component of
G is open. Let X be a locally connected space, and let G be an open subset of X. We
have to show that each component of G is open in X. By the definition of com-
ponent, every component of G is of the form

la] = {x:x € Gandx~a}

for some a € G, where x ~ a stands for: There exists a connected subset A of X such
that A C G, x € A, and a € A. We have to show that [a] is an open subset of X, that
is, every point of [a] is an interior point of [a]. For this purpose, let us take any
x € [a]. We must find an open neighborhood V of x such that V C [a]. Since x € [d]
and [a] C G, x € G. Since x € G and G is open in X, G is an open neighborhood of
x. Since X is a locally connected space, and G is an open neighborhood of x, there
exists an open neighborhood V of x such that

D xeV Ca,
(II) Vis a connected subset of X.

We claim that V C [a].

If not, otherwise, let V ¢ [a]. So, there exists b in V such that b ¢ [a]. Since [a] is
an equivalence class of a, and b & [a], b~ a. Here, b € V C G so b € G. Similarly,
x € G. Further, since V is a connected subset of X, V C G, and x, b are in V, by the
definition of ~, x~b. Since x~b, and ~ is an equivalence relation, [x] = [b].
Since x € [a], and ~ is an equivalence relation, [x] = [a]. Since [x] = [b], and
[x] = [a], [a] = [b]. Since [a] = [b], a~ b. This is a contradiction. So, our claim is
true, that is, V C [a].

Clearly, if X is locally connected space, then each component of X is open.

Note 4.42 Let X be a topological space. We shall try to prove: If X is locally path
connected space, and G is a nonempty open subset of X, then each path component
of G is open. Let X be a locally path connected space, and let G be an open subset of
X. We have to show that each path component of G is open in X. By the definition
of path component, every path component of G is of the form

[a] = {x:x € Gandx~a}

for some a € G, where x ~ a stands for: There exists a path in G from x to a. We
have to show that [«] is an open subset of X, that is, every point of [a] is an interior
point of [a]. For this purpose, let us take any x € [a]. We must find an open
neighborhood V of x such that V C [qa].

Since x € [a], and [a] C G, x € G. Since x € G and G is open in X, G is an open
neighborhood of x. Since X is a locally path connected space, and G is an open
neighborhood of x, there exists an open neighborhood V of x such that

D xeVCa,
(II) Vs a path connected subset of X.
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It remains to prove: V C [a]. If not, otherwise, let V ¢ [a]. We have to arrive at a
contradiction. Since V ¢ [a], there exists b in V such that b ¢ [a]. Since [a] is an
equivalence class of a, and b ¢ [a], b~ a. Here, b € V C G so b € G. Similarly,
x € G. Further, since V is a path connected subset of X and x, b are in V, there exists
a path in V from x to b. Since there exists a path in Vfrom x to b, and V C G, by the
definition of ~, x~b. Since x~b and ~ is an equivalence relation, [x] = [b].
Since x € [a], and ~ 1is an equivalence relation, [x] = [a]. Since [x] = [b], and
[x] = [a], [@] = [b]. Since [a] = [b], a ~b. Thus, we get a contradiction.

Clearly, if X is a locally path connected space, then each path component of X is open.

Note 4.43 Let X be a locally path connected space. We shall try to prove that the
collection of all path components of X, and the collection of all components of X are
equal. For any a in X, let {y : y € Xandy~'a} be a path component of X, where
vy ~'a stands for: There exists a path in X from y to a. It is enough to prove that

{y:yeXandy~'a} ={y:y € Xandy~a}

where y~a stands for: There exists a connected subset A of X such that A C
G,y€ A, and a € A. We know that {y:y € Xandy~'a} C {y:y € Xandy~a}.
So, it remains to prove that

{y:yeXandy~a} C{y:yeXandy~'a} ...(x)

If not, otherwise, let there exists y* € {y:y € Xandy~a} such that
v ¢ {y:y € Xandy~'a}. We have to arrive at a contradiction. Here, y* ~ a is true
and y* ~’a is false. Since y* ~a is true, by the definition of ~, there exists a
connected subset A of X such that y*, a are in A. Since {y : y € Xandy~'y*} is the
path component of X containing y*, and X is a locally path connected space,

P={y:y€Xandy~"y"}

is an open set containing y*. Since P contains y*, and y* is in A, y* € ANP, and
therefore, A N P is nonempty.

Since X is partitioned into path components, complement of each path compo-
nent in X is a union of path components of X. Since X is a locally path connected
space, each path component is open. Since union of open sets is open, complement
of each path component in X is union of path components, and each path com-
ponent is open, complement of each path component in X is open. Since
{y:y € Xandy ~'y*} is a path component, and complement of each path com-
ponent in X is open, the complement P' of P is open. Thus, we have obtained two
open sets P and P’ such that A N P is nonempty.

Now, we shall try to prove that AN (P) in nonempty. Since y* ¢
{y:y€Xandy ~’a}, and ~’ is an equivalence relation over X,
{y:yeXandy ~'y*}(=P) and {y:y € Xandy~'a} are disjoint sets, and
therefore, {y : y € Xandy ~'a} is contained in P'. Since ~' is reflexive over X,
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ais in {y:y€ Xandy~'a}. Since a € {y:y € Xandy ~'a} CP, a is in P
Since a is in P' and a is in A, a is in AN(P'), and therefore, A N(P') is nonempty.
Since P and P’ are two open sets such that

(D PNA and P'NA are nonempty sets,
(I) PNP' NA is empty,
I AcCPuP),

by the definition of connected set, A is not a connected set. This is a contradiction.
This proves (¥). O

4.4 Smooth Manifold as Paracompact Space

Definition Let n be a fixed positive integer. Let M be a topological space. If the
following conditions are satisfied:

1. M is a Hausdorff space,

2. M is a second countable space,

3. for every x in M, there exists an open neighborhood U of x in M, and an open
subset U of Euclidean space R" such that U and U are homeomorphic, then we
say that M is a topological manifold of dimension n. In other words, M is a
topological manifold of dimension n means M is a topological space that sat-
isfies the following conditions:

1'. If x and y are distinct points of M, then there exist an open neighborhood U of
x and an open neighborhood V of y such that U and V have no common element,
2'. There exists a countable collection C of open subsets of M such that for every
neighborhood U of x, there exists a member G of C such that x € G C U,

3'. For every x in M, there exist an open neighborhood U of x in M, an open
subset U of Euclidean space R", and a 1-1 mapping ¢ from U onto U such that
¢ and its inverse ¢!, both are continuous functions.

Here, (U, @) is referred as a coordinate chart of M.

Note 4.44 Let M be a topological manifold of dimension n. We shall try to show
that M is locally path connected. For this purpose, let us take an element x in M and
an open neighborhood U of x in M. We have to find an open set V of x such that

O xevVcCcu,
(II) Vis a path connected subset of M.

Since M is a topological manifold, and x is in M so, there exist an open
neighborhood U, of x in M and an open subset U, of Euclidean space R" such that
U, and ﬁl are homeomorphic.
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Since U and U, are open neighborhoods of x, their intersection U N U;is also an
open neighborhood of x. Here that U; and U, are homeomorphic so, there exists a

1-1 mapping ¢ from U, onto U, such that ¢ and its inverse ¢!, both are continuous
~ 1-1, t .

functions. Since U N Uyis an open subset of Uy, and ¢~ ' : U11 i OU1 is con-
tinuous, (U N U, ) is an open subset of U; Since ¢(U N U} ) is an open subset of U,
and U, is an open subset of R", (U N Uy) is an open subset of R". Since UN U is
an open neighborhood of x, x is in U N Uy, and hence, ¢(x) is in ¢ (U N Uy). Since
¢(x) isin @(UNU;) and (U NU)) is an open subset of R", (U N U, )is an open
neighborhood of ¢(x) in R". So, there exists ¢ > 0 such that the open ball

B={ycR":|y— o) <e}

is contained in @(UNUy). Since B C o(UNU;) C l~/1, B is contained in U;. We
know that B is open in R". Since ¢ is a continuous function from U, onto Uy, and

B is an open subset of Uy, ¢~ (B) is an open subset of U,. Let us take ¢~ (B) for
Vin (I) and (II). So, we must prove:

O xeo'(B)CU,
() ¢ (B) is a path connected subset of M.

For (I): Since |p(x) — ¢(x)| = 0<¢, p(x) € {y e R" : |y — ¢(x)| <&} = B, and
hence, x € ¢! (B). Since U N U, is contained in U}, (U NU;) C ¢(U). Since
BC o(UNU,) C ¢(U), BC ¢(U) and hence ¢! (B) C U. This proves (I).

For (IT): We have to prove that ¢! (B) is a path connected subset of M. For this
purpose, let us take any a and b in ¢ ~!(B). We have to find a path fin M from
a to b, that is, we have to find a continuous function ffrom closed interval [0, 1]
to M such that f(0)=a and f(1)=5b. Consider the function
f:[0,1]— M defined by f(t) = ¢~ ((1 — t)p(a) + to(b)) for every ¢ in [0, 1].

Here, t— ¢~ '((1 — t)p(a) + te(b)) is a composite function of two functions
t— (1 —1t)p(a) + te(b) and @~ '. Since a is in ¢~ '(B), ¢(a) € B, and hence, by
the definition of B,|p(a) — ¢(x)|<e. Similarly, |@(b) — ¢(x)|<e. Since
|p(a) — p(x)|<e, and |@(b) — @(x)| <, for every ¢ satisfying 0 <7< 1, we have

[((1 =)o) +10(b)) =) = [(1 = 1)(¢(a) — @(x)) + 1(p(b) — @(x))|
(1 =1)lp(a) = e(x)| +tlo(b) — ¢(x)|
(I1-te+te=ce.

AN

It follows, by the definition of B, that t — (1 — )@(a) + t@(b) is a function from
[0,1] to B. Since t+— (1 — t)¢(a) + to(b) is a function from [0,1] to B(C U, ), and
@' U — U, C M, their composite 1— ¢~ ((1 — 1)¢(a) + to(b)) maps [0, 1] to
M. Since t+— (1 —t)p(a) + to(b) and ¢! both are continuous, their composite
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function ¢ @ '((1 —1)¢(a) +to(b)) is continuous. Further, since f(¢) =
o (1 = t)p(a) +te(b)) and , t+— @~ ((1 —t)@(a) + te(b)) is continuous, f :
[0, 1]+ M is continuous. Also f(0) = @' ((1 — 0)p(a) +0¢(b)) = ¢~ (p(a)) =
a, and f(1) = ¢ 1((1 — )p(a) + Lo(b)) = ¢ ' (@(b)) = b. Thus fis a path in
M from a to b. This proves (II).

Note 4.45 Let M be a topological manifold of dimension n. We shall try to prove:

(i) M is connected if and only if it is path connected.
(i) The collection of all path components of M is equal to the collection of all
components of M.
(iii) M has countable many components, each of which is an open subset of M,
and a connected topological manifold.

For (i): Let M be path connected. We have to prove that M is connected. Since
M is path connected, M is a path component. Since M is a topological manifold,
M is locally path connected. Since M is locally path connected, and M is a path
component, M is a component. Since M is a component, M is connected.
Converse: Let M be connected. We have to prove that M is path connected.
Since M is connected, M is a component. Since M is a topological manifold,
M is locally path connected. Since M is locally path connected, and M is a
component, M is a path component. Since M is a path component, M is path
connected.

This completes the proof of (i).
For (ii): Since M is a topological manifold, M is locally path connected. Since
M is locally path connected, the collection of all path components of M is equal
to the collection of all components of M. This proves (ii).
For (iii): We have to prove that M has countable many components. If not,
otherwise, let M has uncountable many components. We have to arrive at a
contradiction.

Let C be a component of M. Since M is a topological manifold, M is locally path
connected. Since M is locally path connected, and C is a component of M, C is a
path component. Since M is locally path connected, and C is a path component, C is
open in M. Since C is open in M, and a is in C, C is an open neighborhood of a in
M. Since M is a topological manifold, M is a second countable space. Since M is a
second countable space, there exists a countable collection C of open subsets of
M such that for every neighborhood U of x, there exists a member G of C such that
x € G C U. Now, since C is an open neighborhood of a, there exists a member G of
C such that x € G C C.

Thus, we see that corresponding to each component C, there exists a member
G of C such that G is contained in C. Since M is partitioned into components, each
component contains a member of C, and the collection of all components is
uncountable, the collection C is uncountable. This is a contradiction. This proves
that M has countable many components.
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Now, let us take a component C. We have to prove that C is open and connected.
Since M is a topological manifold, M is locally path connected. Since M is locally
path connected and C is a component of M, C is a path component. Since M is
locally path connected, and C is a path component, C is open in M. Since C is a
component, C is connected. Hence, C is open and connected.

Lastly, we have to show that C is a topological manifold of dimension n, where
topology on C is the induced topology of M. Since C is an open subset of topo-
logical space M, under induced topology of M, open subsets of C are exactly those
subsets of C which are open in M. By the definition of topological manifold, we
must prove:

1. C is a Hausdorff space,
2. Cis a second countable space,

3. for every x in C, there exist a neighborhood U, of x in C, and an open subset U,
of Euclidean space R" such that U; and U, are homeomorphic:

For 1: Since M is a topological manifold, M is a Hausdorff space. Since M is a
Hausdorff space, and C is a subspace of M, C is a Hausdorff space. This proves 1.
For 2: Since M is a topological manifold, M is a second countable space. Since
M is a second countable space, and C is a subspace of M, C is a second
countable. This proves 2.

For 3: Let us fix any a in C. We have to find an open neighborhood U, of a in C,
and an open subset U, of Euclidean space R" such that U; and U, are
homeomorphic.

Since a is in C, and C is contained in M so, a is in M. Since a is in M, and M is a
topological manifold, there exists an open neighborhood U of a in M, an open
subset U of Euclidean space R", and a 1-1 mapping ¢ from U onto U such that o
and its inverse (p’l, both are continuous functions. Since « is in C, and C is open,
C is an open neighborhood of a. Since C is an open neighborhood of a, and U is an
open neighborhood of ¢, CN U is an open neighborhood of a, and CN U is con-
tained in U. Here, function ¢ from U to U is 1-1, so its restriction ¢|., to CNU

is also 1-1. Since function ¢ from U to U is continuous, its restriction ¢| cnu to

. . . . ~ 1—1,onto . .
CNU is also continuous. Since the mapping ¢! : U —— U is continuous, and

CNU is an open subset of U, (CNU) is open in U. Since @(CNU)isopenin U,
and U is open in R", o(CNU) is open in R” Since ¢ : U — U is a homeomor-
phism, CNU is an open subset of U, and ¢(CNU) is an open subset of U,
Olcny 1 CNU — o(CNU) is a homeomorphism. This proves 3.

Note 4.46 Let X be a second countable space. We shall try to show that every open
cover of X has a countable subcover. Let G be an open cover of X. We have to find a
countable subcover of G. Since X is a second countable space, there exists a basis 5
of X such that B is countable. Put
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By ={U : U € B,and there exists G € Gsuch thatU C G}.

Since B; C B, and B is countable, B; is countable. Now, we shall try to show
that B, is a basis of X. For this purpose, let us take any open neighborhood G of x in
X. We have to find a member U of B; such that x € U C G.

Since x is in X, and G is a cover of X, there exists G, in G such that x is in Gj.
Since G, is in G, and G is an open cover of X, G| is open. Since G is open, and x is
in G1, Gy is an open neighborhood of x. Since G is an open neighborhood of x, and
G is an open neighborhood of x, their intersection G; N G is an open neighborhood
of x. Since G; NG is an open neighborhood of x, and B is a basis of X, there exists
Uin Bsuchthat xe UC GiNG CG. Since U C GiNG C Gy, U C G, Since
Uisin B,G; € G, and U C Gy, by the definition of B, U is in 3;. Thus, we have
shown that /3; is a basis of X.

By the definition of By, for each U in By, the set {G: G € G,and U C G} is
nonempty, and hence, we can choose a unique Gy in G such that U C Gy. Put

g E{GU : UEBl}.

We shall try to show that G, is a countable subcover of G. Since B is countable,
by the definition of G, G, is countable. Clearly, G; C G. It remains to prove that G;
is a cover of X. For this purpose, let us take any x in X. We have to find a member of
G, that contains x.

Since X is an open neighborhood of x, and B, is a basis of X, there exists U in B,
such that x € U C X. Since U is in By, by the definition of G, Gy € Gy, and hence
U C Gy.Sincex € U, and U C Gy, x € Gy, where Gy € G,. Thus, G, is a cover
of X. Thus, we have shown that G; is a countable subcover of G.

Lemma 4.47 Let M be a topological manifold of dimension n. Then, there exists a
countable collection {(Uy, @), (Ua, @,), (Us, ¢3), ...} of coordinate charts of M
such that

1. {Uy,U,,Us,...} is a basis of M,
2. each ¢;(U;) is an open ball in R",
3. each closure U; of U; is a compact subset of M.
Proof Let C be the collection of all coordinate charts (U, ¢) of M. Since M is a
topological manifold, {U : (U, @) € C} is an open cover of M. Since M is a
topological manifold, M is second countable. Since M is a second countable space,
and {U : (U, ¢) € C} is an open cover of M, there exists a countable subcover
{U,,U,,U3,...} of {U:(U,p)eC}. Here, U, €{U,U,Us,...}C
{U:(U,p) €C}, Uy €{U: (U,p) € C}, and hence, there exists a function ¢,
such that (Uy, ¢,) € C. It follows that there exists an open subset U, of R" such
that ¢, : U — U, is a homeomorphism.

Let B be the collection of all open balls B,(x) with center x and radius r such that
r is a positive rational, and each coordinate of x is a rational number. We know that
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B is a basis of R". Since the set of all rational numbers is countable, the collection 5
is countable. Let B, be the collection of all B,(x) € B such that the closure (B, (x))"~

of B,(x) is contained in U,. We shall try to show that B is a basis of U,.

For this purpose, let us take any open neighborhood V of y such that V is
contained in U,. Since V is an open neighborhood of y, and B is a basis of R", there
exists an open ball B, (x,) in B such that y € B, (x,) C V, where r, is a positive
rational, and each coordinate of x, is a rational number. Since y € B, (xy),
|y — x,| <ry. There exists a positive rational number s, such that [y — x,| <s, <r,.
Hence, y € By (x,) C (B, (x,))” C{z:|z—x,|<s} CBy(x) CVC U,. Since
sy is a positive rational, and each coordinate of x, is a rational number, B;, (xy) is in
B. Since By (xy) is in B, and (B, (x,))” C U, By, (x,) is in By. Also y € By (x,) C
V7 and By, (xy) is an open neighborhood of y, Biis a basis of l~/1. Thus, we have
shown that /3| is a basis of ﬁl.

Since B is countable, and B; is contained in B, B is countable. Thus, B is a
countable basis of Uj. Let us take any B,(x) in B;. Since B,(x) is in By, and B, is a
basis of Uy, B,(x) is an open ¢ subset of the open set U;. Since B,(x) is an open

subset of Uy, and ¢, : Uy — U, is a homeomorphlsm @7 " (B,(x)) is open in U,.
Since ¢! (B.(x)) is open in U;, and ¢, : Uy — U; is a homeomorphism, the
restriction (Pl‘(pl"(B,(x)) : o7 '(B,(x)) — B,(x) is a homomorphism. Thus, the
ordered pair (¢! (B,(x)), ¢, |¢;1(B,(x))) is a coordinate chart of U;.

Since B; is countable, the collection { (¢! (B, (x)), (P1|wf‘<3r(x))) : B.(x) is in By}
of coordinate charts is countable. Thus, {(¢;!(B,(x)), ¢ |(p;1(3r<x>)) : B,(x)is in B}

is a countable collection of coordinate charts of M.
Now, we shall try to prove that

1. {@7'(B,(x)) : B,(x)is in By} is a basis of Uy,

2. for each B,(x)in By, ((p1|¢;1(3’_(x>))((p1‘1(B,(x))) is an open ball in R",

3. for each B,(x)in By, the closure (¢;'(B,(x)))” of ¢;!(B.(x)) is a compact
subset of Uj.

For 1: Since ¢, :U;— Ul is a homeomorphism, B; is a basis of U1,
{o7'(B+(x)) : B.(x)is in B} is a basis of Uj.

For 2: Since ((pl|(p171(3r<x)))((p1‘1(Br(x))) = B,(x), and B,(x) is an open ball in
R", ((p1|(p;1(3’_(x)))(gof1(B,(x))) is an open ball in R".

For 3: Since, for each B,.(x) in By, (B,(x))” C Ui, ot U, — U, is continu-
ous, and, by Heine-Borel theorem, (B,(x))” is compact, ¢;'((B,(x))")
(= (¢7'(Br(x)))") is compact, and hence, (¢;'(B,(x)))” is a compact subset
of U,. Here, UQE{Ul,Uz,Ug,,. }C{U (U (p)EC} N¢J U, €
{U : (U, ¢) € C}, and hence, there exists a function ¢, such that (U, (pz) ecC,
and hence, there exists an open subset U2 of R", such that ¢, : Uy — UQIS a
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homeomorphism. Let 53, be the collection of all B,(x) € B such that the closure
(B/(x))” of B,(x) is contained in U,

As above, {(03(B,(x)), ¢
of coordinate charts of M such that

-\ (B,(v))) * Br(x)is in By} is a countable collection

(@) {@;'(B(x)): B,(x)is in By} is a basis of Uy,

(b) for each B,(x)in Ba, (¢],-1(5,())) (¢2 ' (B-(x))) is an open ball in R",

(c) for each B,(x)in B, the closure (¢5!(B,(x)))” of ¢;'(B,(x)) is a compact
subset of U,, etc.

Since the countable union of countable sets is countable, the collection
Uz, {(; 1(B,(x)), @il g1 (,(x))) : Br(x)is in B;} of coordinates charts is countable.

It remains to prove that

L UZ {¢;'(B.(x)) : B.(x)is in B;} is a basis of M,
II. for eachi=1,2,3,..., and for each B,(x)in B;, ((pi|(p;‘(B,(x)))(¢;1(Br(x))) is
an open ball in R",
II. foreachi=1,2,3,...,and for each B,(x) in B;, the closure (goi’l (B/(x)))” of
@; ' (B+(x)) is a compact subset of M, etc.

ForI: Let G be any open neighborhood of @ in M. Since {U,, Uy, Us, ...} isacover
of M, there exists a positive integer i such that a € U;. Since U; N G is an open
neighborhood of a, U; N G is contained in U;, and {¢; ! (B,(x)) : B,(x) is in B;}is
a basis of Uj, there exists B,(x) in B; such that a € ¢; ' (B,(x)) C U;:NG C G.
This shows that U {¢; ! (B,(x)) : B,(x) is in B;} is a basis of M.

For II: This is clear.

For III: This is clear. O

Note 4.48 Let M be an m-dimensional topological manifold. Let p € M. Let U be
an open neighborhood of p. We shall try to prove: There exists an open neigh-
borhood V of p such that V— C U. Since M is an m-dimensional topological
manifold so, by Lemma 4.47, there exists a countable collection
{(U1,0,), (Uz, ¢,), (Us, ¢3), ...} of coordinate charts of M such that

1. {U,U,,Us,...} is a basis of M,
2. each ¢;(U;) is an open ball in R,

3. each closure U; of U; is a compact subset of M.

Since U is an open neighborhood of p, and {U,,U,, Us,...} is a basis of M,
there exists a positive integer k such that p € U, C U. Here ¢, (Uy) is an open ball
in R™, and ¢ (p) € @(Uy), there exists a real number r > 0 such that the closed
ball B,[¢,(p)] C ¢ (Ux), and hence, ¢;'(B,[@(p)]) C Uk. Since (Uy, ) is a
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coordinate chart of M, ¢, : Uy — ¢,(Uy) is a homeomorphism. Since ¢, : Uy —
¢r(Uy) is a homeomorphism, ¢;!: ¢ (Uy) — Uy is continuous. Since ¢! :
¢ (Ux) — Uy is continuous, and B,[¢,(p)] is compact, ¢; ' (B[ (p)]) is compact.
Since M is topological manifold, the topology of M is Hausdorff. Since the topology
of M is Hausdorff, and ¢, ' (B,[¢.(p)]) is compact, ¢, ' (B,[¢,(p)]) is closed in M.
Clearly, ¢;'(B,(¢(p))) is an open neighborhood of p, and ¢; ! (B,(¢x(p))) C
o (B [@c(p)]). Let us take ¢, '(B-(¢,(p))) for V. Thus, V is an open neighbor-
hood of p, and V C ¢ '(B.[pi(p)]). Since V C o7 (B, [oi(p)]), and
o (Bl (p)]) is closed in M, V= C ¢ (B [@i(p)]) C Uy C U. Thus, V- C U.

Lemma 4.49 Let M be an n-dimensional smooth manifold. Then, there exists a
countable collection {(Uy, ®,), (U2, ®,), (Us, @3),...} of admissible coordinate
charts of M such that

1. {Uy,U,,Us,...} is a basis of M.
2. each ¢;(U;) is an open ball in R",
3. each closure U; of U; is a compact subset of M.

Proof Let C be the collection of all admissible coordinate charts (U, ¢) of M. Since
M is a smooth manifold, {U : (U, @) € C} is an open cover of M. Since M is a
smooth manifold, M is second countable. Since M is a second countable space, and
{U:(U,p) €C} is an open cover of M, there exists a countable subcover
{U1,U,,Us,...} of {U: (U, @) € C}.

Here, U; € {U,U,,U;,...} C{U: (U,p) €C}, U € {U: (U,p) €C}, and
hence, there exists a function ¢;, and an open subset U, of R" such that
@, : Uy — Uy, and (Uy, ;) € C. Let B be the collection of all open balls B,(x)
with center x and radius r such that r is a positive rational, and each coordinate of
x is a rational number. We know that B is a basis of R". Since the set of all rational
numbers is countable, the collection B is countable. Let /3] be the collection of all
B,(x) € B such that the closure (B,(x))” of B,(x) is contained in U;.

We shall try to show that B is a basis of U,. For this purpose, let us take any
open neighborhood V of y such that V is contained in U,. Since V is an open
neighborhood of y, and B is a basis of R", there exists an open ball B, (x,) in 3 such
that y € B, (x,) C V, where r, is a positive rational, and each coordinate of x, is a
rational number. Since y € B, (x,), |y — x,| <ry. There exists a positive rational
number s, such that [y—x|<s,<r,. Hence, yc B(x,) C (By(x)) C
{y:ly—x|<s,} CB,(x,) CVCU,. Since s, is a positive rational, and each
coordinate of x, is a rational number, By (x,) is in B. Since By (x,) is in B, and
(By,(x,))” C Uy, By(x,) is in By. Also y € By (x,) C V, and By (x,) is an open
neighborhood of y, By is a basis of U,.

Thus, we have shown that 31 is a basis of U 1. Since B is countable, and B, is
contained in B3, B, is countable. Thus, B; is a countable basis of U,. Let us take any
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B, (x) in By. Since B,(x) is in By, and B, is a basis of l~]1, B,(x) is an open subset of
the open set U,. Since B,(x) is an open subset of U1, and ¢, : U} — U, is a
homeomorphism, ¢;!(B,(x)) is open in U,. Since ¢;'(B,(x)) is open in U, and
@, : Uy — U, is a homeomorphism, the restriction ¢| 0T (B() | o7 (B (x)) —
B,(x) is a homomorphism. Thus, the ordered pair (¢;!(B,(x)), §01|(p;1(3,(x))> is a
coordinate chart of U;.

Now, we want to show that (¢ (B,(x)), ¢, |¢;1(B,(x))) € C. For this purpose, let
us take any (W, ) € C. Now, we must prove that

(("’1|w;‘wr<x>)> ° Wl) (o7 (B.(x))) N W)
= (@1lg .y ) (07 (BL2) W),

and

(l// ((Pl|¢] B.( ))_l) : (401|4);1(B,.(x)))(((Pl_l(Br(x)))QW)
— ¥ ((@ ' (B(x) N W)

are C™. Let us take any (yi,...,y) € ¥((¢7'(B-(x))) N W). So, there exists p in

(o7 (B-(x)))NW such that ¥(p) = (y1,...,y), and hence v, ) =D,
and p € ¢;!(B,(x)). Now,

(((/)1|(p ( )) lp )(y17" 7y")
B, ( ) (yla . -7)’11)) = (q01|(pl (B, (x )))(p)
(pl(l// l(yla"'ayn)) (@l Ow ) ylw"»yn)

@ (
< q)lolp (o7 (B()))mW))b)l"”’y”)’

80 (@1]4-1(5,(x))) © Y= (o0 ¢71)|¢((QFI(B,(X)))QW)'Since(U17 @) €C,(W,¥) €
C, and C is the collection of all admissible coordinate charts of M, (¢, oy ') :
Y(UiNnW) — ¢ (U NW) is C®. Since ¢;'(B,(x)) is an open subset of Uj,
¥ (@ (B-(x))) N W) is an open subset of y(U; N W). Since ¥/((p7 ' (B-(x))) N W)
is an open subset of y(U; N W), and (¢, oy~ ") : l,b(Ul NW)— o (U NW)isC>,
(@1 0% yitor 8,000 nw) (= (@1l (8,(0)) 0 ¥') is €, and hence, (@] 15, 1))
oy~ ! is €. Thus, we have shown that ((q)l|w('(3r(X))) o™ (o7 ( (%))
W) = (91]:1(5,09) (901 (B-(x))) N W)is €. Similarly, (¥ 0 (¢1]1¢s, () ) -

(@1l 1(8,00) (@7 (B (X)) N W) — (7 ! (B:(x))) N W) is C. Thus, (<P1 (Br
(x)), <P1|¢;1(B,.(x)>) eC.
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Since B is countable, the collection {(¢;!(B,(x)), ¢, lp-1(8,(x))) * Br(x)isin B}
of coordinate charts is countable. Thus, { (¢! (B,(x)), ¢, |¢f1<3'_(x)>) : B.(x) is in By}

is a countable collection of admissible coordinate charts of M. Now, we shall try to
prove that

1. {¢;'(B/(x)) : B,(x)is in By} is a basis of Uy,

2. for each B.(x)in By, (¢, |w(‘(Br(x)))(‘Pfl(B’(x))) is an open ball in R",

3. for each B,(x)in By, the closure (¢7'(B.(x)))” of ¢;'(B,(x)) is a compact
subset of Uj.

For 1: Since ¢, :U; — lel is a homeomorphism, B; is a basis of l~]1,

{o7"(B,(x)) : B,(x)isin B} is a basis of Uj.

For 2: Since ((pl|¢II(BI_<X)))((/)1’1(B,(x))) = B,(x), and B,(x) is an open ball in

R", (gol|(P;1(B/_(X)))(go1’1(Br(x)))is an open ball in R".

For 3: Since, for each B, (x) in B, (B,(x))” C Uy, ;' : U — U, is continuous,

and, by Heine-Borel theorem, (B,(x))” is compact, ¢;'((B,(x)))(= (¢;"

(B,(x)))") is compact, and hence, (¢ (B,(x)))" is a compact subset of Uj.

Here, U, € {U1, Uy, Us,...} C{U: (U,p) €C}, Uy € {U: (U, ) € C}, and
hence, there exists a function ¢, such that (U,, ¢,) € C, and hence, there exists an
open subset U, of R” such that @, Uy — U,isa homeomorphism. Let B, be the
collection of all B,(x) € B such that the closure (B,(x))~ of B,(x) is contained in U,.

As above, {(¢5!(B,(x)), (pz\(pgl(wx))) : B,(x) is in B} is a countable collection

of admissible coordinate charts of M satisfying

(@) {@;'(B,(x)):B,(x) is in By} is a basis of Ua,
(b) for each B, (x)in Ba, (¢l-1(5,(x))) (92! (B-(x))) is an open ball in R",

(¢) for each B,(x)in By, the closure (¢;'(B,(x)))” of ¢;'(B.(x)) is a compact
subset of U,, etc.

Since the countable union of countable sets is countable, the collection
Uz, {(o; (B, (x)), ®ilp1(,(x)))  Br(x) is in B;} of admissible coordinates charts is
countable. It remains to prove that

L UX {¢;'(B.(x)) : B,(x) is in B;} is a basis of M,

II. foreachi=1,2,3,..., and for each B,(x) in B;, (goi|(p;1(3y(x>))(goi’1(B,(x))) is
an open ball in R",

1. foreachi=1,2,3,...,and for each B,(x) in B;, the closure (¢; !(B,(x)))” of
@7 (B,(x)) is a compact subset of M, etc.
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ForI: Let G be any open neighborhood of ain M. Since {U, Uy, Us, . . .} isacover
of M, there exists a positive integer i such that a € U;. Since U; N G is an open
neighborhood of @, U; N G is contained in U;, and {¢; ' (B,(x)) : B,(x) is in B;}is
a basis of U, there exists B,(x) is B; such that a € ¢; ' (B,(x)) C U;:NG C G.
This shows that U, {¢; ! (B(x)) : B,(x) is in B;} is a basis of M.

For II: This is clear.

For III: This is clear. U

Definition Let X be a topological space. Let U be a collection of subsets of X. If for
every x in X, there exists an open neighborhood G of x such that

{U:U €U and U N Gis nonempty }

is a finite set, then we say that U is locally finite. In other words, U is locally finite
means for every x in X, there exists an open neighborhood G of x such that all
members of U except finite many are “outside” G. In short, if for every x in X, there
exists an open neighborhood G of x such that G intersects only finite many
members of U/, then we say that U{ is locally finite. Clearly, every subcollection of a
locally finite collection is locally finite.

Note 4.50 Let X be a topological space. Let I/ be an open cover of X. Let each
member of U intersects only finite many members of I/. We shall try to show that I/
is locally finite. For this purpose, let us take any x in X. Since x is in X, and U is a
cover of X, there exists G in U such that x is in G. Since G is in U, and U/ is an open
cover of X, G is open. Since G is open, and x is in G, G is an open neighborhood of
x. Since G is in U, and each member of I/ intersects only finite many members of I/,
G intersects only finite many members of /. This proves that I{ is locally finite.

Lemma 4.51 Let M be a topological manifold. There exists a countable collection
{G1, G, Gs, ...} of open sets such that

1. {G1,G,,Gs,...} is a cover of M,
2. {Gy,Gy,Gs, ...} is locally finite,
3. for each n = 1,2,3, ..., the closure G, of G, is compact.

Proof By Lemma 4.47, there exists a countable collection {(Uj, ¢,), (U, ¢5),
(Us, @3), ...} of coordinate charts of M such that

(i) {U;,U,,Us,...} is a basis of M,
(ii) each closure U, of U, is a compact subset of M.

Put B] = Ul .

By (i), clearly {U,, U,, Us,...} is an open cover of M. Since B; = U, B] =
Uy . Since B; = Uy, and U; is compact, B} is compact. Since {U;, U,, Us, ...} is
an open cover of M, and By is compact, there exists a positive integer m; > 1 such
that By C UyUU,U---UU,,.
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Put B, = U1 UU,U---UUy,. Since B, = U UU,U---UUy, B, = (U UU,
U---UUp) = (U;)UUy)U---U(U, ). Since each of Uy,Uy,..., U, is
compact, the finite union (U ) U(U; )U---U(U,, )(= B;) is compact, and hence,
B; is compact. Since {U,,U,,Us, ...} is an open cover of M, and Bj; is compact,
there exists a positive integer my > m; > 1 such that B, C Uy U U, U---U U, U
<o UUp,.

Put B3 = Uy UU U --UUy,. Since B3 = Uy UU,U---UU,,, By = (U,UU,
U---UUp,) = (Ur)UUy)U---U(U,, ). Since each of Uy,Uy,...,U, is
compact, the finite union (U ) U(U; ) U---U(U,, )(= By) is compact, and hence,
B; is compact. Since {U;, U, Us, ...} is an open cover of M, and B is compact,
there exists a positive integer m3 >my >my; >1 such that By C UjU
UsU---UUp U UUp, U+ U Up,.

Put B, = U1 UUp U+ - - U Upy,, etc. Clearly

(a) for every positive integer n, U, C By,
(b) {Bi,B2,Bs,...} is an open cover of M,
(¢c) BijCcB,CByC---,
(d) each closure B, of B, is a compact subset of M,
(e) for every positive integer n, B, C B, C B,.
Put Gy =B;,G, = B;,G3 = B3 — (Bf), Gy = By — (B;), Gs =Bs — (B;), etc.
Clearly {G;, G2, Gs3,...} is a countable collection of open sets (see Fig. 4.1).
It remains to prove that

1. {Gi,G,Gs,...} is a cover of M,
2. {G1,G3,Gs,. ..} is locally finite,

3. foreach n =1,2,3,..., the closure G, of G, is compact.
P —— t g t o

By B~ B, B,” By By~ B, B, Bs
b

Gy

{ i

Gz a 5

Gs

Gy

Gs

Fig. 4.1 A countable collection of open sets
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For 1: This is clear.

For 2: Here, {Gy,G2,G3,...} is an open cover of M, and each member of
{G1,G,,G3,...} intersects only finite many members of {G;,G>,Gs,...},
{G1, G, G3, ...} is locally finite.

For 3: Since G| = By, G| = B} . Since B| is compact, G| is compact. Since
G, = B,, G, = B;. Since B; is compact, G, is compact. Since Gz C By,
G5 C B3 Since the closed set G5 is contained in the compact set By, G5 is
compact. Since G4 C B, , G, C By . Since the closed set G, is contained in the
compact set B, , G, is compact, etc. This proves 3. O

Definition Let X be a topological space. Let A, B be open covers of X. By A is a
refinement of B we mean: For every A in A, there exists B in B such that A C B.

Lemma 4.52 Let M be an m-dimensional smooth manifold. Let X be any open
cover of M. There exists a countable collection {(Uy, ¢,), (Ua, @,), (Us, ¢3),...}
of admissible coordinate charts of M such that

. {U,, Uy, Us, ...} covers M,

. U1, Uy, Us, ...} is locally finite,

. U, Uz, Us, ...} is a refinement of X,

each ¢,(U,) is equal to the open ball B3(0),

- {7 (B1(0)), 931 (B1(0)), 95 (B1(0)),...} covers M.

I N

Proof Since M is a smooth manifold, M is a topological manifold, and hence, by
Lemma 4.51, there exists a countable collection {G1, G2, G3, . ..} of open sets such
that

a. {G1,G,,Gs,...} is a cover of M,
b. {Gy, G, Gs,...} is locally finite,
c. foreach n =1,2,3,.. ., the closure G, of G, is compact.

Let us fix any p in M. Since {Gy, G>,Gs3, ...} is locally finite, and p is in M,
there exists an open neighborhood W, of p such that

{Gk : Gy N W,is nonempty}

is a finite set.

Since p € Wy, {Gr :p € Gk} = {Gr : p € GxNW,} C {Gy : Gx N W, is nonempty}.
Since {Gy : p € Gi} C {Gi : Gx W, is nonempty}, and {Gy : Gy N W, is nonempty }
is finite, {Gy : p € Gy} is finite. Since {G1, G,,G3, ...} isacoverof M, andp € M,
{Gy : p € G} is nonempty. Since {Gy : p € Gy} is a nonempty finite collection of
open neighborhoods of p, M,eg, Gi is an open neighborhood of p.
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Since X’ is an open cover of M, and p is in M, there exists X, in X" such that
p € X,,. Since X is an open cover of M, and X, is in X, X, is open. Since X), is open,
and p € X,,, X,, is an open neighborhood of p.

Since p is in M, and M is a smooth manifold, there exists an admissible coor-
dinate chart (V,,, ¢,) of M such that V, is an open neighborhood of p.

Since Npeg, G is an open neighborhood of p, W, is an open neighborhood of p,
X, is an open neighborhood of p, and V), is an open neighborhood of p, their
intersection (Nyeg, Gk) N W, N X, NV, is an open neighborhood of p.

Since (V,,®,) is an admissible coordinate chart of M, (N,eq, Gr) "W, NX,
NV, CV,, and (Npeg, Gx) "W, N X, NV, is an open neighborhood of p, the pair
((Mpece Gt) NWp N Xy N Vi, @)1, 6w, nx,ny,) I8 an admissible coordinate
chart of M. Since ((Myeg, Gk)NW,NX,NV,, q’p|(npgck Gnw,nx,nv,) is an
admissible coordinate chart of M, and p € (Nyeq, Gk) N W, N X, NV,, there exists
an admissible coordinate chart (U,, ) such that U, C (Mpeg, Gx) "W, NX, NV,
U, is an open neighborhood of p, ¥,(U,) = B3(0), and ¥,(p) = 0. Thus, ¥, :
U, — B53(0) is a homeomorphism.

Since U, C (Mpeg, Gr) "W, NX, NV, C W,, and {Gy : Gx N W, is nonempty }
is a finite set, {Gy : Gx N U,is nonempty} is a finite set.

It is clear that

if g € Gy, then U, C Gy,.

(Reason: Let g € Gy,. Since g€ Gy,, U, C (Ngeg, Gx)NW,NX, NV, C
(Ngea, Gx) C Gy,.)

Since (U,,,) is a coordinate chart, and ,(U,) = B3(0), ¥, : U, — B3(0) is
continuous. Since V,, : U, — B3(0) is continuous, and B;(0) is an open subset of
B;5(0), (t//p)fl(Bl(O)) is open in U,. Since (tﬁp)fl(Bl(O)) is open in U,, and U, is
open in M, (1//[,)71(31(0)) is open in M. Since Y,(p)=0¢€B(0), pe
(x//p)fl(Bl(O)). Thus, (xpp)fl(Bl(O)) is an open neighborhood of p. Since ¥, :
U, — B3(0), and By(0) C B3(0), (¥,) ' (B1(0)) C U,.

Since for every p in M, (ll/p)fl(Bl(O)) is an open neighborhood of p, the
collection {(x//p)fl(Bl(O)) :p€Gy} is an open cover of G;. Since
{(zpp)“ (B1(0)) : p € Gy } is an open cover of G|, and G is compact, there exists
finite many pii,pi2,....,p1, € Gy such that G| C (l//p“)_l(Bl(O)) U(lﬁm)_]
(B1(0)U--- U, )~ (Bi(0)) C Uy, U, U--- Uy,  where  (Up,,,¥p,),
(Upis¥ps)s - -5 (Upyy, s Wy, ) are admissible coordinate charts of M.
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Similarly, there exists finite many py,pa»,...,pa € G, such that G, C
Upyy UUpy, U+~ UUp, , etc. Cleatly, (Up,,¥,,)s (Upns¥p,,)s- - (Upy, s plkl),

(UI’ZI7 P21)7 (Upzz7wpzz)7 Tt (Up2kz’lppzkz)7 (Up317¢p31)7 (Upszﬂ Psz)’ ) (UP3k3’ P3k3>7 ce
constitute a countable collection of admissible coordinate charts of M.

For 1: Since Gi C Gy C () (Bi(0)U(¥,,) ' (B1(0)) U+ U, )"
(B1(0)) C Uy, UUp, U+ UUp,, , G2 C Gy C (¥,,) (B1(0)) U(,,,) ' (B1(0))
u---u(x//kaz)“(Bl(O)) C Upy UUpy U+ UUp, ..., and {G1,Gy, G, -} is
acoverof M, {Up,,, Upyys - - Upy s Upsis Upys -« o Uy s Upsy s Upgyy -y Upyy s}

is an open cover of M.
For 2: We have to prove that {U,,,U,,,..., Upii,» Upsis Upsys s Upy, s

U,,,U U, -} is locally finite.

P31y ¥ P32yttt Y P3ks

Since {Gy, Gz, Gs,...} is a cover of M, and p;; € M, there exists a positive
integer n1; such that py; € G,,,. Since p1; € Gy,,, Uy, C G,,,. Similarly, there
exists a positive integer ni such that U,, C G,,,, etc.

Since {Upy,, Uppys -+ s Upii s Upsis Upsas -3 U s Ups s Upys ooy Upg -1} s @
cover of M, and each U, is contained in Gy, {Guy\; Guyys - -+, Gy, s Gy Gy - - -
Gy, Gy Gy - -+ Gy, - -} is @ cover of M. Since {G1, G, Gs, ...} is locally
finite, and {Gy,,,Guys- - Guy, s Ginys Gisss - 5 Gy s Gy Gy -+ 4 G5 -+ -} C
{G1,G2,Gs,...}, {Guy, Gus -GGy G+ Gy Gy Gy -+« G-} 18
locally finite.  Since  {Gy,,, Gupys -+ s Gy, s Gioys Gags - - 3 Gy s Gy Gy s -+ -
Gy, ,---} is locally finite, and each U, is contained in Gy,
{Upis Ui+ s Upii s Ups s Upn s+ < Upy , Upy s Upy -+ Uy, s -} s locally finite.

For 3: We have to show that the open cover {Up,,Up,,.-- Up,,
Upsis Upsss -+ s Upygy s Upsyy Upss s+« oy Upy, - - .} is arefinement of the open cover X'

Here UPH c (mPnEGk Gk) N Wml mXpu N Vpll c XlJn € X. Thus, UPH - XPH S8
Similarly, U,,, C X, € X, etc.

For 4: This is clear.
For 5: We have to show that

{l//p_,:(Bl(O))v %:11(31(0)), ) l//p_lil (BI(O))7 l//,;{ (BI(O))7 l//p_Z;(Bl(o))7 cen l//[jz:z (BI(O))’ i }

covers M.

Since Gy € Gy € ()" (B1(0)) U(Yp) ™ (B1(0)) U+~ Ulty, ) (B1(0)),
G2 C G; - (szl)il(Bl(O)) U(lppzz)il(Bl(O)) '“U(lrb‘1721(2)71(31(0))7'"a and
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{G1,G,,G3,---} is a cover of M, {ijf(Bl(O)),np;é(Bl(o)),--~,lp;1il(Bl
(0)),%;,.}(B1(0)), ¥, (B1(0)), -, ¥} (Bi(0)), -} is a cover of M. O

p21 P22 7V Ppaky

Definition Let X be a topological space. If for every open cover A of X, there
exists an open cover C of M such that C is locally finite, and C is a refinement of A,
then we say that X is a paracompact space.

Note 4.53 By the Lemma 4.52, we find that every smooth manifold is a para-
compact space.

4.5 Partitions of Unity Theorem

Note 4.54 (Pasting Lemma) Let X and Y be topological spaces. Let A and B be
subsets of X such that the union of A and B is X. Let f : A — Y be a continuous
function, where the topology of A is the induced topology of X. Let g : B— Y be a
continuous function, where the topology of B is the induced topology of X. Let
f(x) = g(x) for every x in ANB. Let F : X — Y be a function defined as follows:

f(x) ifxisin A
Fx = {g(x) if xis in B.

Then, if A and B are open subsets of X, then F' is continuous.

Proof Since f : A — Y is a function, g : B — Y is a function, for every x in AN B,
f(x) = g(x), and

_[f(x) ifxisinA
F(x) {g(x) if xis in B,

F is well defined on AU B(= X). Let us take any x in X. We have to prove that
F is continuous at x. Since x is in X, and X =AUB, x € A or x € B.

Case I: When x € A. Since f : A — Y is a continuous function, and x € A, f is
continuous at x. Since f is continuous at x, and F|, = f, F|, is continuous at x.
Since x € A, and A is open, x is an interior point of A. Since x is an interior point
of A, and F|, is continuous at x, F is continuous at x.

Case II: When x € B. As in case I, F is continuous at x. O

Lemma 4.55 Let X be a topological space. Let U be a collection of subsets of X. If
U is locally finite, then (U{U : U e U})” = U{U™ : U € U}.

Proof Let U be locally finite. For any U e U, U C (W{U : U €U}), so U~ C
(WU :UeU})”. This shows that U{U :UelUU}C(U{U:UeclU})". It
remains to show that (U{U : U € U})” C U{U™ : U € U}. For this purpose, let us
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take any a in (U{U : U € U})". We claim that a is in U{U~ : U € U}. If not,
otherwise, let for every U € U, a ¢ U~. We have to arrive at a contradiction. [

Now, since U is locally finite, there exists an open neighborhood G, of a such that
all but finite many U € U are outside G,. For every U € U, we have a & U™, there
exists an open neighborhood Hy of a such that Hy contains no point of U™, and
hence, Hy contains no point of U. Since all but finite many U € U are outside G,
the finite intersection (Mg, ~yp Hu) N G, is an open neighborhood of a. Since for
every U € U, Hy contains no point of U, and all but finite many U € U are outside
Ga, (NG, v Hu) NG, contains no point of U{U : U € U}. It follows that a is not
in (U{U : U e U})", a contradiction. O

Definition Let X be a topological space. Let f : X — R* be any function. The
closure {x: f(x) # 0}  of {x:f(x) # 0} is denoted by supp f, and is called the

support of f.
Lemma 4.56 Let M be a 3-dimensional smooth manifold. Let {X;},., be an open

cover of M. Then, there exists a family {i;},., of functions y; : M — [0, 1] such
that

1. for each i € I, y; is smooth,
2. for each i € I, supp y; is contained in X;,
3. {supp ¥;},c; is locally finite,

4. 3 =1

Proof By the Lemma 4.52, there exists a countable collection {(Uy, @,),(Us,
©5), (U3, @3), ...} of admissible coordinate charts of M such that

i. {Uy,U,,Us,...} covers M,
ii. {Uy,U,,Us,...} is locally finite,
iii. {Uy, U, Us,...} is a refinement of {X;},.,
iv. each ¢, (U,) is equal to the open ball B3(0),
v. {01! (B1(0)), ;' (B1(0)), 3 (B1(0)),....} covers M.

By the Note 3.52, there exists a function H : R — [0, 1] such that

1. H is smooth,
II. H(x) =1, if x is in the closed ball B;[0],
III. suppH = B;[0].

Let us fix any positive integer n. Observe that
Ur = ¢, (B3(0)) D o, (B[0]).

If x€ U, — ¢,'(B:[0]), then x¢& ¢,'(B2[0]), and hence, ¢,(x) &€ B2[0] =
supp H = (H"'(R—{0}))” D H (R —{0}). It follows that if x& U, —
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¢, 1(B,[0]), then ¢,(x) ¢ H~'(R — {0}), and hence, H(¢,(x)) = 0. This shows
that the function f, : M — [0, 1] defined as follows: For every x in M,

_ [ H(p,(x)) if xe U,
Jolx) = {0 ! it x & g, (Ba[0)),

is well defined. Clearly, £, ' (R — {0}) C ¢, '(B»[0]), and hence, supp £, = (f, ' (R—
{01)” C (0, ' (B2[0)))” = @, ' (B2[0]) C ¢, (B3(0)) = U,,. Thus, supp f, C U,

Since (U,,@,) is an admissible coordinate chart of 3-dimensional smooth
manifold M, ¢,(U,) is open in R*, and ¢, : U, — ¢,(U,)(= B3(0)) is a homeo-
morphism. Since ¢, : U, — ¢,(U,), and H:R> —[0,1], Ho ¢, : U, — [0, 1].
Clearly, H o ¢, : U, — [0, 1] is smooth.

(Reason: Take any p in U,,. We have to prove that H o ¢, is smooth at p. For this
purpose, let us take any admissible coordinate chart (V) of M such thatp € V. We
have to prove that (H o ¢,) o ™" is smooth. Since (U,, ¢,), (V, ) are admissible
coordinate charts of M, and U, NV is nonempty, ¢, o' is smooth. Since ¢, o
" is smooth, and H is smooth, their composite H o (¢, oy~ ") (= (Ho ¢,) oy ")
is smooth, and hence, (H o ¢,) o " is smooth.)

Since

 [(Hog)(x) ifxe U,
fn(x)_{o ’ if x € M — (@, (B2[0]))

is a well-defined function, U, and M — (¢, ' (B2[0])) are open sets, the restriction
Jaly, (= H o ¢,) is smooth, and the restriction fy|y;_(,-1(, o)) (= 0) is smooth, f; is
smooth.

Let us fix any a in M. Since {U, U, U3, ...} is alocally finite cover of M, and a is
in M, there exists an open neighborhood G, of a, and a positive integer N such that
k > N implies Uy is outside G,. Fork > N, Uy = ¢ ' (B3(0)) D ¢; 1 (B2[0]), and Uy is
outside G,, ¢; (B1[0]) is outside G, for every k> N. Since for every k>N, G, is
outside ;' (B2[0]), by the definition of fi, for every x in the open neighborhood G, of
a, and k>N, we have fi(x) =0. Now, since a € G,, fy(a) =0 =fy;1(a) =
Sfvi2(a) = -+ Tt follows that fi (a) + f>2(a) + f3(a) + - - - is a real number.

Since {7 '(B1(0)), 5 (B1(0)), 5" (B1(0)), ...} covers M, and a is in M, there
exists a positive integer Ny such that a € ¢! (B1(0)) C @y (B3(0)) = Uy,, and
hence ¢y, (a) € B1(0) C B,[0]. Since ¢y, (a) € Bi[0], a € Uy,, and H(x) = 1 for
every x in the closed ball B;[0], fi,(a) = H(py,(a)) = 1.

Since fi:M —[0,1],2:M—[0,1],5: M —[0,1],..., and fy,(a) =1,
fila) + fo(a) +fa(a) + -+ - = fv,(a) = 1.

Further, since 1 <f(a) + f2(a) +fz(a) + - -+, and fi(a) + fa(a) + f3(a) + - - - is
a real number,
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fn(a)
fila) + fa(a) + fr(a) + - -

-€ [0, 1].

Thus, the function g, : M — [0, 1] defined as follows: For every x in M,

fn(x)
A@) +AE) +HE) +-

gn(x)

is well defined. Further, we have shown that for every a in M, there exists an open
neighborhood G, of a, and a positive integer N such that for every x in the open
neighborhood G,

gn(x) = 5iz)
A L)+ ()
Further, since fi,f>,f3, ... are smooth,
. Sl) (= 8(0)

A +Hx) + -+ fv(x)

is smooth in G,. This shows that g, is smooth. Clearly, supp g, = supp f, C U,.
Since for every x in the open neighborhood G, of a, we have

() =0 =fivi1(x) = fiva(x) = -,
fv(x) 0

) = TR A A TAD T A
gn 1()(?) — fN-H(x) — O _ O

" [ L)+ @) A@) LA+ f(x)
gn+1(x) =0,....

Hence, (g1 +8 +8+ - )lg, = (&1 + 8+ +gn)|g, Clearly, for every
xin M,

g1(x) +g(x) +g3(x)+---
! 1

R L L AN IO ETAC R AT Ea
1
WO AC R Ar i U
1
S AW A T Am T AW HAE A ) =1

In short, g1 + g2 +g3+--- = 1.
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Since {U;, U, Us, ...} is a refinement of {X;},,, for every positive integer m,
there exists an index i(m) €l such that U, C Xj,,). It follows that
Uper{m i(m) = i} = {1,2,3,.. .}

Let us fix any i* in I. Since {x: 0<fi(x)} C {x:0<fi(x)}” =supp fi C Uy,
{x:0<fi(x)} C Uy. Similarly, {x:0<fp(x)} C Uz, {x:0<f3(x)} C Us,
Further, since {U;, U,, Us,...} is locally finite, {{x:0<fi(x)},{x: 0<fa(x)},
{x:0<f5(x)},...} is locally finite, and hence, its subcollection {{x: 0 <f;,(x)} :
i(m) =i"} is locally finite. It follows that (Ujgm—i{x:0<fu(x)})™ = Uipm-s
({X : O<ﬁ'1(x)}7) = Ui(m)=i* (Supp fm) C Uim)=ir Un C Ui(m)=i* Xi(m) = Ui(m)=i- Xi = Xir.
Thus (Ui(m):i* {x : 0<f;"(x)})7 C Xp.

Since for every x in M, 37, &n(¥) <g1(x) + g2(x) +g3(x) +--- =1, it
follows that the function ;. : M — [0, 1] defined as follows:

> gm if {m:i(m) ="} is nonempty,
Yy = o itm=i*

0 if {m:i(m) ="} is the empty set,

is well defined.

For 1: Case I When {m : i(m) = i*} is nonempty. Let us take any a in M. We
have to prove that 3, ;. (= ;) is smooth at a. We have seen that there
exist an open neighborhood G, of a, and positive integers my,my, . . ., my; such
that i* =i(m) =i(my) =--- =i(m), and (Zi(m):i* 8m) G, = (gm + &m,
+ -+ + &m)lg,- Since each g, is smooth, (gm, + gm, +* + &m )¢, is smooth
at a. Since (gm, + &m, +* + &m)|¢, is smooth at a, and (Zi(m):i* gm)lg, =
(8m + &ms ++ + 8m)lg, » (Zi(m):i* gm)|g, is smooth at a. This shows that
¥ (= 2 im)—i- &m) is smooth.

Case 2: When {m : i(m) = i* }is the empty set. Since the constant function 0 is
smooth, and ;. = 0, ;. is smooth. So, in all cases, ;. is smooth.

For 2: Case I: When {m :i(m) = i*} is nonempty. We have to prove that
supp ¥;- C X;». Here

-1
supp ¥ = supp Z Em | = Z 8Em (R - {0})
i(m)=i* i(m)=i*

= {x:0< 3 (enl)

i(m)=i* i(m)=i*

I
=
(e}
A
oo
3
=
~

1
i(m)=i* </l (x) +f2(X) —‘rf';(x) + ...

Il
=
=
A
(]

)
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1
= x.0<f1(x) +f2(x) +f3(x)+t(m)zzl*(fm(X))

=<qx:0< Z In(x) ¢ = (Uigm=ie {x : 0<fon(x)}) " C X;o.
i

Hence, supp ;- C X;-.

Case II: When {m : i(m) = i*} is the empty set. Here, supp ;. = supp (0) =
() C X;+, and hence, supp ;. C X;-.Hence, in all cases, supp ;. C X;-.

For 3: We have seen that if {m:i(m)=i*} is nonempty, then supp ;. =
(Uitm=i- 1% : 0<fn(2)})” = Ujgmy=is ({x : 0<fu(x)} ) = U= (Supp fin) C
Ui(m)=i Un. Thus, if {m : i(m) = i*} is nonempty, then supp ;. C Ui(m)=i Un-
Also, if {m : i(m) = i*} is the empty set, then supp ¥,. = supp 0 = (. Now, it
suffices to show that {U;()—p Uy : i* € I} is locally finite. Since {{m : i(m) =
i} : i* € I} is a partition of {1,2,3,...}, and {U;, U,, Us, ...} is locally finite,
{Uigm)=i» Un = i* € I} is locally finite.

For 4: Here

LHS =Y "yi=> Y= > et > W

icl el

i*el i*el
{m:i(m)=i*}is non empty {m:i(m)=i*}is empty set
i*el i*el i*el
{m:i(m)=i* }is non empty {m:i(m)=i*}is empty set {m:i(m)=i*}is non empty
= > S en|=gi+gtg+=1=RHS. O

N
N i(m)=i

mzi(m)=i

{m:i(m)=i* }is non empty

Note 4.57 Clearly, the above lemma is also valid for m-dimensional smooth
manifold M.

Definition Let M be a topological space. Let {X;},., be an open cover of M. Let
{¥},c; be a family of functions v, : M — [0, 1] satisfying the following conditions:

1.

for each i € I, y; is continuous,

2. for each i € I, supp y; is contained in X;,
3.
4. >, =1.

{supp ¥;},; is locally finite,

icl
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Then, we say that {y;},., is a partition of unity subordinate to {X;},.,. Since
{supp ¥;},, is locally finite, for every x in M, there are only finite many nonzero
Y;(x)’s inthe sum ) .., ¥;(x), > _,c; ¥; = 1 is meaningful. Further, if M is a smooth
manifold, and each ; is smooth, then we say that {;},., is a smooth partition of
unity subordinate to {X;},.;. Now, the Lemma 4.56 can be abbreviated as: “If M is
an n-dimensional smooth manifold, and {X;},, is an open cover of M, then there
exists a smooth partition of unity subordinate to {X;},_;.” This result is known as
the partitions of unity theorem.

iel"

Definition Let M be a topological space. Let A be a closed subset of M. Let U be
an open subset of M such that A C U. Letyy : M — [0, 1] be a continuous function.
If

1. for every x in A, Y(x) = 1,
2. supp ¥ C U,

then we say that \ is a bump function for A supported in U.

Lemma 4.58 Let M be a smooth manifold. Let A be a closed subset of M. Let U be
an open subset of M such that A C U. Then, there exists a smooth function s :
M — [0, 1] such that \y is a bump function for A supported in U.

Proof Clearly, {M — A, U} is an open cover of M. So, by the partitions of unity
theorem, there exist functions , : M — [0, 1], : M — [0, 1] such that

1. ¥,y are smooth,
2. supp Y, is contained in M — A, and supp Y is contained in U,

3.y, +y=1.

It remains to prove: For every x in A, (x) = 1, that is, for every x in A,
1 —y(x) = (1 —¢y)(x) =1, that is, for every x in A, ¥,(x) =0. Since
{x:0#y,(x)} Csupp )y CM — A4,
AC{x: 0=y (x)}={x:0=1—-yY(x)} ={x:yx) =1} O
Lemma 4.59 Let M be an m-dimensional smooth manifold. Let A be a nonempty

closed subset of M. Let U be an open subset of M such that A C U. Let f : A — R
be a smooth function (that is, for every p in A, there exists an open neighborhood

W, of p, and a smooth function F, : W, — R such thatf|meA = Fp|w,, na)- Then,
there exists a smooth function f : M — R¥ such that

L. i‘A :.)i7
2. suppf CU.

Proof Let us fix any p in A. Since f : A — R¥ is a smooth function, and p is in A,
there exists an open neighborhood V, of p, and a smooth function F, : V, — R*
such thatf|meA = Fp|v,,mA- Since pisin A, and A C U, p is in U. Since p is in U,
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and U is open, U is an open neighborhood of p. Since U is an open neighborhood of
p, and V), is an open neighborhood of p, V,, N U is an open neighborhood of p.
Clearly, the collection {V,NU : p € A} U{M — A} is an open cover of smooth
manifold M. By the partitions of unity theorem, then there exist a collection
{¥, : p € A} U{y/} of smooth functions ¥, : M — [0, 1], and ¥ : M — [0, 1] such
that
(a) foreachp € A, suppy, is contained in V), N U; supp Y is contained in M — A,
(b) {supp ¥, : p € A} U{supp /} is locally finite,
(C) ZpEA lpp =1- l,b
Since for every p € A, ¥, : M — [0,1] is smooth, and V,NU is an open
neighborhood of p, '»Dp|vme is smooth. Since F, : V, — R¥ is smooth, V, is an

open neighborhood of p, V,N U is an open neighborhood of p, and V,NU C V,,
Fply, oy is smooth. Since |y, -y is smooth, Fply ; is smooth, and V, N U is an

open neighborhood of p, (¥, v, mU)(Fp|VmU) is smooth on V, N U. For every p in
A, supp y, CV,NnU, so M—(V,NU)CM—(supp ¢,). If t€(V,NnU)N
(M — (supp ¥,)) then 1 & (supp ), and hence (|, )(r) = 0. Thus, for every
t€ (V,nU)N(M — (supp ¥,)), we have

yow) @)

() ()0 (3 ) 0) (5
“0( (Al )0) =0

It follows that we can define a function g, : M — R¥ as follows: For every x

in M,
((WP‘VFOU)(FP vpmj))(x) ifxeV,NnU
0 ifxeM— <supp ‘//p)-

Zp (%)

Since M — (supp ¥,) C {x: x,(x) =0}, {x:y,(x) #0} Csupp ,, and
hence, supp 7, = {x: x,(x) # 0} C (supp ¥,)~ = supp .. Thus, for every p €
A, supp y, C supp ¥,. Since {supp , : p € A} U{supp ¥} is locally finite, its
subcollection {supp ¥, : p € A} is also locally finite. Since {supp ¥, : p € A} is
locally finite, and for every p € A, supp , C supp ¥,,, {supp Xp P E A} is locally
finite.

Further, since V, VU is open, M — (supp ) is open, (, |y y)(Fply, nu) is
smooth on V,NU, and 0 is smooth on M — (supp ), by the definition of y,,
Ip M — R* is smooth.

Let us take any x in M. Since {supp Y,:p€ A} is also locally finite, and x is in
M, there exists an open neighborhood G, of x such that all but finite many
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supp ¥,’s are outside G,. Since all but finite many supp ,’s are outside Gy, there
exists py,pa, - . .,pn € A such that (ZPGA W)le, = Upr + Apy + -+ %), Since
Apys Xpas -+ s Xp, are smooth, and G, is an open neighborhood of x,
(tp, + 2py + -+ 1), is smooth on G,. Since (,, + 1, + -+ %)
smooth on Gy, and (3 ,cx 1p)lg, = (Otpy, +2p, T+ 2p,)
smooth on G,. It follows that y— (3 ., %,)(v) is smooth.

G, 1s
(€M) (ZpEAXpNGX is

Now, we can define a functionf : M — RF as follows:

=Y

PEA

Clearly, f is smooth.
For 1: Let us fix any x € A. We have to show that f(x) = f(x).

Since {y: y(y) #0} Csuppy CM —A, x€ AC {y:y¥(y) =0}, and hence
Y(x) =0. Since suppy, CV,NU, M—(V,NU)CM~— (suppy,). If x¢
V,NU, then x € M — (V,NU) C M — (supp ), and hence y,(x) = 0. Also if
x &€ V,NU then x & supp Y, = {y:,(y) # 0} D{y:,(y) #0}, and hence
,(x) = 0. Thus, if x ¢ V, N U, then y,(x) = 0 = ,(x). Now,

flx) = <pr> W=> no=> L&+ > &

PEA {p:peA} {p:peA,xev,, n U} {p:peA,xgv,, n U}
= > L@+ > 0= 3 %W
{ppeaxev,nu} {ppeaxgv,nu} {preaxev,nu}
T () oh)0m T (o)) (o))
= 2 (o)) = ([l 00) @) 6
{ppeaxev,nu} {ppeaxev,nu}

-z (mw)(x))(f(x))—( ) v/,,(x>)(f<x))
{p:p€A.xEV,, n U}

{p:pGA.xEVl7 n U}

= )EENACEIDS 0) (F(x))

{p:pEA.xEV,, n U} {p:pEA,xéV,, n U}

= > v, (x) + > l//p(X)) (flx)) = ( > l//,,(X)) (f(x))
{preaxev,nu} {pweaxgv,nu} {pwea}

(( > lﬁp) (X)> () = (1 =) () = (1 =) (f(x) = (1 = 0)(f(x)) =f(x).

{ppea}
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Thus, f(x) = f(x). So, for any x € A we have f(x) = f(x). Thus, f|, = f. This
proves 1.

For 2: Let us take any y € M such that f(y) # 0. Here,

0#Ff(y) = (Z@) W=> L= > Lo+ > 5O

PEA {p:pea} {p:pEA‘yGV,,r‘\U} {17:[JEA‘,\'¢V,,HU}

= > n+ X 0= > LW

{p:peA,yEV,,ﬁU} {p:peA,yQV,,ﬂU} {p:pEAvEV,mU}

= X () (Bly))o= 3 () ) (Bl ) )

{pweayev,nu} {pweayev,nu}

= Y (W) EW):

{p:peA YEV, N U}

Since ) ¢, en ey, nvy (Vp () (Fp(x)) # 0, there exists p € A suchthat s, (y) # 0.
It follows that {y : £(y) # 0} C Upea{y : ,(v) # 0}, and hence, suppf = {y : f(»)
# 0} C (Upea{y 1 ¥, () # 0})". Since {supp ¥, : p € A} is locally finite, (Upea
iy,) #0}) " =Upeal{y : ¥,(y) # 0} 7). It follows that supp f C Upea({y:
¥,(v) # 0} ) = Upea(supp ¥,) C Upea(V, NU) = (Upea V,) NU C U. Thus,
supp f C U. This proves 2. U

4.6 Topological Manifolds With Boundary

Definition By H*® we mean the set {(x!,x2,x%) : (x',x*,x*) € R®and 0 <x°}, and
is called the closed 3-dimensional upper half-space. By Int H> we mean
{(x", 23,8 - (¢, %%, x%) € R¥and 0<x*}. By OH® we mean {(x',x%,0):
(x',x2,0) € R*}. Observe that the collection of all open subsets of H*> which do not
intersect OH? is contained in the collection of all open subsets of R>.

Let M be a topological space, whose topology is Hausdorff, and second
countable. If for every p in M, there exist an open neighborhood U of p, “a subset G
of H* which is open in H> or a subset G of R® which is open in R3,” and a
homeomorphism ¢ from U onto G, then we say that M is a 3-dimensional topo-
logical manifold with boundary. Here, the ordered pair (U, @) is called a chart of
M. 1f o(U)(= G) is open in R®, then we say that (U, ) is an interior chart of M. If
¢(U) (= G) is a subset of H*, ¢(U) is open in H*, and ¢(U) NOH> # (), then we
say that (U, @) is a boundary chart of M.



298 4 Topological Properties of Smooth Manifolds

Let p € M. By p is an interior point of M, we mean: There exists an interior
chart (U, @) of M such that p € U. By p is a boundary point of M, we mean: There
exists a boundary chart (U, @) of M such that p € U, and ¢(p) € OH’. By Int M
we mean the set of all interior points of M, and is called the interior of M. By OM
we mean the set of all boundary points of M, and is called the boundary of M.

Similar definitions can be supplied for 4-dimensional topological manifolds with
boundary, etc.

Note 4.60 Let M be a 3-dimensional topological manifold with boundary. We want
to prove:

1. M = (Int M) U(dM)
2. (Int M) N(dM) = 0.

For 1: Clearly, (Int M) C M, and (0M) C M. So, (Int M)U(OM) C M. Tt
remains to prove that M C (Int M) U(OM). If not, otherwise, let there exists
p € M such that p ¢ Int M, and p ¢ OM. We have to arrive at a contradiction.

Since p € M, and M is a 3-dimensional topological manifold with boundary,
there exist an open neighborhood U of p, “a subset G of H> which is open in H? or
a subset G of R which is open in R*,” and a homeomorphism ¢ from U onto G.
Thus, (U, @) is a chart for M. Since p ¢ Int M, p is not an interior point of M. Since
p is not an interior point of M, (U, ¢) is a chart for M, and p € U, (U, ¢) is not an
interior chart of M. Since (U, ¢) is not an interior chart of M, ¢(U)(= G) is not
open in R?, and hence, G is not open in R*. Since G is not open in R*, and “G is a
subset of H* which is open in H® or G is a subset of R* which is open in R*,” G is a
subset of H* which is open in H?. Since p € U, ¢(p) € ¢(U)(= G). Since G is not
open in R?, G is a subset of H?, and G is open in H*, GNoH? # (.

(Reason: If not, otherwise, let G NOH> = . Since G C H* = Int H* UOH?, and
GNOH® =, G  Int H. Since G is open in H?, there exists an open set G; in R?
such that GyNH?>=G. Since G=G NH'C Gy, and GCInt H}, GC
G, NInt H. Since G;NInt H* C Int H*> ¢ H?, and G, nInt H> C G;, G, NInt
H*c GiNnH>=G. Since GinIntH'Cc G, and GC G nIntH), G=
G, NnInt H>. Since Gy, IntH? are open in R3, their intersection G, N Int H> (=G)
is open in R?, and hence, G is open in R?, a contradiction.)

Since @(U)(= G) is a subset of H> which is open in H?, and @(U)NH> # 0,
(U, @) is a boundary chart for M. Since p ¢ OM, p is not a boundary point of M.
Since p is not a boundary point of M, (U, ¢) is a chart for M satisfying p € U, and
(U,p)is a boundary chart for M, ¢(p) ¢ O0H’. Clearly, 0H*(= {(x!,x?,0):
(x',x%,0) € R*}) is closed in H?. It follows that G — OH? is open in H?. Since
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@(p) ¢ O, o(p) € G, and G — OH is open in H?, there exists an open neigh-
borhood H,(,) of @(p) in H® such that H,, C G—0OH’ C G, and hence
Hy) N OH? = 0. Since H,,) N OH? = 0, and H,,) is open in H?, H () is open in
RR3. Since ¢ is a homeomorphism from U onto G, G is open in H?, H,) C G, and
H,,,) is an open neighborhood of ¢(p) in H3, @ '(H,(y)) is an open neighborhood
of p in M, and qo\(/rl(HW) is a homeomorphism from ¢~ (H,,) onto H,,). Thus,

the ordered pair (¢~ (H (), ?l, ) is a chart for M. Now, since ((p| M))
((p’l(Hw@))) = H,(y), and H(ﬂ(p) is open in R?, the chart (¢~ ( ) | Hog) )
is an interior chart for M. Since (¢~ ' (H,)), @y, o) )) is an interior chart for M,

and p € ¢ '(Hp()), p is an interior point of M, and hence p € Int M, a
contradiction.

For 2: Its proof is postponed right now. This result is known as the fopological
invariance of the boundary.

Similar results can be supplied for 4-dimensional topological manifolds with
boundary, etc.

Note 4.61 Let M be a topological n-manifold with boundary. We want to show that
Int M is an open subset of M. Here,

Int M = {p:p € M, there exists a chart(U, ¢) of M such thatp € U, and ¢(U)is open in R"}.

For this purpose, let us take any p € Int M. We have to find an open neigh-
borhood U, such that if g€ U, then g€ Int M. Since pcIntM, pe€
M, there exists a chart (U, ¢) of M such that p € U, and ¢(U) is open in R".
Since (U, @) is a chart, U is open in M. Since U is open in M, and p € U, U is an
open neighborhood of p. Next, let us take any g € U. Here, (U, @) is a chart of M
such that ¢ € U, and ¢(U) is open in R". Hence, by definition of the Int M,
g € Int M.

This proves that Int M is an open subset of M.

Note 4.62 Clearly, a topological n-manifold M “in the original sense” is a topo-
logical n-manifold M with boundary.

If M is a topological n-manifold M “in the original sense,” then Int M = M.
Hence, by the topological invariance of the boundary, if M is a topological n-
manifold “in the original sense,” then OM = (). Conversely, let M be a topological
n-manifold M with boundary such that OM = (). Hence, M = Int M UOM =
Int MU( = Int M. Since Int M = M, M is a topological n-manifold “in the ori-
ginal sense.”
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Thus, we have shown that a topological n-manifold M with boundary is a
topological n-manifold if and only if 9 = (). Sometimes, a manifold in the original
sense is referred as manifold without boundary.

Note 4.63 Let M be a topological n-manifold with boundary. We want to show that
Int M is a topological n-manifold without boundary.

Here, Int M is contained in M. The topology of Int M is assumed to be the
subspace topology of M. Since M is a topological n-manifold with boundary, the
topology of M is Hausdorff, and second countable, and hence, the subspace
topology over Int M is Hausdorff, and second countable.

Next, let us take any p € Int M. Since p € Int M, p is an interior point of M, and
hence, there exists an interior chart (U, ¢) of M such that p € U. Since (U, ¢) is an
internal chart of M, (U, ) is a chart of M, and ¢(U) is open in R". Since (U, ¢) is
a chart of M, U is open in M, and ¢ : U — ¢(U) is a homeomorphism. Since U is
open in M, and Int M is open in M, UNInt M is open in the topological space
Int M. Since p e U, and pcInt M, p € UNInt M. Thus, UNInt M is an open
neighborhood of p in the topological space Int M. Since U is open in M, and Int M
is open in M, UNInt M is open in M. Since UNInt M, U are open in M, and
UnIntM C U, UnInt M is open in U.

Since ¢ : U — ¢(U) is a homeomorphism, and UNInt M is open in U,
@(UNInt M) is open in ¢(U). Since ¢ (U NInt M) is open in ¢(U), and @ (U) is
open in R" @(UNInt M) is open in R". Since UNInt M is open in U,
@(UNInt M) is open in ¢(U), and ¢ : U — ¢(U) is a homeomorphism, |
is a homeomorphism from UNInt M onto @(UNInt M). Since UN1Int M is an
open neighborhood of p in the topological space Int M, ¢(U NInt M) is open in
R", and |, is @ homeomorphism from UNInt M onto ¢(U NInt M), the
ordered pair (U NInt M, @[, 1,) is an interior chart of the topological space
Int M. Also p € UNInt M. This shows that Int M is a topological n-manifold
without boundary.

Note 4.64 Let M be a topological 3-manifold with boundary. We want to show that

1. OM is a closed subset of M,
2. OM is a topological 2-manifold without boundary.

For 1: Since Int M is open in M, M — Int M is closed in M. By the topological
invariance of the boundary, OM = M — Int M. Since OM = M — Int M, and
M — Int M is closed in M, OM is a closed subset of M.

For 2: Here, OM is contained in M. The topology of OM is assumed to be the
subspace topology of M. Since M is a topological 3-manifold with boundary,
the topology of M is Hausdorff, and second countable, and hence, the subspace
topology over OM is Hausdorff, and second countable.



4.6 Topological Manifolds With Boundary 301

Next, let us fix any p € OM. Since p € OM, p is a boundary point of M, and hence,
there exists a boundary chart (U, ¢) of M such that p € U, and ¢(p) € 0H® =
{(x",x%,0) : (x',%%,0) € R*}. Since (U, ¢) is a boundary chart of M, U is open in M,
¢(U)isopenin H? and ¢ : U — ¢(U) is a homeomorphism. Since p € U, ¢(p) €
@(U). Since ¢(p) € ¢(U),and o(U) is open in H?, ¢(U) is an open neighborhood of
@(p) in H>. Since ¢(U) is an open neighborhood of ¢(p) in H?, and ¢(p) € dH? C
H?, (U) NOH? is an open neighborhood of ¢(p) in OH?>. Since ¢ : U — ¢(U) isa
homeomorphism, and ¢(U)NOH® C ¢(U), the restriction @l (pwynom 1S @
homeomorphism from ¢! (¢(U) N dH?) onto o(U) N OH?. Since go(p) € ¢(U),and
o(p) € O, o(p) € @(U)NOH?, and hence p € ¢~ (o(U) NOH?).

Now, we shall try to prove:

@ ¢ '(p(U)NOH’) C oM,
(b) ¢~ '((U)NOH?) is open in OM,
(¢) @(U)NdH? is open in OH?.

For a: Let us take any a € ¢~ ' (o(U) NOH?). Since a € ¢~ (¢(U) NOH?), and
¢@:U— @(U),acU.Since a € o~ (p(U)NIH?), ¢(a) € p(U) NOH?, and
hence, ¢(a) € OH?. Since (U, @) is a boundary chart of M, a € U, and ¢(a) €
OH?, a is a boundary point of M, and hence a € OM.

For b: First of all, we want to prove that ¢! (o(U) NOH?) = U NOM. For this
purpose, let us take any a in ¢! (¢(U) NOH?). Since a € ¢~ ((U) NOH?), and
¢ :U— @(U),a € U.Hence, o' (p(U)N3H?) C U. Since ¢~ (o(U) N OH?)
C U, and from (a), o~ (o(U) NOH®) C dM, ¢~ (p(U)NOH*) C UNM.

Next, let us take any b in UNOM. Since b is inUNOM, b € U, and hence,
@(b) € p(U). Clearly, ¢(b) € OH?.

(Reason: If not, otherwise, let ¢(b) ¢ OH>. We have to arrive at a contradiction.
Since bis in UNOM, bisin U. Since bisin U, and ¢ : U — @(U), ¢(b) € ¢(U).
Since ¢(b) € @(U), and ¢(U) is open in H?, ¢(b) € H* = Int H* UOH?.Since
@(b) € Int H? UOH?,and ¢(b) ¢ OH®, go(b) cnt H? = {(x', 2%, %) : (x!, 2%, %)
€ R*and0<x*}. Since ¢(b) € {(x', x2 ) (2 3) e RPand0 <3}, o(b) €
¢(U), and @(U) is open in H?, there exists a real number r > 0 such that the open
ball B,(p(b)) is contained in ¢@(U)NInt H>. Tt follows that B,(¢(b)) is open in
¢@(U). Since B,(¢(b)) is open in ¢(U), and ¢ : U — q)(U) is a homeomorphism,
¢~ 1(B,(o(b))) is open in U, and the restriction ®| p-1(8,(o(»))) 18 @ homeomorphism
from ¢~! (B,(¢(b))) onto B,(¢(b)). Since p(b) € ( (), b € ¢~ (B/((b))).
Since ¢! (B,(¢(b))) is open in U, and U is open in M, ¢~ '(B,(¢ ( ))) is open in

)

M. Since ¢~ '(B.(¢(b))) is open in M, and b € ¢~ (B,(¢(b))), ¢~ (B,(p(b))) is
an open neighborhood of b in M. It follows that the ordered pair
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((p’l(B,((p(b))),(p|(/),1(3r(w(b)))) is a chart of M. Also since b € ¢~ (B.(¢(b))),
(@1 (8,000 (@' (Br(0(0)))) = B,(¢(b)), and B,(¢(b)) is open in R,
(@~ (B (0(D))), @l,-1(8,(p(s)))) is an interior chart of M, and hence b € Int M.
Since b € Int M, by the topological invariance of the boundary, b ¢ 0M, and hence,
b & UNOM, a contradiction.)

Since ¢(b) € OH?, and ¢(b) € ¢(U), ¢(b) € (U)NIH>, and hence, b €
¢ Y (@(U)NOH?). Thus, UNOM C ¢~ (o(U) NOH?).

Thus, we have shown that ¢! (o(U) NOH?) = U N3M. Since U is open in M,
and OM C M, UNoM(= ¢~ '(p(U)NOH?)) is open in OM, and hence,
¢ ' (@(U)NOH?) is open in OM. This proves (b).

For c: Since ¢(U) is open in H?, and 0H® C H?, o(U) N 0H? is open in OH°.
This proves (c).

Since the mapping 3 : 0H® — R? defined by m3(x!,x%,0) = (x',x?) is a
homeomorphism, and @|,-1 () - ow) is @ homeomorphism from ¢~ (o(U) N OH?)
onto @(U) NOH?, their composite 73 o (@)1 (o) nom)) is @ homeomorphism from
¢~ (@(U)NOH?) onto m3((U) NOH?). Since ¢(U)NOH? is open in OH?, and
3 : OH? — R? is a homeomorphism, 73(¢(U) NOH?) is open in R?. Here, 73 o
(Ply1(p()nowy) is a homeomorphism from ¢~ (p(U)N3H) onto m3(p(U)
NOH?), ¢~ ((U) NOH?) is open in M, p € ¢~ (p(U) NH?), and 73(¢p(U) N
OH?) is open in R?, the ordered pair (¢~ (@(U)NOH?),)73 o (@1 (o) nows)) 18
an internal chart of M, where p € ¢~ (¢(U) NOH?). Hence, OM is a topological
2-manifold without boundary.

This completes the proof of 2.

Similar results can be supplied for 4-dimensional topological manifolds with
boundary, etc.

Definition Let A be a nonempty subset of R". Let f : A — R™. By f is smooth we
mean: For every x in A, there exist an open neighborhood V, of x in R”, and a
function f, : V, — R"™ such that |,y =f | anv,s and f; is smooth.

Definition Let G be a nonempty subset of H". Let G be open in H". Let f : G —
R™. By f is smooth we mean: For every x in G, there exist an open neighborhood V,
of xin R”, and a function f; : V, — R™ such that |~y = flny., and f; is smooth
in the usual sense.

Note 4.65 Let G be a nonempty subset of H". Let G be open in H". Let f : G —
R™. Let f be smooth.

We first show that G N(Int H") is open in R". Since G is open in H", there exists
an open subset U of R" such that G=UNH" Now, GN(Int H") =
(UNH")N(Int H") = UN(H"NInt H") = UN1Int H". Since U, Int H" are open in
R", UNInt H"(= GN(Int H")) is open in R", and hence, G N(Int H") is open in R".
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Since GN(Int H")(C G) is open in R”, and f : G — R™, it is meaningful to say
“flgnury is smooth in the usual sense.” We want to show that f|g e 18
smooth in the usual sense. For this purpose, let us take any a in G N(Int H"). We
have to show that f|g g is smooth at @ in the usual sense.

Since a is in GN(Int H"), a is in G. Since @ is in G, and f : G — R™ is smooth,
there exist an open neighborhood V, of @ in R", and a function f, : V, — R" such
that fulG v, = flgnv,, and f, is smooth in the usual sense. Since a is in G N(Int H"),
and GN(Int H") is open in R", GN(Int H") is an open neighborhood of a in R”.
Since GN(Int H") is an open neighborhood of @ in R", and V, is an open neigh-
borhood of @ in R", GN(Int H") NV, is an open neighborhood of @ in R", and is
contained in the open set V,,. Now, since f;, : V, — R™ is smooth in the usual sense,
the Testriction fu|g (g v, 1S smooth at a in the usual sense. Since fu|gqy, =
Floav,, GNIntH")NVe CGNVas falgammarnv, =Flenmar)ny,. Since fo:
V, — R™ is smooth in the usual sense, G N(Int H") NV, is an open neighborhood of
ainR", and is contained in the open set Vg, ful G 1na) v, 1 sSmooth at @ in the usual
sense. Since fu|g i) v, is smooth at a in the usual sense, and fu|g i) v, =
Fle o) v, flG o nv, is smooth at a in the usual sense. Since f|g ) v, 1S
smooth at a in the usual sense, G N(Int H") NV, is an open neighborhood of a in R”,
G N(Int H") is an open neighborhood of ¢ in R, and G N(Int H") NV, is contained
in GN(Int H"), f|Gqqnar) is smooth at a in the usual sense.

Thus, we have shown that if G is open in H", and f : G — R™ is smooth, then
FlG @) is smooth in the usual sense.

Note 4.66 Let G be a nonempty subset of H>. Let G be open in H>. Let f : G —
R™ be smooth.

We want to prove that f : G — R™ is continuous. For this purpose, let us take
any a in G. Now, let us take any open neighborhood Vy(,) of f(a) in R™. We have to
find an open neighborhood U, of @ in R? such that

1. U,nH’ CG,
2. f(U,NH?) C Vy(y.

Since G is open in H>, there exists an open subset W, of R* such that G =
W, NH?. Since a is in G(=w, ﬂH3), ais in Wj. Since a is in Wy, and W, is open
in R®, W, is an open neighborhood of @ in R?.

Since f : G — R™ is smooth, and a is in G, there exist an open neighborhood V,
of @ in R", and a function f, : V, — R" such that fu|;y. =flgny,, and f is
smooth in the usual sense. Since V, is an open neighborhood of a in R", and
fa: Vo — R™ is smooth in the usual sense, f, : V, — R™ is continuous. Since f, :
V, — R™ is continuous, and a is in V,, f, : V, — R™ is continuous at a.
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Since V,, is an open neighborhood of a in R, and W, is an open neighborhood of a
in R?, V, N W, is an open neighborhood of a in R*. Since a € G, and a € V,, a €
GNV,.Sincea € GNVy,and fulgry, = flgay,.Ja(a) = f(a). Since V() is an open
neighborhood of f(a), and f,(a) = f(a), Vy (4 is an open neighborhood of f;(a).

Since f, : V, — R™ is continuous at a, V, is an open neighborhood of ainR3,
V,N'W is an open neighborhood of a in R*, and Vi(a) is an open neighborhood of

fu(a) in R™, there exists an open neighborhood U, of @ in R?, such that U, C
VanN Wi, and.fa(Ua) c Vf(a)-

For 1: Take any x in U, NH?. Since x is in U, NH?, x is in U, C V, N W, and
hence, x is in W;. Since xis in U, N ]HI3, x is in H>. Since x is in H3, and x is in
Wi, x is in W, ﬂH3(: G), and hence, x is in G. Thus, U, NH? c G.

For 2: Since fulg v, =flgnv,, and G = Wi N, fulw, nwe nv, =Flw, ams v, -
Since U, C V,nW;, U,NnH> C V,nW,NnH? = W, nH*N V,. Since U, NH>
C WinHE’ NV, and fily, nwe nv, =Flwnm nv, f(Ua V) = f(UsNH) C
f2(Us) C Vi@ Thus f(U,NH?) C Vyy.

4.7 Smooth Covering Maps

Definition Let M and M be connected smooth manifolds. Let 7: M — M be a
smooth map. If

1. © maps M onto M,

2. for every p in M, there exists a connected open neighborhood U of p such that
for each component C of the open set 7! (U), the restriction 7| : C — U is a
diffeomorphism, then we say that 7 is a smooth covering map, M is a base of the

covering, and M is a covering manifold of M.
Observe that, in the condition (2), since M is a locally path connected, and
7~ '(U) is an open subset of M each component of 7~ !(U) is open.

Lemma 4.67 Every smooth covering map is a topological covering map.

Proof Let 1 : M — M be a smooth covering map, where M andM are connected
smooth manifolds. Since M is a smooth manifold, M is a topological manifold, and

hence, M is locally path connected. Since 7 : M — M is a smooth covering map,
n: M — M is a continuous map. Since M is a connected topological space, M is a

locally path connected topological space, and 7 : M — M is a continuous map, it is
meaningful to talk about “z is a topological covering map,” that is,
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1. @ maps M onto M,

2. for every p in M, there exists a connected open neighborhood U of p such that
for each component C of the open set ! (U), the restriction | : C — U is a
homeomorphism,

For 1: Since 7 : M — M is a smooth covering map, 7T maps M onto M.

For 2: Let us take any p in M. Since 7 : M — M is a smooth covering map,
there exists a connected open neighborhood U of p such that for each compo-
nent C of the open set 7! (U), the restriction 7| : C — U is a diffeomorphism,
and hence, 7| : C — U is a homeomorphism. O

Lemma 4.68 Let M and M be connected smooth manifolds. Let 7 : M — Mbea
smooth covering map. Then, m is a local diffeomorphism, that is, for every p in M ,
there exists an open neighborhood C of p such that n(C) is open in M, and the
restriction 7| : C — ©(C) is a diffeomorphism.

Proof Let us take an element p in M. We have to find an open neighborhood C of
p such that 7(C) is open in M, and the restriction 7n|.:C — n(C) is a
diffeomorphism.

Since m: M — M, and p is in M, n(p) is in M. Since n(p) is in M, and
n: M — M is a smooth covering map, there exists a connected open neighborhood
U of n(p) such that for each component C of the open set 7~ ! (U), the restriction
alc:C—Uisa diffeomorphism.

Since n(p) is in U, p € n~'(U). Since p € n~ (U) and n~!(U) is partitioned
into _components, there exists a component C of n~!(U) such that p € C. Since
n: M — M is a smooth map, 7 : M — M is a continuous map. Since 7 : M—M
is a continuous map, and U is an open neighborhood of n(p), n~!(U) is an open
neighborhood of p. Since M is a smooth manifold, M is a topological manifold, and
hence M is locally path connected. Since M is locally path connected, and ! (U)
is an open subset of M and C is a component of 7~ !(U), C is open. Since C is
open, and p € C, C is an open neighborhood of p in M.

Since 7|, : C — U is a diffeomorphism, n(C) = (n|-)(C) = U. Since n(C) =
U, and U is open, n(C) is open in M. Since 7| : C — U is a diffeomorphism, 7 is a
local diffeomorphism. O



Chapter 5
Immersions, Submersions,
and Embeddings

The counterpart of “homeomorphism in topological spaces” and “linear isomor-
phism in real linear spaces” are the concepts of immersion, submersion, and
embedding in smooth manifolds. Because a smooth manifold associates with a
topological space together with a collection of linear spaces (i.e., tangent spaces at
various points of manifold), there emerges different types of “homomorphisms”
among smooth manifolds. Their definitions and various theorems on relationship
between immersion, submersion, and embedding constitute a beautiful area of
studies. In this chapter, we shall prove some of the important theorems on
immersion, submersion, embedding, and its related notions. Definitely, the pace of
this chapter is a bit slower for obvious reason.

5.1 Pointwise Pushforward

Definition Let a € R®. By Rz we mean the Cartesian product {a} x R>. Members
of }Rz are called geometric tangent vectors in R? at a, and Rz is called the geometric
tangent space to R® at a. A geometric tangent vector (a, v) in R at a is denoted by
v, or v|,. We define vector addition and scalar multiplication over R? as follows:

Vat+we=(v4+w),, v =),

Clearly, Rg becomes a real linear space. Here, the zero vector is (0,0,0),, and the
negative vector of v, is (—v),. It is easy to see that the mapping v— v, is an
isomorphism from R* onto R?, and hence, R? and R? are isomorphic.

Note 5.1 Since members of a smooth manifold M may not be added, the above
definition of tangent space cannot be generalized. Observe that C* (R3) is a real
linear space under pointwise vector addition and scalar multiplication. Also, cor-
responding to each geometric tangent vector v, in R? at a, we can define a function
D,|,: C*(R?*) — R as follows: For every f € C®(R?),
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d

01 = 00 = (5 flat+n) —fla)

t

)rta+ ) = tim

t=0

We know that D, |, is linear and satisfies the Leibnitz rule:

(Dula) (f - 8) = ((Dula) () (8(a) + (F(@)) ((Dv]) (8))-

Also,

(D(vkvzy—*)‘a) f) = Vl((D(1,0,0)|a) (f)) +Vz((l)(o,l,o)’ )(f)) + V3(( 001)|a) (f))

fla+1(1,0,0)) — f(a) fla+1(0,1,0)) — f(a)

= lim +v* lim
1—0 t =0 t
1(0,0,1)) —
+ ‘)3 hII(}f‘(a + ( ) t? )) .f(a)
—

= V(DY) (@) +2((Dof @)
A(on@) = (@) +7(50) (@)

i (awta) =(g5t)

Thus,

It follows that

(Pasol,) () = 2@, (Parol,) ) = o @),

and (D(Oﬁ()’]) {a> f) = % (a).

Definition Let a € R?. Let w : C*°(R?) — R be a linear function. If w satisfies the
Leibnitz rule:

w(f - 8) = (w(f))(g(a) + (f(a))(w(g))

for every f, g in C>°(RR?), then we say that w is a derivation at a. Let us denote the
collection of all derivations at a by T,R>. Clearly, T,R? is a real linear space under
pointwise vector addition and scalar multiplication. It is clear that if v, € Rz, then
the mapping D,|,: C*(R?) — R, defined as above, is a derivation at a. Thus, for
every v, € R} D, | € T,R’.
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Note 5.2 Let a € R®. Let w € T,R>. Let f,g € C*°(R?). We shall try to show:

1. If fis a constant function, then w(f) = 0,
2. If f(a) = g(a) =0, then w(f - g) = 0.

For 1: Here, fis a constant function, so there exists a real number ¢ such that
f(x) = c for every x in R3. Let us define a function f; : R> — R as follows: For
every x in R? fi(x) = 1. Clearly, fi € C*(R?), and f = cf;. Now, w(fi) = w
(fi - fi) = (w(h)) (fil@)) + (fila)) (W(h)) = w(fi)) T+ Lw(fi)) = 2(w(f)),
andhence, w(f;) = 0.Next,w(f) = w(cf1) = ¢(w(fi)) = ¢ - 0 = 0. This proves 1.

For 2. LHS =w(f-g) = (w(f))(g(a)) + (f(a)) (w(g)) = (w(f))-0+0-
(w(g)) =0 = RHS.

Note 5.3 Let us fix any a = (a',a?,a*) € R®. Let 5 : R3 — T,R? be the mapping
defined as follows: For every v, € Ra,

W(Va) = DV|a'

Then, 7 is a linear isomorphism from real linear space RZ onto real linear space
T.R’.

Reason: Let v,, w, € R, where v = (v!,12,13), and w = (', w?,w?). Let s, € R.
We have to prove that 17( (o) +t(wa)) = s(n(va)) + t(n(wa)), that is, for every fin

CX(R), (n(s(va) + 1(wa))) (F) = (s(n(va)) + 1(n(wa)) (£).
(n(( a) + ( D)) = (n((sv),+(ow),)) (f)

This proves that # : ]RZ — T,R? is linear.

Now, we want to prove that 1 is 1-1. For this purpose, let n((v',v*,v?),) =
n((w',w?,w?),). We have to prove that (v',v*,v*) = (w!,w? ,w?). Let us define
a function 7r; : R® — R, as follows: For every (x!,x%,x%) in R?, 7, (x!, %, %) = x!
Clearly, 7 € C*(R?). Since

D(vl,vz,\ﬁ)}a: ’1((‘}17‘}27‘}3)”) = '/I((lewvaS)a> = D(W‘,wz,w3)|aa

and m; € C®(R?),
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W= (1) £ 2(0) + 13 (0) = v (g (a)) 402 (%(a)) T (aié(a))

= (Puol,) () = (s, Yo = (Z @)
s (L) (L)
=wl(1) + w*(0) + w*(0) = w!,

and hence, v! = w'. Similarly, v = w? v* = w?. Hence, (v!,1?,1?) = (w!, w?, w?).

Now, it remains to be proved that 7 : R3 — T,R? is onto. For this purpose, let us
take any w € T,R>. We have to find an element v, € Rz such that 7(v,) = w, that is,
D,|,= w,thatis, foreveryf € C*(R?),(D,|,)(f) = w(f). Foreveryi = 1,2,3,letus
define a function 7; : R® — R, as follows: Forevery (x!,x,x*) inR*, ; (x' 2,33 =
x'. Clearly, each ; € C*(R?). Since w € T,R*, w : C*(R?) — R. Now, since m; €
C>(R?), w(m;) is a real number. It follows that (w(m;), w(m,), w(n3)) € R*. Let us
take (w(m;), w(m,), w(m3)) for v. It remains to be proved that for every f € C*(R?),
(D(W(m),w(ﬂz),w(ﬂs)) |a)<f) = W(f), that is, for every f € C*° (R3),

(9(7)) () = wiF).

Since f € C*(R?), f : R* — R, and is smooth. Now, by Theorem 3.62, there exist
C* functions g;(x), g2(x), g3(x) on R* such that

1. for every x=(x' x3) in R, f(x) =f(a)+ (g1(x)(x' —a') + (g2(x))
(= a®) + (g3(x))(x* —a®), thatis, f = f(a) + g1 - (11 — a") + g2 - (my — @)
+g3 - (n3 —a'),

2. gi(a) = L (a), g2(a) = L (a), g3(a) = L (a).

=w(f(a)) + ((w(gl))((m —a')(@) + (w(m —a'"))(g1(a)))
+ ((w(g2)) ((m2 — @*) (@) + (w(m — a*))(g2(a)))
+ ((w(3)) ((m3 = @) (@) + (w(ms — @¥)) (21(a)))
=0+ ((w(g)((a" —a')) + (w(m) — 0)(g1(a)))
+ ((w(g2) (¢ — @) + (w(m2) — 0)(g2(a)))
+((w(gs) (@ = @) + (w(m3) — 0)(g3(a)))
= (w(m1))(g1(a)) + (W(m2))(g2(a)) + (w(m3))(g3(a))
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Thus, we have shown that # is a linear isomorphism from real linear space ]Rfl onto
real linear space T,R>. Hence, Rz is isomorphic to T,R>.

Since R? is a linear space of dimension 3, and R? is isomorphic to T,R*, T,R? is
of dimension 3. Further, since {(1,0,0),, (0, 1,0),(0,0,1),} is a basis of R?, and
n is a linear isomorphism from R} onto T,R* {((1,0,0),),7((0,1,0),),
1n((0,0,1),)} is a basis of T,R?, that is,

{D(1,0.0)|a»D(0,1.0) a7D(o,0,1)‘a}

is a basis of T,R?, that is,

S
ox!'|, ox?|, Ox3|,
is a basis of 7,R>. Similarly,
o| 0 0
ox!|, ox2|, " T own,

is a basis of T,R".

Note 5.4 Since Rz is the geometric tangent space to R? at a, and Rz is isomorphic
to T,R3, T,R? can be thought of as the geometric tangent space to R> at a. Simi-
larly, for every a in R¥, R’; is isomorphic to T,R*. The interesting thing is that
T,R3, but not Rg, can be generalized on a smooth manifold.

Definition Let M be an m-dimensional smooth manifold. Let p € M. Let v:
C>®(M) — R be a linear function. If v satisfies the Leibnitz rule:

vf-g) = () (&) + (F(p))(v(g)),

for every f, g in C*°(M), then we say that v is a derivation at p. The collection of all
derivations at p is denoted by T,M. Clearly, T,M is a real linear space under
pointwise vector addition and scalar multiplication. Here, the real linear space 7,M
is called the tangent space to M at p and the members of T,M are called tangent
vectors at p.

Note 5.5 Let M be an m-dimensional smooth manifold. Let p € M. Let v € T,M.
Let f,g € C*(M). As above, it is easy to show:

1. If f is a constant function, then v(f) = 0.

2. Iff(p) = g(p) =0, then v(f - g) = 0.

Note 5.6 Let M be an m-dimensional smooth manifold and N be an n-dimensional
smooth manifold. Let F : M — N be a smooth map. Letv € T,M. Let f € C*°(N).
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Since f € C*(N), f : N — R is a smooth map. Since F : M — N is a smooth map,
and f : N — R is a smooth map, their composite f o F' : M — R is a smooth map,
and hence, f o F € C*(M). Since v € T,M, v : C*(M) — R. Since v : C*(M) —
R, and fo F € C*(M), v(f o F) is a real number. Let us define the mapping
((dF,)(v)) : C*(N) — R as follows: For every f € C*(N),

((de)(v))(f) =v(foF).

We shall try to show that ((dF )(V)) € TppN, that is, (dF,)(v) is a derivation at
F(p). Observe that (dF,)(v) : C*(N) — R is linear.
(Reason: Let f,g € C*°(N), and let s, # be any real. We must prove:

((de) (V)) (sf +18) = S(((de)(V))(f)) "‘t(((de) (v))(g))
LHS = ((dF,)(v))(sf +1g) = v(sf +1g) o F) = v(s(f o F) +1(g o F)) = s(v(f o F))+
t(v(g o F)) = s(((dF,)(v))(f)) + #(((dF, )(V)i( g)) =RHS.)

Now, we shall try to prove that (dF,)(v) : C*°(N) — R satisfies the Leibnitz
rule:

((dF) ) (F - ) = (((dF,) () () (8(F(p))) + (F(F(P))) (((dF,) (v)) (3))

for every f,g in C*(N).

= ((f e F)((goF)p)) + ((f o F)(p))(v(g o F))
= (((dF) () () (g 2 F)(p)) + ((F o F)(p)) (((dF,) (v))(2))
= (((dF,) () (M) (s(F(p))) + (F(F(P))) (((dF,)(v)) (8)) = RHS

Thus, we have shown that (dF,)(v) € Tp(,)N

Definition Let M be an m-dimensional smooth manifold, and N be an n-dimen-
sional smooth manifold. Let F: M — N be a smooth map. If v € T,M, then
(dF,)(v) € Tg)N. Thus, dF, : T,M — Tg,N. Here, dF,, is called the differential
of F at p (or tangent map, total derivative, or derivative of F, or pointwise push-
forward of F). dF, is also denoted by F'(p), DF,F, (see Fig. 5.1).

Note 5.7 Let M be an m-dimensional smooth manifold, and N be an n-dimensional
smooth manifold. Let F : M — N be a smooth map. We shall try to show that
dF, : T,M — Tg(,)N is a linear mapping from tangent space T,,M to tangent space
Tr(,)N. Let us take any vy, v, in T,M, and any real s,7. We have to show that

(dF,,) (svi + 1) = s((dF,,)(vl)) + t((de)(vz)),

that is, for every fin C*°(N),
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Fig. 5.1 Tangent map

((de)(svl + 1) ) (
LHS = (
s(i(foF)) +t(n(f o F))

= s(((dF,) (v0)) (1)) + £(((dF) (v2)) ()
(s((dF) (v0))) (1) + (((dF,) (v2))) (F)
= (s((dF,)(v1)) +2((dF,)(v2))) (f) = RHS.

2))(F).

s((dFp) () + 1((dF,) (v
(dF,) (svi + tv2) ) (f) = (svi 4+ tv2)(f o F)

Note 5.8 Let M,N, P be smooth manifolds. Let F: M — N, and G: N — P be
smooth maps. Let p € M. It follows that the composite map GoF : M — P is a
smooth map. Here, dF,:T,M — TrpN, dGry) : TppyN — Terp) P, and
d(Go F)p : TyM — T(Gop)(p)P- Since dF), : T,M — Tr,)N, and dGr,) : TppN —
TG(F(p))Pa (de(m) o (dF ) : T M — Tg F(I’))P7 that is, (dGF,, ) (dF ) : T M —
T(Gor)(p)P- Thus, d(Go F)p 1 TyM — T(Gop)(p)P, and (dGp(y)) o (dF,) : T,M —
TGor)(p) P-

We shall try to prove: d(G o F), = (dGr(,)) o (dF}), that is, for every v in T,M,
(d(GoF),)(v) = ((dGF)) o (dF}))(v). Further, since (d(G o F) ) (v) € T(Gor)(y) P,
(d(GoF),)(v) : C*(P) — R, and hence, we must prove: For every fin C**(P),

(dGr(p)) o (dF,))(v)) (f) = RHS.
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Note 5.9 Let M be a smooth manifold. Let p € M. Here, Idy, : M — M is given by
Idy(x) = x for every x in M. Clearly, Idy, is a smooth function. Also, d(IdM)p :
T,M — T,M, and 1dz, : T,M — T,M.

We shall try to prove: d(Idy), = ldz,y, that is, for every v in T,M,
(d(Idm),)(v) = (Id7,m)(v), that is, for every v in T,M, (d(Idy),)(v) = v. Further,
since v is in T,M, v: C*(M) — R, and hence, we must prove: For every f in

C>(M), ((d(Idm),)()(f) = v(f).
LHS = ((d(IdM)p) (v)) (f) = v(f o (Idy)) = v(f) = RHS.

Thus, we have shown that d(Idy), = Idz,u.

5.2 Open Submanifolds

Note 5.10 Let M, N be smooth manifolds. Let F : M — N be a diffeomorphism.
Let pe M. Since F: M — N is a diffeomorphism, F: M — N is a smooth
map. We shall try to show: dF}, : T,M — Tp,)N is an isomorphism.

Since dF), is linear, it suffices to show that dF}, is 1-1 and onto.

dF, is 1-1: Let (dF,)(v) = (dF,)(w), where v,w are in T,M. We have to prove
that v = w.

Since dF, : T,M — Tg(,)N, and v is in T,M, (dF,)(v) is in Tr(,)N, and hence,
(dFp)(v) : C*(N) — R. Since visin T,M, v : C>*°(M) — R. Similarly, w : C**(M)
— R. Now, we have to prove that v =w, that is, for every f in C*(M),
v(f) = wi(f).

For this purpose, let us take any fin C*°(M). Since fis in C*(M), f : M — Ris
smooth. Since F : M — N is adiffeomorphism, F~! : N — M is smooth. Since F~! :
N — M is smooth, and f : M — R is smooth, their composite f o (F~!) : N — Ris
smooth, and hence, f o (F~!) € C*°(N). Now, since (dF,)(v) = (dF,)(w), for every
g in CX(N), vgoF) = ((dF,)(v))(g) = ((dF,)(w))(g) = w(g o F). Since for
every g in C*(N), v(go F) =w(goF), and f o (F~!) € C*(N), LHS = v(f) =
v(foldy) =v(fo (F'oF))=v(({fo(FY))oF)=w((fo(F))oF)=w(fo
(F 1o F)) =w(f oldy) = w(f) = RHS.

Thus, we have shown that if FF': M — N is a diffeomorphism, then dF), :
T,M — Tg(,)N is an isomorphism.

Note 5.11 Let M, N be smooth manifolds. Let F : M — N be a diffeomorphism.
Since F : M — N is a diffeomorphism, F~':N — M is a smooth map, and hence,
d(F")F<p) : TepyN — T,M is an isomorphism. Since dF), : T,M — Tg(,)N is an

isomorphism, (dF,) " : TrpN — T,M. Thus
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d(F "), TeyN — T,M, and  (dF,)": TN — T,M.

Fp)
Now, we want to prove that d(F‘l)F(p>=(de)_1, that is, (d(F‘l)F<p>)o
(dF,) = Idg,u.

LHS = (d(F7),, ) o (dF,) = d((F ') o F),= d(ldy),= Idz,y = RHS.

Thus, we have shown that if F: M — N is a diffeomorphism, then d(F~!) Fp)
= (dF, p)il'

Theorem 5.12 Let M be a smooth manifold. Let pc M, v T,M. Let f,g €
C™(M). If there exists an open neighborhood U of p such that f|,= g|,, then
v(f) = v(g). In short, we say that tangent vectors act “locally.”

Proof Let U be an open neighborhood of p such that f|,= g|,. We want to show
that v(f) = v(g). Letus put h = f — g. Since f,g € C*(M), h=f — g € C>*(M),
and hence, h € C*°(M). Since f|,= g|,, h|,= 0. Clearly, p ¢ supp h. (Reason: If
not, otherwise, let p € supp h. We have to arrive at a contradiction. Since p €
supp & = {x: h(x) # 0}, and U is an open neighborhood of p, there exists t € M
such that 4(f) # 0, and r € U. Since ¢ € U, and h|,= 0, h(t) = 0, a contradiction.)
Since p & supp h, h(p) = 0.

Here, M is a smooth manifold, so M is Hausdorff. Since M is Hausdorff, and
p €M, {p} is closed, and hence, M — {p} is open. Since p & supp h, supp h C
M —{p}. Here, supph CM — {p}, supph is a closed subset of M,
M — {p} is an open subset of M, so, by Lemma 4.58, there exists a smooth
function y : M — [0, 1] such that  is a bump function for supp & supported in
M — {p}, and hence,

1. for every x in supp &, Y(x) = 1,
2. supp Yy C M — {p}.

Since supp ¥ C M — {p}, p & supp V¥, and hence, (p) = 0. Since ¥y : M —
[0, 1] is smooth, Y € C*(M). Since y € C*(M), and h € C*(M), their product
(Y-h) e C*(M). Since veT,M, v:C®M)—R. Now, v(y-h)={))
(h(p)) + (Y (p)) (v(h)) = (v(¥))(0) + (0)(v(h)) = 0. Thus, v( - h) = 0.

Clearly, y - h = h. (Reason: If x € supp &, then from condition 1, (- h)(x) =
(Y(x)(h(x)) = 1(h(x)) = h(x). If x¢&supph, then h(x)=0, and hence,
(Y -h)(x) = (Y(x)(h(x)) = (¥(x))0 =0 = h(x). Thus, for all xin M, ( - h)(x) =
h(x)). Now, 0 =v(yy - h) = v(h) = v(f — g) = v(f) —v(g), so v(f) = v(g). [
Theorem 5.13 Let M be an m-dimensional smooth manifold. Let p € M. Let U be
an open neighborhood of p. We know that U is also a smooth manifold (called open

submanifold U of M). Let 1 : U — M be the mapping defined as follows: For every
x in U, 1(x) =x. (Here, we say that 1 is the inclusion map of U.) Then, the
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differential di, : T,U — T,,)M (= T,M) is an isomorphism, that is, di, : T,U —
T,M is 1-1 and onto.

Proof Since M is a smooth manifold, M is a topological manifold. Since M is a
topological manifold, and U is an open neighborhood of p, there exists an open
neighborhood V of p such that V— C U. We know that di, is linear.

di,, is 1-1: For this purpose, let (di,)(v) = 0 where v € T,U. We have to prove
that v =0. Since v € T,U, v: C*(U) — R. We have to show that v = 0, that is,
forevery f € C*(U), v(f) = 0. For this purpose, let us take any f € C*°(U). Since
feC>®U),f:U— Rissmooth. Since f : U — R is smooth, and V~ C U, f|,-
is smooth. Here, V— C U, V™ is closed, U is open, and f |V, is smooth, so, by
Lemma 4.59, there exists a smooth function f : M — R"™ such that f |V,: flv--

Sincef’v,z fly-,and V C V’j’vz flv- Since f : M — R is smooth,f|U is
smooth on U, and hence,ﬂUe C>*(U). Since V.C V- C U, (f’U)‘ :f|V: flvs

1
and hence, (ﬂU)’ = f]y. Since U is a smooth manifold, p € U, v € T,,U,f!U,f €
14

C*>(U), V is an open neighborhood of p such that V C U, and (f|U)’ =f
v
Theorem 5.12, v(ﬂU) = v(f). Now,

vs by

LHS = v(f) = v(fl,) = v(Fo 1) = ((a1,) () (/) = O(F) = 0 = RHS.

This proves that di, is 1-1.

di, : T,U — T,M is onto: For this purpose, let us take any w € T,,M. We have to
find v € T,U such that (di,)(v) = w. Since w € T,M, w : C*(M) — R. It follows
that we must find v € T,U such that for every f € C*(M), ((d1,)(v))(f) = w(f),
that is, for every f € C®(M), v(f o 1) = w(f).

Now, let us take any g € C*(U). Since g € C*(U), g: U — R is smooth.
Since M is a topological manifold, and U is an open neighborhood of p, there exists
an open neighborhood V of p such that V— C U. Since g : U — R is smooth, and
V- C U, g|,- is smooth. Here, V- C U, V™ is closed, U is open, and g|,- is
smooth, by Lemma 4.59, there exists a smooth function g~ : M — R™ such that
g~ |y-=gly-. Next, let g¥: M — R™ be another smooth function such that
&ly-=gly-- Since g~ |,-=gly,-=&%|y-,and V. C V™, g™~ |,= g~|,. Since M is a
smooth manifold, p € M, w € T,M, g~ ,¢~ € C*(M), V is an open neighborhood
of p, and g~ |,= g7~|,, by Theorem 5.12, w(g™~) = w(g~).

Let us define a function v: C®(U) — R as follows: For every g € C*(U),
v(g) = w(g™) where g~ € C>*(M), and g~ |,,-= g|,-. From the above discussion,
we find that v : C*>°(U) — R is well defined. Now, we want to prove that v is linear.
For this purpose, let us take any g,g, € C*(U), and s,¢ any real numbers. We
have to prove that v(sg; +1g2) = s(v(g1)) +1(v(g2)).

Let gi" € C*(M) such that g{"|, =gi|, , and g5~ € C*(M) such that
g5 |V,: 82|y~ It follows that s(g7") + #(g5") € C®(M). Since g~ |V,: gi1ly-,and
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8 |vf =gl (s(gr) +1(83))|y- = (sg1 +182)]y-. Since (sg1 +1g2)ly- = (s(g) +
1(g57))ly-, and s(g7") +1(gy") € C*(M),

LHS = v(sg1 + 1g2) —W(S( )+t(82 )) :S(W(glw)) —l—t(w(g;))
= s(v(g1)) +1(v(s2)) =RH

Now, we want to prove the Leibnitz rule: For every f,g € C*(U),

v(f-g) = (&) + (Fp)(v(g))-

Let f~ € C*(M) such that f~|,-= f|,-, and g~ € C*(M) such that g~ |,-=
gly-- It follows that (f~) - (¢~) € C®(M). Since f~ |,-= fl,-,and g~ |,-= g|y-,
(F~)- (8" Nly-=(-8ly-- Since f~|,-=fly-, and peVC V", f~(p) =
f(p). Similarly, g~ (p) = g(p). Now,

LHS =v(f-g) =w((f7) - (¢7)) = w(F™ )™ (p)) + (™ (p))(w(e™))
=M™ @)+~ () (e) = () (glp)) + (f(p))(v(g)) = RHS.

Thus, we have shown that v : C*°(U) — R is a derivation at p, and hence, v € T,U.
Next, let us take any f € C>°(M). It remains to be proved that v(f o 1) = w(f).
Since 1 : U — M is smooth, and f : M — R is smooth, fo1: U — R is smooth,
and hence, foi1e€ C®(U). Now, since V- CU, f|,-=(for1)|,-. Since
feC®M), foreC®WU), and f|,-=(fo1)|,-, by the definition of v,
v(f o1) = w(f). O

Theorem 5.14 Let M be an m-dimensional smooth manifold. Let p € M. Then, the
real linear space T,M is of dimension m.

Here, M is an m-dimensional smooth manifold, and p € M, so there exists an
admissible coordinate chart (U, ) of M such that p € U. Since (U, @) is an
admissible coordinate chart of M, there exists an open neighborhood G of ¢(p) in
R™ such that ¢ : U — G is a diffeomorphism. Since ¢ : U — G is a diffeomor-
phism, F : M — N is an isomorphism, and hence, T,,U is isomorphic onto T, G.

Since M is an m-dimensional smooth manifold, p € M, and U is an open
neighborhood of p, by Theorem 5.13, the differential di, : T,U — T, M(= T,M)
is an isomorphism, where 1 denotes the inclusion map of U. Since di, : T,U —
T,M is an isomorphism, T,,U is isomorphic onto T,M.

Since R” is an m-dimensional smooth manifold, ¢(p) € R™, and G is an open
neighborhood of ¢(p), by Theorem 5.13, the differential diy,) : Ty G —

T R" (= q,(p)Rm) is an isomorphism, where 7 denotes the inclusion map of
G. Since diy () : Tpp)G — Ty(p)R™ is an isomorphism, T, G is isomorphic onto
T (p)RlTl

We have seen that Ry, is isomorphic to T, R™. Since T,,U is isomorphic onto

Ty G, T,U is linear isomorphic onto T,M, T, G is isomorphic onto T,,,)R™, and
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R’(;‘(p) is isomorphic to T,,(,)R™, T,M is isomorphic to R?;(p): and hence, dim T,M =
dim R’q’,'(p). Since dim 7,M = dim R’(;(p), and dim Rf;‘(p) =m, dimT,M = m.

Note 5.15 Let M be a two-dimensional smooth manifold with differentiable
structure A, and let N be a three-dimensional smooth manifold with differentiable
structure B. Hence, the product manifold M x N is a (2 + 3)-dimensional smooth
manifold. Let (p,q) € M x N.

Since (p,q) € M XN, pe M, and g € N. Since p € M, and M is a two-
dimensional smooth manifold, the tangent space 7,M is a two-dimensional real
linear space. Similarly, T,N is a three-dimensional real linear space, and the tangent
space T(, 4 (M x N)is a (2 + 3)-dimensional real linear space. Since 7,M is a two-
dimensional real linear space, and T;N is a three-dimensional real linear space, their
direct product T,M & T,N is a (2 + 3)-dimensional real linear space. Let m; :
M x N — M be the mapping defined as follows: For every (x,y) € M X N,
7 (x,y) = x. Let mp : M x N — N be the mapping defined as follows: For every
(x,y) € M X N, my(x,y) =y. We know that 7; : M x N — M is a smooth map-
ping. Since n; : M x N — M is a smooth mapping, and (p,q) € M x N, its dif-
ferential d(m1)(, ) : T(p.q)(M X N) = Ty, yM(= T,M) is a linear map, that is,
d(m) g Tpg(M x N) = T,M is a linear map. Similarly, d(m),,
Tpq) (M x N) — TN is a linear map.

Let us define a mapping o : T(, ;) (M x N) — T,M & TN as follows: For every
v in T(‘,,,q)(M X N),

1(v) = ((dm) ) ) 0 (dm2) ) ) ).

Since v (d(m1)(,,))(v) is linear, and v (d(m2),,))(v) is linear,
vie ((d(m1) ) (v), (d(m2) ) (v)) is linear, and hence, o: T,z (M x N) —
T,M ® T,N is linear.

Similarly, we can show that let M be an m-dimensional smooth manifold, N be
an n-dimensional smooth manifold, and (p,q) € M x N. Define o:T,,

(M xN)—T,M®T,N as follows: For every v in T, (M xN), a(v)=
((d(m1) ,4)) V), (d(2) , ) ) (v)). Then, o is linear, etc.

Note 5.16 Let M be an m-dimensional smooth manifold. Let p € M. Let U be an
open neighborhood of p. We know that U is also a smooth manifold (called open
submanifold U of M). Let 1 : U — M be the mapping defined as follows: For every
x in U, 1(x) =x. We know that the differential di,:7,U — T,M is an
isomorphism.

So, from now on, we shall not distinguish between a derivation v in 7,,U, and the
derivation (d,)(v) in T,M. Also, we shall not distinguish between T,,U and T,M.

Here, let v be in 7,U. So v : C>°(U) — R. Since (di,)(v) is in T,M, (di,)(v) :
C>®(M) — R. Observe that the action of “derivation at a point” on a function
depends only on the values of the function in any open neighborhood of the point.
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Also, we shall not distinguish between a derivation v in 7,M, and the derivation
(d1,)"'(v) in T,U.
Note 5.17 Let M be an m-dimensional smooth manifold. Let (U, @) be an
admissible coordinate chart of M. Let us fix any p € U.

Since (U, ¢) is an admissible coordinate chart of M satisfying p € U, there
exists an open neighborhood G of ¢(p) in R™ such that ¢ : U — G is a diffeo-
morphism. Since ¢ : U — G is a diffeomorphism, d¢,, : T,U — TG is an iso-
morphism. Thus, for every v € T,U, and for every f € C™(G),

((do,) ) (F) = v(f o o).

Since M is an m-dimensional smooth manifold, p € M, and U is an open neigh-
borhood of p, by Theorem 5.13, the differential di, : T,U — T,,yM(= T,M) is an
isomorphism, where 1 denotes the inclusion map of U. Since di, : T,U — T,M is
an isomorphism, (di,)”" : T,M — T,U is an isomorphism. Thus, for every v €
T,U, and for every f € C*(M),

((diy) ) (F) = v(F o 1) = v(fly)-

Since R™ is an m-dimensional smooth manifold, ¢(p) € R™, and G is an open
neighborhood of ¢(p), by Theorem 5.13, the differential di, () : Ty()G — Ti(e(p))
R™(= T(/,(I,)R’") is an isomorphism, where 7 denotes the inclusion map of G. Thus,
for every v € T,,)G, and for every f € C*(R"),

((dit/)@)(")) (f) =v(foi)= V(f|G)'

Since (dlp)71 : T,M — T,U is an isomorphism, do,, : T,U — TG is an isomor-
phism, and di, ) : Tp(,)G — Ty(»)R™ is an isomorphism, their composite (di, ) ©
(de,) o (di,) " T, M — Ty R™ is an isomorphism. It follows that (di,)o
(dgo,,)f1 o (di(,,(p)fl : Tpp)R™ — T,M is an isomorphism. Further, since ¢ : U —
G is a diffeomorphism, (dgopf1 = d(q)’l)q)(p), and hence, (d1,) od(q)’l)q)(p) o

o

(di(p(p))fl : TpyR" — T,M is an isomorphism. Since (di,)od(e™")

o(p) }

*(p)
(diw@))_l : Ty(mR™ — T,M is an isomorphism, and

o
Ox!

3
olp) OX°

0

" O

PITIa

»(p)

is a basis of T,,)R",



320 5 Immersions, Submersions, and Embeddings

0

{ ((d’ﬁ) °© d(¢71)¢(p)°(diw@))_l) (@

o
ox?

is a basis of T,M. Here, we can write:

) ) ((d’p) °© d(¢7l)<p@)°(di¢@))_])

)

o(p)
0

) Yoo ((dlp) o d((pfl)(p(wo(di(p(,,))il) <©x_’”
0

((dlp) o d((f’fl)wwo(di“’(”))_l) <ax1 w(p)>
= (@) o a(e™),,) <(<‘”W>)l) (@i
d

((dz,,) o d(@_l)m)) (@
(d(wfl)cp(p)) (a_il W,))
d

((d’p) °© d(‘/’_l)(p(p)o(diw(p)yl) Al
Ox

o)

)

W)> = (du) ((d(w‘l)w) <§

rﬂ(1>)> )

Thus,

rp(z}))
) , etc,

o(p)

w(p)> }

«p(p>> = (4070 <%

Similarly,

0

((dlﬁ) °© d((P71)<p(p)°(d?w(p))_l> (@

W)) = (s67)) <%

Thus,

(e 0) (], ) G ) (&, ) 60 0) (s

is a basis of T,M. For i =1,2,...,m, the tangent vector

(d(¢71)¢(p)) (% w(p))

¢(p) ?(p)
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: 6l
at p is denoted by @‘p' Thus,
0
Ox! »

Conclusion: Let M be an m-dimensional smooth manifold. Let (U, ) be an
admissible coordinate chart of M. Then, for every p € U,

(ol el

is a basis of T,M, where %L; stands for
rﬁ(ﬁ))

(d("’fl)ww) (%

Definition Let M be an m-dimensional smooth manifold. Let (U, ) be an
admissible coordinate chart of M. For every p € M, the ordered basis

K
ox! » ’

as defined in the Note 5.17, is called the coordinate basis of T,M. If v € T,M, then
there exists a unique m-tuple (v!,v?,...,v") of real numbers such that

v—vl E —|—v2 g 4" i
n axlp axzp x|, '

Here, we say that (v', V2, ..., V") are the components of v with respect to coordinate

basis.

0

)
pax

0

,...7ax_m

)4

is a basis of T,M.

0

)
pax

0

" O

PR

p

0
» ox?

0

7...,—m
» Ox

Note 5.18 Let U be an open subset of R", V be an open subset of R”, and p € U.
Let F : U — V be smooth, where F = (F',F?,...,F™).

Since U is a nonempty open subset of the n-dimensional smooth manifold R",
U is also an n-dimensional smooth manifold. Similarly, V is an m-dimensional
smooth manifold. It follows that dF), : T,U — Tg(,)V is a linear map from real
linear space T, U to real linear space Tr(,) V. Here,
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(o)

is the coordinate basis of 7,R", and we do not distinguish between 7,,U and T,,R",

)
9
Ox! »

is the coordinate basis of T,U. Similarly,
F (P))

Ka
oy!

is the coordinate basis of Tr(,)V. Now, since dF, : T,U — Tp,V, for every

feCe(V),
o (el

(05 (2
= 1st column of [(Df)(F(p))
(DiFY)(p)  (DF")(p)
- (D) (F(p))] | : R
(DiF")(p)  (DuF™)(p)
= (D) (FP)) ((D:1F") (p))
+ 4 ((Duf)(F(p)))((D1F")(p))

T vy ) ()
> (G ) (G0

0

)
pfﬁx

0

.oy _ax”

’
p

0

)
pﬁx

0

cay _ax”

)
P

0

0y?

o
o

F(p)
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F(P))

and hence,

V- @n) (&
0 (we] ) S (Ew) (5, ) =

Since for every j = 1,2,...,n,
S0
=\ ey

0 (],
& )

is the coordinate basis of Tr,) V, the matrix representation of linear map dF), is the
following m X n matrix:

(dF,) < o

Similarly,

and

0
F) O kg

o
)’ o "aym

1 1 1
&) E=e o )

2 2 2
%il P L) - L
%57 ) %) o G p)

Let us recall that this matrix is the matrix representation of the total derivative
DF(p) : R" — R™. Thus, we find that in this case, differential dF), : T,R" —
Tr()R™ corresponds to the total derivative DF (p) : R" — R™, tangent space T,R"
corresponds R", and tangent space Tr(,)R™ corresponds R™.

Note 5.19 Let M be an m-dimensional smooth manifold, and N be an n-dimen-
sional smooth manifold. Let p € M. Let F : M — N be a smooth mapping. Let
(U, @) be an admissible coordinate chart of M such that p € U. Let (V, ) be an
admissible coordinate chart of N such that F(p) € V. Since F : M — N is a smooth
mapping, (Y oFo@™'):@UNF'(V)) — (V) is smooth. Put (F',F? ...
F'Y=F=vyoFo¢@ . Thus, F: o(UNF'(V)) — (V) is smooth, that is, each
m;0 (Y o F o @~') is smooth, where 7; denotes the ith projection function from R”
to R.



324 5 Immersions, Submersions, and Embeddings

Since F : M — N is a smooth, F : M — N is continuous. Since F': M — N is
continuous, and V is open in N, F~!(V) is open in M. Since F~!(V) is open in M,
and U is open in M, UNF~1(V) is open in M. Clearly, p € UN F~ (V). Thus,
U N F~1(V) is an open neighborhood of p. Since UNF~1(V) Cc U, UNF~ (V) is
open in M, and U is open in M, U N F~!(V) is open in U. Since UN F~!(V) is an
open neighborhood of p in U, and ¢ is a homeomorphism from U onto an open
subset of R”, (U N F~'(V)) is an open neighborhood of ¢(p) in R™. Clearly,
(V) is open in R". Now, since £ : (U NF~1(V)) — (V) is smooth, as in the
Note 5.18, the matrix representation of dﬁq,(p) Top)R™ = Tigoen R (= Tirop) )
R" = Tiyor)p)R") is

E o) Lilop) - Li(op))
L (o(p) L(pp) - L(e(p))

B (p(p) L)) - L(plp))

Since F=yoFo¢', and ¢, y are 1-1, y ' o F =Fo ¢ '. Here, Fop!:
@(U) =N, so d(Fop™"), ) : TppR" = TppN. Similady d(y ™' o F),, :
T(/,(p)Rm — TF(p)N‘ Here

P>

»(p)

o
ox!

is the coordinate basis of T,M, where

0

)
pax

0

7

5.

p

0 0
= = (d(e™), <—,- )
x|, ( /’(P)> Ox o)
Also,
o) 9 o
ayl F(p)’ ayz F(p)) ey ayn F(P>

is the coordinate basis of Tp(,)N, where

) 0
= (d(lﬂ 1)1//(F(P))) <G_yf w(F(p)))

Now, we want to obtain the matrix representation of dF,.

o
0y/

Fp)
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Since F:M — N is a smooth mapping, dF,:T,M — Ty N. Next, for

i=12,...,m,
w(ﬂ)))

) @t (1,

| )= ((d(q’l)w(m) (&

)

) (1o >>>(az
ar >(§ B

(o
(o,
e
woen)(el, )
( )
s
-

wn)

(o ) ) e, )

w(p))

‘FW(p)) L) - L)
Jik
C

0
d F(/)(p) ) ( dF/‘(l’)) <6x

d(lp 1 Flo (p)> (ith column of

L (o) Li(olp) - Lo(

Lop) Llop) - Lilolp)
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(dF) <8x’ ) 2(%? (¢(p) )(aif >>

Since for every i = 1,2,...,m,

(dF)(ai, ) -3 (Grtown) (%

o
oy!

is the coordinate basis of Tr(,)N, the matrix representation of linear map dF), is the
following n X m matrix:

Thus,

and

d
F(p) O

0

" F<p>>

F(p),...,ay

B o(p)) L) - Li(o(p))
%(w(p)) %—iﬁ(ﬂp)) o B ()

aF”(QD(P)) aF"(w(p)) B (p(p))

me(yereg)) oy Amelieran ) o dmeleren ) oy

Ox! ox2 oxm

_ G(RZO(WOFO(p’I))((p(p)) O(RZO(woFow’l))((p(p)) a<ﬂzo(lﬁoF0(p’l>)((p(p))

Ox! ox2 oxm

M(QD(P» M(q)(p)) M@,(p))

Ox! ox2 oxm

It follows that the matrix representation of dF, is the same as the matrix repre-
sentation of d(y o Foo™') .

Note 5.20 Let M be an m-dimensional smooth manifold. Let p € M. Let (U, ¢) be
an admissible coordinate chart of M such that p € U. Let (V, lﬁ) be an admissible
coordinate chart of M such that p € V. Let ¢(p) = (x',x%,...,x"), and ¥(p) =

LF2 L Let
(a )
—,
axp »

K
ox2 ,

0

,...7ax_m
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be the coordinate basis of 7,M corresponding to (U, ¢), where

0 0
& = dle™) <i )
o'l ( ‘ﬂ(P)) X'l ()
Let
A 0
&), @)

be the coordinate basis of T,M corresponding to (V,y), where

0 ( 1 0
= (A ,,) <— ) :
ox'l, AT P
Letv e T,M. Let (v!,v?,...,v") be the components of v with respect to coordinate
basis
( o] o 0 )
_1 7_2 P _m
Ox » Ox » Ox »
of T,M. Let (¥',9%,...,7") be the components of v with respect to coordinate basis
( o] 0 >
Tl ,Tz g ey Tm
ox » ox » ox »
of T,M. Thus,
o L0 ~m< d )
A +vi|— +--+ V| — =v
1 2 m
oxl, oxl, oxlp

S i —|—V2 i WYL i
- lep zep oxm| ’

Since (U, ¢) and (V, ) are admissible coordinate charts of M such thatp € UNV,
Yoo l:pUNV)— y(UNV)is smooth.

Here, with the hope that there will be no confusion, for every i = 1,2, ..., m, the
ith component of the “transition map” i o ¢! is generally denoted by ¥'. Thus, ¥’
has two meanings: the ith component of y(p), and the ith component function of
¥ o @~!. The situation indicates which meaning is to be attached with. Here, for
every x € o(UNV), (Yoo H(x)= (& (x),(x),...,¥"(x)).
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Since (U N V) is an open neighborhood of ¢(p) in R™, (U N V) is an open
neighborhood of Y(p) in R™, and Yoo~ ' : (UNV) — Y(UNV) is a diffeo-
morphism, the differential d(y o go’l)q,(p) Topye(UNV) = Ty (UNV) is an
isomorphism, and hence, d(y o (p")(ﬂ(p) : Tpp)R™ — Ty, R™ is an isomorphism.

Hel‘e,
(P(P) (/)(]))

is a basis of T,,(,R". Hence, for j = 1,2,...,m,

“0),) (ax] L)l weo ) (&
(89 )= o)) (],
(s >< veo)) (s,

(1 >(< veo) (., )
-~ (av

d
‘”ai’f')' (o) % (o)) - 222 ()
Jjth column of

0

0 0
7ax2 o )

o o

Gx!

‘/’(1’))

(4t
(
=(

lﬁ(p

) (o) ) (o)) - L2 (o)
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Submanifolds

5.2 Open

1,2,...,

Thus, for j

and hence

ol ).

Ox/

m
=3 (
J=1

short,
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5.3 Tangent Bundles

Lemma 5.21 Let M be a nonempty set. Let {U;},.; be a nonempty family of subsets
of M. Let {¢;},, be a family of maps ¢; from U; to R". If

for each i € I, ¢; is a 1-1 mapping from U; onto an open subset ¢,;(U;) of R™,
for each i,j € I, ¢;(U; N U;), and @;(U; N U;) are open in R™,

if Ui N U;j # 0, then the map ¢; 0 ¢! : ¢;(U;: N U;) — ¢;(U; N Uj) is smooth,
there exists a countable subcollection of {U;},, that covers M,

if p, g are distinct points of M, then either (there exists i € I such that p,q €
U;), or (there existi,j € I such thatp € U;,q € U;, and U;NU; =), then
there exists a unique smooth differential structure A over M such that for each
iel, (Ui»(Pi) € A

M

Proof First of all, we shall try to show that the collection {¢;'(G):k €1,
and G is open in R™} is closed with respect to finite intersection.

For this purpose, let us take any ¢;'(Gy), (/)j’l(Gz) € {p;1(G) ke,
and G is open in R™}, where i,j € I, Gy, G, are open in R".

Case I: when i = j. Since i = j, ;' (G1) N ;' (G2) = 971 (G1) N 9] (Ga) =
(pi“(Gl N G,). Since Gy, G, are open in R™, G; NG, is open in R™. Now,
since i€, and Gy NG, is openin R, ¢ Y(GiNGy) € {p;'(G):kel,
and G is open in R™}, and hence, ¢;'(G1)No;'(G2) € {9;'(G) kel
and G is open in R"}.

Case II: when i # .

Subcase I: when ¢;'(Gy) N (pj’l(Gz) = (. Since {U;},, is a nonempty family of
subsets of M, I is nonempty. Since / is nonempty, there exists iy € 1. Since iy € I,
and the empty set § is open in R™, ¢;'(G1)N¢; ' (Gy) =0 =0;'(D) €
{@;'(G) k€1, and Gis open in R"}, and hence ¢;'(Gi)Ng;'(Gy) €
{¢:'(G) :k €1, and G is open in R"}.

Subcase II: when ;' (G1) N ;' (Gy) # 0.

Since ;' (G1) N ¢ '(G2) # 0, there exists x € ¢ (G1) N ¢; ' (G2), and hence,
¢;(x) € G1, ¢;(x) € Gy, x € Ui, and x € U;. Since x € U;, and x € U;, U; N U; # 0,
and hence, by condition 3, (¢, o (pi‘l)_l(Gg) is open in ¢;(U;NU;). Since
(¢j0 @)1 (Gy) is open in @,(U; N U;) and, by condition 2, ¢,(U; N U;) is open in
R, (90 07) " (Ga)(= (9,0 9)(G2)) is openin R”, and hence, (¢, o 9™ (Ga)
is open in R™. Since (¢; o ¢;')(Ga) is open in R, and G, is open in R", G, N
(@io @7 ')(Ga) is open in R™. Since GiN(¢;0¢;')(Ga2) is open in R,
@i (G0 (90 97')(G2)) € {¢;'(G) : k €1, and G is open in R"}. Since {¢; !
(G) 1k, and Gis open in R"}> ¢ (Gi N (p; 0 97 ')(G2)) = 97 (G1) N o
(i 0 9;1)(G2)) = ;' (G1) N 9;(Ga), 071 (G1) N7 {(Ga) € {9 (G) sk €1,
and G is open in R"}.
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Thus, we see that, in all cases, ¢;!(Gy)nN (pj’l(Gz) € {p;1(G) kel
and G is open in R"}. Hence, {¢;!(G) : k €1, and G is open in R} is closed
with respect to finite intersection. Let O be the collection of arbitrary unions of the
members of {¢;'(G) :i €1, and G is open in R™}.

We shall show that O is a topology over M.

(a) Since {U;},; is a nonempty collection of subsets of M, I is nonempty. Since /
is nonempty, there exists ip € I. Since iy € I, and the empty set () is open in
R", 0= ¢;'(0) € {¢;'(G) : i €1, and G is open in R"} C O, and hence,
0eo.

(b) Since for each i € I, ¢; maps from U; to R, ¢; ! (R™) = U;. Now, since R" is
open in R" {U;:iel}={p;'(R"):iel}C{p;(G):i€l, and G
is open in R™}, and hence, Ui; U; € O. By condition 4, there exists a
countable subcollection of {U;},, that covers M, so {U;},,, also covers M,
and hence, U;c; U; = M. Since M = Uic; U; € O, M € O.

(¢) Clearly, O is closed with respect to arbitrary union.

(d) LetU{o;'(Gy):i€l, and Gy is open in R"} € O,and U{o; ! (Gp) : i € 1,
and Gy, is open in R"} € O. We have to prove that (U{op;'(G;y):i€ I,
and Gy is open in R™}) N (U{p;(Gp) : i € I,and Gy, is open in R"}) € O.

Here, (U{p;'(Gy) :i €1, and Gy is open in R"}) N (U{e; ' (Gn) :i € 1, and G
is open in R”}) = U{g; ' (Gj1) N9 ' (Gra) = (j, k) € I x I, Gji, G are open in R™}.

Since {¢;'(G) :i€ I, and G is open in R™} is closed with respect to finite
intersection, {¢;'(Gj1) N ;"' (Gra) : (j,k) € I x I, Gy, Gy are open in R} C {o;!
(G) :i€l, and G is open in R"}, and hence, U{q)j’l(Gjl) No; Y (Gr): (k) €
I x1,Gj,G are open inR"} € O. It follows that (U{p;'(Gy):i€l,
and Gy is open in R™}) N (U{p;!(Gyp) : i € 1, and Gy is open in R"}) € O.
Thus, O is a topology over M.

It is clear that {¢;!(G) :i €I, and G is open in R"} is a basis of the topo-
logical space (M, ©O). Now, we want to prove that for each i € I, U; € O. For this
purpose, let us fix any iy € I. We have to prove that U;, € O. Clearly, {¢; !(G) :
iel, and Gis open in R"} C O, and U, = ¢;,'(R") € {¢;'(G) :i €I, and G
is open in R}, so U;, € O.

Now, we want to prove that for each i € I, ¢, : U; — ¢;(U;) is continuous. For
this purpose, let us take any open set G in ¢;(U;). We have to show that ¢, !(G) is
open in U;. Since G is open in ¢;(U;), and ¢;(U;) is open in R™| G is open in R™,
and hence, by the definition of O, for every i € I, ¢; }(G) € O. Since ¢; 1(G) € O,
;7 '(G)NU; is open in U;. Since ¢;: U; — ¢;(U;), ¢;'(G) C U;, and hence,
o7 (G)NU; = ¢;71(G). Since ¢;1(G) N U; = ¢;'(G), and ¢;'(G) N U; is open
in U;, ¢;1(G) is open in U;.

Thus, we have shown that for each i € I, ¢; : U; — ¢;(U;) is continuous. Now,
we want to show that ¢; is an open mapping. For this purpose, let us take any
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open set Gin U;. We have to show that ¢;(G) is open in ¢;(U;). Since
{(pj" (G) :j €1, and G is open in R™} is a basis of the topological space (M, O),
{@0;'(G)NU;:jel, and G is open in R} is a basis of U;. Now, it suffices to
prove that ¢;(¢;'(G) N U;) is open in ¢,(U;) for every j € I, and for every G
which is open in R™.

Case I: when ¢; ' (G) N U; = 0. Here, ¢;(¢;'(G) N Ui) = ¢;(0) = 0, which is
open in ¢;(U;).

Case I1: when ;' (G) N U; # 0. Since ¢; ' (G) C Uj,and ;' (G) N U; # 0, U; N

- -1 _ -1 _

Ui # 0. Here, ¢; is 1-1, so ¢,(¢; (G) N U;) = @;(¢; ' (G)) N, (Us) = (0
®;")(G) N @;(Uy). Since U; N U; # 0, by the condition 3, ¢; o ;' is open. Since
G is open in R", and ¢; o ¢; " is open, (¢p; o ¢;')(G) is open in R™, and hence,
(@0 @) (G) No;(Uy) is open in @;(U;). Since (¢; 0 ¢; ') (G) Npi(Ui) (= o;
(¢; ' (G) NUy)) is open in ¢;(U;), ¢;(0; ' (G) NU;) is open in ¢, ().

Thus, in all cases, qo,»(qoj‘l(G) N U;) is open in ¢;(U;). This shows that ¢; is an
open mapping. Thus, we have shown that ¢, : U; — ¢,(U;) is a homeomorphism. It
follows that for each i € I, the ordered pair (U;, ¢;) is a coordinate chart of M.

Now, we want to show that the topology O of M is Hausdorff. For this purpose,
let us take any two distinct points p, ¢ in M. We have to find an open neighborhood
G of p, and an open neighborhood G, of g such that G, G, are disjoint. Since p, g are
distinct points of M, by condition 3, either (there exists i € I such that p, g € U;) or
(there exist i,j € I such that p € U;,q € U;, and U;N U; = ().

CaseI: when there exist i,/ € I such that p € U;,q € U;, and U; N U; = (). Since
i€l,U;€ O.Since U; € O, and p € U;, U; is an open neighborhood of p in M.
Similarly, U;is an open neighborhood of gin M. Also, U; N U; = (. Thus, we have
found an open neighborhood U; of p, and an open neighborhood U; of ¢ such that
Ui, U; are disjoint.

Case II: when there exists i € I such that p, g € U;. Since ¢; : U; — ¢;(U;) is
continuous, ¢, is 1-1, and p,q are distinct elements of U;, ¢;(p), ¢;(q) are
distinct points of ¢;(U;). Since, by condition 1, ¢;(U;) is open in R”, and
0;(p), ¢;(q) are distinct points of ¢,;(U;), there exist an open neighborhood G,
of ¢;(p) in R™ and an open neighborhood G, of ¢;(¢) in R™ such that G; C
0;(U:), Gy C ¢;(U;), and Gy, G, are disjoint. Since ¢; : U; — ¢,(U;) is con-
tinuous, and G, is an open neighborhood of ¢;(p) in R™, ¢;'(G,) is an open
neighborhood of p in U;. Since ¢; ! (G) is an open neighborhood of p in U;, and
U; € O, ¢;'(Gy) is an open neighborhood of p in M. Similarly, ¢; ' (G,) is an
open neighborhood of ¢ in M. Also, ¢;'(G1) N ;1 (G2) = ¢; {(GiNGy) =
@;1(0) = 0. Thus, we have found an open neighborhood ¢;!(G;) of p, and an
open neighborhood ¢;!(G,) of g such thatp; ! (G)), ¢; ' (G,) are disjoint.

Thus, we see that, in all cases, there exist disjoint open neighborhoods of p and g.
Hence, the topology O over M is Hausdorff.
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Now, we want to show that the topology O of M is second countable. Observe
that for every j € I, the subspace topology of U; is second countable.

(Reason: For every j € I, @;(Uj;) is a subset of R™. Since each ¢;(U;) is a subset
of R™, and the topology of R™ is second countable, the subspace topology of (pj(Uj)
is second countable. Since the topology of <pj(U,») is second countable, and ¢; :
U, — (pj(Uj) is a homeomorphism, the topology of U; is second countable.)

By condition 4, there exists a countable subcollection {U;, U, U, ...} of
{Ui},e; such that {U;,U;,, Uy, ...} covers M. Since {U;,,U;,, Uy, ...} is a sub-
collection of {U;},.;, and for each i € I, the topology of U; is second countable,
each U, (k=1,2,3,...) is a second countable space, and hence, there exists a
countable basis {Vi1, Via, Via, .. .} of U,,. Since each Vy; is open in U;,, and U;, €
O, each Vi € O. Observe that {V}; : k, [ are positive integers} is a countable col-
lection of open subsets of M. We shall try to show that {Vj:
k, 1 are positive integers} is a basis of M. For this purpose, let us take any open
neighborhood G of p in M.

Since p € M, and {U;,,U;,, U;,, ...} covers M, there exists a positive integer
k such that p € U;,. Since p € U, p € G, p € U;, N G. Since G are open in M,
Ui N G is open in U;,. Thus, U; NG is an open neighborhood of p in U;,. Since
U, NG is an open neighborhood of p in U, and {Vi, Vi2, Vi3, ...} is a basis
of U, , there exists a positive integer [ such that p € Vi, C U;, NG C G.

This shows that {Vj : k! are positive integers} is a countable basis of
M. Hence, the topology of M is second countable.

Now, we want to show that M is an m-dimensional topological manifold. For
this purpose, let us take any p € M. Since p € M, and {U;},, is a cover of M, there
exists ip € I such that p € U;,. Here, (U;,, @, ) is a coordinate chart of M, and
p € Uj,. It follows that M is an m-dimensional topological manifold.

Next, let B be the collection of all coordinate charts (U;, ¢;), where i € I. We
shall try to prove that 53 is an atlas on M. For this purpose, let us take any coordinate
charts (Ui, ¢;), (Uj, @;), where U; N U; # (. We have to prove that ¢; o ¢; ' :
¢;(UiNU;j) — @;(U; N Uj) is smooth. Since U; N U; # 0, by the condition 3, ¢; o
@;': 9;(UiNUj) — ¢;(UiN Uj) is smooth. This proves that 5 is an atlas on M.

Since B is an atlas on an m-dimensional topological manifold M, by Note 1.5,
there exists a unique smooth differential structure .4 on M which contains B. [J

Definition Let {X;},,
denoted by [[,,X;, and is called the disjoint union of {X;}

[Lic; Xi = Ui ({i} x X;).

Note 5.22 Let M be an m-dimensional smooth manifold. Let A be the smooth
structure of M. Let (U, ¢) € A. For every p € U, let

Ox! p’ ox2 »

be any family of sets. The set {(i,x) :i € [ and x € X;} is
Thus,

icl*

0

7...7_m
» Ox
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be the coordinate basis of 7,M corresponding to (U, ¢), where

= (a(e™),) <6ch w(w)'

Here, [ [,y T-M C [1,cy T:M, and @(U) x R™ C R™ x R™ = R?™. Let us define
a function @ : [[,.,, T\M — @(U) x R™ as follows: For every

0 0
<p’v1 (axlp> +"'+Vm<axm ,,)) ereL[[]T,M,
@(p,vl (621 > +...+v”’<axam >> = ((rcl o(p)(p)7...,(nmO(p)(p)7v1,...7v’").

First of all, observe that ¢ is well defined.

9
o'

p

(Reason: Let (p, vl(%|p) +o v’”(%h})) = (q, wl(§|q) +o w’"(af,,,’q))where
(o ] ) o+ V], € ey TM,

and
1 i 4y i
P \ad, T

We have to show that
((nl 0o @)(P)y. - (o qo)(p),vl7 .. .v’") = ((nl 0 0)(q),- . (myo (p)(q),wl, .. .,w'").

q)) € ']e_l[]T,M.

Since
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Since p = g, for every i = 1,...,m, (m; 0 ¢)(p) = (m o ¢)(q). Since p = ¢, and
0
l E—

Y <6x1 »
sov [ 2

"\t »

and

0

a XM

gy

( a )
Ol 72

oxt| ~ox »
is a basis of T,M, for every i =1,...,m, v/ = w'. Since for every i =1,...,m,
vi=w, and (m00)(p) = (miop)(q), ((m10@)Pp),. .. (mmoe)p)v',.. ")
= ((mo0)@),- -, (mmo@)(q),w',...w").) Thus, {[Ley M}y gea is a
family of subsets of [[,c, T;M, and {(}y ,c4 is @ family of functions from
1,y TM onto ¢(U) x R™(C R*™).

Now, we shall verify all the conditions 1-5 of Lemma 5.21:

L. @:[[,cg T-M — @(U) x R™ is 1-1: For this purpose, let

0 0 0 0
<7)<p,v1<F >+~-~+v’"<a — )) <?)<q,w‘(F )+~-~+w’"<a—m ))
x 14 X P x q x q

We have to show that
’ ox! » oxm|, ’ ox! g oxm |,

Here,
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and hence, forevery i = 1,...,m, (1; 0 ¢)(p) = (m; 0 ¢)(q), and v = w'. Since for
every i = 1,....m, (m0¢)(p) = (m 0 ¢)(q), ¢p) = ¢(q). Since ¢(p) = ¢(q),

)

and ¢ is 1-1, p = q. Since forevery i = 1,....,m, V' = w',

1 i Ay i — !l i 4+ W 9
Y axlp Y axmp v axlp v oxm

Since
14 axm 4

0
1
Vv (@
TIY
» v axm

so vl o
) ox!

It follows that

pvl i 4y i — qwl i I i .
’ Ox! » Oxm » ’ ox! g oxm p

Thus, we have shown that ¢ : [[,.,, T:M — @(U) x R™ is 1-1. Now, we want to
show that @ : [[,.,, .M — ¢(U) x R™ is onto. For this purpose, let us take any
((m1o@)(p)y..., (Tmo@)(p),v!,...,v") € @(U) x R™, where p € U. Here, p € U,

and
v1<£1 >+~~+v’”<i ) € T,M,
ox'|, x|,
)
vl (%p) + - —&—v’”(%p) € rELI[]T,.M.
Also,

(2 (2
6x1p Oxm

This shows that ¢ : [],.,, T,M — ¢(U) x R™ is a 1-1 onto mapping.

Now, we want to show that ¢(U) x R™ is open in R*". Since (U, ¢) € A, and
A is a smooth structure of M, ¢(U) is open in R™, and hence, ¢(U) x R™ is open
in R™ x R"(= R>™).

)) = ((nl o(p)(p),...,(nmow)(p),vl7...,vm).
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2. Let us take any (U,¢)€ A, and (V,¥) € A. We have to prove that
A((I1Ley TM)N(IL,ey T:M)) is open in R*'. Here, @(([],cpy T-M)N
(Iey M) = (I copy TLM). Here, @ [Ley TLM — o(U) x B" is
defined as follows: For every

<p’v1 (a?clp) +‘..+vm<63n p)) erE]_l[/T,M,
? 1 i M i = 1 mn
Pl A ! + -V AT = ((mo@)p),...,(muo@)(p),v',....v")

It follows that @(]],cpny T+M) = @(UNV) x R", and hence, ¢(([],cy M)
N([,ey TrM)) = p(UNV) x R™. Since (U, ) € A, and (V, ) € A, o(UNYV)
is open in R™, and hence, ¢(UNV) x R™ is open in R®". This shows that

*((I1Ley TM)N(I1,ey T,M)) is open in R>. Similarly, y((][,cy T-M)N
(I1,ey T,M)) is open in R*".

3. Letus take any (U, @) € A, and (V,y) € A. Let (][,o, T-M) N (I1,oy T-M) #
(). We have to prove that

o o) ) () )

is smooth, that is,

Yo ;q)( 11 T,M) —»J( 11 T,M)

reunv reunv
is smooth. For every p € UNV, let

el e

be the coordinate basis of T,M corresponding to (U, ¢), where

_ (d((P_l)(p(I’)) <§ (/)(I’)>7

p

0

)
pGx

0

7 O

P

p

9
oxt

p
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oxt|,) o ,

be the coordinate basis of T,M corresponding to (V,y), where

and let
0

ye s ATy
» ox

0 0
& = ), <_~i )
x|, ( ( )P(I’)> x|, )
Also,
0 o' 0
&, ~ (o) <a_ )

Here, for every (x',...,.x"v',...,v") € @(I],cyny T-M), we have

(J/o zpfl)(xl,...,w,vl,...,vm) =@ (L))

)

)
vi(a—;(xl,.,.,x'") ,...,vi(%zl(x17...7x’")))
=((mo (oo ™)) ..a), .. (mmo (Yoo (,...x"),
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Thus,

(Fog )ty = (oo ™) (o), (Wo ™) (6,

(b 0(711 | /D o —1\m X

Here, Yo' is smooth, so each of (x',...,x" v\ ... v oo ')
(x',...,x™) is smooth, and each of
(0 —1\J
(xl, X vl ,vm)n—w’((lp;q.) )(xl,...,x’")>
xl

1

is smooth, and hence, x/~/ o @~ is smooth.

4. Since {M} is an open cover of M, by the Lemma 4.52, there exists a countable
collection {(Uy, ¢,), (U2, ¢5), (U3, @3), - - -} of admissible coordinate charts of
M such that {Uy, U,, Us, - - -} covers M. Here, each (U, ¢;) is an admissible
coordinate charts of M, so each (Uy, ¢;) € A, and hence, {[[,cy, T,M},cy is a
countable subcollection of {[[,c, T-M}y pea-

Now, we want to prove that {[[,y T-M};cy covers [[,, 7M. Since
{U1,05,Us,...} covers M, M =U2, Uy, and hence, U ([],cy, TsM) =

quuiil v, TeM = [ yeps TeM = [1,ep T-M. Tt follows that {J[,cp, T4M, [ cq,
TM, [ Lcp, TyM, .. .} covers [ [,y T:M.

5. Let (p,v) €T, (q,w) € [l,epy T-M, and (p,v) # (g,w). Since (p,v) €
,epy T:M, v € T,M. Similarly, w € T,M.

Case I: when p = ¢. Since p = ¢, and (p,v) # (g, w), v # w. Since p = ¢, and
we T,M,w e T,M.Since p € M, and M is an m-dimensional smooth manifold,
there exists (V,y) € A such that p € V. Since (V,¥) € A, [[,o, T:M €
{,co T'M} (1 p)en- Since p € V, and v € T,M, (p,v) € [,y ;M. Since p €
V,andp = q,q € V.Sinceq € V,andw € T,M, (q,w) € [],., T-M. Thus, there
exists [ [,cy TM € {[{,cy T-M}(y y)c 4 Such that (p,v), (q,w) € [[,cy T,M.

Case II: when p # g. Since M is an m-dimensional smooth manifold, its topology
is Hausdorff. Since the topology of M is Hausdorff, p # ¢, and p,q € M, there
exist an open neighborhood G of p and an open neighborhood G, of ¢ such that
G1 NGy = (. Since p € M, and M is a smooth manifold, there exists (V, ) € A
such that p € V. Since (V,¥) € A, and p € V, Vis an open neighborhood of p.
Since V is an open neighborhood of p, and G, is an open neighborhood of p,
G, NV is an open neighborhood of p. Since (V ) € A, G; NV is an open
subset of V, and A is a smooth structure on M, (G1 NV, Y| ) € A. Similarly,
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there exists (W,y) € A such that (GoNW,x|gw) € A Since (GiNV,
Ylg,av) € A Tleg,v TrM € {[ e TfM}(U,(p)GA' Similarly, [[,cq,nw T-M €
{lL,cv T-M} y y)c 4- Here, Gy NV is an open neighborhood of p,sop € Gi N'V.
Since p€ GiNV, and v € T,M, (p,v) € [[,c¢,nv T-M. Similarly, (q,w) €
[recorw TrM- Next, ([Leq,nv TrM) 0 (Lreqyrw TrM) - = Le(6invineanw)
TM = 11,c(6in6nvew) TrM = Lreonivow) T-M = T,ep T-M = 0.

Hence, the condition 5 is satisfied.

Now, by Lemma 5.21, there exists a unique smooth differential structure 3 over
[,cp T-M such that for each (U, @) € A, (I1,c, T:M, @) € B. Thus, [],.), T-M
becomes a 2m-dimensional smooth manifold. This 2m-dimensional smooth mani-
fold [[,cy T-M is called the tangent bundle of M. It is denoted by TM. Here,
corresponding to each admissible coordinate chart (U, @) of M, ([[,., T:M, ¢) is
an admissible coordinate chart of TM.

Theorem 5.23 Let M be an m-dimensional smooth manifold. Let (M, @) be an
admissible coordinate chart of M. Then, TM is diffeomorphic onto M x R™.

Proof Since (M, @) is an admissible coordinate chart of M, by the Note 5.22,
(I,ep T-M, @) is an admissible coordinate chart of TM, where ¢ : [[,.,, T,M —
@(M) x R™. Now, since [[,.,, ;M = TM, (TM, p) is an admissible coordinate
chart of TM, where @ : TM — (M) x R™. Since (M, ¢) is an admissible coor-
dinate chart of M, ¢ is a diffeomorphism from M onto ¢(M). Since ¢ is a diffeo-
morphism from M onto ¢(M), M is diffeomorphic onto ¢(M). Since (TM, @) is an
admissible coordinate chart of TM, where ¢ : TM — (M) xR"™, ¢ : TM —
o(M) x R™ is a diffeomorphism, and hence, TM is diffeomorphic onto ¢(M) X
R™. Since TM is diffeomorphic onto ¢(M) x R™, and M is diffeomorphic onto
@(M), TM is diffeomorphic onto M x R™. O

Definition Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and F : M — N be smooth. The mapping dF : TM — TN is
defined as follows: For every (p,v) € TM(=]],c,, T-M), where p € M, and
veT,M,

(dF)(p,v) = (F(p), (dF,) (v))-

Here, dF is called the global differential of F (or, global tangent map of F).

Theorem 5.24 Let M be an m-dimensional smooth manifold, N be an n-dimen-
sional smooth manifold, and F : M — N be smooth. Then, dF : TM — TN is
smooth.

Proof Let us take any (p,v) € TM(= [],.), T-M) where p € M, and (p,v) € T,M.
Let us take any admissible coordinate chart (U, ¢) of M such that p € U. For every
qge U, let
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ox! q7 .

be the coordinate basis of T,M corresponding to (U, ¢), where

- (d(fp_l)mq)) <% W,))

Here, [],.y T:M(C [1,cy T-M = TM) is an open neighborhood of (p,v) in TM,
and @(U) x R™(C R™ x R™ = R*") is open in R*".
Let us define a function ¢ : [[,.,, T,M — @(U) x R™ as follows: For every

o))
q relU

~ 1 i m i — 1 m
@l qv o, oty o], = ((m o @)(@)s- - (mm o @)(q), ;.. V"),

where 7; : R™ — R denotes the ith projection function of R™.

We know that ([[,., T-M, @) is an admissible coordinate chart of TM. Here,
F:M — N,andp € M, so F(p) € N. Let us take any admissible coordinate chart
(V, ) of N such that F(p) € V. For every r € V| let

9
oy'|,’ ,

be the coordinate basis of 7,N corresponding to (V, /), where

aiyi = (d(lﬁ_l)w(r)) (6%’1//(»‘))

Here, [],., T,N(C [[,ey TN =TN) is an open neighborhood of (dF)(p,v)
(= (F(p), (dF,)(»))), and (V) x R*(C R" x R" = R*") is open in R*". Let us
define a function  : [,y T,N — §(V) x R" as follows: For every

() o)y

reVv
et o
; W ayn

0
ox? ;

0

" Oxm

PR

9
oxt p

9
0y?

o
g

. 2
v (r’ v (@yl

)) = (% 0 ) (). oo (2, 0 W) () o),
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where 7;:R" — R denotes the ith projection function of R". We know that
I,y T,N,V) is an admissible coordinate chart of TN. We have to prove that

yoFop ' :o((Il,ey M) — ¥((I1,ey T-N)) is smooth. Here, for every
vt vy € o(1eyy TAM), we have

d(mo(oFop!
W(w(w"(f*”ﬂ)))) (i

[
(e, )
| |

(fomsere)y

=((njoyoFop ")(x',...x"),..., (Moo Fogp ) (x',..,x"),

vz-(W(xlw,.f)),WV:-(M(XIMW))),

ox!

= ((=] o\poFo(;fl)()cl,...,x’”),...7 (n;ouj/oFo(pfl)(xl,...,x’"),

oQBevere o) ), (Amevere e )

ox!

Since F:M — N is smooth, (U,¢) is an admissible coordinate chart of
M such that p € U, (V,y) is an admissible coordinate chart of N such that F(p)
€V, yoFogp ! is smooth. Since Yy oFo¢ ! is smooth, each function
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(xl,...,x”’ml,...,v’”)—>(njf01ﬁOFoqo’l)(x1,...,x’”) is smooth, and each
function

6(7‘5]',01//oFog0*1)

1 m 1 m i
€ T L e e L o

(xl,...,x’")

is smooth, and hence, zzo Fo cb’l 1s smooth. O

5.4 Smooth Immersion

Note 5.25 Let M, N, P be smooth manifolds. Let F: M — N, and G: N — P be
smooth maps. Since F : M — N is smooth, by Theorem 5.24, dF : TM — TN is
smooth. Similarly, dG : TN — TP is smooth. Since dF : TM — TN is smooth, and
dG : TN — TP is smooth, (dG) o (dF) : TM — TP is smooth. Since F : M — N is
smooth, and G: N — P is smooth, Go F : M — P is smooth, and hence, by
Theorem 5.24, d(Go F):TM — TP is smooth. We shall try to show that
d(Go F) = (dG) o (dF), that is, for every (p,v) € TM(= [],c, T,M), where p €
M, and v € T,M, (d(G o F))(p,v) = ((dG) o (dF))(p,v).

LHS = (d(G o F))(p,v) = ((Go F)(p), (4G F),) ) = (G(F(P)), (d(G o F), ) )

= (G(F (), ((dGrp) © (aFy)) () = (G(F(p)), (dGr) ((dF,) (v)),

((dG) © (dF))(p, v) = (AG)((AF)(p,¥)) = (4G) (F(p), (dF,) (v))
= (G(F (), (dGr()) ((dFy)(v)))-

RHS

Hence, LHS = RHS. Thus, we have shown that d(G o F) = (dG) o (dF).

Note 5.26 Let M be a smooth manifold. Here, Idy, : M — M is given by Idy(x) =
x for every x in M. Clearly, Idy, is a smooth function. Hence, by Theorem 5.24,
d(Idy) : TM — TM is smooth. Here, Idry : TM — TM is a smooth function. We
shall try to show that d(Idy) = Idz, that is, for every (p,v) € TM(= [[,., T\M),
where p € M, and v € T,M, (d(Idy))(p,v) = (Idm)(p,v).

LHS = (d(1dy))(p,v) = (1du(p), (d(1du), ) ) = (. (d(1dur), ) )
= (. (a04w), ) ) = (. (145,0) (7)) = (p,¥) = (1dras)(p.v) = RHS.

Thus, we have shown that d(Idy) = Idzny.

Note 5.27 Let M, N be smooth manifolds. Let F : M — N be a diffeomorphism.
Since F: M — N is a diffeomorphism, F : M — N is smooth, and hence, dF :
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TM — TN is smooth. We want to prove that dFF : TM — TN is a diffeomorphism,
that is, dF is 1-1 onto, and (dF)~" is smooth.

dF : TM — TN is 1-1: For this purpose, let (dF)(p,v) = (dF)(g,w), where p,q €
M, and v,w € T,M. We have to show that (p,v) = (g, w), thatis, p =g, and v =w.

Here,  (F(p), (dF,)(v) = (dF)(p,v) = (dF) (g, w) = (F(q), (dF,)(w)), 0
F(p) =F(q), and (dF,)(v) = (dF,)(w). Since F : M — N is a diffeomorphism,
F is 1-1. Since F is 1-1, and F(p) = F(q), p = q. Since p = ¢, and (dF,)(v) =
(dF,)(w), (dF,)(v) = (dF,)(w). Since F : M — N is a diffeomorphism, and p €
M, dF, : T,M — Tg(,)N is an isomorphism, and hence, dF), is 1-1. Since dF), is
1-1, and (dF,)(v) = (dF,)(w), v = w. Thus, dF : TM — TN is 1-1.

dF : TM — TN is onto: For this purpose, let us take any (g,w) € TN, where
g€ N,andw € T;N.

Since F : M — N is a diffeomorphism, F : M — N is onto. Since F : M — N is
onto, and g € N, there exists p € M such that F(p) = gq. Since F(p) = g, and
weTyN, we Tpp)N. Since F: M — N is a diffeomorphism, and p € M, dF), :
T,M — Tg(,)N is an isomorphism, and hence, T,M — Tg,)N is onto. Since dF, :
T,M — Tg(,)N is onto, and w € Tr(,)N, there exists v € T,M such that (dF,)(v) =
w. Since p € M,and v € T,M, (p,v) € TM. Also, (dF)(p,v) = (F(p), (dF,)(v)) =
(q,(dF,)(v)) = (g,w). This shows that dF : TM — TN is onto.

(dF)"": TN — TM is smooth: Since F : M — N is a diffeomorphism, F~' :
N — M is smooth, and hence, d(F~!) : TN — TMis smooth.

Now, we shall try to show that (dF)~" = d(F~!), that is, for every (g, w) € TN,
where g € N, and w € T,N, (dF) '(g,w) = (d(F~"))(g,w), that is, for every
(g, w) € TN, where g € N, and w € T,N, (q,w) = (dF)((d(F~'))(g,w)). For this
purpose, let us take any (g,w) € TN, where g € N, and w € T,N. Now, since
dF : TM — TN is onto, there exists (p,v) € TM such that (F(p),(dF,)(v)) =
(dF)(p,v) = (g, w). It follows that F(p) = ¢, and (dF,)(v) = w. Since F : M — N
is a diffecomorphism, and p € M, dF, : TyM — Tr;,)N is an isomorphism, and
hence, dF, : T,M — Tg,)N is 1-1 onto. Since dF,, : T,M — Tp(, N is 1-1 onto,
and (dF,)(v) =w, v= (de)fl(w). Since F: M — N is a diffeomorphism, F :
M — N is a1-1 onto. Since F : M — N is a 1-1 onto, and F(p) = ¢, p = F'(q).
Now,
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Thus, (dF)' = d(F!). Since (dF)"'= d(F™'), and d(F'):TN — TM is
smooth, (dF)~" : TN — TMis smooth.

This proves that if F: M — N is a diffeomorphism, then dF : TM — TN is a
diffeomorphism.

Note 5.28 Let M, N be smooth manifolds. Let F : M — N be a diffeomorphism.
From the Note 5.27, dF : TM — TN is a diffeomorphism. Since dF : TM — TN is
a diffeomorphism, dF : TM — TN is 1-1 onto, and hence, (dF )_l TN — TM.
Since F : M — N is a diffeomorphism, F1:N>Misa diffeomorphism, and
hence, by the Note 5.27, d(F~') : TN — TM is a diffeomorphism. Thus, (dF) " :
TN — TM, and d(F~') : TN — TM.

Now, we shall try to show that (dF) " = d(F "), that is, for every (¢, w) € TN,
where ¢ € N, and w € T,N, (dF) ' (q,w) = (d(F~1))(g,w), that is, for every
(g, w) € TN, where g € N, and w € T,N, (g,w) = (dF)((d(F~"))(g,w)). For this
purpose, let us take any (g,w) € TN, where g € N, and w € T,N. Now, since
dF : TM — TN is onto, there exists (p,v) € TM such that (F(p),(dF,)(v)) =
(dF)(p,v) = (g, w). It follows that F(p) = ¢, and (dF),)(v) = w. Since F : M — N
is a diffeomorphism, and p € M, dF}, : T,M — Tp(,)N is an isomorphism, and
hence, dF), : T,M — Tg(,)N is 1-1 onto. Since dF), : T,M — Tr,)N is 1-1 onto,
and (dF,)(v) =w, v=(dF,) " (w). Since F: M — N is a diffeomorphism, F :
M — Nis a 1-1 onto. Since F : M — N is a 1-1 onto, and F(p) = ¢, p = F~'(q).
Now,

RHS = (dF)((d(F ")) (g, w)) = (dF) (F(q), (d(F "), ) )
= (@F)(F(g), (4(F™),) ) = @F)(F (@), (d(F ") ) 0))
= (@F)(F(a), ((@F,) ") w)) = @F) (. ((aF) ") )
= (dF)(p,v) = (F(p), (dF,)(v)) = (g, (dF;)(v)) = (g, w) = LHS

Thus, we have shown that if F:M — N is a diffeomorphism, then
(dF) ' =d(F ).

Definition Let 7y be a real number. Let ¢ be any positive real number. Let M be an
m-dimensional smooth manifold. Let y: (tp — &,7o + &) — M be a smooth map.
Observe that the open interval (fy — &,y + ¢) is a one-dimensional smooth mani-
fold. Since y : (to — &, + &) — M is a smooth map, and 1y € (to — &,10 + ¢), dy,, :
T, (to — &,10 + &) — T,;)M. The standard coordinate basis vector of T, R is

denoted by % .
)
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Since T,,(ty — ¢, 1o + ¢) is the same as T;, R, and % is the standard coordinate
)

basis vector of T, R, %’ is the standard coordinate basis vector of T, (1 — ¢, fo + €).
1o

Since % is in Ty (to —eto+¢), and dy, : Ty (to —&,t0 + &) — Ty)M,

)

(dy,n)(%‘ ) € Tu)yM. Here, (dy,n)(%‘ ) is denoted by 7'(#), and is called the
Iy )

velocity of y at ty. Since

d

Y (t0) = (deo) (5

)

> € Tyu)M, 507 (to) € Ty)M.

Since y'(t0) € Ty4)M, 7' (to) is a function from C>(M) to R. Hence, for every

f € C®(M), we have
(F 07) (1) = (% m)(fov) - ((dv,o (%

))(f) = (7'(10))(f)-

fo

Thus, for every f € C>®(M), we have (y'(t))(f) = (f o) (t0).
Here, y(fo) € M, and M is an m-dimensional smooth manifold, so there exists an
admissible coordinate chart (U, @) of M such that y(#y) € U. Let

ox! »(to)

be the coordinate basis of T,,,M corresponding to (U, ¢), where

_ -1 0
=(d(<P )w<v<m>>) (@ o)

So the matrix representation of linear map dy, is the following m X 1 matrix:

0

" O

PRI

7(to)

9
Oxt

?(to)

d T ooy
d( ld(tﬂ 7)) (fo)
(ﬂzzl(t(ﬂoy')) (fo)

d 7,,0(poy
( d(l‘P )>(lo)
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where 7; : R" — R denotes the ith projection function of R™. It follows that
d

() = (@) (d, ) = (Hmeteei ) (aa ) >>

d(mm o (¢ ©7)) ¢
I (+ (to)) <6x_’" .},(m))

_ (d(ni oéip °7)) (t0)> (a@xi ~,<,0>)'

Thus,

In the case of Euclidean space R™ for M, the above formula takes the form:

() = <d(nciitoy) (t0)> (6?‘ A >>7

which is essentially the same as in the classical calculus.

Theorem 5.29 Let M be an m-dimensional smooth manifold. Let p € M. Let v €
T,M. Then, there exist a positive real ¢ and a smooth curve y : (—¢, &) — M such
that y(0) = p, and y'(0) = v.

Proof Since p € M, and M is an m-dimensional smooth manifold, there exists an
admissible coordinate chart (U, ¢) of M such that p € U, and ¢(p) = 0. For every

q e U, let
9
ox! p

be the coordinate basis of T,M corresponding to (U, ¢), where

0

" Qe

PRI

q

0 0
= = (d(e™), <_i )
ox p ( P(4)> Ox (@)
Here,
o 0
ox! p"”’axmp
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is the coordinate basis of T,M, and v € T,M, there exist real numbers Vi

such that
=l g I i = i
- ox! » Oxm » T \ox » '

Since (U, ¢) is an admissible coordinate chart of M, ¢ is a mapping from U onto
o(U), where ¢@(U) is an open neighborhood of ¢(p)(=0) in R™. Since
t— (v',...,¥") is a continuous map from R to R™, and ¢(U) is an open
neighborhood of ¢(p)(= (0,...,0) = (Ov!,...,00™)) in R”, there exists &> 0
such that for every ¢ € (0 — ¢,0 + &), we have (!, ...,v") € @(U), and hence, for
every t € (—¢,¢), we have o' (n!,....1v") € U. Now, let us define y : (—¢,¢) —
U(C M) as follows: For every t € (—¢,¢), y(t) = ¢~ (v',...,0"™). Here, y(0) =
e L OV, ..., 00") = ¢ 1(0) = ¢ '(¢(p)) = p. Thus, y(0) =p. We shall try to
show that y is smooth.

Since (U, ¢) is an admissible coordinate chart of M, ¢ is a diffeomorphism from
U onto ¢@(U), and hence, ¢! is smooth. Since ¢! is smooth, and
t—(v',...,0v") is smooth, their composite @ L(tv!, ... ") (=(1)) is
smooth, and hence, y is smooth. It follows that for every r € (—¢, ¢) we have

(mi0 (@ o)1) = m(e((1) = m(p(o~' (v',...,0")))

=m(n', .. ") =0 =i,

SO

d(mio (po7))

& (0) = V',

Now, we shall try to show that 7/(0) = v. Here,

oy — (dmoteon) (N[O Y_ (2] Y_,(2])_,
V(O)—< dr (O)> <axi V(O)> <axi ~,~<o>> <axi p> '

Hence, y'(0) = v. O

Note 5.30 Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and F : M — N be a smooth map. Let y : (fo — &,7p + ¢) — M be
a smooth map.

Since 7y : (to — ¢,f0 + &) — M is a smooth map, and F : M — N is a smooth
map, their composite Foy: (fp —¢,fp +¢) — N is a smooth map, and hence,
(F 09) (t0) € T(poy) )N = Tr(y(0))N- Since 7 : (fo — &,to +¢&) — M is a smooth
map, '(t9) € Ty, yM. Since 7y: (to —e,to+¢) — M, y(to) € M. Since y(t)
€M, and F:M — N is smooth, dF,q, : T, )M — Tr)N. Since dFy) :
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/

(dF,,)) (' (f0)) and (F o )’ (to) are elements of T, (,))N- We shall try to show that
(dFy0)) (7' (00)) = (F 0 ) (t0).-
Io>

TyiyM — Tr(y))N, and Y (%) € T,i)M, (dFy(,O))(W/I(lQ)) € Trg(i)N- Thus,

d

s = o5 0) = (a1, (5] ) = lam) o @)

— (dFy(To)) <(d%ﬂ) (c(lit

Thus, we have shown that (dF,,))(y'(t0)) = (F o 7)'(t).

)

)) - @ - s,

Iy

Note 5.31 Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and F : M — N be a smooth map. Let p € M. Letv € T,M. Let
y: (—¢,&) — M be a smooth curve on M, such that y(0) = p, and 7/(0) = v. (The
existence of such a y has been established in Theorem 5.29.)

Since F : M — N is a smooth map, dF}, : T,M — Tg(,)N. Since dF, : T,M —
TrN, and v € T,M, (dF,)(v) € Tp(,)N. Here, y : (—¢,&) — M is smooth, and F :
M — N is smooth, so their composite F oy : (—¢¢) — N is smooth, and hence,
(F29)'(0) € Tirop)N = Tr(y0))N = Tr(p)N. Thus, (dF,)(v) and (F 0 7)'(0) are
members of Tr(,)N. We shall try to show that (dF,)(v) = (F oy)'(0).

RHS = (F 07)'(0) = (dFy0))('(0)) = (dF,) ('(0)) = (dF,)(v) = LHS.

This proves that (dF,)(v) = (Foy)'(0). In short, we write (dF,q))
(7/(0)) = (Fo7)(0).

Definition Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and F : M — N be a smooth map. Let p € M.

It follows that dF), : T,M — Tg,)N. We know that dF), is a linear map from real
linear space T, M to real linear space Ty, N. Here, (dF),)(T,M) is a linear subspace
of Tr(,yN. We know that dim T,M = m, and dim Tr(,)N = n. Since (dF),)(T,M) is
a linear subspace of Tr(,)N, dim((dF,)(T,M)) < dim Tf,)N = n. Since dF), is a
linear map from real linear space 7,M to real linear space Ty(,)N, dim((dF,)
(T,M)) < dimT,M = m. Since dim((dF,)(T,M))<m, and dim((dF,)(T,M))
<n, dim((dF,)(T,M)) < min{m,n}. Here, dim((dF},)(T,M)) is called the rank of
F atp.

It follows that the rank of F at p is r if and only if the matrix representation of
linear map dF, has rank r. Clearly, the rank of F at p is less than or equal to
min{m,n}. Observe that the linear map dF), : T,M — Tg,N is onto if and only if
dim((dF,)(T,M)) = dim Tr(,)N(= n). Thus, the linear map dF), : T,M — Ty(,)N
is onto if and only if the rank of F at p is n.
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Observe that the linear map dF), : T,M — Tp,)N is 1-1 if and only if
dim((dF,)(T,M)) = dim T,M (= m). Thus, the linear map dF, : T,M — TN is
1-1 if and only if the rank of F at p is m.

Definition Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and F : M — N be a smooth map. Let k be a positive integer. If
for every p € M, the rank of F at p is k, then we write rank F' = k, and say that
F has constant rank k. Let M be an m-dimensional smooth manifold, N be an n-
dimensional smooth manifold, and ¥ : M — N be a smooth map. Here, the linear
map dF), : T,M — Tr(,)N is onto for every p € M if and only if the rank of F at p is
n for every p € M. Thus, the linear map dF, : T,M — Tr(,N is onto for every
p € M if and only if rank F = n.

Note 5.32 Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and F : M — N be a smooth map. Here, the linear map dF), :
T,M — Tr@,)N is 1-1 for every p € M if and only if the rank of F at p is m for
every p € M. Thus, the linear map dF), : T,M — Tg(, N is 1-1 for every p € M if
and only if rank F = m.

Definition Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and F : M — N be a smooth map. If for every p € M, the linear
map dF), : T,M — Tg,)N is onto, then we say that F is a smooth submersion. Thus,
F is a smooth submersion if and only if rank F = n.

Definition Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and F : M — N be a smooth map. If for every p € M, the linear
map dF), : TyM — Tp,)N is 1-1, then we say that F'is a smooth immersion. Thus,
F is a smooth immersion if and only if rank F = m.

5.5 Inverse Function Theorem for Manifolds

Note 5.33 Let M(2 x 3,R) be the collection of all 2 x 3 matrices with real entries,
that is,

a b ¢

M(2 x 3,R) = {[d . f] :a,b,c,d,e,fG]R}.
We define addition of matrices as follows:

a b ¢ a b ca|_|ata b+b, c+c
d e f di e fi| |d+d ete f+fi]

Clearly, M(2 x 3,R) is a commutative group under addition as binary operation.
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We define scalar multiplication of matrix as follows:

.|a b c|_|ta b 1
d e f|  |td te tf|
Clearly, M(2 x 3,R) becomes a real linear space of dimension (2 x 3). Here, one
of the basis of M(2 x 3, R) is

R R A R R A R A |

Clearly, the real linear space R>*® is isomorphic to the real linear space
M(2 x 3,R). Since R**3 is isomorphic to M(2 x 3,R), we will not distinguish
between

a b c
[d . f] and (a,b,c,d,e,f).
Now, since R**3 is a (2 x 3)-dimensional smooth manifold, M(2 x 3,R) is also a
(2 x 3)-dimensional smooth manifold. Let M»(2 x 3,R) be the collection of all

a b ¢
[d . f}EM(2x3,R)
such that
a b ¢
rank[d . f}—Z.
If
a b ¢
[d . }EMZ(ZX?),R),
then
a b ¢
rank[d . f}—Z,
that is, if

a b ¢
d e f

} € My(2 x 3,R)
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then

<det{i ;} = 0 or det {Z ;] = 0 or det [Z ﬂ #O).

We want to show that M,(2 x 3,R) is an open subset of M(2 x 3,R). For this
purpose, let us fix any

[abc

d e f} € M,(2 x 3,R).
It follows that

b ¢
e f

a ¢

det[ d f];éo or det[cdl [ej];«éo.

} #0 or det{

Case I: when

b ¢
detL f] #0

Here,

bf—ce:det{lz ;] #0.

Since there exists ¢ > 0, the open interval

(det[f ;] —&det{i’ ;} +s>

does not contain 0. Let us define a function f : R® — R as follows: For every
NG
(X1, X2, X3, X4, X5, X6) in R

X2 X3
X5 Xe |

F(x1, %2, X3, X4, X5, X6) = XoXe — X5X3 = det[

Clearly, fis a continuous function. Also,

fla,b,c,d,e,f) :det{[ej ;}

Since f is a continuous at (a, b, c,d, e,f), there exists an open neighborhood U
of (a,b,c,d,e,f) in RS such that for every (x;,x2,x3,x4,%5,%) € U,
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X2

det{ XB] :f(xl,X27X37X4,X5,x6) € (f(a,b, c,d,ef)— gaf(aabvca d, e,f) + 'S)

X5 Xg
— (aet|? € det]? € 0
A R M RO EL

Thus, for every (x1,x2,x3,X4,%5,%) € U, we have

X2 X3
det[x XJ #0,

5

and hence,

for every (xi,x»,x3,%4,%s5,%) € U. Since U is an open neighborhood of
(a7 b7 C’ d’ e’f) in Ré?

X X X
{|: ! 2 3:| Z(XI,X27X3,X4,X5,X6)€U}

X4 X5 Xg

is an open neighborhood of

[abc

i f}in M(2 x 3,R).

Since

X X X
rank |71 2 =2
X4 X5 Xg

for every (.X1,)C2,X3,X4,X5,X6) ev,

{|:x1 2 XS:| : (xl,xg,x3,x4,x5,x6) € U} C M2(2 X 37R)
X4 X5 Xg

Since

X X X
{{l : 3]:(xl,X2,x3,X4,XS,X6)€U}

X4 X5 Xg
is an open neighborhood of

[abc

N f]in M(2 x 3,R),
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and

{|:)C1 12 X3:| : (Xl,)Cz,X3,X4,X5,x6) S U} C M2(2 X 37R>7

X4 X5 Xg
a b c
d e f
is an interior point of M(2 x 3, R).
Case II: when

a ¢

det{d f} #0

This case is similar to the case I.
Case III: when

a

det{d ﬂ #0

This case is similar to the case I. Hence, in all cases,

a b c
d e f
is an interior point of M(2 x 3, R).

This proves that M(2 x 3,R) is an open subset of M(2 x 3, R). Since M(2x
3,R) is an open subset of M(2 x 3,R), and M(2 x 3,R) is a (2 x 3)-dimensional
smooth manifold, M;(2 x 3, R) is also a (2 x 3)-dimensional smooth manifold.

Similarly, M,(3 x 2,R) is a (3 x 2)-dimensional smooth manifold. Its gener-
alization to higher dimensions can also be given. Such smooth manifolds are known
as the manifolds of matrices of full rank.

Theorem 5.34 Let M be an m-dimensional smooth manifold, N be an n-dimen-
sional smooth manifold, and F : M — N be a smooth map. Let p € M. If dF), :
T,M — Tg(,)N is onto, then there exists an open neighborhood W of p such that for
every q € W, the linear map dF, : T;M — Tp,)N is onto.

Proof Here, p € M, and M is an m-dimensional smooth manifold, so there exists an
admissible coordinate chart (U, ¢) of M such that p € U. For every g € U, let

@2

be the coordinate basis of T,M corresponding to (U, ¢), where

0

)
qax

0

o Ox™

P

q




5.5 Inverse Function Theorem for Manifolds 355

qz (d(q’il)qﬂ(q)) <% w(q)>.

Here, p e M, and F: M — N, so F(p) € N. Since F(p) € N, and N is an
n-dimensional smooth manifold, there exists an admissible coordinate chart (V)
of N such that F(p) € V. For every r € V, let

CIRE
oy!

;o2
be the coordinate basis of TN corresponding to (V, ), where

- ) 0
5 ,E (d(lﬂ l)w)) <©—y’ ¢,<r)>.

Here, the matrix representation of linear map dF), is the following n X m matrix:

Amjo(foFop! A(mio(WoFogp!

o
oxt

0
gy

)
r

9(m 0 (tﬁailF ) (o) 9(mz 0 (t//aifo ") (o)
(0 Werou) o) 8(mn o Worou™) )
9(m o (t//azfo ") (o)
Lol
(0 Werou) o)

Since the linear map dF), : T,M — Tg(,)N is onto, and dim Tr(,)N = n, the rank of
the matrix representation of linear map dF,, is n, that is,

d(mio(YoFogp™) (0(p) d(mo(YoFoop™))

- = (7))
rank | 2222 FO 0T o)) Am2 W FO 0T )
n [e] oFop! n o oFogp!

Ty O oFo@!

o(m (l//ame ®)) (o))
Ty O oFog!

0(m (l/]@x”{: @ ))(w(p))

O(my, 0 (l//a;nf X)) (o)
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is n. Since the rank of F at p is less than or equal to min{m, n}, and the rank of F at
p is n, n <min{m,n} <m, and hence, n <m. Here, n <m, and

d(myo(YoFopt) (o) d(mo(oFoopt)

i a2 (@(p))
d(mo(oFop™) d(moWoFop)
rank ol (o)) o3 (o))
.a.(;zno(lpoFO¢7l)) ((p<p)) .a.('nno([//oFo(pfl)) (q)(p))
Ox! Ox?
1 O o fe) -1
)
..... n ] e
Ao Werow )
is n, so
T O oFoqp! Ty © oFogp!
Ty O oFoqp! Ty © o[ op—
n o oFoqp! n o oFoqp!
e )
Ty © oFogp!
. Yo ('//ajoq)_ D (o(p))

€M, (n xm,R) C M(n x m,R). Since M,(n x m,R) is an open subset of
M(n x m,R). It follows that M,,(n x m,R) is an open neighborhood of

d(mio(oFogp™) (0(p) d(mo(YoFogp™))

o 220 D o)
0(m 0 (lﬁﬁif ) (o) 9(m o (lﬁai;’ ) (o)
O(my 0 (l//ajch ) (o)) Ao (lkaif ) (o)
 me (l//aimFo ¢ ")) (o)
 Ame (l//aimFo () (o)
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Since F : M — N is a smooth map, (U, ¢) is an admissible coordinate chart of M
such that p € U, and (V,y) is an admissible coordinate chart of N such that
F(p) €V, YyoF o ! is smooth, and hence, each m; o (Y o F o ¢~ ') is smooth.
Since each 7; o ( o F o ¢~ ') is smooth, and ¢ is smooth, each

om0 (WoFog)

EA Ox/

(¢(q))

is continuous, and hence,

O(my o (‘/failF o)) (0(9)) e (9(q))

TTH» O (@] (@] -1
g Oz (l//axlF 2D (pq)) = (¢(a))

.”no oF o1 .”no oFog!
_6(,1 (x//a)ClF p ))((p(q)) O(muo(yoFopl))

TT1 O o o -1

d(mo(WoFop™t))

ox™

0(my o (WaZmF °c¢ 1)) (0(@)

is continuous. It follows that there exists an open neighborhood W of p in M such
that for every g € W,

_a(nl o(foFoop)) (0(@)) dmyo(poFogp))

o ao (¢(q))
mo(foFoq@! mo(oFogp!
O WoFoe™)) (o) HmolWaFoe™))
_a(nn ° (lﬁailFo ) (0(@)) O(m (‘paizFo ) (v(q))
S o o -1 |
Amohorov ) o)
T O oFog™!
Aot ) o)) | € My xm B,

a(nn © (lpa;,f‘ cp )) (QD(Q))

and hence, for every g € W, we have
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Ao Woroo) () AmeWoroe) .,

d(myo(poFop™) d(myo(foFogp))

rank o (¢(q)) a2 (o(q))
7': o of o -1 n o} of o -1
Ao lielor )y A2 Weoe)) o)
Ty © of o -1 1
Ao Worer o)
TTH O o o -1
o(my, o (l//a;fo ")) ((ﬂ(q))_

It follows that for every g € W, the linear map dF, : TyM — Tg(g)N is onto.  []

Theorem 5.35 Let M be an m-dimensional smooth manifold, N be an n-dimen-
sional smooth manifold, and F : M — N be a smooth map. Let p € M. If dF), :
TyM — Tr,)N is 1-1, then there exists an open neighborhood W of p such that for
every q € W, the linear map dFy : TyM — Tr)N is 1-1.

Proof Here, p € M, and M is an m-dimensional smooth manifold, so there exists an
admissible coordinate chart (U, ¢) of M such that p € U. For every ¢q € U,

el ol e

is the coordinate basis of T,M corresponding to (U, ¢), where

= (d(9071)¢(q)) <aaxl w(q)>.

Here, p e M, and F: M — N, so F(p) € N. Since F(p) € N, and N is an n-
dimensional smooth manifold, there exists an admissible coordinate chart (V, ) of
N such that F(p) € V. For every r € V,

i 0
oy!

;02
is the coordinate basis of T,.N corresponding to (V, ), where

aiy" ,E (d(lﬁfl)wm) (gy"'w(r)).

Here, the matrix representation of linear map dF), is the following n X m matrix:

0
q’ ox?

0

" Oxm

PRI

q

9
o'

q

0
gy

)
r
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d(myo(YoFopt))
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=722 i) =722 Do)
O(m 0 (lﬁaoxlF °cp ) (o)) (3 0 (l//aizF °p ) (o))
6(775,1 o (l//ailF o (/)7 )) ((/)(P)) a(TEn o (l//aZZF o (p7 )) ((P(P))
) 6(71'1 o (wa;fo ¢ )) ((P(P))
A )
 AmoWoFop™)
2722 D o))

Since the linear map dF), : T,M — Tp(,)N is 1-1, and dim 7,M = m, the rank of
the matrix representation of linear map dF), is m, that is,

d(mo(YoFog))

d(mo(YoFop™))

ox!
A(mo(foFoep™))

o2
d(mo(poFop™))

rank ol

S o (YoFop™)

o2

(o WoFop™)

Ox!

(o))
. O(mio(foFop™)) 0

ox2

a X"

. d(mo(YoFopt))

a X"

o(oFop))

oxm

(¢(p))

is m. Since the rank of F at p is less than or equal to min{m, n}, and the rank of F at
p is m, m <min{m,n} <n, and hence, m <n. Here, m <n, and

d(mio(YoFogp)

d(mo(YoFogp™))

i (o)) & (o))
rank | 22200 D) () AWl o0 D) ()
d(my 0 (l//a;F X)) (o) 0(m, o (l#aizF ) (o)
C Ame (l//a;fo ") (o)
- Ame (l/fazfo ") (o)
 B(mo(YoFog)
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is m, so

tmoWoronh) ) dmeWoroe) .
Ao WoF o) o)) AmeWorov™) o
_ék;zn W eFou) o(m o WoFooh) ()

o(m; o (Wa;f ) (Q(p))_

d(m o (xpazf ) (o)

3 o (wai Fop)), o)

€M,(n x my,R) C M(n x m,R). Since M,,(n x m,R) is an open subset of
M(n x m,R), it follows that M,,(n x m,R) is an open neighborhood of

[O(m 0 (YoFogp™) d(myo(YoFogp))

o (o(p)) % (o(p))
Umolboloo D)y Amelboloo ),
o ;'[ O O o -1 o ;'[ O O o] -1

s oror (o,
6(7'52 © (lpazn{: oQ )) (QD(P))
o 71: o o o -1

Since F : M — N is a smooth map, (U, ¢) is an admissible coordinate chart of M
such that p € U, and (V,{) is an admissible coordinate chart of N such that
F(p) €V, yoFo@!is smooth, and hence, each m; o ( o F o ¢~!) is smooth.
Since each 7; 0 (f o F o ¢~ ') is smooth, and ¢ is smooth, each
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qH
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Ox/

is continuous, and hence,

AmoWoFoe™)

[O(m 0 (YoFoop™) (0(9)) O(mio(foFop)) (0(q))
ol ox?
g |2 F OO () BmeWoror) ()
7'5 o(foFoqp! Mo (oFop!
Ao (W0 Po0™)) gy AmeWoFoom)
mo(poFop! ]
A (Waxf e ))(w(q))
d(mpo(foFop™)
Amele ((9))
AoV oro0 ) (o)

is continuous. It follows that there exists an open neighborhood W of p in M such

that for every g € W,

[AmeWoFow ) oo
d(mzo (Yo Fog))
ox!

3(ms o (W0 Fo 1))
’ ox™
(WoFop)

ox™

o(YoFop™))
axm

O(my o

and hence, for every g € W, we have

d(mo(oFop) o

2100 ) (p(q))
Amzoboroe )y
S Woroo ) )
@]

(@) | € My(n,R),

@)
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Ao WoFo ) o) AmeWeFov™)

d(mo(poFopt) d(mo(hoFopt))

rank o (¢(9)) a2 (¢(q))
: TE (¢] [¢] (¢] -1 : T[ (¢] [¢] [¢] -1
6(7'[1 O(lpa)ocmFOQD_ )) ((P(q))
TT» O o [0 -1
a(nn © (‘//azf cop )) ((p(q))-

It follows that for every g € W, the linear map dF,, : T;M — TpN is 1-1. [

Theorem 5.36 Let M be an m-dimensional smooth manifold, N be an m-dimen-
sional smooth manifold, and F : M — N be a smooth map. Let p € M. If dF), :
TyM — TN is invertible (i.e., 1-1 and onto); then, there exists a connected open

neighborhood Uy of p, and a connected open neighborhood Vi of F(p) such that
Fly,: Uy — Vo is a diffeomorphism.

Proof Here, p € M, and M is an m-dimensional smooth manifold, so there exists an
admissible coordinate chart (U, ¢) of M such that p € U. For every g € U, let

Ox! q’ ox2 ’

be the coordinate basis of T,M corresponding to (U, ¢), where

= (a(e™),,) <§ ¢<q>>'

Here, pe M, and F:M — N, so F(p) € N. Since F(p) € N, and N is an
m-dimensional smooth manifold, there exists an admissible coordinate chart (V)
of N such that F(p) € V, and Y(F(p)) = 0. For every r € V, let

o @ 2
oy! .

R R
be the coordinate basis of 7,N corresponding to (V, /), where

0

,...’7
p ox

9
Ox'

q
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o
oyl

r

0

= (aw™)y,) (6_y"'¢<r>>.

Here, the matrix representation of linear map dF), is the following m x m matrix:

[d(n 0 (YoFoop™))

Amyo(poFogp))

& (o)) = (o))

cmothoroam)) ), Amoborort) e

(o Werou) ) (7 o WoFou) o)
L Amehoror)
AmoWorea)

3 o (lpa;f op™) (wo) |

Since the linear map dF), : TyM — Tr,)N

is 1-1 onto, and dim T,M = m,

AAmoWoloe ) )y AmeWelor))
Ox! ox2
TT» O (] (6] -1 Ty O (0] [e] -1
o(m, o (lﬁa;pr‘ ) (o) o(m, o (lﬁac;forp‘ ) (o)
) a(nl o (lpa;f op )) ((P(P))
AmelbeFoe ) (o) | 4o
e
- O, (npr @ ))(q,(p))_

Since F : M — N is a smooth map, (U, ¢) is an admissible coordinate chart of
M such that p € U, and (V,y) is an admissible coordinate chart of N such that
F(p) €V, YyoFogp ':pUNF'(v)) — (V) is smooth. Also, (o Fo
o D)) =y (F(p)) = 0. Clearly, o(UNF~!(V)) is an open neighborhood of
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¢(p) in R™. Further, (V) is an open neighborhood of 0 in R”. Now, by Theorem
4.1, there exists a connected open neighborhood U of ¢(p) such that

1. U is contained in (U NF~(V)),
2. (Y oFoq@ ') (U) is connected and is an open neighborhood of 0,
3. (Yo Fo@ ') has a smooth inverse on ( o F o ¢~ ')(U).

Put Uy = ¢~ ' (U), and Vo = (F 0 ¢~ ')(U). We want to prove that Up is con-
nected and is an open neighborhood of p in M. Since U is connected, U is contained
in (UNF~'(V)), and ¢~ is continuous, ¢~ (U)(= Uy) is connected, and hence,
Uy is connected. Since U is open, U contained in o(UNF~1(V))(C ¢(U)), and
@(U) is open, U is open in ¢(U), and hence, ¢~ (U) is open in U. Since ¢~ (U) is
open in U, and U is open in M, ¢~ (U)(: Up) is open in M, and hence, Uy is open
in M. Since ¢(p) € U, p € ¢~ '(U)(= Up), and hence, p € Up.

Since ¢!, F are continuous, F o ¢! is continuous. Since F o ¢! is continu-
ous, U is connected, and U contained in p(UNF~'(V)), (Fo " )(U)(= Vy) is
connected, and hence, Vj is connected. Since (Y o F o qfl) has a smooth inverse

1

on (YoFoqe ) U), poF oy ' is continuous. Since ¢ o F~' oy~ ! is con-
tinuous, and 1 is continuous, their composite ¢ o F~! is continuous. Since ¢ o F~!
is continuous, and U is open, (¢ o F~1) ™ (U)(= (F o ¢~ 1)(U) = V,) is open, and
hence, V; is open. Since @(p) € U, Vo = (F o ¢ ) (U)3(F o o V) (p(p)) = F(p).
Thus, V; is a connected open neighborhood of F(p).

Since the inverse of ( o F o ¢~ ') exists, o F o ¢~ Lis 1-1. Also, ¢, " are 1-1.
Since Y o F o o', @,y 'are 1-1, their composite F is 1-1. It remains to be proved
that (F|U0)71 : Vo — Upis smooth, that s, (F~! ‘VO) is smooth. Since i o F o ¢! has
a smooth inverse, ¢ o Flo 1p’1 is smooth, and hence, F~! is smooth on Vj,. O

Note 5.37 The Theorem 5.36 is known as the inverse function theorem for
manifolds.

Definition Let M and N be smooth manifolds. Let F : M — N be any function. If
for every p in M, there exists an open neighborhood U of p such that F(U) is open in
N, and the restriction F|,;: U — F(U) is a diffeomorphism, then we say that F is a
local diffeomorphism.

5.6 Shrinking Lemma

Note 5.38 Let M and N be smooth manifolds. Let F : M — N be a local diffeo-
morphism. We shall try to show that F is an open map. For this purpose, let us take
any nonempty open subset U of M.
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We have to show that F(U) is open in N, that is, each member of F(U) is an
interior point of F(U), that is, for every a in U, there exists an open neighborhood
V of F(a) such that V C F(U).

For this purpose, let us take any a in U. Since F : M — N is a local diffeo-
morphism, and a is in M, there exists an open neighborhood U; of a such that
F(Uy) is open in N, and the restriction F|y, : Uy — F(U,) is a diffeomorphism.
Since U, U, are open neighborhoods of a, U N U; is an open neighborhood of a,
and hence, U N U, is open in Uj. Since F\Ul: U, — F(U,) is a diffeomorphism,
Fly,: Uy — F(U,) is a homeomorphism. Since F|, : Uy — F(U;) is a homeo-
morphism, and U N U is open in Uy, F|, (UNUy)(= F(U N Uy)) is open in the
open set F(U,), and hence, F(UNU;) is open in the open set F(U;). Since
F(UNU,) is open in the open set F(U;), F(U N Uy,) is open in N. Since a is in
UNU, F(a) is in F(UNUy). Thus, F(U N Uy) is an open neighborhood of F(a).
Also, F(UNUy) C F(U).

Note 5.39 Let M, N, P be smooth manifolds. Let F: M — N, and G: N — P be
local diffeomorphisms. We shall try to show that their composite Go F : M — P is
a local diffeomorphism.

Let us take any a € M. We have to find an open neighborhood U of a such that
(GoF)(U) is open in P, and the restriction (Go F)|,;: U — (GoF)(U) is a
diffeomorphism.

Since F : M — N is a local diffeomorphism, and a € M, there exists an open
neighborhood U; of a such that F(U;) is open in N, and the restriction F)| v
U, — F(U,) is a diffeomorphism. Since F(a) € N, and G : N — P is a local dif-
feomorphism, there exists an open neighborhood V of F(a) such that G(V) is open
in P, and the restriction G|,: V — G(V) is a diffeomorphism. Since F(U;) is an
open neighborhood of F(a), and V is an open neighborhood of F(a), F(U;) NV is
an open neighborhood of F(a). Here, F(U;) NV is an open neighborhood of F(a) in
F(U,), and F|y,: Uy — F(U) is a diffeomorphism, (F|Ul)71(F(U1) NV) is an
open neighborhood of a, and F|(F|u1) wwnvy: Ely,)” YF(U)NV) = FU)N
V is a diffeomorphism. Since F(U;) N V is an open neighborhood of F(a) in N, and
Gly: V — G(V) is a diffeomorphism, G(F(U;) N'V) is an open neighborhood of
G(F(a))(= (G o F)(a)), and G| (FUNV): F(Ul) NV — GF(U;)NV) is a diffe-

omorphism. Since F| (Fly, ) (DAY’ S (Fly,)~ YF(U)NV) = F(U)NV is a dif-
feomorphism, and G|(F unavy: F(U1) NV — G(F(Uy) NV) is a diffeomorphism,
their  composite (G| y,)nv)) © (F] (Fly,) " (F(UnV) K (F‘Ul)_l(F(Ul) nv) —
G(F(Uy)nV) is a diffeomorphism.  Clearly, (G, )qy)) © (F|( (Fl,

(FW)NV)) = (GoF)liey, rwnnny ThUs, (GO F)lig, ey (F|Ul)

(F(U;)NV) — G(F(U;)NV) is a difftcomorphism, (F|Ul)_l(F(U1) NV) is an
open neighborhood of a, and
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(€ Py wiom ) ((Fla) " Ewn ) (= @on((r1,) ' rwonv)
= G(F(<F|Ul)7l(F(U1) N V))) = G(F(U\)N V))

is an open neighborhood of (G o F)(a). It follows that Go F : M — P is a local
diffeomorphism.

Note 5.40 Let M, N be smooth manifolds. Let F : M — N be a local diffeomor-
phism. We shall try to show that F : M — N is a local homeomorphism, that is,
F : M — N is continuous, and for every a € M, there exists an open neighborhood
U of a such that F(U) is an open neighborhood of F(a) such that the restriction
F|y: U — F(U) is a homeomorphism.

First of all, we shall try to show that F : M — N is continuous. For this purpose,
let us take any @ € M. Next, let us take any open neighborhood V of F(a). We have
to find an open neighborhood U of a such that F(U) C V.

Since a € M, and F : M — N 1is a local homeomorphism, there exists an open
neighborhood U; of a such that F(U;) is open in N, and the restriction F)| U
U, — F(U,) is a diffeomorphism. Here, F(U;) is an open neighborhood of F(a),
and Vis an open neighborhood of F(a), so F(U;) NV is an open neighborhood of F
(@), and hence, F(U;) NV is open in F(U;). Since F(U;) NV is open in F(U)),
and F|y : Uy — F(U,) is a diffeomorphism, (F|Ul)_l(F(U1) NV) is open in Uy,
and hence, (F|Ul)71(F(U1) NV) is open in M. Since a € Uy, (Fly )(a)=
F(a) € F(U\)NV, a € (F|,,) ' (F(U)) NV), and hence, (F|,,)” (F(U,)NV) is
an open neighborhood of a.

It remains to be proved that F((F\Ul)fl(F(Ul) NV)) C V. Here, F|,: U —
F(U;) is 1-1, so

F((F|U1>1(F(U1) N V)> = F(U)NV CV.

Thus, we have shown that FF : M — N is continuous.

Now, we shall try to show that for every a € M, there exists an open neigh-
borhood U of a, such that F(U) is an open neighborhood of F(a) and the restriction
F|,: U — F(U) is a homeomorphism.

For this purpose, let us fix any a € M. Since a € M, and F : M — N is a local
diffeomorphism, there exists an open neighborhood U of a such that F(U) is open in
N, and the restriction F|,: U — F(U) is a diffeomorphism. Since F|;: U — F(U)
is a diffeomorphism, F|,: U — F(U) is a homeomorphism.
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Note 5.41 Let M, N be smooth manifolds. Let M; be a nonempty open subset of
M. Let F: M — N be a local diffeomorphism. We shall try to prove that F|,, :
M; — N is a local diffeomorphism.

For this purpose, let us take any a € M;. We have to find an open neighborhood
U of a in My such that (F|), )(U) is open in N, and the restriction (F|Ml)|U: U—
(Fy,)(U) is a diffeomorphism.

Since a e My C M, a€ M. Since ae M, and F: M — N is a local diffeo-
morphism, there exists an open neighborhood U; of a such that F(U;) is open in N,
and the restriction F| : Uy — F(U,) is a diffeomorphism. Since M, is an open
neighborhood of a, M| N U, is an open neighborhood of a in U;. Since M; N U; is
an open neighborhood of a in Uy, and F \UI: U, — F(U,) is a diffeomorphism,
(F|y,)(My N U,) is open in F(U;), and hence, (F|, )(M;NU;) is open in
N. Clearly, (F|y, )(M; N Uy) is open in N.

(Reason: Here, (F|y )(M;NU;) is open in N, and (F|y, )(M,NU) =
(Flyg,np,) (ML N UY) = (Fly, )(My N UY), so (Fly, )(My N U,) is open in N.)

Now,itremainstobeshowedthat(F|Ml)|<MmUI): (My N Uy) — (Fly,) (M0 Uy)
is a diffeomorphism, that is, F|,y,): (M1 N UL) = (Fly,)(My N Uy) is a diffeo-
morphism. Since F|,,: Uy — F(U)) is a diffeomorphism, its restriction F/|,y,):
(My N Uy) — (Fly, ) (My N U, is a diffeomorphism.

Note 5.42 Let M be an m-dimensional smooth manifold and N be an n-dimensional
smooth manifold. Let F : M — N be a diffeomorphism. We shall try to show that
F : M — N is a local diffeomorphism. For this purpose, let us take any a € M. We
have to find an open neighborhood U of a in M such that F(U) is open in N, and the
restriction F|,: U — F(U) is a diffeomorphism.

Since a € M, and M is a smooth manifold, there exists an admissible coordinate
chart (U, @) of M such that a € U. Since F : M — N is a diffeomorphism, F :
M — Nis 1-1. Since Fis 1-1, so F|,: U — F(U) is 1-1 onto. Since F : M — N is
a diffeomorphism, F : M — N is a homeomorphism. Since F: M — N is a
homeomorphism, and U is an open neighborhood of a, F(U) is an open neigh-
borhood of F(a).

Now, it remains to be proved that:

1. F|,: U— F(U) is smooth and
2. (Fly)™": F(U) — U is smooth.

For 1: Since F : M — N is a diffeomorphism, F : M — N is smooth. Since
F:M — N is smooth, U is an open neighborhood of @, and F(U) is an open
neighborhood of F(a), the restriction F|,: U — F(U) is smooth.

For 2: Observe that (F|,) ' = (F’1)|F(U).
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(Reason: Let (y,x) € LHS. So (y,x) € (F|,)"". Since (y,x) e (F|,)",
(x,y) € F|y. Since (x,y) € F|y, x€ U, and (x,y) € F. Since (x,y) € F, (y,x)
€ F~!. Since (x,y) € F, F(x) =y. Since x € U, y = F(x) € F(U). Since (y,x) €
F~', and y € F(U), (y,x) € (F“)}F(U): RHS. Thus, LHS C RHS. Next, let
(y,x) € RHS. So (y,x) € (F’l)‘Fw). Since (y,x) € (F’l)’F(U), y € F(U), and
(v,x) € F~!. Since y € F(U), there exists x; € U such that F(x;) =y. Since
(v,x) € F7', (x,y) € F, and hence, F(x) =y. Since F(x) =y, and F(x;) =y,
F(x) = F(x;). Since F(x) = F(x;) and F is 1-1, x = x;. Since x = x;, and x; € U,
xeU. Since xeU, and (x,y)€F, (x,y)€F|,;, and hence, (y,x)€
(F|,)~" = LHS. Thus, RHS C LHS. Hence, RHS C LHS.)

Since F: M — N is a diffeomorphism, F —-1. N — Mis smooth, and hence,
(F*I)’F(U): F(U) — U is smooth. Since (F’1)|F(U): F(U) — U is smooth, and

(Fly) ™' = (Fil)’Fw), (Fly)™" : F(U) — U is smooth.

Note 5.43 Let M be an m-dimensional smooth manifold and N be an n-dimensional
smooth manifold. Let F : M — N be 1-1 onto. Let F : M — N be a local diffeo-
morphism. We shall try to show that F : M — Nis a diffeomorphism.

Since F' : M — N is a local diffeomorphism, by Note 5.40, F : M — N is a local
homeomorphism, and hence, F' : M — N is continuous. Since F' : M — N is a local
diffeomorphism, by Note 5.38, F : M — N is an open map. Since F : M — N is
1-1 onto, F : M — N is continuous, and F : M — N is an open map, F : M — N is
a homeomorphism.

Now, we want to show that

1. F: M — N is smooth, and
2. F1: N — M is smooth.

For 1: Let us fix any a € M. We have to find an admissible coordinate chart
(U, p) of M satisfying a € U, and an admissible coordinate chart (V, ) of
N satisfying F(a) €V such that yoFoqp ':pUNF (V) — y(V) is
smooth.

Since a € M, and F : M — N is a local diffeomorphism, there exists an open
neighborhood U of a such that F(U;) is an open neighborhood of F(a) in N, and
the restriction F|,, : Uy — F(U,) is a diffeomorphism.

Since a € M, and M is an m-dimensional smooth manifold, there exists an
admissible coordinate chart (U,, ¢,) of M such that a € U,. Since a € U,, and
F:M — N,F(a) € N.Since F(a) € N, and N is a smooth manifold, there exists an
admissible coordinate chart (V,,,) of N such that F(a) € V,. Since U is an open
neighborhood of a, and U, is an open neighborhood of a, U; N U, is an open
neighborhood of a. Since (Us, ¢,) is an admissible coordinate chart of M satisfying
a € Uy, and Uy NU, is an open neighborhood of a, (U; N U27902|Umuz) is an
admissible coordinate chart of M satisfying a € U, N Us. Since F|;, : Uy — F(U;)
is a diffeomorphism, the restriction F|U10U2: UnNnU,—FUNU,) is a
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diffeomorphism. Since F : M — N is a homeomorphism, and U; N U, is an open
neighborhood of a, F(U; N U,) is an open neighborhood of F(a).

Since (Va,y,) is an admissible coordinate chart of N such that V5 is an open
neighborhood of F(a), and F(U; N U,) is an open neighborhood of F(a), Vo, N
F(U; NU,) is an open neighborhood of F(a). Since (V2,1,) is an admissible
coordinate chart (V,,,) of N, and V, N F(U; N U,) is an open neighborhood of F
(@, (V2N F(Ui N U2),¥oly,npuyq,)) 1s an admissible coordinate chart of N such
that F(a) eV,n F(Ul N Uz).

Now, it remains to be showed that (V5 |y,~r(y,nr,)) © F © ((p2|UmUz)71 is smooth.
Since F|y, : Uy — F(U,) is a diffeomorphism, F|;, : Uy — F(U,) is smooth. Since
Fly,: Uy — F(Uy), (U N Uz, @s]y,~y,) is an admissible coordinate chart of M
satisfying a € Ui N U, and (Vo2 N F(Ui N U2), Y5 ly,qpw,ne,)) 18 an admissible

coordinate chart of N such that F(a) € VaNF(UiNU2), (aly,arwnos) ©
-1 —1\ -
Fly o(@aly,np,)” (= ('//2|v2mF(UmUz)) o F o (®]y,ny,)” ) is smooth, and hence,

-1 .
(Walvanrwino)) © F o (@2]y,np,) 1s smooth.
Thus, we have shown that FF: M — N is smooth.

For 2: Since F: M — N is 1-1 onto, F~' : N — M is 1-1 onto. Now, since
F : M — N is a local diffeomorphism, F~! : N — M is a local diffeomorphism.
Since F~' : N — M is 1-1 onto and local diffeomorphism, asin 1, F~' : N —
M is a diffeomorphism.

Theorem 5.44 Let M be an m-dimensional smooth manifold and N be an
n-dimensional smooth manifold. Let F : M — N be a local diffeomorphism. Then,
F is a smooth immersion and smooth submersion.

Proof We have to prove that rank F = m, and rank F' = n, that is, for every p € M,
the rank of F at p is m and m = n. For this purpose, let us take any p € M. Since
pE€M,and F: M — N is a local diffeomorphism, there exists an open neighbor-
hood U of p in M such that F(U) is open in N and the restriction F|,: U — F(U) is
a diffeomorphism. Since U is a nonempty open subset of M, and M is an
m-dimensional smooth manifold, U is an m-dimensional smooth manifold, and
hence, dim T,U = dim U = m. Since F(U) is open in N, and N is an n-dimensional
smooth manifold, F(U) is an n-dimensional smooth manifold, and hence
dim Ty, (F(U)) = dim(F(U)) = n. Since F|,: U — F(U) is a diffeomorphism,
and p € U, the linear map dF, : T,U — Tg(,(F(U)) is an isomorphism. Since
dF, : T,U — Tg(,)(F(U)) is an isomorphism, dF, : T,U — Tg(,)(F(U)) is 1-1,
and hence, rank of F at p is dim 7,U (= m).

Thus, for every p € M, the rank of F at p is m. Since dF), : T,U — Tr(,)(F(U))
is an isomorphism, m = dim T,,U = dim Ty, (F(U)) = n. O

Theorem 5.45 Let M be an m-dimensional smooth manifold and N be an n-
dimensional smooth manifold. Let F : M — N be a smooth immersion and smooth
submersion map. Then, F : M — N is a local diffeomorphism.



370 5 Immersions, Submersions, and Embeddings

Proof For this purpose, let us take any p € M. We have to find an open neigh-
borhood U of p in M such that F(U) is open in N, and the restriction F|,: U —
F(U) is a diffeomorphism.

Since p € M, and F : M — N is a smooth immersion, the linear map dF, :
M — Tpp,)N is 1-1. Since p € M, and F : M — Nis a smooth submersion, the
linear map dF), : T,M — Tr(,)N is onto. Since the linear map dF), : T,M — Tp,)\N
is 1-1 onto, m = dimM = dim T,M = dim(T(,N) = n.

Since m = n, and N is an n-dimensional smooth manifold, N is an m-dimensional
smooth manifold. Since M, N are m-dimensional smooth manifolds, F : M — N is a
smooth map, and dF, : T,M — Trp)N is 1-1 onto, by Theorem 5.36, there exists
an open neighborhood U of p, and an open neighborhood V of F(p) such that
F|y: U — V is a diffeomorphism. Since F|,: U — V is a diffeomorphism, F|;:
U — V is 1-1 onto, and hence, F(U) = (F|,)(U) = V. Since F(U) =V, and Vis
open, F(U) is open. Since F|;: U — V is a diffeomorphism, and F(U) =V, F|,:
U — F(U) is a diffeomorphism. Thus, U is an open neighborhood of p, F(U) is
open in N, and F|,: U — F(U) is a diffeomorphism. O

Theorem 5.46 Let M, N be m-dimensional smooth manifolds. Let F : M — N be a
smooth immersion. Then, F : M — N is a local diffeomorphism.

Proof We first try to show that F: M — N is a smooth submersion. For this
purpose, let us take any p € M. We have to show that the linear map dF, : T,M —
Tr(,)N is onto.

Since p € M, and F : M — N is a smooth immersion, the linear map dF), :
T,M — TN is 1-1. Since dimT,M = dimM = m = dim N = dim(Tf(,)N),
dim T,M = dim(Tp(,)N). Since dim 7,M = dim(Tp,N), and the linear map dF, :
TyM — Tg,)N is 1-1, dF), : T,M — Tg(,)N is onto. Since ' : M — N is a smooth
immersion and smooth submersion, by Theorem 545, F: M — N is a local
diffeomorphism. O

Theorem 5.47 Let M, N be m-dimensional smooth manifolds. Let F : M — N be a
smooth submersion. Then, F : M — N is a local diffeomorphism.

Proof We first try to show that F': M — N is a smooth immersion. For this pur-
pose, let us take any p € M. We have to show that the linear map dF, : T,M —
TFQ,)N is 1-1.

Since p € M, and F : M — N is a smooth submersion, the linear map dF, :
T,M — Tgy)N is onto. Since dim7T,M =dimM = m = dim N = dim(T¢(,)N),
dim T,M = dim(Tp(,)N). Since dim T,M = dim(T¢(,)N), and the linear map dF,, :
T,M — Tg(,)N is onto, dF), : TyM — Tg(,)N is 1-1. Since F' : M — N is a smooth
submersion and smooth immersion, by Theorem 5.45, F : M — N is a local dif-
feomorphism. O

Note 5.48 Before going ahead, let us recall the constant rank Theorem 4.9:

Let M be an m-dimensional smooth manifold, N be an n-dimensional smooth
manifold, F : M — N be a smooth map, and r be the rank of F. Then, for every p in



5.6 Shrinking Lemma 371

M, there exist admissible coordinate chart (U, ) in M satisfying p € U and
admissible coordinate chart (V) in N satisfying F(p) € V, such that F(U) C V,
and for every (Xi,...,X%;,Xp41,. .-, Xp) in @(U),

(x//oFo (p‘l)(xl,...,x,.,xrﬂ,...,xm) =|x.-5x,0,...,0
——

n—r

Theorem 5.49 Let M be a m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and F : M — N be smooth submersion (i.e., F is of constant rank
n). Then, for every p in M, there exist admissible coordinate chart (U, @) in M
satisfying p € U and admissible coordinate chart (V) in N satisfying F(p) € V
such that F(U) C V, and for every (x1,...,Xn, Xni1, -, Xm) in @(U),

((poFO(pfl)(xl,...,xm) = (X1y ey Xn).

Proof Tts proof is clear. O

Theorem 5.50 Let M be a m-dimensional smooth manifold, N be an n-dimen-
sional smooth manifold, and F : M — N be smooth immersion (ie., F is of
constant rank m).

Then, for every p in M, there exist admissible coordinate chart (U, @) in
M satisfying p € U and admissible coordinate chart (V, ) in N satisfying F(p) € V
such that F(U) C V, and for every (xi,...,%,) in ¢(U),

(woFO(p_l)(xl,...,xm): Xlyee oy Xm, 0,...,0 . O
N——

n—m

Proof Its proof is clear.

Theorem 5.51 Let M be an m-dimensional smooth manifold, N be an n-dimen-
sional smooth manifold, F : M — N be smooth, and M be connected. Then, the
following statements are equivalent:

1. For every p € M, there exist an admissible coordinate chart (U, ¢) in M satis-
fying p € U and an admissible coordinate chart (V) in N satisfying F(p) € V
such that i o F o ¢! behaves linearly, i.e., there exists a positive integer r such
that for every (x1,..., X, X/11,. .., %) in @(U),

(foFo go’l)(xl,...,x,,xr+17..‘,xm) =1x,. »x,0,...,0
——
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2. F has constant rank.

Proof 1 = 2: Let us fix any p € M. By the condition 1, there exist an admissible
coordinate chart (U, @) in M satisfying p € U, an admissible coordinate chart
(V,¥) in N satisfying F(p) € V, and a positive integer r such that for every

()Cl, sy Xy Xl - 'axm) in (/)(U)’

(foFo (p’l)(xl,...,x,,xrﬂ,...,xm) = x5, »%,0,...,0
——

el e

is the coordinate basis of T,M corresponding to (U, ¢), where

= (d(0 ™)) @c ¢<q>>'
(L)

is the coordinate basis of T,N corresponding to (V, /), where

aiyi = (d(w_l)w(r)) (fiiy"'wo-)).

We know that for every g € U, the matrix representation of linear map dF} is the
following n X m matrix:

d(mo(foFogp™))

For every g € U,
0

)
qax

0

" Qe

PR

q

9
o'

q

For every r € V,

o
, 0y

o
R

)
r

d(myo(YoFogpt))

i (o(q)) o (o(q))
a0 Woree ) o) AmoWorop™)
O WeFou) o) O o Werou) )

AmeWeloo ),
AmsoWorow ) (g |

(o (WoFop™)

a X"

(¢(q))
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It follows that for every g € U, the rank of the matrix representation of the linear
map dF, is r. Since for every g € U, the rank of F at g is equal to the rank of the
matrix representation of the linear map dF);, and the rank of the matrix represen-
tation of the linear map dF), is r, the rank of F at g is r.

Thus, we have shown that, corresponding to each p € M, there exist a positive
integer r and an open neighborhood U, , of p such that for every g € U, ,, the rank of
F at g is r. Observe that {U,cy U, : r = 1,2,...,min{m,n}} is a finite partition of
M into open sets. Since {U,eyU,, : r=1,2,...,min{m,n}} is a finite partition
of M into open sets, and M is connected, {U,cp Uy, : r = 1,2,...,min{m,n}} is a
singleton set. It follows that for every g € M, the rank of F at g is a constant. Thus,
F has constant rank.

2 = 1: Let F has constant rank r. By the constant rank theorem, for every p in
M, there exist an admissible coordinate chart (U, ¢) in M satisfying p € U and an
admissible coordinate chart (V,y) in N satisfying F(p) € V such that F(U) C V,
and for every (Xi,...,%,Xpi1,- .., Xp) i @(U),

(1//oFogofl)(xl,...,xr,x,_s_l,...,xm) =|x,..x,0,...,0]. O
——

n—r

Definition Let X be a topological space. If for every x € X, there exist an open
neighborhood U, of x and a compact set C such that U, C C, then we say that X is a
locally compact space. Clearly, every compact space is locally compact.

Note 5.52 Let M be an n-dimensional smooth manifold. We shall try to show that
M is locally compact space. For this purpose, let us take any p € M. By Lemma
4.49 of Chap. 4, there exists a countable collection {(Uj,@,), (U, @5),
(U3, @3), - ..} of admissible coordinate charts of M such that

1. {U,U,,Us,...} is a basis of M,
2. each @;(U;) is an open ball in R",

3. each closure U; of U; is a compact subset of M.

Since {U,, U,, Us, ...} is a basis of M, {U,,U,, Us, ...} is a cover of M, and
hence, there exists a positive integer k such that p € Uy. By 3, U, is a compact
subset of M. Further, Uy C U, . Hence, M is locally compact.

Note 5.53 Let X be a Hausdorff topological space. Then, we shall try to show that
the following statements are equivalent:

1. X is locally compact.

2. For every x € X, there exists an open neighborhood U, of x such that U_ is
compact.

3. There exists a basis B of X such that for every U € B, U~ is compact.

3 = 2: Let BB be a basis of X such that for every U € B, U™ is compact. We
have to prove 2. For this purpose, let us take any x € X. Since x € X, and B is a
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basis of X, there exists an open neighborhood U, of x such that U, € B, and U is
compact.

2 = 1: Let us take any x € X. We have to find an open neighborhood U, of
x and a compact set C such that U, C C. Since x € X, so by 2, there exists an open
neighborhood Uy of x such that U_ is compact. Also, U, C U, .

1 = 3: Let B be the collection of all open sets U for which U~ is compact. We
shall try to show that B is a basis. For this purpose, let us take any open neigh-
borhood G of x. Since x € X, and X is locally compact, there exist an open
neighborhood U, of x and a compact set C such that U, C C. Since U, and G are
open neighborhoods of x, U,NG is an open neighborhood of x. Clearly,
U.NG C C. Since C is compact, and X is Hausdorff, C is closed, and hence,
C~ =C. Since UyNGCC, (U,NG)” C C~ =C. Since (UyNG)” CC, Cis
compact, and (U, N G)" is closed, (U, NG)™ is compact. Since U, N G is open,
and (U, N G)™ is compact, U, N G is in B. Also, U, N G is an open neighborhood
of x. This shows that 3 is a basis.

If V € B, then, by the definition of B, V~ is compact.

Note 5.54 Let X be a locally compact Hausdorff space. Let G be a nonempty open
subset of X. Then, we shall try to show that G is locally compact Hausdorff. Since
the topology of X is Hausdorff, and G has subspace topology of X, the topology of
G is Hausdorft.

Now, we want to show that G is locally compact. For this purpose, let us take
any x in G. We have to find an open neighborhood V. of x in G, and a compact
subset C; of G such that V, C C;.

Since x is in X, and X is locally compact, there exist an open neighborhood U, of
x in X and a compact subset C of X such that U, C C. Since U, is an open
neighborhood of x in X, U, N G is an open neighborhood of x in G.

Now, we want to show that (U, N G)” N G is compact in G. Since C is compact,
and X is Hausdorff, C is closed in X. Since C is closed in X, and U, NG C C,
(UyNG)” C C. Since (U;NG)” C C, C is compact, and (U, NG)" is closed,
(Uy N G)™ is compact in X. Since (U, N G)~ is compact in X, and G is open in X,
(U;NG)” N G is compact in G.

It remains to be showed that U,NG C (U,NG) N G. Since U,NG C
(UyNG) ,and U, NG C G, U,NG C (U;NG)" NG.

Note 5.55 Let X be a locally compact Hausdorff space. Let F be a nonempty closed
subset of X. Then, we shall try to show that F is locally compact Hausdorff space.
Since the topology of X is Hausdorff, and F has subspace topology of X, the
topology of F is Hausdorff.

Now, we want to show that F is locally compact. For this purpose, let us take
any x in F. We have to find an open neighborhood V. of x in F, and a compact
subset C; of F such that V, C C;.

Since x is in X, and X is locally compact, there exist an open neighborhood U, of
x in X and a compact subset C of X such that U, C C. Since U, is an open
neighborhood of x in X, U, N F is an open neighborhood of x in F.
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Now, we want to show that (U, N F)” N F is compact in F. Since U, C C,
U.NFCCNF CC. Since C is compact, and X is Hausdorff, C is closed in
X. Since Cis closed in X, and U,NF C C, (U,NF)” C C. Since (U,NF)~ and
F are closed in X, (U,NF)"NF is closed in X. Since (U,NF) N
F C (U,NF) CC,Ciscompact, and (U;NF) N Fisclosed, (U,NF) N Fis
compact in X. Since (U,NF) N F is compact in X, and (U,NF) " N F CF,
(U,NF)” N F is compact in F.

It remains to be showed that U,NF C (U,NF) N F. Since U,NF C
(UsNF)",and UyNF C F, U, NF C (U:NF) N F.

Note 5.56 Let X be a locally compact Hausdorff space. Let x € X. Let G be an open
neighborhood of x. We shall try to show that there exists an open neighborhood V,
of x such that V. C G, and V_ is compact.

Since X is a locally compact Hausdorff space, and G is a nonempty open subset
of X, by Note 5.54, G is a locally compact Hausdorff space. Since G is a locally
compact Hausdorff space, and x € G, there exist an open neighborhood V, of x in
G and a compact subset C of G such that V, C C. Since V, is open in G, and G is
open in X, V, is open in X. Since V, is open in X, and x € V,, V, is an open
neighborhood of x in G. Since C is a compact subset of G, and G C X, C is a
compact subset of X. Since C is a compact subset of X, and X is a Hausdorff space,
C is a closed subset of X. Since C is a closed subset of X, and V, C C,
Vo C CCG.Since V; C C, V_ isclosed, and C is a compact subset of X, V" is a
compact subset of X.

This result is known as the shrinking lemma.

Note 5.57 Let X be a compact space. Let {F,} be a sequence of closed subsets of
X. Let each F,, be nonempty. Let F; D F, D F3 D ---. We shall try to show that
M=, F, is nonempty. If not, otherwise, let ()", F, = (). We have to arrive at a
contradiction.

Here, X = 0 = (N2, Fx)" ==, ((F»)°). Further, since each F, is closed,
each (F,)‘ is open. Since each (F,)" is open, and | J,~, ((F,)) = X, {(F,)} is an
open cover of X. Since {(F,)“} is an open cover of X, and X is compact, there exist
positive integers n; <np < - -+ <ny such that Ul:':l ((F,)) = X.

Since F1 DF; DF; D -+, (F1)° C (F)° C (F3)° C---. Now, since nj<ny
< <mp, (Fyy)* C (Fi)" C -+ C (Fy), and hence, X = Uy ((Fy,)) = (Fn)".
Since (F,,)" = X, F,, is empty, which contradicts the assumption that each F, is
nonempty.

Theorem 5.58 Ler X be a locally compact Hausdorff space. Let {U,} be a
sequence of subsets of X. Let each U, be open and dense. Then, (-, U, is dense.

o0

Proof If not, otherwise, let ()=, U, be not dense, that is, ((_; U,)~ is a proper
subset of X. We have to arrive at a contradiction. Since ((,~, U,)” is a proper
subset of X, there exists a € X such thata & (('~, U,)" . It follows that there exists
an open neighborhood V,, of a such that V, N ()2, U,) = 0.
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Since V, is an open neighborhood of a, and U is open, V, N U; is open. Since
V, is an open neighborhood of a, and U, is dense, V, N U; is nonempty. Since
V. N U is a nonempty open subset of X, and X is a locally compact Hausdorff
space, there exists a nonempty open set W; such that W~ C V,NU;, and W[ is
compact. Here, W, C W~ C V, N Uj.

Since W, is a nonempty open subset of X, and U, is open and dense, W; N U, is
a nonempty open subset of X. Since W; N U, is a nonempty open subset of X, and
X is a locally compact Hausdorff space, there exists a nonempty open set W, such
that W, C Wi N Uy, and W, is compact. Clearly, W, C W C W . Also, W, W,
are nonempty closed sets. Here, W, C W, C W, N U, C (V,NU,)) N U, =V,N
(U, N U,).

Since W, is a nonempty open subset of X, and Us; is open and dense, W, N Us is
a nonempty open subset of X. Since W, N Uj is a nonempty open subset of X, and
X is a locally compact Hausdorff space, there exists a nonempty open set W3 such
that Wy C WoNUs, and W; is compact. Clearly, W; C W, C W, . Also,
Wi, W5, W5 are nonempty closed sets. Here, W3 C Wy C W, NU; C (VN
(Ul n Uz)) NnNU;=V,N (Ul NU, N U3), etc.

Thus, we get a decreasing sequence {W, } of nonempty closed subsets of a
compact set W; . Hence, by Note 5.57, (,—, (W,) is nonempty. Since W, C V,N
U1,W{ cV,n (U] n U2),W§ cV,n (Ul NU, N U3), etc., 0 C ﬂ,olil (W,:) -
Vo (<, Un) = 0. It follows that (),~, (W,") is empty, a contradiction. O

Definition Let X be a topological space. Let A be any subset of X. If A~ contains no
nonempty open set, then we say that A is nowhere dense.

Theorem 5.59 Let X be a locally compact Hausdorff space. Let {A,} be a
sequence of nowhere dense subsets of X. Then, | J,- | A, has no interior point.

Proof For every n, A, is nowhere dense, so ) = ((A4,)")° = ((((A,))") )", and
hence, (((A,)7)°)” = X.Itfollows that ((A,) ) is an open dense set. So, by Theorem
5.58, (2 (A) ) (= (U5, (An) ")) is dense, and hence, X — (U2 (4n) )
It follows that @ = (U, (Ax) 7)) ") = (U2, (4,)7)°. O

n=1

This theorem is known as Baire category theorem.

Theorem 5.60 Let M be an m-dimensional smooth manifold, N be an n-dimen-
sional smooth manifold, and F : M — N be smooth. Let F has constant rank r. Let
F : M — N be onto. Then, F is a smooth submersion.

Proof We have to prove that rank F = n. If not, otherwise, let » = rank F <n. We
have to arrive at a contradiction. Here, r = rank F <n, so n — r is a positive integer.
Let us take any p € M.

By the constant rank theorem, there exist an admissible coordinate chart (U, ¢,,)

in M satisfying p € U, and an admissible coordinate chart (Vp(,),Yp(,) in
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N satisfying F(p) € Vp(y), such that F(U,) C Vp(,), and for every (xi,...x,,
Xrils oo Xm) i @,(Up),

(wF(p) oFo q);l)(xl,...,x,,xrﬂ, cesXm) = | X1, %,0,...,0
(1<)n—r

€ Vi) (Vre)-

By Lemma 4.47, there exists an open neighborhood W, of p such that
W, C (W,)” C U,, and (W,)~ is compact. We shall try to show that F((W,)”) is a
nowhere dense subset of N.

Since F : M — N is smooth, F : M — N is continuous. Since F: M — N is
continuous, and (W,)~ is compact, F((W,) ) is a compact subset of N. Since
F((W,)") is a compact subset of N, and the topology of N is Hausdorff, F((W,)")
is a closed subset of N. Since F((W,)”) is a closed subset of N,
(F((W,)"))” = F((W,)"). It remains to be showed that F((W,) ") has no interior
point.

Let us take any g € (W,)”. Since q € (W,)" (C U,), q € U,, and hence,
?,(q) € 9,(Up)- Put ¢,(q) = (y1,-- s ¥rs Yrt15- - s Ym)- SO

Vi) (F(q) = (w(p) oFo 40,7‘) (¢,(a))

= OFO 71) Y Jr Yy yJm R r’O”"70
(lﬁF(p) @, )15 Yrs Vrits oo Ym) | Y1y

(1<)n—r
ERx---xRx{0} x---x{0}.

r (1<)n—r

Since g € U,, F(q) € F(U,) C V(). Since F(q) € Vg, and

F(q)ex//;éw Rx---xRx{0} x---x{0} ],

" (1<)n—r

F(q)GVF(mﬂwg(lm Rx---xRx{0} x---x {0}
—_— ————

r (1<)n—r
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It follows that

F((Wp) ") C Vi) Ny [ R X R x {0} x -+ x {0}

r (1< )n—r

Clearly,

VF(p)ﬂz//;(lw Rx---xRx{0} x---x {0}
—_— ————————

r (1<)n—r

has no interior point. (Reason: Here,

Vrg) VF(ﬁ)m‘//;(lp) Rx.--xRx{0}x---x {0}

r (1<)n—r

:lpF(p)(VF(n)) NYrg) l//;(lp) Rx - xRx{0}x---x {0}
~~ ~—

" (1<)n—r

Cl//F(p)(VF(,,))ﬁ Rx- - xRx{0} x---x{0} | C[Rx---xRx{0} x---x {0} |,

r (1<)n—r r (1<)n—r

and

Rx:---xRx{0} x---x {0}

r (1< )n—r

have no interior point, so

Vrp) Vp(p)ﬂl//E(lp) Rx---xRx{0} x - x {0}
— ——_————

r (I<)n—r

has no interior point. Since (Vp(,), ¥p(,) is an admissible coordinate chart of N,
Yr(p is @ homeomorphism from Vi (,) onto Y p,) (Vi()). Since Yp(,) is a homeo-
morphism from Vg, onto
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Vi (Vie)s | Vet My | B X B x {0} x -+ x {0} | | € Vi,
~————

r (1<)n—r

and

Vrp) VF(p)ﬂl//;(lp) Rx---xRx{0} x---x {0}
— ———

r (I<)n—r

has no interior point,

VF(p)ﬁxp;(lm Rx---xRx{0} x---x {0}
V‘ SN——

! (1<)n—r

has no interior point in V. Since

Vi) MWy | R X R x {0} x -+ x {0}

! (I<)n—r

has no interior point in Vi) and Ve is open in N,

—_—

r (I<)n—r

has no interior point in N.) Since

VF(‘,,)ﬂ&p;(lm Rx---xRx{0} x---x {0}
V‘ N——

¥

Vi) VWil Rx---xRx{O}x---x{O})

(I<)n—r

has no interior point in N, and

F((W,)7) C Vi) mp;gp) Rx - xRx{0}x---x{0} [,
r (1< )n—r

F((W,)") has no interior point. Thus, F((W,)") is a nowhere dense subset of N.

Here, {W, : p € M} is an open cover of M. Since M is a smooth manifold, the

topology of M is second countable. Since M is a second countable space, and
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{W, : p e M} is an open cover of M, there exist pi,ps,p3,... in M such that
{W,, : n € N} is an open cover of M. Since {W,, : n € N} is a cover of M, and
F:M — N is onto, {F(W,,):neN} is a cover of N. Since W, C (W,,)",
F(W,,) C F((W,,)"). Since, for every neN,F(W,)CF((W,) ), and
{F((W,,)") :n €N} isacover of N, N =J,~, F(W,,)"). Since N is a smooth
manifold, N is a Hausdorff locally compact space. Since N is a Hausdorff locally
compact space, and for every n € N, F((W,)”) is a nowhere dense subset of N, by

Baire category theorem, | J,~, F((W,,)” )(= N) has no interior point, and hence,
N has no interior point. This is a contradiction. O

Theorem 5.61 Let M be an m-dimensional smooth manifold, N be an n-dimen-
sional smooth manifold, and F : M — N be smooth. Let F has constant rank r. Let
F:M — N be 1-1. Then, F is a smooth immersion.

Proof We have to prove that rank F = m. If not, otherwise, let r = rank F <m. We
have to arrive at a contradiction. Here, r = rank F'<m, so m — r is a positive
integer. Let us take any p € M.

By the constant rank theorem, there exist an admissible coordinate chart (U, ¢)
in M satisfying p € U and an admissible coordinate chart (V,y) in N satisfying
F(p) € V such that F(U) C V, and for every (Xi,...,Xp, Xpi1,- .-, Xp) in @(U),

(WoFoo )| XX Xpsty oo X | = | X1, 0,%,0,...,0 | €Y(V).
—_——— ——
(1< )m—r 0<)n—r

Since F: M — N is 1-1, ¢! is 1-1, and y is 1-1, their composite y o F o ¢!
from ¢(U) to Vis 1-1. Put

90(1)) =141 --a,4r41,- - -, am
—_——

(1< )m—r

Since

Aly e s ryArgly - Am :ﬁD(P) € (,D(U),

(1<)m—r
and @(U) is an open subset of R™, there exists ¢ > 0 such that

(ay —g,a1+&) X - x (ar —e,a, + &) X (ary1 — & ar11 +8)
X oo X (am — & am + &) C @(U).
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Since
& &
al?"'7ar7ar+17"'7am*5 y | A1y 5 Ars Qry 1y - - 5 Am +5
— —
(1<)m—r (1<)m—r
€ (ay —ga;+¢) XX (ar—gar+¢) X (@1 — & a1 + €)
X oo X (A — & a,m +¢) C o(U),
1 €
(l//OFO(P ) Ary -y Ary Ar1, 7am_§ at, 7ara0a' aO
—_— —
(1<)m—r e
-1 &
(l//OFO([) ) al,...,ar,ar+1,...,an1+§
—_—
(1<)m—r
Since
&
WoFoo )| an.

s ry At ly - A — 5
—

(1<)m—r

= (lpoFO(pfl) ap,

&
"'7ar7ar+17"'7am+7

2
| S ——
(1< )m—r
and yoFogp lisl—1,
€ I
Aly .oy QryQrily vy Oy — = Aly .oy QryQryly ey += |,

2 2
— —

(I<)m—r (1<)m—r

which is a contradiction.
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5.7 Global Rank Theorem

Theorem 5.62 Let M be an m-dimensional smooth manifold, N be an n-dimen-
sional smooth manifold, and F : M — N be smooth. Let F has constant rank. Let
F:M — N be 1-1 and onto. Then, F is a diffeomorphism.

Proof Since F : M — N is onto, by Theorem 5.60, F is a smooth submersion.
Since F : M — N is 1-1, by Theorem 5.61, F is a smooth immersion. Since F :
M — N is submersion, and immersion, by Theorem 5.45, F : M — N 1is a local
diffeomorphism. Since F : M — N is a local diffeomorphism, 1-1, and onto, by
Note 543, F : M — N is a diffeomorphism. [l

Note 5.63 Theorems 5.60, 5.61, and 5.62 together are known as the global rank
theorem.

Definition Let X, Y be topological spaces. Let F' : X — Y be a mapping. If F'is 1-1
and continuous map, and F is a homeomorphism from X onto F(X), where F(X) has
the subspace topology of Y, then we say that F' is a topological embedding.

Note 5.64 Let X, Y be topological spaces. Let F : X — Y be a mapping. Let F be
1-1 and continuous. Let F' be an open mapping, that is, for every open subset U of
X, F(U) is open in Y. We shall try to show that F': X — Y is a topological
embedding.

Here, let us take any open subset U of X. It remains to be proved that F(U) is
open in F(X). Since U is open in X, and F is an open mapping, F(U) is open in
Y. Since F(U) is open in ¥, F(U) N F(X) is open in F(X). Since F(U) C F(X),
FU)NF(X) =F(U).Since F(U)NF(X) = F(U), and F(U) N F(X) is openin F
(X), F(U) is open in F(X).

Note 5.65 Let X, Y be topological spaces. Let F : X — Y be a mapping. Let F be
1-1 and continuous. Let F be a closed mapping, that is, for every closed subset A of
X, F(A) is closed in Y. We shall try to show that F: X — Y is a topological
embedding.

Here, let us take any open subset U of X. It remains to be proved that F(U) is
open in F(X). Since U is open in X, the complement U¢ of U is closed in X. Since
U° is closed in X, and F is a closed mapping, F(U°) is closed in Y. Since F(U°) is
closed in ¥, and F(U®) C F(X), F(U°)NF(X)(= F(U")) is closed in F(X), and
hence, F(U°) is closed in F(X). Since F(U°) is closed in F(X), F(X) — F(U°) is
open in F(X). Since F : X — Yis 1-1, F(X) — F(U°) = F(X — U°) = F(U). Since
F(X)—F(U°) = F(U), and F(X) — F(U°) is open in F(X), F(U) is open in F(X).

Note 5.66 Let X be a compact space and Y be a Hausdorff space. Let F : X — Y be
a continuous mapping and F be 1-1. We shall try to show that F: X — Y is a
topological embedding.

First of all, we shall try to show that F': X — Y is a closed map. For this
purpose, let us take any closed subset A of X. We have to show that F(A) is closed
in Y. Since A is closed in the compact set X, A is compact. Since A is compact, and
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F : X — Y is continuous, F(A) is compact. Since F(A) is a compact subset of Y, and
Y is Hausdorff, F(A) is a closed subset of Y.

Thus, F: X — Y is a closed map. Since F : X — Y is 1-1, continuous, and
closed, by the above note, F' : X — Y is a topological embedding.

This result is known as closed map lemma.

Definition Let X, Y be topological spaces. Let F : X — Y be a mapping. If for
every compact subset C of ¥, F~!(C) is compact in X, then we say that F : X — Y
is a proper map.

Note 5.67 Let X be a Hausdorff topological space and Y be a Hausdorft locally
compact space. Let F': X — Y be a continuous mapping. Let F be a proper map.
We shall try to show that F is a closed mapping. For this purpose, let us take any
closed subset A of X. We have to show that F(A) is closed in Y. If not, otherwise, let
F(A) be not closed. We have to arrive at a contradiction.

Since F(A) is not closed, there exists b € Y such that b is a limit point of F(A),
and b ¢ F(A). Since b € Y, and Y is a Hausdorff locally compact space, there exists
an open neighborhood Uj, of b such that U, is compact. Clearly, b is a limiting
point of F(A) N (U, ).

(Reason: Let us take any open neighborhood Vj, of b. It follows that V;, N U}, is
an open neighborhood of b. Since V;, N U, is an open neighborhood of b, and b is a
limit point of F(A), there exists a point ¢ € V, NUp, and ¢ € F(A). Here,
c€VyNUp, so ceUy(C(U,)), and hence, ¢ € (U,). Since ¢ € (U, ), and
c€F(A),ce F(A)N (U, ). Also, since ¢ € V, N Uy, ¢ € V},. Since ¢ € F(A), and
b & F(A), ¢ # b. This shows that b is a limiting point of F(A) N (U, ).)

Since F : X — Y is a continuous mapping, F is a proper map, and U, is a
compact subset of ¥, F~1(U;) is a compact subset of X. Since F~'(U;) is a
compact subset of X, and the topology of X is Hausdorff, F~'(U,’) is a closed
subset of X. Since F~!(U, ) is a closed subset of X, and A is a closed subset of X,
F~'(U;)NA is a closed subset of X. Since F~'(U,)NA is a closed subset of
compact set F~1(U, ), F~1(U, ) N A is compact. Since F~!(U, ) N A is a compact
subset of X, and F : X — Y is a continuous mapping, F(F~'(U, ) N A) is compact.
Clearly, F(F~'(U, ) NA) = F(A) N (Uy).

(Reason: LHS = F(F~'(U,;)NA) C F(F'(U,))NF(A) C (U;)NF(A) =
F(A)N (U, ) = RHS. Next, let us take any y € F(A) N (U, ). We have to show that
y € F(FY(U,;)NA). Since y € F(A)N (U, ), y € (U, ), and there exists x € A
such that F(x) =y. Since F(x) =y € (U,), x € F7'(U;). Since x € F~1(Uy),
and x € A, x € F1(U; ) N A. Therefore, y = F(x) € F(F~'(U;) N A).)

Since F(F~'(U,)NA)=F(A)N(U;), and F(F~'(U,;)NA) is compact,
F(A)N (U, ) is compact. Since F(A) N (U, ) is a compact subset of Y, and the
topology of Y is Hausdorff, F(A) N (U, ) is closed. Since F(A) N (U, ) is closed,
and b is a limiting point of F(A) N (U, ), b € F(A) N (U, )(C F(A)), and hence,
b € F(A). This is a contradiction.
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Definition Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and F : M — N be smooth. If F is a smooth immersion, and
F : M — N is a topological embedding, then we say that F is a smooth embedding
of M into N.

Note 5.68 Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, P be a p-dimensional smooth manifold, F : M — N be a smooth
embedding, and G : N — P be a smooth embedding. We shall try to show that the
composite map Go F': M — P is a smooth embedding, that is,

1. GoF : M — P is a smooth immersion, and
2. GoF : M — P is a topological embedding.

For 1: We have to show that Go F : M — P is a smooth immersion. For this
purpose, let us take any a € M. We have to show that the linear map d(G o F),, :
T,M — TGop)a) P is 1-1.

Since F : M — N is a smooth embedding, F': M — N is a smooth immersion.
Since F : M — N is a smooth immersion, and a € M, the linear map dF, : T,M —
TN is 1-1. Since G : N — P is a smooth embedding, G : N — P is a smooth
immersion. Since G : N — P is a smooth immersion, and F(a) € N, the linear map
de(a) : TF(a)N — Tg(p(a))P is 1-1. Since dGF(a> : TF(G)N — TG(F(a))P is l—l, and
dF, : ToM — Tp)N is 1-1, their composite (dGg(,)) o (dF,)(= d(Go F),) is 1-1,
and hence, d(G o F), is 1-1.

For 2: Here, we have to prove that Go F : M — P is a topological embedding,
that is,

(@ GoF:M — Pis 1-1.

(b) GoF : M — P is continuous.

() GoF is a homeomorphism from M onto (G o F)(M), where the topology of
(Go F)(M) is the subspace topology of P.

For a: Since F : M — N is a smooth embedding, F : M — N is a topological
embedding, and hence, F : M — N is 1-1. Similarly, G: N — P is 1-1. Since
F:M — Nisl-1,and G : N — Pis 1-1, theircomposite Go F : M — Pis 1-1.
For b: Since F : M — N is a smooth embedding, F : M — N is a topological
embedding, and hence, F: M — N is continuous. Similarly, G: N — P is
continuous. Since F' : M — N is continuous, and G : N — P is continuous, their
composite G o F : M — P is continuous.

For c: Since F : M — N is a smooth embedding, F : M — N is a topological
embedding, and hence, F is a homeomorphism from M onto F(M), where F
(M) has the subspace topology of N. Since G : N — P is a smooth embedding,
G : N — Pis a topological embedding, and hence, G is a homeomorphism from
N onto G(N), where G(N) has the subspace topology of P. Since G is a
homeomorphism from N onto G(N), the restriction G|ry) is a homeomorphism
from F(M) onto G(F(M)), where the topology of F(M) is the subspace topology
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of N, and the topology of G(F(M)) is the subspace topology of G(N). Since the
topology of G(F(M)) is the subspace topology of G(N), and the topology of G
(N) is the subspace topology of P, the topology of G(F(M)) as the subspace
topology of G(N) and the topology of G(F(M)) as the subspace topology of
P are the same. It follows that G|y, is @ homeomorphism from F(M) onto G(F
(M)), where the topology of F(M) is the subspace topology of N, and the
topology of G(F(M)) is the subspace topology of P. Since F is a homeomor-
phism from M onto F(M), where F(M) has the subspace topology of N, and
G| F(M) is a homeomorphism from F(M) onto G(F(M)), where the topology of F
(M) is the subspace topology of N, and the topology of G(F(M)) is the subspace
topology of P, the composite (G| F<M)) o F is a homeomorphism from M onto
G(F(M))(= (Go F)(M)), where the topology of (G o F)(M) is the subspace
topology of P. Further, since (G|z)) o F = G o F, G o F is a homeomorphism
from M onto (G o F)(M), where the topology of (G o F)(M) is the subspace
topology of P.

Note 5.69 Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and F : M — N be a 1-1 smooth immersion. Let F' be an open
map. We shall try to show that F : M — N is a smooth embedding, that is, F'is a
smooth immersion, and F : M — N is a topological embedding. Since F : M — N is
a smooth immersion, it suffices to show that F' : M — N is a topological embedding.
Since F : M — N is a smooth map, so F' : M — N is continuous. Since F'is 1-1,
continuous, and open, by Note 5.64, F : M — N is a topological embedding.

Note 5.70 Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and F : M — N be a 1-1 smooth immersion. Let F be a closed
map. We shall try to show that F': M — N is a smooth embedding, that is, F'is a
smooth immersion, and F' : M — N is a topological embedding. Since F : M — N is
a smooth immersion, it suffices to show that F' : M — N is a topological embedding.
Since F' : M — N is a smooth map, F : M — N is continuous. Since F is 1-1,
continuous, and closed, by Note 5.65, F : M — N is a topological embedding.

Note 5.71 Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and F : M — N be a 1-1 smooth immersion. Let F' be a proper
map. We shall try to show that F : M — N is a smooth embedding.

Since M is an m-dimensional smooth manifold, M is a Hausdorff locally compact
space. Similarly, N is a Hausdorft locally compact space. Since F : M — N is a
smooth map, F : M — N is continuous. Further, since F is a proper map, by Note
5.67, F is a closed mapping.

Since F : M — N is a 1-1 smooth immersion, and F'is a closed map, by Note
5.70, F : M — N is a smooth embedding.
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Note 5.72 Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and ¥ : M — N be a 1-1 smooth immersion. Let M be compact.
We shall try to show that F : M — N is a smooth embedding. We first try to show
that F : M — N is proper map.

For this purpose, let us take any compact subset C of N. We have to show that
F~1(C) is compact in M. Since C is compact in N, and the topology of N is
Hausdorff, C is closed. Since F : M — N is smooth, F': M — N is continuous.
Since F : M — N is continuous, and C is a closed subset of N, F’l(C) is closed in
M. Since F~!(C) is closed in M, and M is compact, F~!(C) is compact in M.

This shows that ' : M — N is proper map. Since F' : M — N is a 1-1 smooth
immersion, and F : M — N is proper map, by Note 5.71, F : M — N is a smooth
embedding.

Note 5.73 Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, ' : M — N be a 1-1 smooth immersion, and m = n. We shall try
to show that F : M — N is a smooth embedding.

By Theorem 5.46, F : M — N is a local diffeomorphism, and hence, by Note
5.40, F is an open map. Since F' : M — N is a 1-1 smooth immersion, and F is an
open map, by Note 5.69, F : M — N is a smooth embedding.

Theorem 5.74 Let M be an m-dimensional smooth manifold, N be an n-dimen-
sional smooth manifold, and F : M — N be smooth. Suppose that for every p € M,
there exists an open neighborhood U of p such that the restriction F|,: U — N is a
smooth embedding. Then, F : M — N is a smooth immersion.

Proof We have to show that F : M — N is a smooth immersion, that is, rank F =
m, that is, for every p € M, the rank of F at p is m.

For this purpose, let us take any p € M. By the given condition, there exists an
open neighborhood U of p such that the restriction F|,: U — N is a smooth
embedding. Since F|;: U — N is a smooth embedding, F|;: U — N is a smooth
immersion. Since F \U: U — N is a smooth immersion, and p € U, the linear map
d(Fly), : T,U = T(g,)mN is 1-1, that is, d(F|y), : T,U — Tg(,N is 1-1. Since
U is an open neighborhood of p in M, by Note 5.16, T,U and T,M are essentially
the same. Since 7,U and T,M are essentially the same, and d(F|,),: T,U —
Tp@)N is 1—1, de : TI,M—> Tp(p)N is 1-1. Since de : TI,M —F(p) N is 1—1,
(rank of F at p) = dim((dF,)(T,M)) = dim(T,M) = dimM = m. d

Theorem 5.75 Let M be an m-dimensional smooth manifold, N be an n-dimen-
sional smooth manifold, and F : M — N be a smooth immersion. Let p € M. Then,
there exists an open neighborhood U of p such that the restriction F|,: U — N is a
smooth embedding.
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Proof By Theorem 5.50, there exist an admissible coordinate chart (Uj, @) in
M satisfying p € Uy, an admissible coordinate chart (V) in N satisfying F(p) €
V such that F(U;) C V, and for every (xi,...,x,) in @(U)),

Foo™! conXm) = | Xx1,.. X%, 0,...,0
(lpo oQ )(xla ,X) X1 X

Here, (U, ) is an admissible coordinate chart (U, ¢) in M satisfying p € Uy, so
U, is an open neighborhood of p in M. Since for every (x1,...,x,) in @(U;),

(woFO(p_l)(xl,...,xm) = | x5, %n,0,...,0 |,
——

n—m

and F(U)CV, (foFogp):e(U)—y(V) and is 1-1. Since
(WoFo@™), @y " are 1-1, their composite ' o (Yo Fo @~') o p(= Fly,) is
a 1-1 mapping from U, to V(C N). It follows that F|,, : Uy — N is 1-1. Since U,
is an open neighborhood of p in M, and M is an m-dimensional smooth manifold,
there exists an open neighborhood U of p such that U C U~ C Uy, and U is
compact. Here, U is a nonempty open subset of M and M is an m-dimensional
smooth manifold, U is also an m-dimensional smooth manifold. Now, since F :
M — N is a smooth mapping, F|,: U — N is a smooth map.

Now, it remains to be proved that ' \U: U — N is a smooth embedding, that is,

1. F|,: U — N is a smooth immersion and
2. F|,: U — N is a topological embedding.

For 1: Clearly, F|U: U — N is a smooth immersion, that is, for every g € U, the
rank of F|y at g is m.

(Reason: For this purpose, let us take any g € U. Since F : M — N is a smooth
immersion, and g € M, the linear map dF, : ;M — Tg,N is 1-1. Since U is an
open neighborhood of g in M, T,U and T,M are essentially the same. Since T,U
and T,M are essentially the same, and dF,: T,M — TN is 1-1, d(F|y), :
T,U — TN is 1-1. Since the linear map d(F|y), : T,U — TN is 1-1,
(rank of F|;, at q) = dim((d(F|,),)(T,U)) = dim(7,U) = dim(7,M) = dimM =
m. Hence, rank of F|, at g is m.)

For 2: First of all, we shall try to show that F|, : U~ — N is a topological
embedding. Since F|U1: U —-Nisl-l,and U~ C Uy, F|,-: U~ = Nis 1-1.
Since F: M — N is smooth, F: M — N is continuous, and hence, the
restriction F' \U,: U~ — N is continuous. Further, since U~ is compact, and N is
a Hausdorff space, by closed map Lemma 5.66, F|,,-: U~ — N is a topological
embedding. Since F|,-: U~ — N is a topological embedding, and U C U™, the
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restriction (F|,- |U U — N is a topological embedding. Since (F|,- }U: U—
N is a topological embedding, and (F|;-) ’U* F|y, F|,: U — N is a topological
embedding. O

Theorem 5.76 Let M be an m-dimensional smooth manifold, N be an n-dimen-
sional smooth manifold, and t : M — N be a smooth submersion. Let p € M. Then,
there exist an open neighborhood V* of n(p) in N and a smooth map ¢ : V¥ — M
such that o o = Idy-, and o(n(p)) = p.

Proof Since m: M — N is a smooth submersion, and p € M, by Theorem 5.49,
there exist admissible coordinate chart (U, @) in M satisfying p € U, admissible
coordinate chart (V, ) in N satisfying n(p) € V such that 7(U) C V, and for every

(X1y+ e ey Xy Xt 1y« + s X)) 10 @(U),
(lpOTCO@71)()(17,,,,xn,xn+1,,,,,xm) = (Xl,...,xn).

Here, p € U, and (U, @) is an admissible coordinate chart in M, so ¢(p) is an
element of the open subset @(U) of R™. Put ¢(p) = (a1, ..., an, dns1s- - - am)-
Here, (ai,...,an,an11,...,ay) is an element of the open subset @(U) of R™, so
there exists ¢ > 0 such that

(a1 —gar +&) X -+ X (an — &,ay + &) X (Any1 — & ayy1 +€)
X o X (am — & am+ &) C o(U).

For every (xi,...,Xn,Xnil,--Xn) € (a1 — & a1 +¢) X - X (a, — ¢, a, + &)X
(@pit — & aney +6) X+ X (ay — &,a, +¢), we have (Yomop ) (xy,..., X,
Xntly - o Xm) = (X1,. ., x,) € Y(V). It follows that

Y(r(e (a1 —e,a1 +&) x -+ x (ay — & ,a, + &)
(an+l — &, ap41 +8> XX (am — & ay +8))))
=Womoo ) ((a1 —&ai +&) x - X (a,— & a,+&)
X (@1 — & ani1 + &) X -+ X (A — & ay +¢))
=(a; —¢ga +&) X x(ay—¢&a,+¢) > (a,...a).

Hence,

(ai,.. .,an)(: (zp omo (p_l)(al7 SR S T D7

= (Yomoo ) (o) = ¥(n(p))

is an interior point of

Y(n(o (a1 —e,a1+ &) x -+ x (ay — &,a, + &)
X(apt1 — & api1 + &) X -+ X (@ — & apy +8)))).
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Since Y(n(p)) is an interior point of

Y(r(o ' ((a1 —e;ar + &) x -+ x (ay — &,a, + &)

X(ayi1 — & api1 +8) X oo+ X (A — &,am + 8)))),

lﬁ(ﬂ(¢7l((al —gar+e) XX (ay—¢&a,+¢)
X(@pi1 — & ani1 + &) X oo X (ay — & ap, +¢))))

is an open neighborhood of ¥(7(p)). Since

lp(n(fp_l((al —ga;+¢&) X X (a, —&,a, + &)
X (apt1 — & anp1 +8) X -+ X (@ — &,am + €))))
is an open neighborhood of ¥(n(p)), and ¥ is a homeomorphism from V onto
y(v),
n(o~ (a1 —&,a1 + &) X -+ X (ay — & a, + &)

X (i1 — & ani1 +8) X o+ X (ay — &,am + €)))
is an open neighborhood of 7(p). Put

Vi=n(e (a1 —e,a1 +&) x -+ X (ay — &,a, + &)
X(Ang1 — & Qi1 +8) X -+ X (@ — & am +¢))).

Here, V* is an open neighborhood of n(p). Let us define o : V* — M as follows:
For every g in V*,

o(q) = ¢~ (m(b(q)), - s a (W (@), i, - ).

Since i, ¢!, and all projection maps 7; are smooth, ¢ is smooth. Here, we want to

prove that ©w o o = Idy-, that is,for every ¢ € V*, n(a(q)) = q.

LHS = n(a(q)) = n(e " (i (¥ (), - 1 (¥(@))s i1, - - -5 am))
( S 1)(”1(‘/’(4)), > T(W(q))s antts - am)
v ((Womo o™ ) (m(q), - mu(¥(), nit, - - am))
=y (m((q),- - m(¥(9) =¥ ' (¥(q)) = g = RHS.
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It remains to be proved that o(n(p)) = p.

LHS = a(n(p))
= (p_l(m ((w omo (p_l)((p(p))), .. .,n,,((lp omo (p_l)(qo(p))),an+1,...,a,n)
= (p_l(nl((lponogo_l)(al,...,an,anﬂ,...,am)),...,n,,((lpono (p‘l)

(ala"~7an)an+17"'7am))7an+1a"'aam)
= (pfl(nl(al,...,an),...,rcn(al,...,a,,),anﬂ,...,am)
= (pil(alv <o py Apytd, - - .,le) = @71(‘P(P)) =P = RHS. O

Theorem 5.77 Let M be an m-dimensional smooth manifold, N be an n-dimen-
sional smooth manifold, and t : M — N be a smooth map. If for every p € M, there
exist an open neighborhood V of n(p) in N and a smooth map o : V. — M such that
noo = Ildy, and o(n(p)) = p, then © : M — N is a smooth submersion.

Proof We have to prove that m : M — N is a smooth submersion, that is, for every
p € M, the linear map dr, : T,M — Ty, N is onto. For this purpose, let us take any
p € M. By the given condition, there exist an open neighborhood V of n(p) in N a
smooth map ¢ : V — M such that 7o ¢ = Idy, and o(n(p)) = p. Since V is an
open neighborhood of 7(p) in N, Ty, V and T(,)N are essentially the same. Now,
since 7, ¢ are smooth maps,

ldr, v = Idr,, v = d(ldv),)= d(moa),
= (dTy(n(p))) © (ATn(p) = (dTp) © (dTn(p))-

Since

(dnp) o (dan(p)) = IdTn(p)N, so dm,:T,M — TN

is onto. n

Note 5.78 If we combine the Theorems 5.76, and 5.77, then we get the result: Let
M be an m-dimensional smooth manifold, N be an n-dimensional smooth manifold,
and w: M — N be a smooth map.

n: M — N is a smooth submersion if and only if for every p € M, there exist an
open neighborhood V of z(p) in N and a smooth map ¢ : V — M such that 1o g =
Idy and o(n(p)) = p.

Theorem 5.79 Let M be an m-dimensional smooth manifold, N be an n-dimen-
sional smooth manifold, and m : M — N be a smooth submersion. Then, ©: M —
N is an open map.

Proof Let G be a nonempty open subset of M. We have to show that z(G) is open
in N.

For this purpose, let us take any n(p) € n(G), where p € G. Since p € M, and
n:M — N is a smooth submersion, by Theorem 5.76, there exist an open
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neighborhood V of z(p) in N and a smooth map ¢ : V — M such that 7 o ¢ = Idy,
and o(n(p)) = p. Since g:V — M is smooth, ¢ : V — M is continuous. Since
o :V — M is continuous, and G is an open neighborhood of p(= a(n(p))) in M,
6~ !(G) is an open neighborhood of 7(p) in V. Since ¢~!(G) is an open neigh-
borhood of z(p) in V, and V is open, ¢~ !(G) is an open neighborhood of 7(p) in N.

Now, it suffices to show that 6~!(G) C n(G). For this purpose, let us take any
g€ '(G). Since geo ' (G)CV, q € V. Since q € V, g=1Idy(q) =
(mroa)(g) =n(a(q)). Since g € a-1(G), o(q) € G. Since a(q) € G, n(a(q)) €
7(G). Since n(o(q)) € n(G), and n(a(q)) = q, g € n(G). Thus, we have shown
that 6~ !(G) C n(G). O

Definition Let X be a topological space and Y be a nonempty set. Let F : X — Y be
any onto map. Let O be the collection of all subsets G of Y such that F~1(G) is
open in X. We shall try to show that O is a topology over Y.

1. Since F~!(()) = 0, and () is open in X, § € O. Since F~!(Y) = X, and X is open
inX,YeO.

2. Let Gi, G, € O. We have to show that G; N G, € O, that is, F~1(G| N G,) is
open in X. Since G; € O, F~'(G,) is open in X. Similarly, F~!(G,) is open in
X. It follows that F~'(G;)NF~(Gy)(= F~'(G1 N G,)) is open in X, and
hence, F~!(G; N G,) is open in X.

3. Let G; € O for every i € I. We have to show that U;; G; € O, that is,
F~1(Uie; G;) is open in X. Since, for every i € I, G; € O, F~'(G;) is open in
X. It follows that Uic;(F~1(G;))(= F~'(Uie; G;)) is open in X, and hence,
F~Y(Ujer G;) is open in X.

Thus, we have shown that O is a topology over Y. The topology O is called the
quotient topology on Y determined by F.

Definition Let X, Y be topological spaces. Let F : X — Y be any continuous, onto
mapping. If the quotient topology on Y determined by F is the topology of Y, then
we say that F is a quotient map.

Theorem 5.80 Let M be an m-dimensional smooth manifold, N be an n-dimen-
sional smooth manifold, and 7 : M — N be a smooth submersion. Let 1 : M — N
be onto. Then, m: M — N is a quotient map.

Proof For this purpose, let G be any nonempty subset of N such that 7~ !(G) is
open in M. It suffices to show that G is open in N.

Since m: M — N is a smooth submersion, by Theorem 5.79, m: M — N is an
open map. Since @ : M — N is an onto map, and G is a subset of N, n(n~'(G)) =
G. Since m: M — N is an open map, and 7"'(G) is open in M, n(n~'(G))(= G) is
open in N, and hence, G is open in N. O
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Theorem 5.81 Let M be an m-dimensional smooth manifold, N be an n-dimen-
sional smooth manifold, and P be a p-dimensional smooth manifold. Let ©: M —
N be a smooth submersion. Let m : M — N be onto. Let F : N — P be any map
such that Fon : M — P is smooth. Then, FF : N — P is smooth.

Proof We have to prove that F : N — P is smooth, that is, for every g in N, there
exists an open neighborhood V; of ¢ in N such that F |v,,: V4 — P is smooth.

For this purpose, let us take any ¢ in N. Since ¢ is in N, and 7 : M — N is onto,
there exists p € M such that n(p) = g. Since ©: M — N is a smooth submersion,
and p € M, by Theorem 5.76, there exist an open neighborhood V, of n(p) in N and
a smooth map ¢ :V, — M such that mo ¢ =1Idy,, and o(n(p)) = p. Since o :
Vy — M is smooth, and Fon: M — P is smooth, their composite (Fom)oo:
Vq — Pis smooth. Here, (Fon) o g = Fo(nog)=Foldy, = F|, . Since F|, =
(Fom)oa,and (Fom)oo is smooth, Fl, is smooth. O

5.8 Properly Embedded

Definition Let X, Y be any nonempty sets. Let F : X — Y be any mapping. Let
b € Y. The set F~!(b) is called the fiber of F over b. Clearly, X is partitioned into
fibers of F.

Theorem 5.82 Let M be an m-dimensional smooth manifold, N be an n-dimen-
sional smooth manifold, and P be a p-dimensional smooth manifold. Let 7 : M —
N be a smooth submersion. Let T : M — N be onto. Let F : M — P be any smooth
map. Let F be constant on fibers of m, that is, if n(x) = n(y), then F(x) = F(y).
Then, there exists a unique smooth map F:N — P such that Fon =F.

Proof Existence: We first try to show that F o 7~ is a function. For this purpose,
let (x,y) € Forn™!, and (x,z) € Fon~!. We have to show that y = z.

Since (x,y) € Fon~!, there exists u such that (x,u) € n~!, and (u,y) € F.
Since (x,u) € n~!, (u,x) € n. Since (x,z) € Fon~!, there exists v such that
(x,v) € n~ !, and (v,z) € F. Since (x,v) € n!, (v,x) € m. Since (v,x) € 7, n(v) =
x. Similarly, n(u) = x. It follows that n(u) = n(v). Since n(u) = n(v), and F is
constant on fibers of z, F(u) = F(v). Since (v,z) € F, F(v) = z. Since (u,y) € F,
F(u) =y. Since F(u) =y, F(v) =z, and F(u) = F(v), y = z. This proves that
Fon~!is a function.

Since # :M — N is onto, and F:M — P, dom (Forn !)=N, and
ran (Forn ') CP. Since Forn ! is a function, dom (Forn!)=N, and
ran (Fon') C P, we can write Fon ! : N — P.

Put F=Fon ! Since F=Fon ! and Fon ! :N— P, F: N — P. Now,
Fon=(Fonon=Fo(n'on). Clearly, Fo(n'on)=F.
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(Reason: Let (x, y) € LHS =Fo(n'om). So there exist u, v such that
(x,u) € m, (u,v) € n~!, and (v,y) € F. Since (u,v) € n~!, (v,u) € n. It follows
that 7(v) = u,n(x) = u, and hence, n(x) = n(v). Smce n(x) =n(v), and F is
constant on fibers of 7, F(x) = F(v). Since (v,y) € F, F(v) = y. Since F(v) =y,
and F(x) = F(v), F(x) =y, and hence, (x,y) € F = RHS. Hence, LHS C RHS.
Next, let (x,y) € RHS = F. Since (x,y) € F,and F: M — P, x € M, and y € P.
Sincex € M, and = : M — N, there exists u € N such that (x,u) € . Since (x,u) €
n, (u,x) €n'. Since (x,u)€mn, (u,x)€n!, and (x,y)€F, (x,y)€
Fo(n!on)= LHS. Hence, RHS C LHS. Since LHS C RHS, and RHS C
LHS, LHS = RHS.) Thus, Fon =F.

Since For ! :N — P,and F = Fon!, F: N — P. It remains to be showed
that F is smooth. Since Fon = F , and F is a smooth map, F o 7 is smooth. Since
F:N—Pisa map, and Formis smooth, by Theorem 5.81, F is smooth.

This completes the proof of existence part.

Uniqueness: Let F; : N — P be a smooth mapping such that F; o = = F, and let
F, : N — P be a smooth mapping such that F, ow = F. We have to show that
F\=F.

Since m:M — N is onto, mon ' = Idy. Since Fion=F, Fon ! =
(Flom)on ! =Fjo(non!)=F;oldy = Fy. Thus, F; = Fon!. Similarly,
F, = Fon~'. It follows that F; = F,. This proves the uniqueness part. O

Theorem 5.83 Let M be an m-dimensional smooth manifold, N be an n-dimen-
sional smooth manifold, and P be a p-dimensional smooth manifold. Let my : M —
N be a smooth submersion onto map. Let 7, : M — P be a smooth submersion onto
map. Let 1| be constant on fibers of my, and my be constant on fibers of my. Then,
there exists a unique diffeomorphism F : N — P such that F oy = m,.

Proof Existence: We first try to show that 7, o ;! is a function. For this purpose,
let (x,y) € mon!, and (x,z) € mp o m;'. We have to show that y = z.

Since (x,y) € my o m;!, there exists z such that (x,z) € n;!, and (z,y) € mo.
Since (x,z) € ny!, (z,x) € my. Since (x,z) € my o m; !, there exists w such that
(x,w) € n;!, and (w,z) € ma. Since (x,w) € ni;!, (w,x) € m;. Since (w,z) € ma,
my(w) = z. Similarly, m(z) =y, m(w) =x, and 7,(z) = x. Since 7 (w) =x =
m1(z), and 7, is constant on fibers of m, my(w) = m2(z). Since z = m(w) =
m2(z) =y, y = z. This proves that 7, o ;! is a function.

Since 7, : M — N is onto, and 1, : M — P is onto, dom (mp o ;') = N, and
ran (myony') C P. Since myomy!' is a function, dom (myon;!') =N, and
ran (my o ') C P, we can write myomi; ! : N — P.

Put F=mon!. Since F=mon;!, and myon;!:N—P, F:N — P.
Now, Fom = (mony')on =mo (n;' omy). Clearly, m o (27! o 1y) = mo.

(Reason: Let (x,y) € LHS =m0 (n;!om). So there exist u,v such that
(x,u) € 7y, (u,v) € n7!, and (v,y) € mp. Since (u,v) € niy!, (v,u) € . It follows
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that ; (v) = u, and 7; (x) = u, and hence, 7, (v) = 7;(x). Since 7;(v) = 7;(x), and
7, is constant on fibers of 7y, 7(v) = my(x). Since (v,y) € m,, 7 (v) = y. Since
1, (v) =y, and mp(v) = ma(x), m2(x) =y, and hence, (x,y) € 7, = RHS. Hence,
LHS C RHS. Next, let (x,y) € RHS = m,. Since (x,y) € 1, and 7, : M — P,
x €M, and y € P. Since x € M, and ©; : M — N, there exists u € N such that
(x,u) € my. Since (x,u) € ny, (u,x) € n;'. Since (x,u) € my, (u,x) € ny!, and
(x,y) € m2, (x,y) € myo (n;! om) = LHS. Hence, RHS C LHS. Since LHS C
RHS, and RHS C LHS, LHS = RHS.) Thus, F o n; = 7.

Since myony' : N — P,and F = myoniy!, F : N — P. Now, we want to show
that F is 1-1, that is, mon;! is 1-1, that is, if (x,z) € momn;!, and
(v,z) € myomy !, then x =y. For this purpose, let (x,z) € my o !, and (y,z) €
T 0 nl’l. We have to show that x = y.

Since (x,z) € myomy!, there exists u such that (x,u) € n;', and (u,z) € m».
Since (x,u) € ny!, (u,x) € my. Since (y,z) € my oy, there exists v such that
(v,v) € n;!, and (v,z) € my. Since (y,v) € ny!, (v,y) € my. Since (v,y) € my,
m(v) =y. Similarly, 7 (4) =x, ma(u) =z, and my(v) =z. Since m(u) =z =
my(v), and m; is constant on fibers of 7wy, m;(u) = m(v). Since x = 7my(u) =
m1(v) =y, x =y. Thus, we have shown that F : N — P is 1-1.

Now, we want to show that F : N — P is onto. For this purpose, let us take any
¢ € P. We have to find y € N such that (y,c) € F(= mon ).

Since m, : M — P is onto, and ¢ € P, there exists z € M such that (z,¢) € m,.
Since z € M, and 7y : M — N, there exists y € N such that (z,y) € ny, and hence,
(v,z) € ny'. Since (y,z) € ny!, and (z,¢) € ma, (y,¢) € My o ;' Thus, we have
shown that F : N — P is onto.

Now, we want to show that F : N — P is smooth. Since F o t; = 7y, and 7, is
smooth, F o m; is smooth. Since ©; : M — N is a smooth submersion onto map,
and F o m; is smooth, by Theorem 25, F' is smooth.

Lastly, we have to show that F ~1: P — N is smooth. Since F om; = 7, and
Fis 1-1 onto, F~' om, = m;. Since F~! o7y = my, and 7; is smooth, F~! o 7, is
smooth. Since m, : M — P is a smooth submersion onto map, and F “lom,
is smooth, by Theorem 5.81, F ~1 is smooth. Thus, we have shown that F : N — P
is a diffeomorphism such that F o 7, = 7,.

This completes the proof of existence part.

Uniqueness: Let F; : N — P be a smooth mapping such that F; o m; = 7, and
let F, : N — P be a smooth mapping such that F;, o 7; = m,. We have to show that
Fi=F,.

Since m; : M — N is onto, m on;! =1Idy. Since Fiom =m, mon;' =
(Filom)on!=Fio(mony')=F oldy =F,. Thus, F; =mon!. Simi-
larly, F» = mp o ;1. It follows that Fy = F. This proves the uniqueness part. [J
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Note 5.84 Before going ahead, let us recall the definition of open submanifold of M:
Let M be an m-dimensional smooth manifold, whose topology is O, and differential
structure is A. Let G be a nonempty open subset of M. Let O; be the subspace
topology over G inherited from M, that is, O; = {G; : G; C G, and G; € O}.

Since M is an m-dimensional smooth manifold, M is a Hausdorff space. Since
M is a Hausdorff space, and G is a subspace of M, G with the subspace topology is a
Hausdorff space. Since M is an m-dimensional smooth manifold, M is a second
countable space. Since M is a second countable space, and G is a subspace of M,
G with the subspace topology is a second countable space. Put

Ac ={(U,¢): (U,p) € A, and U C G}.

Now, we shall try to show that Ag is an atlas on G, that is,

WU : (U, pp)isin Ag} =G,
. all pairs of members in Ag are C* compatible.

N =

For (1): By the definition of Ag, it is clear that U{U : (U, ¢) is in Ag} C G.
So, it remains to be proved that G C U{U : (U, ¢) is in Ag}. For this purpose,
let us take any p in G. Since p is in G, and G is a subset of M, p is in M. Since
pisin M, and M is an m-dimensional smooth manifold, there exists (U, ¢) in A
such that p is in U.

Since (U, ¢) is in \A, U is an open subset of M. Since U is open, and G is open,
U NG isopen. Thus, U N G is an open neighborhood of p. We shall try to show that
(UNG,¢|yng)) is in Ag, thatis, (UN G, ¢|yng) € A, and UNG C G. Since
UNG C G, it remains to be showed that (UN G, ¢ y)) € A.

Since (U, o) is in A, (U, ¢y) is an admissible coordinate chart of M. Now,
since U N G is a nonempty open subset of U, by the Lemma 1, (U N G, (p|<UmG>) is

an admissible coordinate chart of M, and hence, (UN G, ¢|yng)) € A

For (2): Let us take any (U, @), (V,y) € Ag. We have to show that (U, @)
and(V, ) are C* compatible.

Since (U, ¢) € Ag, by the definition of Ag, (U, ¢) € A. Similarly, (V,{) € A.
Since (U, ) € A, (V,¥) € A, and A is a differential structure, (U, ¢) and (V, )
are C*™ compatible. Thus, we have shown that Ag is an atlas on G. Hence, Ag
determines a unique smooth structure on G. Thus, the open subset G of smooth

manifold M becomes an m-dimensional smooth manifold. Here, G is called an open
submanifold of M.

Note 5.85 Let M be an m-dimensional smooth manifold with smooth structure A.
Let G be a nonempty open subset of M. In the open submanifold G of M, the
smooth structure of G is determined by the atlas {(U, ¢) : (U, ) € A, and U C G}
of G. Thus, G becomes an m-dimensional smooth manifold.
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We shall try to show that the inclusion map 1 : G — M (that is, for every x in G,
1(x) = x) is a smooth embedding.

Since 1 : G — M is the identity mapping Idg, and Idg is smooth, 1 : G — M is
smooth.

Now, we want to show that 1 : G — M is a smooth immersion, that is, for every
p € G, the linear map di, : T,G — T,,)M is 1-1. For this purpose, let us fix any
p € G. We have to show that the linear map di, : T,G — T ;)M is 1-1. Clearly,
T,G =T,M, and T,,,M = T,M. So we have to show that the linear map di, :
T,M — T,M is 1-1. Here, 1 =Idg, so we have to show that the linear map
d(IdG)p :To,M — T,M is 1-1.

Since d(IdG)p = IdT,,G = IdT,,M7 and IdTI)M : TPM — TI,M is 1—1, d(IdG)p :
T,M — T,M is 1-1. Thus, we have shown that 1 : G — M is a smooth immersion.
Also, clearly 1 : G — M is 1-1.

Since G is open in M, 1: G — M is an open map. Since 1 : G — M is a 1-1
immersion, and open, by Note 5.69, 1 : G — M is a smooth embedding.

Conclusion: Let M be an m-dimensional smooth manifold. Let G be a nonempty
subset of M.

If G is open in M, then there exists an m-dimensional smooth structure on G such
that the inclusion map 1 : G — M is a smooth embedding. Now, we want to prove
its converse part:

Let M be an m-dimensional smooth manifold. Let G be a nonempty subset of
M. Let G be endowed with the subspace topology of M.

Suppose there exists an m-dimensional smooth structure .4 on G such that the
inclusion map 1 : G — M is a smooth embedding. We shall try to show that G is
open in M.

Since 1: G — M is a smooth embedding, 1 : G — M is a smooth immersion.
Since G,M are m-dimensional smooth manifolds, and 1 : G — M is a smooth
immersion, by Theorem 5.46, 1 : G — M is a local diffeomorphism. Since 1 : G —
M is a local diffeomorphism, by Note 5.38, 1 : G — M is an open map. Since
1: G — M is an open map, G(= 1(G)) is an open subset of M.

Definition Let M be an m-dimensional smooth manifold. Let S be a nonempty
subset of M. Let S be endowed with the subspace topology of M. Let k be a
nonnegative integer.

If there exists an (m — k)-dimensional smooth structure A on S, such that the
inclusion map 1 : § — M is a smooth embedding, then we say that S is an embedded
submanifold of M with codimension k. Here, we also say that M is an ambient
manifold for S.

From the Note 5.85, we can write:

Let M be an m-dimensional smooth manifold. Let S be a nonempty subset of
M. Let S be endowed with the subspace topology of M. S is open in M if and only if
S is an embedded submanifold of M with codimension 0. In this sense, we say that
the open submanifolds of M are exactly the embedded submanifolds of M with
codimension 0.
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Note 5.86 Let M be an m-dimensional smooth manifold with smooth structure A,
N be an n-dimensional smooth manifold with smooth structure 3, and F : N — M
be a smooth embedding. Let F(N)(C M) be endowed with the subspace topology
of M.

Since F : N — M is a smooth embedding, F : N — M is a topological embed-
ding, and hence, F : N — F(N) is a homeomorphism. Since F : N — F(N) is a
homeomorphism, N is homeomorphic to F(N). Since N is an n-dimensional smooth
manifold, N is an n-dimensional topological manifold. Since N is an n-dimensional
topological manifold, and N is homeomorphic to F(N), F(N) is an n-dimensional
topological manifold.

Let us take any (U, @) € B. We shall try to show that (F(U),po (F7!))is a
coordinate chart of F(N). Clearly, F(U) is open in F(N). (Reason: Since (U, ¢) € B,
and B is a smooth structure on N, U is open in N. Since F: N — F(N) is a
homeomorphism, and U is open in N, F(U) is open in F(N).) Here, (U, ¢) € B, and
B is a smooth structure on N, ¢(U) is open in R".

Since ¢ : U — @(U), U CN, and F: N — M is 1-1, ¢ o (F!) is a function
whose domain is F(U). Since ¢ : U — ¢(U) is onto, U C N, and F : N — M is
1-1, the range of @ o (F~1) is ¢(U). Since ¢ : U — ¢(U) is 1-1, U C N, and
F:N—Misl-1, oo (F ') : F(U) — ¢(U) is 1-1.

Thus, we see that ¢ o (F~!) is a 1-1 mapping from open subset F(U) of F(N)
onto open subset @(U) of R". Now, we shall try to show that ¢ o (F~!) : F(U) —
¢(U) is continuous.

Since F : N — M is a topological embedding, F is a homeomorphism from
N onto F(N), and hence, F~!: F(N) — N is continuous and 1-1. Since F~!:
F(N) — N is continuous and 1-1, its restriction (F~!)] ry F (U) — U is contin-

uous. Since F : N — M is 1-1, (F’l)|F<U): (F|U)7l. Since (F’1)|F<U): (F|U)71,
and (F")}F(U):

Since (F| U)f1 : F(U) — U is continuous, and ¢ : U — ¢(U) is continuous, their

F(U) — U is continuous, (F|,)”":F(U)— U is continuous.

composite @ o ((F|,)™") : F(U) — @(U) is continuous. Further, since ¢ o
(Fl)) ™) =po(F '), o (F): F(U) — ¢(U) is continuous.

Now, we shall try to show that F o (¢~ ') : ¢(U) — F(U) is continuous. Since
(U, @) € B, and B is a smooth structure on N, ¢! : ¢(U) — U is continuous and
1-1. Since F : N — M is a smooth embedding, F : N — M is continuous. Since
F : N — M is continuous, and ¢! : (U) — U is continuous and 1-1, F o (¢~1) :
@(U) — F(U) is continuous. Also, (¢ o (F™1))™ = Fo (¢7!). It follows that
(po(F )" @(U) — F(U) is continuous.

Thus, we have shown that (F(U), @ o (F~1)) is a coordinate chart of F(N).

Conclusion: Let M be an m-dimensional smooth manifold with smooth structure
A, N be an n-dimensional smooth manifold with smooth structure B, and F : N —
M be a smooth embedding. Let F(N)(C M) be endowed with the subspace topology
of M. If (U, @) € B, then (F(U), ¢ o (F7!)) is a coordinate chart of F(N).
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Note 5.87 Let M be an m-dimensional smooth manifold with smooth structure A,
N be an n-dimensional smooth manifold with smooth structure 3, and F : N — M
be a smooth embedding. Let F(N)(C M) be endowed with the subspace topology
of M.

Since M is an m-dimensional smooth manifold, M is a Hausdorff space. Since
M is a Hausdorff space, and F(N) is a subspace of M, F(N) with the subspace
topology is a Hausdorff space. Since M is an m-dimensional smooth manifold, M is
a second countable space. Since M is a second countable space, and F(N) is a
subspace of M, F(N) with the subspace topology is a second countable space. Put

Ar = {(F(U), 9o (F')) : (U,9) € B}.

From the Note 5.86, we see that A is a collection of coordinate charts of F(N).
Now, we shall try to show that A is an n-dimensional atlas on F(N), that is,

1. U{F(U) : (U, ) € B} = F(N),
2. all pairs of members in Ap are C* compatible.

For 1: Let us take any (U, ¢) € B. Since (U,¢) € B, and B is a smooth
structure of N, U C N. Since U C N, and F : N — M, F(U) C F(N). Hence,
U{F(U) : (U, ) € B} C F(N).

Now, it remains to be showed that F(N) C U{F(U) : (U, ¢) € B}. For this
purpose, let us take any F(p) € F(N), where p € N. Since p € N, and N is an n-
dimensional smooth manifold with smooth structure B, there exists (V, ) € B such
that peV. Since peV, F(p)eF(V)cCU{F): (U, ) e B}. Hence,
F(N) Cc W{F(U): (U, ¢) € B}.

For 2: Let (F(U),po (F7")) € Ay, and (F(V), Yo (F 1) € Ar, where

(U,p) € B, and (V,y) € B. Let F({U)NF(V) # 0. We have to show that

(Yo (F 1)) o(po(F 1) " is smooth. Here,

(Wo(F"))elpo(F) " =Wo(F))o(Fop™)
=Yo ((Ffl) oF) o(/fl

:lpoldl\,oqfl:d/oqo’1

Since F: N = M is 1-1, F(UNV) = F(U)NF(V) # (), and hence, UNV #
0. Since UNV #£0, (U,p) € B, (V,) € B, and B is a smooth structure on N,
Yoo (=po(F ")) o(po(F')") is smooth, and hence, (Yo (F'))o
(¢ o (F~))"" is smooth.

Thus, we have shown that A is an n-dimensional atlas on F(N), and hence, F
(N) is an n-dimensional smooth manifold, whose differential structure is determined
by the atlas Af.
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Note 5.88 Let M be an m-dimensional smooth manifold with smooth structure A,
N be an n-dimensional smooth manifold with smooth structure 3, and F : N — M
be a smooth embedding. Let F(N)(C M) be endowed with the subspace topology
of M.

From the Note 5.87, F(N) is an n-dimensional smooth manifold, whose dif-
ferential structure is determined by the atlas Ar = {(F(U),po (F!)):
(U, ) € B}.

Now, we want to show that F : N — F(N) is a diffeomorphism, that is,

1. F:N — F(N) is a homeomorphism,
2. F: N — F(N) is smooth, and F~! : F(N) — N is smooth.

For 1: Since F:N — M is a smooth embedding, F:N — M is a
homeomorphism.

For 2: Let us take any p€N. Let (U,p)€ B, where pe U. Let
(F(V),o (F')) € Ap, where (V,¢) € B, and F(p) € F(V). We have to
show that (Y o (F~!))oFo (p“ and g o F~' o (o (F))™" are smooth.

Here, (o (F ")) oFogp ' =yo((F1)oF)o 71//oIdNo(/) =Yoo !, and
(poF‘lo(lpo(F_l))_ (poF o(Foy~ ) @o(F'oF) oy ' =¢@oldy
oy ' =o' Since F(p) € F(V), there exists ¢ € V such that F(p) = F(q).
Since F(p) = ( ), and F is 1-1, p = g(€ V), and hence, p € UU V. Since p €
UUV,UUV #£0.Since UUV £ 0, (U,p) € B, (V, ) € B, and B is a smooth
structure on N, Yoo (= Wo(F ) oFogp!), and oy '(=poFlo
(Yo (F1))™") are smooth, and hence (i o (F"!))oFo ¢!, and ¢ o F 1o (o
(F~1))"" are smooth.

Thus, we have shown that F : N — F(N) is a diffeomorphism.

Note 5.89 Let M be an m-dimensional smooth manifold with smooth structure A,
N be an n-dimensional smooth manifold with smooth structure 3, and F : N — M
be a smooth embedding. Let F(N)(C M) be endowed with the subspace topology
of M.

From Note 5.87, F(N) is an n-dimensional smooth manifold, whose differential
structure is determined by the atlas Ar = {(F(U),p o (F7')) : (U, @) € B}. Also,
by Note 5.88, F : N — F(N) is a diffeomorphism.

Now, we want to show that the n-dimensional smooth manifold F(N), with atlas
Ar(={(F(U),po (FY)): (U, ) € B}), is an embedded submanifold of M, that
is, the inclusion map 1 : F(N) — M is a smooth embedding.

Clearly, 1 = F o F~!. From the Note 5.88, F : N — F(N) is a diffeomorphism,
so F~!: F(N) — N is a diffeomorphism. Since F~! is a diffeomorphism, and
F:N — M is a smooth embedding, their composition F o F~!(= 1) is a smooth
embedding, and hence, 7 is a smooth embedding.

Thus, we have shown that F(N) is an embedded submanifold of M with codi-
mension m — n.
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Note 5.90 Let M be an m-dimensional smooth manifold with smooth structure A,
and N be an n-dimensional smooth manifold with smooth structure 3. Here, the
collection

{(UXV,(ou x¥y)) : (U, py) € A, (V,4hy) € B}

is an atlas of the (m + n)-dimensional product manifold M x N. Let us fix any
pEN.

Now, consider the mapping F : M — M x N defined as follows: For every x €
M, F(x) = (x,p). We shall try to show that F : M — M x N is a smooth embed-
ding. For this purpose, it suffices to show that

1. Fis 1-1,
2. Fis a closed map, and
3. Fis a smooth immersion.

For 1: It is clear that F is 1-1.

For 2: Let A be a closed subset of M. We have to show that F(A) is closed in

M % N. Here, F(A) =A x {p} = (M x N) — ((A° x N) U (M x {p}“)). Since

A is a closed subset of M, A° is open in M, and hence, A x N is open in

M x N. Since N is an n-dimensional smooth manifold, the topology of N is

Hausdorff. Since the topology of N is Hausdorff, and p € N, {p} is a closed

subset of N, and hence, {p}‘ is open in N. It follows that M x {p}‘ is open in

M x N. Since M x {p}® is open in M x N, and A° x N is open in M x N,

(A°x N)U(M x {p}°) is open in M x N, and hence, (M xN)—

((A“x N)U (M x {p}))(= F(A)) is closed in M x N. Thus, F(A) is closed in

M x N.

For 3: We have to show that F : M — M x N is an immersion, that is, for every

g € M, the linear map dF, : T;M — Tp,(M x N) is 1-1.

For this purpose, let us fix any g € M. We have to show that the linear map
dFy : TyM — Tpg(M x N) is 1-1. Since g € M, and M is an m-dimensional
smooth manifold, there exists an admissible coordinate chart (U, ¢) of M such that
g € U. Since p € N, and N is an n-dimensional smooth manifold, there exists an
admissible coordinate chart (V, ) of N such that p € V.

For every r € U,
5
ox! .

is the coordinate basis of 7T.M corresponding to (U, @), where

= (d(0™),) (% m(’)>.

0

)
, Ox

0

’...’7
, ox

0

ol

r
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Here, (U x V,(¢ x ¥)) is an admissible coordinate chart of M x N such that
F(q) = (q,p) € U x V. For every (s,t) e U X V,
(s,t))

o
oy!

is the coordinate basis of T, (M x N) corresponding to (U x V, (¢ x )), where

0
= (a((ox v & .
(s,1) ( ( )W‘/’W) OV | () (.0

Observe that for every u € U,
(o x ) o Foo™") (o)) = (¢ x ¥) o F)(u)
= (¢ x ) (F(u)) = (¢ x ) (u,p)
= (@), ¥(p)).

Hence, the matrix representation of linear map dF), is the following (m +n) x m
matrix:

0

(sa) O

9
(s,t), aym-‘rl

0

a [
g (S’t)v R aym+11

s o

0

oyt

1 0 0 07
01 0 0
0 0 O 1
0o 0 0 - 0
0 0 0 0
L0 0 O 0
Clearly,
M1 0 07
1 0 0
rank 000 -1 =m
000 --- -
0 0 O 0
L0 O 0O --- 0]

Hence, dF, : T;M — Ty, (M x N) is 1-1. Thus, F is a smooth immersion.
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Since F : M — M x N is a smooth embedding, by Note 5.89, F(N)(= M x{p})
is an embedded submanifold of M x N with codimension (m + n) — n (= m), and F
(N) is diffeomorphic to M. Thus, we have shown that M x {p} is an embedded
submanifold of M x N with codimension m, and M x {p} is diffeomorphic to M. In
words, we say that a “slice” of a product manifold M x N is an embedded sub-
manifold of M x N, and each slice is diffeomorphic to M.

Note 5.91 Let M be an m-dimensional smooth manifold with smooth structure A,
and N be an n-dimensional smooth manifold with smooth structure 3. Here, the
collection

{(UxV,(0x)):(U,p) € A (V,¥) € B}

is an atlas of the (m + n)-dimensional product manifold M x N.

Let G be an open subset of M, and f : G — N be a smooth map. Put I'(f) =
{(x,f(x)) : x € G} (called the graph of f). Now, consider the mapping F : G —
M x N defined as follows: For every x € G, F(x) = (x,f(x)). Clearly, F(G) =
I'(f). We shall try to show that F : G — M X N is a smooth embedding. For this
purpose, it suffices to show that

1. Fis 1-1,

2. F7':T'(f) — G is continuous,

3. F: G — M x N is a smooth map, and
4. F is a smooth immersion.

For 1: It is clear that F'is 1-1.
For 2: Clearly, F~! = 7! |F(f)’ where ! : M x N — M is defined by ! (x,y) =

x, for every (x,y) € M x N. Since n' : M x N — M is continuous, its restric-
tion 7! ‘F(f)(: F~1) is continuous, and hence, F~! : I'(f) — G is continuous.

For 3: Let us take any p € G. Since p € G, and G is an open submanifold of
manifold M, there exists (U, ¢) € A satisfying p € U C G. Here, p € G, and
f:G— N, sof(p) €N. Since f(p) €N, and N is an n-dimensional smooth
manifold with smooth structure B, there exists (V, ) € B satisfying f(p) € V.
Thus, (U X V, (¢ x )) is an admissible coordinate chart of (m + n)-dimen-
sional product manifold M x N satisfying F(p) = (p,f(p)) € U x V. We have
to show that (@ x ) o F o ¢! is smooth. Let us observe that, for every q € U,

((p xY)oFoop ) (e(q) = (¢ x ¥)(F(q) = (¢ x ¥)(a.f (@) = (0(q), ¥ (f(a))) =
(@(@), W o)) = (¢(q), W of oo ")(¢(g)). Thus, for every geU,
(@ x ) oFoo ") (p(q) = (0(q), Wofop)((g). Now, since f:
G — N is a smooth map, Y of o ¢! is smooth, and hence, (¢ x ) o Fo ¢!
is smooth.

For 4: We have to show that F : G — M x N is an immersion, that is, for every
q € G, the linear map dF, : T;M — Ty, (M x N) is 1-1.
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For this purpose, let us fix any g € G. We have to show that the linear map
dF, : T\M — Tg,(M x N) is 1-1. Since ¢ € G(C M), and M is an m-dimensional
smooth manifold, there exists an admissible coordinate chart (U, ¢) of M such that

q € U. Since g € U, f(q) € N. Since f(q) € N, and N is an n-dimensional smooth
manifold, there exists an admissible coordinate chart (V, ) of N such that f(q) €

V. For every r € U,
0
oxt|’ .

is the coordinate basis of 7.M corresponding to (U, ¢), where

d = (d(w’l)w(,>) (ai W)).

o
Here, (U x V, (¢ X /)) is an admissible coordinate chart of M x N such that
F(q) = (q,f(q)) € U x V. For every (s,t) € U X V,
(Svt)>

(i ) 0 0
(s

[ TR i T R )
is the coordinate basis of 7|, (M x N) corresponding to (U x V, (¢ x )), where

0
(s,) < ((QD <¥) )(wxlﬁ )(s,t) ) (ay (ox) (”)>.

Observe that for every u € U,

((p x ) o Foo ) (g(u) = (¢ x ) o F)(u) = (¢ x ) (F(u))

Kh
ox?

0

,...,_m
, Ox

0
aym+n

ge ey

0
oy

Hence, the matrix representation of linear map dF, is the following (m + n) X m
matrix:

1 0 0

0 1 0

: : !
o oFoq@! o oFoq! Ty O oFoq!

o waxf 2 (o) O wasz oD (@) ... w((p@) .
o oFogp! o oFoq@! o oFog!

Ao Worow D) ) AmeWorep) o, AmoWerow ),

d(moPoFop™)
axm

d(m, 0 (Yo Fo ™)
ox?

d(m,o(oFo qf‘)
L ox!

(p(q)) (o(q))

(v(9)) |
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Clearly,
0 0
0 1 0
0 0 |
ik W‘W” %}f"“’”(w(q)) WWW .
a(nzO(waifocp ))(w(cn) a(ﬂz@(waifow D (o)) a(ﬂz@(wa;fow D (o))
:775010071 :T[D 0071 :TIO 0071
(mn (l/aXIF ) (p(q)) A (ll/asz 2D (o)) 0(my (wame ® ))(w(q))_

Hence, dF,, : TyM — Tg(q) (M x N) is 1-1. Thus, F is a smooth immersion.
Thus, we have shown that F : G — M X N is a smooth embedding. Since F :
G — M X N is a smooth embedding, by Note 5.90, F(G)(= I'(f)) is an embedded
submanifold of M x N with codimension (m + n) —m(= n), and F(N) is diffeo-
morphic to M.
Thus, we have shown that I'(f) is an embedded submanifold of M x N with
codimension n, and T'(f) is diffeomorphic to G.

Definition Let M be an m-dimensional smooth manifold. Let S be a nonempty
subset of M. Let S be endowed with the subspace topology of M. Let k be a
nonnegative integer. Let S be an embedded submanifold of M with codimension
k. If the inclusion map 1 : S — M is a proper map, then we say that S is properly
embedded.

Note 5.92 Let M be an m-dimensional smooth manifold. Let S be a nonempty subset
of M. Let S be properly embedded. We shall try to show that S is a closed subset of M.

Since M is an m-dimensional smooth manifold, M is a Hausdorff locally compact
space. Since S is a nonempty subset of M, and the topology of M is Hausdorff, the
subspace topology of S is Hausdorff. Since Sis properly embedded, : : S — M is aproper
map. Since S is a Hausdorff topological space, M is a Hausdorff locally compact space,
1 : § — M isacontinuous mapping, and : is a proper map, by Note 5.67,1 : § — Misa
closed mapping, and hence, 1(S)(= S) is closed in M. Thus, S is closed in M.

Note 5.93 Let M be an m-dimensional smooth manifold. Let S be a nonempty
closed subset of M. Let S be an embedded submanifold of M. We shall try to show
that S is properly embedded, that is, the inclusion map 1 : § — M is a proper map,
that is, for every compact subset C of M, 17!(C)(= C N S) is compact in S.

For this purpose, let us take any compact subset C of M. We have to show that
C N Sis compactin S. Let {G;},., be any open cover of C N S. Here each G; is open
in S, there exists an open subset H; of M such that G; = H; N S. Since for each i € I,
G; = H; N S, and S is a closed subset of M, {H,},., U {S¢} is an open cover of C in M.
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Since {H;};.; U {S°} is an open cover of C in M, and C is a compact subset of M,
there exist ij,...,ix € [ such that C C H;, U---UH; US°, and hence, CNS C
(HyU---UH, US)NS=(H,NS)U---UH;, NS)US*NS)=H,NS)U---
U(H;, NS) = G;, U---UG;,. This shows that C N S is compact in S.

Thus, we have shown that S is properly embedded.

Note 5.94 Let M be an m-dimensional smooth manifold. Let S be a nonempty
compact subset of M. Let S be an embedded submanifold of M. We shall try to
show that S is properly embedded.

Since M is an m-dimensional smooth manifold, the topology of M is Hausdorff.
Since the topology of M is Hausdorff, and S is a nonempty compact subset of M,
S is closed in M. Since S is closed in M, by the Note 5.92, § is properly embedded.

Note 5.95 Let M be an m-dimensional smooth manifold with smooth structure A,
and N be an n-dimensional smooth manifold with smooth structure 3. Here, the
collection

{(UxV,(0x)):(U,p) € A (V,¥) € B}

is an atlas of the (m + n)-dimensional product manifold M x N.

Let f: M — N be a smooth map. Here, the graph of f is given by I'(f) =
{(x,f(x)) : x € M}. By Note 591, I'(f) is an embedded submanifold of M x N
with codimension 7, and I'(f) is diffeomorphic to M. Now, we want to show that
I'(f) is a closed subset of M x N, that is (I'(f))“ is open in M x N.

For this purpose, let us take any point (x,y) € (I'(f)). Since (x,y) € (I'(f))",
(x, ) € I'(f) = {(x,f(x)) : x € M}. Tt follows that y # f(x). Here, y, f(x) are
distinct points of N, and in the topology of N, there exist an open neighborhood V;
of y, and an open neighborhood V of fx) such that V| and V are disjoint. Since
f M — N is asmooth map, f : M — N is a continuous map. Sincef : M — Nisa
continuous map, and V is an open neighborhood of f(x), there exists an open
neighborhood U of x such that f(U) C V. Here, U is an open neighborhood of x,
and V| is an open neighborhood of y, U x V; is an open neighborhood of (x, y) in
M x N. Clearly, U x V; is disjoint with I'(f). (Reason: If not, otherwise, let
(a,b) € U x Vy, and (a,b) € T'(f). Since (a,b) € I'(f), f(a) = b. Since (a,b) €
UxV,a€U,and b € V;. Since f(a) = b € Vi, f(a) € V. Since a € U, f(a) €
f(U) C V, and hence, f(a) € V. Since f(a) € Vi, and f(a) € V, V; and V are not
disjoint, a contradiction.) Since U x V| is disjoint with I'(f), the open neighborhood
U x V; of (x, y) contained in (I'(f)). Thus, (x, y) is an interior point of (I'(f))°.
Hence, (I'(f))" is open in M x N.

Thus, I'(f) is a closed subset of M x N. Since I'(f) is an embedded submanifold
of M x N, and I'(f) is a closed subset of M x N, by Note 5.93, I'(f) is properly
embedded.

Conclusion: Let M, N be smooth manifolds. Let f : M — N be a smooth map.
Then, I'(f) is properly embedded in M x N.
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5.9 Regular Level Sets

Definition Let M be a five-dimensional smooth manifold, and let (U, @) be an

admissible coordinate chart of M. Any set among the following 10 <_ (; > types:

Y({ (1, X2, %3, X4, %5) € @(U) : x3 = const, x4 = const,xs = const}),

const,xs = const}),

o
@ ({(x1, 32, %3, %4, %5) € @(U) : xp = const, xg
o

Y({ (1, x2, X3, %4, 5) € @(U) : x, = const,x3 = const,xs = const}), etc.
is called a two-slice of U. Observe that

o ({(x1,%2,x3,%x4,%5) € @(U) : x3 = const, x4 = const,xs = const})

# o "({(x1,%2,%3,%4,%5) € @(U) : xa = const, x4 = const,xs = const}).

(Reason: Since ¢(U) is a nonempty open subset of R, {(x1,x2,x3,%4,%5) € @
(U) : x3 = const, x4 = const,xs = const} # {(x1,x2,x3, x4,%5) € @(U) :x; =
const, x; = const, x5 = const}. Now, since ¢ is 1-1, @ 1({(x1,x2, x3,%4,%5) €
¢(U) : x3 = const, x4 = const,xs = const}) # ¢~ ({(x1,x2,x3, x4,x5) € @(U) :
X = const,x4 = const,xs = const}).)

AlSO, if(C3,C4,C§) 7'5 (d3,d4,d5),thel’l {(xl,XQ,X3,X4,X5) € ([)(U) X3 = C3,X4 =
C4,X5 = C5} §£ {(Xl,XQ,X3,X4,X5) S (p(U) tX3 = d3,)C4 = d4,)€5 = d5} NOW, since
@is 1-1, o ({(x1, %2, X3, X4, %5) € @(U) : x3 = ¢3,%4 = €4, x5 = ¢5}) # @ ({(x1,
X2,X3,X4,%5) € @(U) : x3 = d3,x4 = dg, x5 = ds}), etc.

Definition Let M be a five-dimensional smooth manifold, and let S be a nonempty
subset of M. If for every p in S, there exists an admissible coordinate chart (U, ¢) of
M such that p € U, and U N S(C U) is equal to a two-slice of U, then we say that
S satisfies local two-slice condition (see Fig. 5.2).

U . 2-sliceof U

Fig. 5.2 Admissible coordinate chart
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Note 5.96 Let M be a five-dimensional smooth manifold. Let S be a nonempty
subset of M. Suppose that S satisfies local two-slice condition. Let S has the sub-
space topology inherited from M. We shall try to show that § is a two-dimensional
topological manifold.

Since M is a smooth manifold, its topology is Hausdorff. Since the topology of
M is Hausdorft, and S has the subspace topology inherited from M, the topology of
S is Hausdorff. Since M is a smooth manifold, its topology is second countable.
Since the topology of M is second countable, and S has the subspace topology
inherited from M, the topology of S is second countable.

Next, let us take any p € S. Since S satisfies local two-slice condition, there exists
an admissible coordinate chart (U, ¢) of M satisfying p € U, and UN S is a two-
slice of U. Since (U, ¢) is an admissible coordinate chart of M, U is open in M, and
hence, U N S is open in S. Since (U, ) is an admissible coordinate chart of five-
dimensional smooth manifold M, ¢(U) is an open subset of R>. Since U NS is a
two-slice of U, for definiteness, let U NS = ¢~} ({(x1,%2,x3,%4,%5) € @(U) : x3 =
as, X4 = as,Xs = as}), where as,as,as are constants. It follows that (U NS) =
{(x1,%2,%3,%4,%5) € @(U) : x3 = a3z, X4 = a4, X5 = as}.

Let us define 7:R’ — R* x {a3} x {as} x {as} as follows: For every
(x1,x2,x3,X4,%5) € Rs,n(xl,xz,X3,X4,x5) = (x1,x2,a3,d4, as). Clearly, 7is an open
mapping. Since ¢(U) is an open subset of R, and 7 : R> — R? x {a3} x {as} x
{as} is open, 7w(o(U))(= {n(x1,x2,x3,%x4,%5): (x1,%2,%3,%4,%5) € @(U)} =
{1, %2, X3, %4,%5) € (U) : X3 = az, x4 = as,xs = as} = ¢(UNS)) is open in
R? x {a3} x {as} x {as}, and hence, ¢p(UNS) is open in R? x {as3} x {as} x
{as}. Let us define a function j : R? x {a3} x {a4} x {as} — R? as follows: For
every (x1,x,a3,as4,as) € R? x {az} x {as} x {as}, j(x1,%2,a3,a4,as) = (x1,x2).
Clearly, j is a diffeomorphism. Since j : R* x {a3} x {as} x {as} — R? is a diffe-
omorphism, j : R? x {a3} x {as} x {as} — R? is a homeomorphism. Since j :
R? x {as} x {a4} x {as} — R? is a homeomorphism, and (U N S) is open in
R? x {as} x {a4} x {as},j(@(UNS))(= (jo ¢)(UNS))isopeninR*, and hence,
(jo)(UNS) is open in R?. Clearly, (jo@)(UNS) = {(x1,x): (x1,x,as,
ag,as) € (U)}. (Reason: (jo @)(UNS) =jle(UNS)) =j({(x1,x2,%3,X4,%5) €
p(U) s x3=az, x4 =as,xs = as}) = j({(x1,x2,a3,a4,as) : (x1,%2,a3,a4,0a5) €
(p(U)} = {j(xlaXZaa37a47a5) : (xl,xz,a3,a4,a5) € (p(U)}) = {(xl’ Xz) 2()61,)62, as,
as,as) € p(U)}.)

Now, we shall try to show that j o (¢|;s) is a homeomorphism from U N S onto
(jop)(UNS), that is,

jo(@lyns) is 1-1
(o (@luns))(UNS) = (jo)(UNS),

(o (@lyns)) : UNS — (jo)(UNS) is continuous,

o (@lyns)) : UNS — (jo)(UNS) is an open mapping.

1.
2.
3.
4. (j
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For 1: Since j is a homeomorphism, j is 1-1. Since (U, ¢) is an admissible
coordinate chart of M, ¢ : U — ¢(U) is 1-1, and hence, ¢|,~s is 1-1. Since
@|yns is 1-1, and j is 1-1, their composite j o (@|,¢) is 1-1.

For 2: Here,

LHS = (jo (¢|yns))(UNS) = j((@lyns) (UNS))
=jle(UNS)) = (joe)(UNS) = RHS.

For 3: Since j is a homeomorphism, j is continuous. Since (U, @) is an
admissible coordinate chart of M, ¢ : U — ¢(U) is continuous, and hence,
@|yns is continuous. Since |, is continuous, and j is continuous, their
composite (j o (¢|,g)) is continuous.

For 4: Since j is a homeomorphism, j is open. Since (U, @) is an admissible
coordinate chart of M, ¢ : U — ¢(U) is open, and hence, ¢|;¢ is open. Since
@|yns is open, and j is open, their composite (o (¢|;s)) is open.

Thus, the ordered pair (U N S,j o (¢|yns)) is a coordinate chart of S. Also, p €
U NS. Hence, S is a two-dimensional topological manifold. Put

A={(UNS,jo (o|yns)) : (U, @) is an admissible coordinate chart of M}.

We want to show that A is an atlas for S.

For this purpose, let us take any (U NS, (ji 0 @)|yns), (VNS (20 ¥)]ns) € A,
where (U, @),(V,{) are admissible coordinate charts of M, and
(UNS)N(VNS) # (. We have to prove that

(20 (Wlves)) © (1 © (@lurs)) ™+ (o (lurs)) (UNS) N(VNS))
= (20 (lvns)) (UNS) N(VNS))

is smooth, that is,

(jZ ° (‘Mvms)) ° (jl ° ((P|Ums))_l: (71 o ((p‘UﬁS))((Um V)ns)
= (20 (Ylyns))((UNV)NS)

is smooth, that is,

(20 (Wlvrs)) © (10 (9lyns)) = Gro@)((UNV)NS)
— (hoy)(UNV)NS)

is smooth, that is,

G20 (Wlyes)) © ((@luns) oG ™") = Gro@)(UNV)NS)
— (hod)((UNV)NS)
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is smooth, that is,

(22 ((Wlves) @ (lons) ) 2 G0)") = Gro@)(UNVINS)
~ (o) (UNV)NS)

is smooth, that is,

(20 (W0 0™ yummng) 2 G07') : Gro o)W VI NS
— (2o W)((UNV)NS)

is smooth. Here, ) £ (UNS)N(VNS)CUNV,s0o UNV #(. Since UNV #
(), and (U, @), (V, ) are admissible coordinate charts of M,y o ¢! : p(UNV) —

(U NV) is smooth, and hence, the restriction (i o ¢! is smooth.

)|(p((UﬂV)ﬁS)
Since j,, (Y o ¢71)|(p((Umv)ms)’ (j1)~" are smooth, their composite

(20 (0 0 ) yups ) 0 G)7")  Gro @)@V NS)
~ (2o W) (UNV)NS)

is smooth. Thus, we have shown that A is an atlas for S. Let 1 : S — M be the
inclusion map of S.

We want to show that 1 : S — M is a smooth embedding, that is,

(@) 1:S8 — M is smooth,
(b) 1:S — M is a topological embedding, and
(¢) 1: 8 — M is a smooth immersion.

For a: Let us take any p € S. So there exists (UNS,jo (¢|yns)) € A, where
(U, @) is an admissible coordinate chart of M, and p € UNS. Since p = 1(p) €
M, there exists an admissible coordinate chart (V,y) of M satisfying p =
1(p) € V. We have to show that

voro (o (oluns) " (=¥ (o (@luns) =¥ ((olyns) " ei™)
= (#o (@luns) ) oi ! = (W (lyns) ") 05"

=(oo™) ’qz((UﬂV)mS) Ojil)

is smooth, that is, (¥ o go’l)‘(p«mv)ﬁs)Oj’l is smooth. Here, U NV # (). Since
UNnV 0, and (U, @), (V,y) are admissible coordinate charts of M, o ¢~ ! :
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o(UNV) — y(UnNV)issmooth, and hence, its restriction (1 o ¢~ 1) |<p((UﬁV)ﬂS)
-

is smooth. Since (‘po(f’_l)|¢((umv)ms) is smooth, and j~ is smooth, their

._l .
w((Umv)ms)OJ is smooth.

For b: Since S has the subspace topology inherited from M, 1: S — M is a
topological embedding.
For c: Let us take any p € S. We have to show that the linear map di, : 7,§ —

T,,/M is 1-1, that is, the linear map di, : T,S — T,M is 1-1.

composite (i o ")

Since p € §, there exists (UNS,jo (¢|yns)) € A, where (U, @) is an admis-
sible coordinate chart of M, and p € UN S. Here, (U, ¢) is an admissible coordi-
nate chart of M satisfying i1(p) € U. For every g € UN S,

el o)

is the coordinate basis of 7,5 corresponding to (U NS, jo (¢|,ns)), Where

qz (d((/'o (Q0|Ums))1)(jo(q,|m))(q)> (%

For every r € U,
0
oy! ,

is the coordinate basis of 7.M corresponding to (U, ¢), where

_ (d((P_l)rp(V>) (fiiyi tp("))l

(0010 Ge (0luns) ™) (G (9lurns)) (@) = 0l1(a)) = o(a)
= (@lyns) (@) =77 (0 (@lyns)) (@))-

Also clearly, j~! : R? — R? x {a3} x {a4} x {as} is such that for every (x',x?) in
R?, 7' (x',x*) = (x1,X2,a3,a4,as). Hence, for every g € UN S, the matrix rep-
resentation of linear map di, is the following 5 X 2 matrix:

0

)
q6x

0

ol

(jo(w|ums))(11)> .

9
, 0y

K
. 0y

9
, oyt

8
. 0y

9
oy

Observe that for every g € UN S,



5.9 Regular Level Sets 411

SO OO
[N eNel =

Since the

rank

SO OO~
S oo~ O

is 2, the linear map di, : 7,,§ — T,M is 1-1. Thus, we have shown that 1 : § — M is
a smooth embedding. Hence, S is an embedded submanifold of M.

Since for every g € U NS, the matrix representation of linear map di, is the
matrix

SO OO
SO O~ O

@)

0 0

q) (ay : l<q>> (ay2
0

+o<a—y4

Thus, for every g € UN S,

d

) +o<F
1(q) y
d d

vol L] =2
z<q>> <ay5 z<q>> oy!

l(q)>
0

=
(g

q

0 0
dig) | =—| | ==/ -
(dig) (6)(1 q> ',
Similarly, for every g € UN S,
0 0
diy) | = | = .
(dig) (6)62 q> 2,
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(ol )

is a basis of the real linear subspace (di,)(7,S) of T,M,

Now, since

( "% )

oy'|, o,

is a basis of (di,)(7,S), while
(a JCH I B )
M, 02, 02, o, 0y,

is the coordinate basis of T,M. Conclusion: For every g € U NS, if

(3 o] 2 3] @ )
oy, oy, oy, oyt 9y,
is the coordinate basis of T,M, then

<i o )

oy! q76y2 .

is a basis of (di,)(T,S).

Note 5.97 As in Note 5.96, we can prove the following result:

Let M be an m-dimensional smooth manifold. Let S be a nonempty subset of
M. Suppose that S satisfies local k-slice condition. Let S has the subspace topology
inherited from M. Then, S is a k-dimensional topological manifold. Also, there
exists a smooth structure on S such that M becomes a k-dimensional embedded
submanifold of M.

Definition Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and @ : M — N be a map. Any set of the form &~!(c), where
c € N, is called a level set of P.

Note 5.98 Let M be a three-dimensional smooth manifold, N be a four-dimensional
smooth manifold, and @ : M — N be a smooth map. Let 2 be the rank of @. Letc € N.
We shall try to show that the level set ! (c) satisfies local two-slice condition.
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By the constant rank Theorem 5.48, for every p € @ !(c)(that is, ®(p) = ¢)
there exist admissible coordinate chart (U, @) in M satisfying p € U, and admis-
sible coordinate chart (V,¥) in N satisfying @(p) € V, such that ®(U) C V, and
for every (x1,x2,x3) in ¢(U),

(lp odo (P71>(xlax2a-x3) = (xla-x2a0a 0)

Now, we shall try to show that

() NU = ¢~ ({(x1,32,33) € p(U) : 31 = (m1 0 ) (), 32 = (M oY) (e)}),

that is,

P(7(c) NU) = {(x1,32,33) € p(U) : x1 = (m1 0 ) (c), 32 = (m2 0 Y)(c)}.

Let g € @ '(c) N U. It follows that ®(q) = ¢, and g € U. Since ¢ € U, ¢(q) €
@(U). Put ¢(gq) = (x1,x2,x3). Hence, (x1,x2,x3) = ¢(q) € @(U). Also,

(x1,x2,0,0) = (Yo @ oo~ ")(x1,x2,%3)
=Wodog)(o(q)=v(@(q) =)
= ((m oy)(c), (moy)(c), (m3 o Y)(c), (m4 0 Y)(c)).

Hence, x; = (1 o)(c), and x, = (my o y)(c). Thus, & '(c)NU C o~ ({(x1,
x2,%3) € (U) : x1 = (m1 o) (c),x2 = (ma o Y)(c)}). Next, let g € o1 ({(x1,x2,
x3) € o(U) : x; = (1 oY) (c), %2 = (m2 0 Y)(c)}). We have to show that g € @~
(c)NU, that is, @(q) = ¢, and g € U. Since g € ¢~ ' ({(x1,x2,x3) € @(U) : x| =
(mioy)(c),x2 = (moy)(c)}) CU,qeU.

Since ¢(q) € @(U), ((m1 0 ¥)(c), (2 0 Y)(c), (a3 0 Y)(c), (4 0 ¥)(c)) = ¥(c)
=¥(2(q)) = (¥ 0 @0 ¢ )(9(9)) = (7 © 9)(a), (2 ©¢)(a),0,0), and hence,
(m309)(c) =0 = (ms 0 ) (c). Since g € ™' ({(x1, xz,xs) €o(U):xi = (moy)
(€), 22 = (m o ¥)(c)}), @(q) € {(x1,x2,x5) € (V) : x1 = (m 0 Y)(c), 2 = (mz0
¥)(c)}, and hence, (m 0 ¢)(q) = (m o ¥)(c), and (nzofp)(Q) = (moy)(c).
Since (71 0 9)(q) = (m o ¥)(c), (mo)(q) = (moW)(c), (m3oy) (c)=0=
(4 oY) (c), and Y(@(q)) = ((m1 © ¢)(q), (2 © 9)(9),0,0), Y(P(q)) = ((m ° W)
(©).(m209) (c).0,0)= ((m1 0)(c). (mao)(c). (130%) (o). (140 Y)(c)) =
Y(c). Since Y(@(q)) = ¥(c), @(q) = c.

Thus, ¢(® ' (c)NU) = {(x1,%2,%3) € (U) : x; = (1 0Y)(c),x2 = (ma 0 V)
(c)}. Hence, the level set @~!(c) satisfies the local 2-slice condition. Now, by Note
5.97, if ®'(c) has the subspace topology inherited from M, then @~ !(c) is an
embedded submanifold of M. Since @ : M — N is a smooth map, ® : M — N is
continuous. Since @ : M — N is continuous, and {c} is a closed subset of N,
@~ !(¢) is a closed subset of M. Since ®~!(c) is a closed subset of M, and &~ !(¢) is
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an embedded submanifold of M, by Note 5.93, ®~!(c) is a properly embedded
submanifold of M, and its codimension is 2.

Note 5.99 The following result can be proved as in Note 5.98:

Let M be an m-dimensional smooth manifold, N be an n-dimensional smooth
manifold, and @ : M — N be a smooth map. Let r be the rank of @. Let c € N.
Then, the level set @ '(c) is a properly embedded submanifold of M, and its
codimension is 7.

Note 5.100 Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and @ : M — N be a smooth submersion. Let c € N. We shall try
to show that the level set @~ !(c) is a properly embedded submanifold of M, and its
codimension is n.

Since ® : M — N is a smooth submersion, @ : M — N is a smooth map, and
rank @ = n. Since @ : M — N is a smooth map, and rank & = n, by Note 5.99, the
level set @' (c) is a properly embedded submanifold of M, and its codimension is 7.

Definition Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and @ : M — N be a smooth map. Let p € M.

Ifd®, : T,M — Tg,N is onto (that is, the rank of @ at p is n), then we say that
p is a regular point of ®. If p is not a regular point of @, then we say that p is a
critical point of ®.

Note 5.101 Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and @ : M — N be a smooth map. Clearly, ® is a smooth sub-
mersion if and only if every point of M is a regular point of @.

Note 5.102 Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and @ : M — N be a smooth map. Let m < n. We shall try to
show that every point of M is a critical point of @.

If not, otherwise, let there exists p € M such that p is not a critical point of @. Since
p is not a critical point of @, p is a regular point of @, and hence, the linear map
d®, : T,M — Tg,)N is onto. Since the linear map d®, : T,M — Tg(,)N is onto,
n=dimN = dim TN < dim T,M = dim M = m. Thus, m£n, a contradiction.

Thus, every point of M is a critical point of ®.

Note 5.103 Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and @ : M — N be a smooth map. Let G be the set of all regular
points of @. We shall try to show that G is an open subset of M.

For this purpose, let us take any p € G. Since p € G, p is a regular point of ®.
Since p is a regular point of @, the linear map d®, : T,M — T, N is onto. Since
the linear map d®, : T,M — Tg,)N is onto, by Theorem 4.7, there exists an open
neighborhood W of p such that for every g € W, the linear map dF, : T\M — Tp,)N
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is onto, and hence, the open neighborhood W of p is contained in G. It follows that
p is an interior point of G.
Thus, we have shown that G is an open subset of M.

Definition Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and @ : M — N be a smooth map. Let G be the set of all regular
points of ®@. Let c € N.

If & '(c) C G, then we say that c is a regular value of ®, and ®'(c) is a
regular value set. If ¢ is not a regular value of @, then we say that c is a critical
value of ®. If ¢ is a regular value of @, then ®~!(c) is called a regular level set.

Clearly, if ~!(c) = 0, then ¢ is a regular value of ®.

Note 5.104 Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and @ : M — N be a smooth map. Letc € N. Let ®!(c) be a
nonempty regular level set. We shall try to show that ®~!(c) is a properly
embedded submanifold of M, and its codimension is 7.

Let G be the set of all regular points of @. We know that G is an open subset of
M. Let O; be the subspace topology over G inherited from M, that is, O; =
{G\: G| C G, and G, € O}. Let A be the differential structure of M. Put

Ac={(U,¢): (U,p) € A, and U C G}.

We know that Ag is an atlas on G. Thus, G becomes an m-dimensional smooth
manifold (called open submanifold of M). Also, G is an embedded submanifold of
M with codimension 0. Since @ : M — N is a smooth map, and G is an open
submanifold of M, <I>|G: G — N is a smooth map.

Let us take any p € G. We want to show that the linear map d(9|;), : 7,G —
T(g),)(p)N is onto. Since p € G, p is a regular point of M, and hence, the linear map
d®, : T,M — Tg,)N is onto. Since p € G, and G is an open submanifold of M,
T,M is equal to T,G. Also, (®|;)(p) = @(p). It follows that the linear map
d(@lG)p :T,G — T(‘I’\(;)(P)N is onto.

Now, we want to show that ®~!(¢) is an embedded submanifold of M. Since for
every p € G, the linear map d(®|;), : T,G — T(g|,)(»N is onto, ?|;: G — Nis a
smooth submersion. Since <I>|G: G — N is a smooth submersion, and ¢ € N, by
Note 5.100, the level set (<15|G)71 (¢) is a properly embedded submanifold of G, and
its codimension is n. Clearly, ((D\G)_l(c) =7 !(c).

(Reason: Let p € (<D|G)71(c). So p € G, and (P|;)(p) =c. Since p € G, c =
(®],)(p) = D(p), and hence, p € &' (c). Thus, (®|;) ' (c) € @ !(c). Next, let
p € d(c). Since pc & 7(c), P(p) =c. Since @ !(c) is a regular value set,
@ '(c) CG. Since p € @7 '(c) C G, p € G, and hence, (®|;)(p) = P(p) =c. It
follows that p € (®|;)"'(c). Thus, @ '(c) C (P|;) " '(c).)
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Since (®];) "' (c) = @ '(c), and the level set (®|;) '(c) is a properly embed-
ded submanifold of G with its codimension n, ®~!(c) is a properly embedded
submanifold of G with its codimension n. Since ®~!(c) is an embedded subman-
ifold of G, the inclusion map 1; : ®~!(¢) — G is a smooth embedding. Since G is
an embedded submanifold of M, the inclusion map 1, : G — M is a smooth
embedding. Since 1; : #7'(¢) — G is a smooth embedding, and 1, : G — M is a
smooth embedding, their composite 15 0 1; : ®~!(¢) — M is a smooth embedding.
Since 1, o 1; = 1, where i1denotes the inclusion map from <D_1(c) toM,and 101 :
& !(c) — M is a smooth embedding, the inclusion map 1: & !(c) = M is a
smooth embedding. This shows that ®~!(c) is an embedded submanifold of M.

Now, we want to show that @ !(c) is a properly embedded submanifold of
M. For this purpose, let us take any compact set K in M. We have to show that
(12 0 11)" 1 (K) is compact in @~'(c). Here, (1 0 1) " (K) = ((11) " o (1) )(K) =
(1) "KNG)=(KNG)Nd ' (c) =KNd !(c). Since K is compact in M, and
@~ !(c) is closed in M, K N &' (c) is compact in M. Since K N &' (c) is compact
in M, and KN® ' (c) C d'(c), KND ' (c)(= (12011) ' (K)) is compact in
®~'(c), and hence (1, 0 1) (K) is compact in &~ (c).

Thus, & '(c) is a properly embedded submanifold of M with codimension 7.

5.10 Smooth Submanifolds

Definition Let M be an m-dimensional smooth manifold and S be a nonempty
subset of M. If there exists a topology O over S with respect to which S becomes an
n-dimensional topological manifold, and there exists a smooth structure on S with
respect to which the topological manifold S becomes an n-dimensional smooth
manifold such that the inclusion map 1 : S — M is smooth immersion, then we say
that S is an immersed submanifold (or smooth submanifold) of M with codimension
m— n.

Note 5.105 Let M be an m-dimensional smooth manifold and S be a nonempty
subset of M. Let k € {0,1,...,m — 1}. Let S be an embedded submanifold of
M with codimension k. We shall try to show that S is an immersed submanifold of
M with codimension k.

Put O={GNS:GisopeninM}. We know that O (called the subspace
topology of S) is a topology over S. Since S is an embedded submanifold of M with
codimension k, O is a topology over S with respect to which S becomes a (m — k)-
dimensional topological manifold. Also, there exists a smooth structure .4 on S,
with respect to which the topological manifold S becomes an (m — k)-dimensional
smooth manifold such that the inclusion map 1 : S — M is a smooth embedding,
and hence, 1 : § — M is a smooth immersion.
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Hence, S is an immersed submanifold of M with codimension k(= m— (m — k)).
This completes the proof. In short, every embedded submanifold is a smooth
submanifold.

Note 5.106 Let M be an m-dimensional smooth manifold with smooth structure A,
N be an n-dimensional smooth manifold with smooth structure 3, and F : N — M
be a 1-1 smooth immersion. Put

O ={F(V):VisopeninN}.

Clearly, O is a topology over F(N), and F is a homeomorphism from N onto F(N).
Since F is a homeomorphism from N onto F(N), N is homeomorphic onto F(N).
Since N is an n-dimensional smooth manifold, N is an n-dimensional topological
manifold. Since N is an n-dimensional topological manifold, and N is homeo-
morphic onto F(N), F(N) is an n-dimensional topological manifold. Since N is an n-
dimensional smooth manifold with smooth structure B, and F is a homeomorphism
from N onto F(N), {(F(V),¢ o (F! |F(V))) : (V, ) € B} is a smooth structure on

F(N). Thus, F(N) becomes an n-dimensional smooth manifold, and F is a diffeo-
morphism from N onto F(N). It is clear that i o (F~! |F(V)) =y o (F1). It follows

that the smooth structure on F(N) is {(F(V),y o (F7Y)) : (V,y) € B}.

Now, we want to prove that the inclusion map 1 : F(N) — M is a smooth map.
Clearly, 1 = F o F~!. Since F : N — F(N) is a diffeomorphism, F~! : F(N) — N
is a diffeomorphism. Since F~! is a diffeomorphism, and F: N — M is a 1-1
smooth immersion, their composition F o F~!(=1) is a 1-1 smooth immersion,
and hence, 1 is a smooth immersion. It follows that F(N) is a smooth submanifold of
M with codimension m — n.

Conclusion: Let M be an m-dimensional smooth manifold with smooth structure
A, N be an n-dimensional smooth manifold with smooth structure B, and F : N —
M be a 1-1 smooth immersion. Then, F(V) is a smooth submanifold of M with
codimension m — n.

Note 5.107 Let M be an m-dimensional smooth manifold and S be a nonempty
subset of M. Let S be a smooth submanifold of M with codimension 0. We shall try
to show that S is an embedded submanifold of M with codimension O.

Since S is a smooth submanifold of M with codimension 0, by its definition,
there exists a topology O over S with respect to which S becomes an m-dimensional
topological manifold, and there exists a smooth structure on S with respect to which
the topological manifold S becomes an m-dimensional smooth manifold such that
the inclusion map 1 : § — M is a smooth immersion. Here, S is an m-dimensional
smooth manifold, M is an m-dimensional smooth manifold, and the inclusion map
1:S— M is a 1-1 smooth immersion, so by Note 5.73, 1: S — M is a smooth
embedding. Since 1 : S — M is a smooth embedding, the inclusion map 1 : S — M
is a topological embedding, and hence, 1 is a homeomorphism from S onto
1(S)(= S), where 1(S) has the subspace topology inherited from M. It follows that
O is equal to the subspace topology of S inherited from M. Since S is endowed with
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the subspace topology inherited from M, and the inclusion map 1: S — M is a
smooth embedding, and the smooth structure on S is m-dimensional, by the defi-
nition of embedded submanifold, S is an embedded submanifold of M with codi-
mension O.

Note 5.108 Let M be an m-dimensional smooth manifold and S be a nonempty
subset of M. Let S be a smooth submanifold of M with codimension k. Let the
inclusion map 1 : S — M be proper.

We shall try to show that S is an embedded submanifold of M with codimension k.

Since S is a smooth submanifold of M with codimension k, by its definition,
there exists a topology O over S with respect to which S becomes an (m — k)-
dimensional topological manifold, and there exists a smooth structure on S with
respect to which the topological manifold S becomes an (m — k)-dimensional
smooth manifold such that the inclusion map 1 : S — M is a smooth immersion.
Here, S is an (m — k)-dimensional smooth manifold, M is an m-dimensional smooth
manifold, the inclusion map 1:S§ — M is a 1-1 smooth immersion, and the
inclusion map 1:S — M is proper, so by Note 5.71, 1: S — M is smooth
embedding. Since 1 : § — M is a smooth embedding, the inclusion map 1 : S — M
is a topological embedding, and hence, 1 is a homeomorphism from S onto
1(S)(= S), where 1(S) has the subspace topology inherited from M. It follows that O
is equal to the subspace topology of S inherited from M. Since S is endowed with
the subspace topology inherited from M, the inclusion map 1 : § — M is a smooth
embedding, and the smooth structure on S is (m — k)-dimensional, by the definition
of embedded submanifold, S is an embedded submanifold of M with codimension k.

Note 5.109 Let M be an m-dimensional smooth manifold and S be a nonempty
subset of M. Let S be a smooth submanifold of M with codimension k. Let S be
compact. We shall try to show that S is an embedded submanifold of M with
codimension k.

Since § is a smooth submanifold of M with codimension ., by its definition,
there exists a topology O over S with respect to which S becomes an (m — k)-
dimensional topological manifold, and there exists a smooth structure on S with
respect to which the topological manifold S becomes an (m — k)-dimensional
smooth manifold such that the inclusion map 1 : S — M is a smooth immersion.
Here, S is an (m — k)-dimensional smooth manifold, M is an m-dimensional smooth
manifold, the inclusion map 1:S — M is a 1-1 smooth immersion, and S is
compact, so by Note 5.72, 1 : § — M is a smooth embedding. Since 1 : S — M is a
smooth embedding, the inclusion map 1 : S — M is a topological embedding, and
hence, 1 is a homeomorphism from S onto 1(S)(= S), where 1(S) has the subspace
topology inherited from M. It follows that O is equal to the subspace topology of
S inherited from M. Since S is endowed with the subspace topology inherited from
M, the inclusion map 1 : S — M is a smooth embedding, and the smooth structure
on S is (m — k)-dimensional, by the definition of embedded submanifold, S is an
embedded submanifold of M with codimension k.
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Note 5.110 Let M be an m-dimensional smooth manifold and S be a nonempty
subset of M. Let S be a smooth submanifold of M with codimension k. Let p € S.

We shall try to show that there exists an open neighborhood U of p in S such that
U is an embedded submanifold of M with codimension k.

Since S is a smooth submanifold of M with codimension k, there exists a
topology O over S with respect to which S becomes a (m — k)-dimensional topo-
logical manifold, and there exists a smooth structure on S with respect to which the
topological manifold S becomes a (m — k)-dimensional smooth manifold such that
the inclusion map 1 : S — M is a smooth immersion. Since 1 : S — M is a smooth
immersion, and p € S, by Theorem 5.75, there exists an open neighborhood U of p in
S such that the restriction 1|,;: U — M is a smooth embedding. Since 1|,: U — M is
a smooth embedding, 1|,;: U — M is a topological embedding, and hence, 1| is a
homeomorphism from U onto (1|,)(U)(= U), where (i|y)(U) has the subspace
topology inherited from M. It follows that the topology over U is the subspace
topology inherited from M. Here, S is a (m — k)-dimensional smooth manifold, and
U is an open neighborhood of p, so U is a (m — k)-dimensional smooth manifold.
Since U is a (m — k)-dimensional smooth manifold, the topology over U is the
subspace topology inherited from M, and the inclusion map 1|;,: U — M is a smooth
embedding, U is an embedded submanifold of M with codimension k.

Note 5.111 Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and F : M — N be a smooth map. Let S be a nonempty subset of
M. Let S be a smooth submanifold of M. We shall try to show that the restriction
F|¢: S — N is smooth.

Let the codimension of S be k. Since S is a smooth submanifold of M, there
exists a topology O over S with respect to which S becomes an (m — k)-dimensional
topological manifold, and there exists a smooth structure A on S with respect to
which the topological manifold S becomes an (m — k)-dimensional smooth mani-
fold such that the inclusion map 1 : § — M is a smooth immersion. Since 1 : S — M
is a smooth immersion, 1 : S — M is smooth. Since 1:S — M is smooth, and
F : M — N is a smooth map, their composite F o1 : § — N is smooth. Since F o1 :
S — N is smooth, and F|¢= F o1, Flg: S — N is smooth.

Note 5.112 Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and S be a nonempty subset of M. Let S be a smooth submanifold
of M with codimension k. Let F : N — M be a smooth map, and F(N) C S. Let
F : N — S be continuous. We shall try to show F : N — S is smooth.

Let us fix any p € N. Since p € N, F(p) € F(N) C S, and hence, F(p) € S.
Since S is a smooth submanifold of M, there exists a topology O over S with respect
to which S becomes an (m — k)-dimensional topological manifold, and there exists
a smooth structure A on S with respect to which the topological manifold
S becomes an (m — k)-dimensional smooth manifold such that the inclusion map
1: S — M is a smooth immersion. Since the inclusion map 1 : S — M is a smooth
immersion, by Theorem 5.46, 1 : § — M is a local diffeomorphism. Since 1 : § —
M is a local diffeomorphism, and F(p) € S, there exists an open neighborhood U of
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F(p) in S such that «(U) is open in M, and the restriction 1|,: U — 1(U) is a

diffeomorphism, and hence, (i 0)71 :1(U) — U is smooth. Since U is an open
neighborhood of F(p) in S, and F : N — S is continuous, there exists an open
neighborhood V of p in N such that F(V) C U. Since V is open in N, V is an open
submanifold of N, and hence, V is an embedded submanifold of N. Since V is an
embedded submanifold of N, V is a smooth submanifold of N. Since V is a smooth
submanifold of N, and F : N — M is a smooth map, by Note 5.111, F|,,: V — M is
a smooth map. Since F|,: V — M is a smooth map, (1|,,)~" : 1(U) — U is smooth,
and (F|,)(V) = F(V) C U = 1(U), their composite ((1],)"") o (F|,):V — U is
smooth. Since ((1|,)™") o (F|y) : V — U is smooth, and ((1|,,)~") o (F|,) = F|y,
F|,: V — U is smooth. Since F|,: V — U is smooth, and V is an open neigh-

borhood of p in N, F : N — § is smooth at the point p. It follows that ' : N — S is
smooth.

Note 5.113 Let M be an m-dimensional smooth manifold, N be an n-dimensional
smooth manifold, and S be a nonempty subset of M. Let S be an embedded sub-
manifold of M with codimension k. Let F : N — M be a smooth map, and F(N) C
S. Let F : N — S be continuous. We shall try to show F : N — § is smooth.

Since § is an embedded submanifold of M with codimension k, by Note 5.105,
S is a smooth submanifold of M with codimension .. Since F : N — M is a smooth
map, F: N — M is continuous. Since S is an embedded submanifold of M, the
topology over S is the subspace topology inherited from M. Since F : N — M is
continuous, F(N) C S C M, and the topology over S is the subspace topology
inherited from M, F : N — S is continuous. It follows, from Note 5.112, that F :
N — S is smooth.

Note 5.114 Let M be an m-dimensional smooth manifold. Let S be a nonempty
subset of M. Suppose that S satisfies local k-slice condition.

Since § satisfies local k-slice condition, by Note 5.97, S is an embedded sub-
manifold of M. Since S is an embedded submanifold of M, the topology over S is
the subspace topology inherited from M, and there exists a smooth structure A on
S with respect to which S becomes a k-dimensional smooth manifold such that the
inclusion map 1 : S — M is a smooth embedding.

Now, we want to show that such a differential structure A is unique. For this
purpose, let A; be a smooth structure on S with respect to which S becomes a k-
dimensional smooth manifold such that the inclusion map 1 : § — M is a smooth
embedding. Next, let A, be a smooth structure on S with respect to which
S becomes a k-dimensional smooth manifold such that the inclusion map 1 : S — M
is a smooth embedding. We have to prove that A; = A,.

Let O be the topology over M, and let 3 be the smooth structure of M. Since the
inclusion map 1 : § — M is a smooth embedding from smooth manifold (S, .A4,) to
(M, B), the inclusion map 1:S — M is a smooth map from smooth manifold
(S,Ay) to (M, B). Since the inclusion map 1 : § — M is a smooth map from smooth
manifold (S,.4;) to (M, B), (S,A) is an embedded submanifold of M, and 1 :
S — S is continuous, by Lemma 5.113, 1 : (S, .A;) — (S, Az) is smooth. Similarly,



5.10 Smooth Submanifolds 421

1:(S,A2) — (S, 4;) is smooth. Since 1:(S,A;) — (S, A42) is smooth, and
(17 =)1: (S, A2) — (S,.Ay) is smooth, 1 : (S, A1) — (S,.A,) is a diffeomorphism.
Hence, A; = A,.

Note 5.115 Let M be an m-dimensional smooth manifold. Let S be a nonempty
subset of M. Suppose that S is a smooth submanifold of M.

Since S is a smooth submanifold of M, there exists a topology O over S, and a
smooth structure A on S with respect to which S becomes a k-dimensional smooth
manifold such that the inclusion map 1 : S — M is a smooth immersion.

Now, we want to show that for fixed O, the differential structure A is unique. Let
us fix the topology O over S. Next, let .A; be a smooth structure on S with respect to
which S becomes a k-dimensional smooth manifold such that the inclusion map
1:S — M is a smooth immersion. Next, let A, be a smooth structure on S with
respect to which S becomes a k-dimensional smooth manifold such that the
inclusion map 1 : § — M is a smooth immersion. We have to prove that A; = A,.

Let O" be the topology over M, and let 3 be the smooth structure of M. Since the
inclusion map 1 : § — M is a smooth immersion from smooth manifold (S,.4;) to
(M, B), the inclusion map 1 : § — M is a smooth map from smooth manifold (S, .4,)
to (M, B). Since the inclusion map 1 : S — M is a smooth map from smooth manifold
(S, Ap) to (M, B), (S, Ay) is a smooth submanifold of M, and 1 : § — §is continuous,
by Lemma 5.113, 1 : (S, .4;) — (S, Az) is smooth. Similarly, 1 : (S, A2) — (S,.A;)
is smooth. Since 1 : (S,.4;) — (S, .A;) is smooth, and (™! =)1: (S, 42) — (S, A1)
is smooth, 1 : (S, A;) — (S,.4,) is a diffefomorphism. Hence, A; = As.

5.11 Tangent Space to a Submanifold

Note 5.116 Let M be an m-dimensional smooth manifold. Let S be a nonempty
subset of M. Let S be an embedded submanifold of M.

Since S is an embedded submanifold of M, the inclusion map 1 : S — M is a
smooth embedding, and hence, 1 : § — M is a smooth immersion. Since 1 : S — M
is a smooth immersion, for every p € S, the linear map di, : T,S — T,,/M is 1-1.
Now, since 1(p) = p, for every p € S, the linear map di, : 7,§ — T,M is 1-1, and
hence, the image set (di,)(7),S) is a subspace of the real linear space T,M. Also,
since di, : T,S — T,M is 1-1, dim((d1,)(7,S)) = dim(7,S) = dim(S). That is
why, we adopt the convention of not to distinguish between (d1,)(7,,S) and T},S.

Lemma 5.117 Let M be an m-dimensional smooth manifold. Let S be a nonempty
subset of M. Let S be an embedded submanifold of M. Let p € S. Let v € T,M. If
there exists a smooth curve y : (—¢, &) — M whose image is contained in S, which
is also smooth as a map into S, such that y(0) = p, and y'(0) = v, then v € T,S.
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Proof Lety : (—e&,&) — M be a smooth curve whose image is contained in S, which
is also smooth as a map into S, such that y(0) = p, and y’(0) = v. We have to show
that v € T},S.

Since y : (—¢&,&) — S is a smooth map from one-dimensional smooth manifold
(—¢, &) into smooth manifold S,and 0 € (—¢, &), dy : To(—¢, &) — Ty()S. Now, since

d
Ty0)S = TS, dy, : To(—¢,¢) — T,S, and hence, v = 7'(0) = (dy,)(

— T,S. O
dto)e p

Lemma 5.118 Let M be an m-dimensional smooth manifold. Let S be a nonempty
subset of M. Let S be an embedded submanifold of M. Let p € S. Let v € T,M. If
v € T),S, then there exists a smooth curve y : (—¢, &) — M whose image is con-
tained in S, which is also smooth as a map into S, such that y(0) =p, and
7'(0) = v.

Proof Let v € T,,S. Here, S is an embedded submanifold of M, so S is a smooth
manifold. Let k£ be the dimension of smooth manifold S. Since p € S, and S is a
smooth manifold, there exists an admissible coordinate chart (U, @) of S such that
p €U, and ¢(p) = 0 € R, For every g € U, let

ol =)

be the coordinate basis of T,S corresponding to (U, ¢), where

0

’."’—k
p Ox

0 0
= = (d(e™), <_i )
Ox' p ( /’(‘1)) Ox (@)
Here,
N
ox! p"”’ﬁx"p

is the coordinate basis of 7,8, and v € T,S, so there exist real numbers v', ... vf

such that
y =t i Jr...+vk g — i
- Ox! » Ok » - \ox » ’

Since (U, ¢) is an admissible coordinate chart of S, ¢ is a mapping from U onto
@(U), where ¢(U) is an open neighborhood of ¢(p)(=0) in RF. Since
t— (o', ..., %) is a continuous map from R to R, and ¢(U) is an open neigh-
borhood of ¢(p)(= (0,...,0) = (0v!,...,00%)) in R, there exists & > 0 such that
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for every t € (0 —&,0 +¢), we have (»v',...,n*) € o(U), and hence, for every
t € (—e¢,¢), we have @ '(w!,....n*) € U. Now, let us define y:(—¢,¢) —
U(C S C M) as follows: For every t € (—¢,¢),7(t) = o~ (v}, ..., 0vF).

Here, (U, ¢) is an admissible coordinate chart of S, so U is open in S. Here,
7(0) = o (v}, ...,00%) = 07 1(0) = ¢! (¢(p)) = p. Thus, y(0) = p. We shall
try to show that y as a function from (—e, ¢) to smooth manifold S is smooth.

Since (U, ¢) is an admissible coordinate chart of S, ¢ is a diffeomorphism from
U onto ¢(U), and hence, ¢! is smooth. Since ¢! is smooth, and ¢+ (!, ..., k)
is smooth, their composite t— @1 (tv!, ..., 0%)(= y(¢)) is smooth, and hence, y as
a mapping from (—¢,¢) to S is smooth.

Now, we want to show that y is smooth as a map from smooth manifold (—e¢, ¢)
to smooth manifold M. For this purpose, let us take any fy € (—¢,¢). Here,
P(to) = @ 1oV, .. . t00%) € U.

Since S is an embedded submanifold of M, there exists a smooth structure A on
S such that the inclusion map 1 : S — M is a smooth embedding (i.e., 1: S — M is
smooth, and smooth immersion.). Let (W, /) be any admissible coordinate chart of
M such that y(fp) € W. We have to show that oy o (Id(_m))f1 is smooth.

Since 1 : § — M is smooth, (U, ¢) is an admissible coordinate chart of S satis-
fying y(1p) € U, and (W,y) is any admissible coordinate chart of M such that
(1(y(t0)) =)y(to) € W, Yo' is smooth. Further, since z+ (tv',... 0%) is
smooth, ¢+ (o @~ 1) (1!, ..., n¥) is smooth. For every ¢ € (—¢,¢),

(wero (1dun) ")) = Won (14 e) 1) = o) =v6()
=y ' (n',...00) = (Yoo ") (', .. .0}),

and t— (Yo 1) (n',...,nk) is smooth, so Yoyo (Id(_gﬁg))f1 is smooth. For
every t € (—¢,¢), we have

(mio (¢ o)1) = m(e()(1) = m(e (™' (0',...,0™)))

=m(n', .. 0") =0 =i,
SO

d(mio (o))

& (0) = V',

Now, we shall try to show that 7/(0) = v. Here,

=V | —
7(0) o

) -



424 5 Immersions, Submersions, and Embeddings

Lemma 5.119 Let M be an m-dimensional smooth manifold. Let S be a nonempty
subset of M. Let S be an embedded submanifold of M. Let p € S. Let v € T,S. Let
f € C>*(M) satisfying f|,= 0. Then, v(f) = 0.

Proof Since f € C*(M), f|s€ C™(S). (Reason: Since f € C*(M), f: M — Ris
smooth. Here, S is an embedded submanifold of M, so the inclusion map 1 : S — M
is smooth. Since 1 : S — M is smooth, and f : M — R is smooth, their composite
(fls=)f o1:S — R is smooth, and hence, f|;€ C*(S).) Since, by Note 5.116,
we do not distinguish between (di,)(7,,S) and T,S, and v € T,,S, v € (d1,)(T),S),
and hence, there exists w € T, such that (di,)(w)=v. Now, v(f)=

((dip)(w))(f) = w(f o 1) = w(fls) = w(0) = 0. u

Lemma 5.120 Let M be an m-dimensional smooth manifold. Let S be a nonempty
subset of M. Let S be an embedded k-dimensional submanifold of M. Then, S
satisfies the local k-slice condition.

Proof Let us take any p in S. Since S is an embedded submanifold of M, there
exists a smooth structure .4 on S such that the inclusion map 1 : § — M is a smooth
embedding (i.e., 1 : S — M is smooth, and smooth immersion). Since 1 : S — M isa
smooth immersion, and p € S, by Theorem 4.13, there exist admissible coordinate
chart (U, @) in S satisfying p € U and admissible coordinate chart (Vi) in

M satisfying (p =)i(p) € V such that ¢(p) =0, (Y(p) =)y(1(p)) =0, and for
every (xp,...,x) in o(U),

) = )y x) = X, 0,...,0
(l/jO(p )(Xl, axk) (Wolo(/’ )(xla axk) X1, y Xks Ys )

m—k

Further, we may assume ¢@(U) = C¥(0), and y(V) = C™(0) for some ¢ > 0. Since
(U, @) is an admissible coordinate chart in S satisfying p € U, U is an open
neighborhood of p in S, and hence, there exists an open neighborhood W of p in
M such that W NS = U. Since W is an open neighborhood of p in M, and V is an
open neighborhood of p in M, their intersection V N W is an open neighborhood of
p in M. Since VN W(C V) is an open neighborhood of p in M, and (V,y) is an
admissible coordinate chart in M satisfying p € V, (VN W, |,y is an admissible
coordinate chart in M satisfying p € VN W. It suffices to show that

-1
vaw)nS= Wlyaw) Xty X60,..,0 || x1,. ., x,0,...,0
m—k m—k

€ (Wlyaw)(VOW)}),
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that is,
Vvnw)ns) = Xiyoooy X 0y O o Xqy e oy X%, 04,0
Wlyaw)( )nSs) 1o oo X Ly X
m—k m—k
€ (Ylyaw)(VNW)},
that is,
lp((VﬂW)ﬁS): Xiyeo X, 0,000 ) 0 L xq, .. x,0,...,0 Elﬂ(VﬁW) s
S~—— N——
m—k m—k
that is,
yunv) = Xty X, 0,000 ) o [ xp, 0 x,0,...,0 ) €Y(VNW)
S~—— S——
m—k m—k

Let ¥(q) € LHS, where g€ UNV. Since g€ UNV, g€ U, and hence,
o(q) € o(U). Put ¢(q) = (y1,- .., yx)- Thus, (y1,...,yx) € @(U), and hence,

lp(Q) = lp((p_l(yla"'ayk)) = (lpo(p_l)(ylw'wyk) = Yh---y)’k707~--,0

m—k

Sinceqe UNV,qeV.Sinceqe U,and WNS=U, g€ W. Since g € W, and
qgeV,qgeVNW, and hence,

iy V6,0,..,0 | =y¥(q) € y(VNW).
——

m—k

Thus,

LHS =¥(q) = | »,..,0,..,0 | € X1y X, 0,...,0
S~—— ~——

m—k m—k

Xiyeeoy Xk, 0,...,0 Elﬁ(VﬂW) = RHS.
——

m—k
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Thus, LHS C RHS. Next, let

LHS :l/j(q)E yla"'7yk707"'70 € RHS’
——

m—k

where ¢ € V. N W. We have to show that /(q) € /(U N V). It suffices to show that
qgc U.Here,ge VNW,so

YooY 0550 ) =Y(g) € Y(V) = C7(0)

m—k

= (—¢&,6) X - X (—&,&) X (—¢&,&) X - X (—¢,¢),

and hence,

Dty 3) € (—,8) x - x (=2,8) = CX(0) = (V).

Since (y1,...,y) € @(U), o~ (y1,...,yx) € U, and

V(o™ 0nedi)) = (oo )0t ewdi) = | s 0,0 | = Y(g).

m—k

Now, since y is 1-1, ¢ = ¢! (y1,...,yx) € U. g

Lemma 5.121 Let M be an m-dimensional smooth manifold. Let S be a nonempty
subset of M. Let S be an embedded k-dimensional submanifold of M. There exists a
unique smooth structure over S with respect to which S is an embedded k-dimen-
sional submanifold of M.

Proof Since § is an embedded submanifold of M, the topology over S is the
subspace topology inherited from M, and there exists a smooth structure 4 on
S with respect to which § becomes a k-dimensional smooth manifold such that the
inclusion map 1 : S — M is a smooth embedding.

By Lemma 5.120, S satisfies the local k-slice condition. Since S satisfies the local
k-slice condition, by Note 5.114, the smooth structure .4 is unique. O

Lemma 5.122 Let M be an m-dimensional smooth manifold. Let S be a nonempty
subset of M. Let S be an embedded k-dimensional submanifold of M. Let p € S. Let
v € T,M. Let (f € C>(M) satisfying f|,= 0) implies v(f) = 0. Then, v € T),S.

Proof By Lemma 5.121, there exists a unique smooth structure .4 over S with
respect to which S is an embedded k-dimensional submanifold of M. Thus, the
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topology of S is the subspace topology of M, and (S, .A) is a k-dimensional smooth
manifold. Since S is an embedded k-dimensional submanifold of M, by Lemma
5.120, S satisfies the local k-slice condition. Since S satisfies the local k-slice
condition, and p € S, there exists an admissible coordinate chart (V, ) of M such
that p € V, and VN S(C V) is equal to a k-slice of V. For definiteness, let

VS =y (1, X0 Xt o Xm) €Y(V) iy =0, %, = 0}),
that is,
YVNS) ={(x1,. oy Xky Xpt1s - - o Xm) EY(V) i X601 =0, ..., %, = 0},

that is,

y(vns) = Xy X000 ) s [ Xy x,0,..,0 ] €9(V)
~—— S~——

m—k m—k

Since (V,y) is an admissible coordinate chart of M such that p € V, for every

qc L,
< )
Eyl q

is the coordinate basis of T,M corresponding to (V, ), where

_ (d(w_l)w)) <@iyl x//(q)>.

q
By Note 5.96, there exists a smooth structure B on S such that S becomes a k-
dimensional embedded submanifold of M, and
q)

Kh
oy!

is a basis of (di,)(7,S), where 1 : S — M denotes the inclusion map of S. Now,
since A is unique, A = B. Since p € V,
1’)

o
oy!

0
q) ) ayk

0
N
g T

o
i

)

q

9
oyt

0
q’ ) ayk

0
p7 ’ayk

0
N
p VT

o
i

)

p
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is a basis of the real linear space T,M. Now, since v € T,M, there exist real

numbers v', ..., vF, V¥ v such that
0
+...+V”1<_ >
m
p> ",

§ 0 0
VZVI<_ >++Vk<_ )+Vk+l(
! ) oy* ) Ok

We shall try to show that vd*! = 0. Here, y : V — (V)(C R™) is smooth, so
the (k + 1)th projection map 71 o : V — R of y is smooth. Here, V is an open
neighborhood of p in M, and M is a smooth manifold, there exists an open
neighborhood W of p such that p € W C W~ C V. By Lemma 4.58, there exists a
smooth function y : M — [0, 1] such that

1. for every x in W—, y(x) = 1,
2. suppy C V.

If x € (M — (supp x)) NV, then x € (M — (supp x)), and hence, by the defi-
nition of support, x(x) =0. It follows that if x € (M — (supp x)) NV, then
(7)) (71 0 ) (x)) = (0)((7rg41 0 Y)(x)) = 0. This shows that the following
function f : M — R defined as follows: For every x € M,

_ [0 (mri o) (x) if xeV
0= {OX a if M — (supp %),

is well defined. Since V is open, x+— x(x) is smooth, and x+ (711 o ¥)(x) is
smooth, their product x — (y(x))((7x41 © ¥)(x)) is smooth on V. Also, the constant
function x+— 0 is smooth on the open set M — (supp ). Now, from the definition of
f:M — R f is smooth, that is, f € C°°(M). From the definition of f : M — R, we
can write: For every x € M,

Flx) = {(()X(X))((nm oy)(x)) g i;“;

Clearly, f|g= 0. (Reason: Let us take any x € S. We have to show that f(x) = 0.
For this purpose, it suffices to show that (my1 o ¥)(x) = O whenever x € V. For
this purpose, let x € V. Sincex € V,andx € S, x € VN S. Since x € VN S,

V(x) ey (VNS) = Xy X, 0,000 )i Xy 1%, 0,00 | €4(V) 5,
—— ——r
m—k m—k
and hence, there exist real numbers xy, ..., x;, such that

Y(x) = x1, X, 0,...,0 | €y(V).
——

m—k
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It follows that

(‘Ithrl o zﬁ)(x) = nkﬂ(lﬁ(x)) = Tk+1 (xl ..... xk,O ..... 0) =0.

m—k

Thus, (741 0Y)(x) =0.) Since f € C*(M), and f|g=0, by the assumption,
v(f) =0.

Since W C V, for every x € W, we have x € V, and y(x) = 1. Hence, for every

xeW, f(x) = (1(0) (71 0 ¥)(x)) = (D (w1 0 Y1) (%)) = (mr41 0 ¥)(x). Thus,

flw= (41 0 ¥)|yy. Now, since W is an open neighborhood of p,

0=0(p) = (v(1))(p)

(b6

o aym,,>> ) ((a%)(f))

bk (&) >+vk+1<< k+1p>(f)>

S I
ot (a% ) f|W)> ! ((ayfﬂ p) (f|w)>
el ()
R (%) nkﬂoww) kH((any p)(mkﬂoww))
R <§> nk+lo¢|w>>><p>.
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)) ((ﬂkﬂ © l//)|W)

Now, since

(-0 8

0 0
_<6_y’ )(((nkﬂowﬂw) ‘pl)_<a_yiw(p)>(ﬂk+l)
0 i iFk+1
_{1 if i=k+1,

0= (00 ++++24(0) £ (1) -+ (0)) ) = 7 (1) = A

Thus, V! = 0.
Similarly, V2 =0, - .-, V"

afo d d d
V=V 61 + - +V 6" +0 Wp +---40 am
0 0 0 0
— Vl ( > _|_..._|_Vk ( > c gpan< ) = (dlp) (TPS)
oy'l, 0, oy'

vk

oy,
Thus, v € (di,)(7,S). Now, since we do not distinguish between (d1,)(7,S) and
T,S, we can write v € T,S. O

= 0. Hence,

gy




Chapter 6
Sard’s Theorem

The root of Sard’s theorem lies in real analysis. It is one of the deep results in real
analysis. How this result can be generalized into the realm of smooth manifold
theory is only a later development. Its importance in manifold theory is for a
definite reason. Upon applying Sard’s theorem, Whitney was able to prove a
startling property about smooth manifolds: For every smooth manifold, ambient
space can be constructed, etc. For pedagogical reasons, we have given its proof in
step-by-step manner using Taylor’s inequality. Largely, this chapter is self-
contained.

6.1 Measure Zero in Manifolds

Lemma 6.1 Let A be any nonempty compact subset of R*. For every k = 1,2,3, 4,
let 1, denote the k-dimensional (Lebesgue) measure over RX.
If for every real ¢, us({(v,z,w) : (c,v,2,w) € A}) = 0, then j13(A) = 0.

Proof Since A is compact in R*, by the Henie-Borel theorem, A is bounded and
closed. Since A is bounded, there exist real numbers a, b, ay, by, as, bz, a4, by such
that a <b,a, <b,,a3 <bs,as <by, and A C [a,b] X [Clz,bz] X [Cl3,b3] X [a4,b4] -
[a,b] x R x R x R = [a,b] x R, Thus A C [a,b] x R3.

Let us fix any 6, > 0. Put 6 = 55 an ) ( > 0). It suffices to find a finite collection
of four-dimensional rectangles that covers A, and sum of their p,-measures is less
than 0.

Next let us fix any real ¢ € [a, b].

Clearly, {(v,z,w) : (c,y,z,w) € A} is a compact subset of R>.

(Reason: Let us define a function f : R* — R? as follows: For every (x,y,z2,w)
in R*, f(x,y,z,w) = (y,z,w). Clearly, f : R* — R? is continuous. It is clear that
{c} x R?is a closed subset of R*. Since {c} x R? is a closed subset of R*, and A is
a closed subset of R* their intersection AN ({c} x R?) is a closed subset of
the compact set A, and hence, A N ({c} x R?) is compact. Since A N ({c} x R?) is

© Springer India 2014 431
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compact, and f:R* — R* is continuous, the f-image set f(AN ({c} x R?))
(= {f(c,y,z,w) : (c,y,2,w) € A} = {(y,2,w) : (¢,y,2,w) € A}) is compact in R?,
and hence, {(y,z,w) : (c,y,z,w) € A} is compact in R?).

Since the three-dimensional measure u3{(y,z,w): (¢,y,z,w) € A} =0, and
0 >0, by the definition of measure, there exists a countable collection
{Cy,C,,C3, ...} of open cubes in R? such that {(y,z,w) : (c,y,z,w) € A} C C;U
CUCU---, and u3(Ci)+ p3(Co) + p3(C3) +--- <d. Since  {(y,z,w) :
(¢,v,z,w) € A} is a compact subset of R*, and {C}, C, C3, ...} is an open cover of
{(v,z,w) : (¢,y,z,w) € A}, there exists a positive integer k. such that {(y,z,w) :
(c,y,z,w) S A} cCiuGuU---U Ck(, and u3(C1) + /J3(C2) —+ . —|—,u3(C]<L_) <
13(C1) + p3(C2) + p3(C3) + - <.

We claim that there exists a positive integer n such that AN ((c —1,¢+1)
xR) C(c—Lc+hx(cucu---ug).

If not, otherwise, let for every positive integer n, AN ((c — %,C + i) xR ¢
(=L e+l % (C;UC,U---UCy). We have to arrive at a contradiction.

Thus, for every positive integer n, there exists (X, Yn,20,Wn) €AN
((c —%,c—&-%) x RH)(C A) and (%, Vn, 20, Wn) & (c—%,c—i—%) X (CLUCU---
U Cy.). Since {(x1, y1,21,w1), (x2,¥2, 22, w2), (x3,¥3,23,W3), . . .} isasequence in the
compact set A, there exists a subsequence {(Xu,,Yu s ZnWny )y (Knys Yiys Zgs Wiy ) s
(xn3ay:13:Zn37 Wn3)’ .- } of {(XI,YI,ZI,WI), (X27y2,Z2, W2)a (x3>)’3, 23, W3)7 .- } such
that {(Xu,, Yy s 20, Way )s (Xinas Yoy Zias Wi )y (Xngs Yss Znss Wis ) - - - 1S convergent, and
hence, there exist real numbers oy, 0y, 03,04 such that lim;_eo (X, Y, 20,Wn,) =
(o1, 02, 013, 0t). It follows that lim;_, x,, = 01, My Yy, = 02, 1My o0 2y, = %3,
lim;_, o Wy, = 4. Since each (x,, yu, zn, W) € AN ((c f%,c + %) X RS), each x,, €
(c— % ,c+ %), and hence, lim,,_.o. x, = ¢. Since lim,, .o X, = ¢, o] = lim; o X, = c.
Since o) = ¢, and Lm0 (X, Yiys Zugs Way) = (01, 02, 03, 0a), My (X5 Yy 2y Wiy) =

. 1 1
(C7 a27a3)a4)' Slnce (-x)17yn7Zn7Wn) g (Ciiachi) X (Cl UCZ U--- UCk(-)7 and Xn €
n n

(c=L e+ D), (yuzu,wn) € (CLUC U+ UCy,). Since im; oo (X, Vs ZnWn;) =
(¢, 00,03, 0a), iMoo Yy s 20,Wn;) = (02, 03, 04). Since each (yp,, z,,wy,) is in the
closed set (Cl UuGu---U th)c, (062, 03, 064) = (limpm(yn,., z,,iwnl)) S (Cl UG U---
U Cr.)", and hence, (o, 03,04) € (CLUCLU---UC)(D {(v,z,w) : (¢,y,2,w) € A}). Tt
follows that (o, a3, 04) & {(y,z,w) : (¢, ¥,z,w) € A}, and hence, (c, 0, 03, 004) & A.
Since 1imy_ oo (Xu;, Yy s Z0,Wn;) = (¢, 02, 03, 04), and each (x,,, Yu,, 2,Wy,) is in the
closed set A, (¢, 0, 03, 0) = (iMoo (X;, Y, 20,Wn;)) € A, Which is a contradiction.
So our claim is true.

Thus, for every ¢ € [a, b], there exist a positive integer n. and an open subset
G(=ClUGU---UG,) of R such that AN((c—i,c+) xR C
(c— ni ,c+ nl) x G,. If we shrink (¢ — ni ,c+ nl) into another open interval J, that
is, JC(c —n%,c—knl(_), then clearly AN (J x R®) CJ x G,.. (Reason: Let
(x,v,z,w) € LHS = AN (J x R?). It follows that x € J and (x,y,z,w) € A. Since
xeJC(c—,cty), x€(c—;,c+;). Since xe(c—j,c+;), and

ne’
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(3w €A, (vy,zw) EAN((c—pc+a) XRY) C(c—,c+:H) x G,
and hence, (y,z,w) € G.. Since x € J, and (y,z,w) € G, (x,y,z,w) € J X G. =
RHS. Thus, LHS C RHS).

Here, 3(G,,) =p3(C1U-- UGy, ) <p3(Cr) + -+ p3(Cy, ) <6.  Thus,
us3(Ge,) <o. Similarly, u3(G,,) <9, etc.

Since [a,b] is compact, and {(c —n%_,c+%) : ¢ € [a,b]} is an open cover of
[a,b], there exist finite many c¢i,...,¢; in [a,b] such that [a,b] C
(c) — i,cl + ﬁ) U-U(eq— rTl, e+ %) From the above observation, there

exist open intervals Ji,...,J; such that J; C (c; — -1, ¢ —|—ni),...,Jl C
o

ney
(Cl—%l,q-ﬁ-t), [a,b]CJlU-~-UJl, and ,ul(Jl)+---+,u1(J1)§2(b—a).

Further, since A C [a, b] X R3, so

A=AN([a,b] xR) CAN((LU--UD) xR =An ((/i xR)U--- U (I x R?Y))

=ANU xR))U--U(AN (L xR?)) C (1 x Ge,)U---U(J; x Gy).

Further, since J; x G, =J; x (C; U-~~UCkll) =1 xC)U---U(Jy x qu) and
Ji x Cq,...J; X qu are rectangles in R4, Ji x Gq, is a finite union of rectangles.
Similarly, J; x G, is a finite union of rectangles, etc. Now, since A C
(J1 X G, )U---U(J; X Gg,), A is covered by a finite collection of rectangles in
R*. Here, (/1 % Ge,) + -+ + syl % Go) = (1)« 13(Gey) + -+ + i (1) - 13(Gey)
<m(h) - o+ ) - o= (W) + -+ m())d<2(b—a) - 5 =2(b—a)-

B
W) = O U

Note 6.2 The Lemma 6.1 can be generalized as follows:
Let A be any nonempty compact subset of R". For every k = 1,...,n, let p

denote the k-dimensional measure over R,
If for every real ¢, u,_; ({(x2, .. ., %) : (¢, %2, ..., x,) € A}) = 0, then p,(A) = 0.

Lemma 6.3 Let A be a nonempty compact subset of R. Let f : A — R be contin-
uous. For every k = 1,2, let 1, denote the k-dimensional measure over R¥.

Then, u({(x.f(x)) : x € A}) = 0.
In short, the graph of a continuous function has measure 0 in R?.

Proof A is a compact subset of R!(=R). We have to prove that
i({(5.f() s ¥ € A}) = 0.

We want to apply the result of 6.2. Clearly, {(x,f(x)) :x € A} is a compact
subset of R”.

(Reason: First of all, we shall try to show that {(x,f(x)) : x € A} is a closed
subset of R?. For this purpose, let us take a convergent sequence {(x,,f(x,))} in
{(x,f(x)) : x € A}. Let lim,,_ o (x,f (x)) = (2, ). We have to show that (o, ) €
{(x,f(x)) : x € A}, that is, « € A and f(a) = . Since limy—o0 (X4, f(x1)) = (2, ),
limy,—,00 X, = o, and lim,, o0 f(x,) = f. Since {(x,,f(x,))} is in {(x,f(x)) : x € A},
for each positive integer n, x, € A. Since A is compact, A is closed. Since A is
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closed, for each positive integer n, x, € A, and lim,,_,oc X, = o, o0 = (lim, 00 x,) €
A, and hence, o € A. Since {x,} is a convergent sequence in A, lim,_.x, = o €
A, and f : A — R is continuous, = lim,_ f(x,) = f(a). Thus, we have shown
that {(x,f(x)) : x € A} is a closed subset of R*. Clearly, {(x,f(x)):x €A} C
A x f(A). Since A is compact, and f : A — R is continuous, f(A) is compact. Since
A is compact, and f(A) is compact, their Cartesian product A X f(A) is compact.
Thus, {(x,f(x)) : x € A} is a closed subset of the compact set A x f(A), and hence,
{(x,f(x)) : x € A} is compact.)

For every real ¢, {x; : (¢,x2) € {(x,f(x)) : x € A}} = Dor {f(c)}, so u; ({x2:
(e;x2) € {(x.,f(x)) : x € A}}) = iy (D) (= 0) or 1 ({f(¢)}) (= 0), and hence, p, ({x> :
(¢,x2) € {(x,f(x)) : x € A}}) = 0. Now, we can apply Lemma 6.1. It follows that
w({(xnf(x) : x € A}) = 0. O

Lemma 6.4 Let A be a nonempty compact subset of R%. Let f : A — R be con-
tinuous. For every k = 1,2,3, let y, denote the k-dimensional measure over R

Then, ps({(x,9.£(x,)) : (x,y) € A}) = 0.

Proof We have to prove that us;({(x,y,f(x,y)) : (x,y) € A}) = 0 (see Fig. 6.1).

Clearly, {(x,y,f(x,y)) : (x,y) € A} is a compact subset of R>.

(Reason: First of all, we shall try to show that {(x,y,f(x,y)) : (x,y) € A} is a
closed subset of R®. For this purpose, let us take any convergent sequence
{(xmymf(xmyn))} iIl {(xvyaf(x7y)) : ()C,y) € A} Let lim’lﬁoo(xnaynaf(xnvyn)) =
(o, B,7). We have to show that (a,f,7) € {(x,y,f(x,y)) : (x,y) € A}, that is,
(o, B) € A. Since limy, o0 (X, Yo f (X, Y0)) = (0, By ), imy—yo0 X = o, limy 00 vy =
p, and lim,_ . f(xy,v,) =7y. Here, {(xn,yn,f(xu,¥n))} i a sequence in

{62, f(x,)) = (x,y) € A}, soeach (x, Yo, f (Xn; ¥0)) € {(x,,f(x,)) = (x,y) € A},
and hence, each (x,,y,) € A. Since A is compact, A is closed. Since lim,,_, x, = «,

and lim,_y, = B, lim,_ (X, yn) = (2, 8). Since each (x,,y,) € A,lim,_
(%, yn) = (o, B),and A is closed, (o, f) = (lim, o0 (X0, ¥4)) € A, and hence, (o, ff) €
A. Since each (x,,y,) € A, lim,_, o (x,,yn) = (o, f) € A, and f : A — R is continu-
ous, 7 = limy—oc f(xu, yu) = f (o, B). Since (x, B) € A, («, B,7) = (2, B,f (2, B)) €
{(x,y,f(x,¥)) : (x,y) € A}. Thus, we have shown that {(x,y,f(x,y)) : (x,y) € A}is
closed. Here, {(x,y,f(x,y)) : (x,y) € A} C A x f(A). Since f : A — R is continu-
ous, and A is compact, f(A) is compact. Since A is compact, and f(A) is compact,

Fig. 6.1 {(x,y,f(x,¥)) : (x,y) € A} is a compact subset of R?
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A x f(A) is compact in R?. Since {(x,y,f(x,y)) : (x,y) € A} is a closed subset of
the compact set A x f(A), {(x,y,f(x,)) : (x,y) € A} is compact.)
Now, by 6.2, it suffices to show that for every real c,

w({(s,1) : (c,5,1) € {(x, 3. (x,5)) : (x,y) € A}}) = 0.

For this purpose, let us fix any real c. Since A is a nonempty compact subset of
R?, clearly {s: (c,s) € A} is a compact subset of R. (See the proof of Lemma 6.1)
Let us define a function f.:{s: (c,s) € A} — R as follows: for every s €
{s: (c,s) € A}, fo(s) =f(c,s). Since f. is the composite of continuous function
s+ (c,s), and continuous function f: A — R, f. : {s: (c,s) € A} — R is a con-
tinuous function. Also, the domain of f,, that is, {s: (¢,s) € A} is compact. It
follows, by Lemma 6.3, that u,({(x,f.(x)) :x € {s: (c,s) € A}}) = 0. Now, it
suffices to show that {(s,?) : (¢,s,1) € {(x,y,f(x,¥)) : (x,) € A}} = {(x,fe(x)) :
x€{s:(c,s) €A}}.

Let us take any (#,¢) € LHS. It follows that (c,%,¢) € {(x,y,.f(x,¥)) : (x,)
€ A}, and hence, (c,n) € A, and ¢ =f(c,n) =f.(n). Since (c,n) €A, n€
{s: (c,s) € A}, and hence, (,¢) = (1,f-(n)) € RHS. Thus, LHS C RHS. Next,
let us take any (17,¢) € RHS. It follows that there exists a real x such that (1,¢) =
(x,f-(x)). Since (n,¢) = (x,fe(x)), n = x, and ¢ = f.(x) = f(c,x). Since ¢ = f(c, x),
and f:A—>R, (c,x) €A, and hence, (c,n,¢) = (c,x,¢) = (c,x,f(c,x)) €
{(e. 2. f(x,y)) : (x,y) € A}. Since (c,n,¢) € {(x,y,f(x,y)) : (x,y) € A}, (n,¢) €
LHS. Thus, RHS C LHS. Since RHS C LHS, and LHS C RHS, LHS = RHS. J

Note 6.5 The Lemma 6.4 can be generalized as follows:

Let n € {2,3,4,...}. Let A be a nonempty compact subset of R""'. Let f :
A — R be continuous. For every k =1,...,n, let i, denote the k-dimensional
measure over R¥. Then, u,({(x,f(x)) : x € A}) =0.

Lemma 6.6 Let X be a second countable, locally compact Hausdorff space. Then,
there exists a sequence {K,} of compact subsets of X such that

1. {K,} is a cover of X,
2. Ky C(Ky)° CKy C(K3)° CK3; C(Ky)®° CKyC-o.

Proof Since X is a locally compact Hausdorff space, there exists a basis B of X
such that if U € B then U~ is compact. Since B is a basis of X, B is an open cover
of X. Since B is an open cover of X, and X is a second countable space, there exists
a countable collection {U;, U, Us, ...} of members of B which also covers X.
Since {U,,U,, Us,...} covers X, and for each positive integer n, U, C (U,)",
{(UW)",(U2)",(Us5)",...} also covers X. Put K; =(U;)”. Since U, € B,
(U1)” (= K;) is compact, and hence, K; is compact. Since K, is compact, and
{Uy,U,, Us, ...} is an open cover of K, there exists a positive integer n; > 1 such
that K, C Uy U---UU,,. Here, (Ui U---UU,) = (U;)" U---U(Uy)" . Since
(Uy)" .., (U,)” are compact, (U;)" U---U(U,) (=(UU---UU,)") is
compact, and hence, (U U---U U, )" is compact. Put K, = (U; U---UU,, )" .
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Since (U U --- U Uy,)” (= K3) is compact, K5 is compact. Since Uy U - - - U U, is an
open set, and (U U---UU,) C (U1U---UU,) =K, K C (U1 U---UUy,)
C (K»)° C K. Thus, K, K, are compact sets satisfying K; C (K»)° C K. Since K,
is compact, and {Uy, U,, Us, . . .} is an open cover of K, there exists a positive integer
ny >mn; such that K, C Uy U---UU, U---UU,,. Here, (UiU---UU,,) =
()" U---U(Uy,,)". Since (Uy),...,(U,,)” are compact, (U;)" U---U
(Un,) (= (U U---UU,,)")is compact, and hence, (U; U --- U U,,)” is compact.
Put K3 = (U U---UU,) . Since (U U---UU,) (=Kj) is compact, K3 is
compact. Since U; U---UU,, is an open set, and (U; U---UU,,) C (U, U---
UU,,)” =K;3, K C (U U---UU,) C (K3)° C K3. Thus, Ky, K,, K3 are compact
sets satisfying K; C (K3)° C K, C (K3)® C K3, etc. This proves 2. Since
l<ni<m<ny<---,U; C Ky,U; U---uuU, CKy,UU---UU,, C Kj,etc.,and
{U,,U,Us, ...} covers X, {K1, Kz, K3, ...} is a cover of X. This proves 1. O

Lemma 6.7 Let n € {2,3,4,...}. Let A be a nonempty open subset of R"™'. Let
f A — R be continuous. For every k =1,...,n, let 1, denote the k-dimensional

measure over RX. Then, w,{(x,f(x)) : x € A}) = 0.

Proof Since R"~! is a second countable space, and A is a nonempty subset of R" !,
A is a second countable space. Since R""! is locally compact Hausdorff space, and
A is a nonempty open subset of R""!, by Note 5.54, A is a locally compact
Hausdorff. Since A is a second countable, locally compact Hausdorff space, by
Lemma 6.6, there exists a sequence {K,} of compact subsets of X such that {K, } is
a cover of X. Hence, by Note 6.5,

0< 1, ({(xf(x)) : x € A}) gun({(x,f(x)) xe Gm})
n=1

_ un@{(x,f(x)) xe Kn}) < S ({0 f()  x € Ko

n=1 n=1

=S ({(x () @) xe k) =S 0=o0.

n=1 n=1

Hence, u,({(x,f(x)) : x € A}) = 0. d

Lemma 6.8 Letn € {2,3,4,...}. Let A be a nonempty closed subset of R"™'. Let
f A — R be continuous. For every k =1, ...,n, let . denote the k-dimensional

measure over R¥. Then, u,({(x,f(x)) : x € A}) = 0.

Proof Since R"~! is a second countable space, and A is a nonempty subset of R"~!,
A is a second countable space. Since R"! is locally compact Hausdorff space, and
A is a nonempty closed subset of R"~!, by Note 5.55, A is a locally compact
Hausdorff. Since A is a second countable, locally compact Hausdorff space, by
Lemma 6.6, there exists a sequence {K,,} of compact subsets of X such that {K, } is
a cover of X. Hence, by Note 6.5,
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=S m({(x (e )w) sxe ) =300
Hence, p,({(x,f(x)) : x € A}) = 0. 0

Definition Let V be any n-dimensional real linear space. Any subset of V of the
form a + S, where S is a linear subspace of V, and a € V, is called an affine
subspace of 'V parallel to S and passing through a.

Note 6.9 In real linear space R, let @ + S be an affine subspace of R? parallel to S
and passing through a. Let the dimension of the subspace S be 2. We want to show
that ps(a+ S) = 0. Since the dimension of the subspace S is 2, there exist

(b],bz,b3), (C1,C2,C3) € R? such that S = {S(b],bz,bg,) + l(Cl,C27C3) S R}
Let a = (a;,a,a3). Hence,

a+S= (al,az,ag) + {S(bl,b27b3) + l(Cl,CQ,C3) RO S R}
= {(a1,az,a3) + s(b1,b2,b3) + t(c1,¢2,¢3) : 5,6 € R}
={(,y,2) :x=bis+cit+ai,y =bas+ cat + az,z = bss + c3t + a3 }.

If (x,y,z) € a+ S, then there exist real numbers s,¢ such that
bis+cit=x—a
bys+cot=y—a

b3s + c3t = 7 — az.

From the first two equations, we have

b1€1 | X—aa b1C1 . blx—al
by ¢ y—az c by ¢ byy—a|
Now, from the third equation,
X—da; C blx—al blcl
3 C3 =\Z—az .
y—asc byy—as ( )bzcz

Clearly, this takes the form A;x 4+ Ay + A3z = A4, and not all Aj,A,,A; are
zero. For definiteness, let A3z # 0. It follows that
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Ar A A )
S = 24 Oy 7200 R2 Y.
a+ { (x,y, A A4 y) (x,y) € }

Now, we can apply Lemma 6.8. It follows that

Ay Ay Aj
usla+S) = N3<(X,y,A—1A—3XA—3y> (x,y) € Rz) =0. U

We can easily generalize the above result as the following:

Lemma 6.10 Ler n € {2,3,4,...}. Let A be an affine subspace of R" such that

A #R" Foreveryk=1,...,n, let i, denote the k-dimensional measure over R¥.
Then, 1,(A) = 0.

Proof Its proof is similar to the proof given in the Note 6.9. O

Definition Let M be an m-dimensional smooth manifold, and N be an n-dimen-
sional smooth manifold. Let A be a nonempty subset of M. Let F : A — N be any
map. If for every p € A, there exist an open neighborhood W of p in M, and a
function F : W — N such that for every x € WNA, F(x) = F(x), and F : W — N
is a smooth function, then we say that F : A — N is smooth on A.

Lemma 6.11 Let A be a nonempty subset of R®. For every k = 1,2, 3, let 1, denote

the k-dimensional measure over R¥. Let 3 (A) = 0. Let F : A — R? be smooth on
A. Then, 1;(F(A)) = 0.

Proof Let us take any p = (p1,p2,p3) € A. Since F : A — RR3 is smooth on A, and
p €A, there exist an open neighborthood W, = (pi —¢p,p1 +¢) X
(P2 — &, P2 + &) X (p3 — &, p3 + &) of p in R?, and a function F, : W, — R’
such that for every x € W,NA, F,(x) = F(x), and F,: W, — R’ is a smooth

function. Since A is a nonempty subset of R, and R? is a second countable space, A
is a second countable space. Since A is a second countable space, and

1 1 1 1
P1 _Eglhpl +§3p X pz—ES,;,pz +§3p
1 1
X\P3—5mpst 58 ) 1P = (prp2,p3) €A
is an open cover of A, there exists a countable collection of points

p(n) = (Pgn)ypgn)ypgn)) €A(n=1,2,3,...)

such that
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w_L, o Lo N (L w1
p] 2 p(rt);p] 2 p(n) p2 2 p(n),p2 2 p(n)

w 1 w1
X(Pg)—iap(mpg)-kisp(n)) n= 1,2,3,,_.}

is an open cover of A. It follows that
ac S(lm_ 1 w1 w1 m 1
C nL:Jl Py — 3 ey, Py T+ 3 &y | X |Py’ — 5 &y, Py 3 £,

m 1 m 1
X |p3" — ESPW Pz + 5 Epm | |5
and hence,

_ oo [ ) 1 m 1 m 1 m 1
A=AN <nL;Jl<|:p1 — Eﬁp(n),pl +28p(n)] X |:p2 _Esp(n),pz +§8p(n)

a1 1
(O )
m 1 (n)

m _ 1 m 1 !
= U(AN P 7§8p(n),pl +§8p(n) X |py 7581,(;7),[)2 +§8p(n)

a1 1
X[”g)‘z%"vl’éuz% D»
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It follows that
1 n 1
OS ( F( <|: ()_ESP p([>+§8p(n):|
m 1 m 1 )
P 3 ,,<n>,l72 T38| X|P3 = 5803 + 5 &t
- o 1 o1
Z < ( (|: ( )_zsp(">,p(1)+28p(u):|
w1 1 1 a1
. [p(z) 2 tosPs +3 2% ”i [Pg) ngwnpg ) +Esp<n>D>)
= f:ﬂ Flan(lpm_L, w1
3 D ) p(”)vpl 2 p(n

m 1 m 1 o _1 o 1
X APy = 58w Py 580 | X|P3T = 5 60m,P3 + S Ew

Hence, it suffices to show that for every n = 1,2,3,.. .,

w1 1 w1 PR
H3 (Fpm) <A N <[P<1 ) §8p<n>,Pg " 4 2?p ] X {Pé ) —Eﬁpmnpg) +§8p(n>}

w 1w 1
X |p3 —Ebp(n),p3 +§8’7(”)

For this purpose, let us take any § > 0.
Since

HC8

X
S

|
e

Fp(n) : (pgn> — Sp(n),p(ln) + Sp(u)) X (pgo — 8p(n),p§n) + 8p(n)>

x (p o Epln 3+ 81?("))
—R?

is a smooth function, by a result similar to Theorem 3.33,

(Fp(n)),: (p(ln) — p(u),pin) + Sp(n)) X (pém — Sp(n),p(zn) + 8p(n))

O )

- L(R3,R3)
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is continuous. Since
n 3 n 3 n 3 n 3
[Pg ) — Z8p<n>,l?(1 ) +ZS,,<nJ] X {p? - Zﬁpw),p(z ) +Z8,,(n)

m 3 w3
X |P3 180 P3 JFZS,;(M

is a compact subset of the domain of the continuous function (Fp(”))/, its image
under (F, p(m)/ is compact in the metric space L(R?, R?) and hence is bounded. Thus,
there exists a positive real number C such that

n 3 n 3 n 3 n 3
(SUP{H(FP”’))/(X)H (x € {pﬁ ) —Zspoxup(l ) +Zsp<n>} X {pé) —Zsp(n>7p§>+4 ,,m}

wm_3 w3
X |P3 71‘517("“!’3 +Zap<n)

IA
o

Since

oo (3 m 3 m_3, w3
FORRV4 _ng ,P1 —|—48p X | p; _ng(n)7p2 +18p(n)

m 3 m 3
X\ D3 _ng(")7p3 +ng(n)

R

is a smooth function, by a result similar to Theorem 3.28, for every x,y in

w3 3 w3 o3

(p(l) 4 p”)ap(l) 4 p > X (pg>718p("hp(2)+18p(")>
m _3 m 3
x| py — Zap(n),p3 +Zep<,,) , |(Fp(,,))(y) - (FP(,,))(x)| <|y—x|C.
Since
n 1 1 n 1 1
AN ([P(l ) —Eﬁpmnl’i K 29,; } X {Pg) —ESPwMP(z) +2 ,,(n]
n 1 n 1
X |:pg ) _ Egp(n)7pg ) +58P(n):|) CA,
and
1 1 1 1
0< s (A N ([pi") — ispw),pg") + 281,(")} X {pé") — 58” pé ") + = 3 spm)}

U | 1
SRS P
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SO

Since
An (P Lo p® Lol x [p0 = Lo ot 41
Uz Pi 7 pn) Py 5 p(n) )2) ) p() %) 3 pn)

w1 w1
X [pé ) _Egp(n),pg ) +28p(n):|>) =0,

there exists a countable collection of open cubes B;, (k = 1,2,3,...) of side length
Or( > 0) such that

m 1 m 1 m 1 w 1
AN |p; _§3p<">vp1 +§8p(n> X |py —Esp(n),pz +§sp<n)

m 1 m 1 oo
X |p3 —Esp(n>,p3 +§8p(/x) - kL:Jl Bs,,

and

o 0
;ﬂs(Bak)<m-

Here, for every k =1,2,3,...,

diam ((F,w)(Bs,)) = sup{|s — 1| : s,t € (Fyw)(Bs,)}
SuP{‘(Fp(”))(y) - (F[,<,,))(x)| EENAS B5k}
< sup{ly —x|C : x,y € Bs, }
= C-sup{ly—x|:x,y € By} = C-diam Bs, = C - (\/§5k>,

SO,

M3 ((Fp(">)(B5k)) < (2 - diam ((Fp<"))(B5k)))3
< (20- (ﬁék))3= (2\/§C>3(5k)3: (2\/§C)3-u3 (B,)-
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It follows that

1 1 1 1
0< s ((Fp<n>) <A N < {P(ln) 580 7172”) + 5%@:)] X {pé”) N ,Pgﬁ + 3 Spm]

It follows that
Foo (A0 (|90 = e 00 + 2 | 5 |p0) = 0" + 2
Us 0 D1 ) () Dy 2 () P> ) p(n) D2 2 p)

n 1 n 1
X[Pg)28p<~>,17g)+28p<n>}>>) . O

We can easily generalize the above result as the following:

Lemma 6.12 Let A be a nonempty subset of R". For every k=1,...,n, let 1
denote the k-dimensional measure over R*. Let y,(A) =0. Let F: A — R" be
smooth on A. Then, u,(F(A)) = 0.

Proof Tts proof is similar to the proof given in Lemma 6.11. U

Definition Let M be an n-dimensional smooth manifold. Let A be a nonempty
subset of M. For every k = 1, ..., n, let g, denote the k-dimensional measure over
R, If for every admissible coordinate chart (U, ¢) for M, u,(p(A N U)) = 0, then
we say that A has measure zero in M.

Lemma 6.13 Let M be an m-dimensional smooth manifold. Let A be a nonempty
subset of M. For every k = 1,...,m, let i, denote the k-dimensional measure over
RE. Let {(Us, @;) : i € I} be a collection of admissible coordinate charts for M such
that A C | J;; Ui, and for every i € I, p,(¢;(ANU;)) =0. Then, A has measure
zero in M.

Proof Let us take any admissible coordinate chart (U, ¢) for M. We have to prove
that u,,(p(ANU)) =0. Since M is an m-dimensional smooth manifold, M is a
second countable space. Since M is a second countable space, and A is a nonempty
subset of M, A is a second countable space. Since A is a second countable space,
and {U;:i €I} is an open cover of A, there exists a countable subcollection
{U,:n=1,2,3,...} of {U;:i€l} such that A C |J,", U,, and hence, A =
AN (U2, Uy) =, (AN U,). Tt follows that p(ANU) = o((U,2, (AN U,))N

U)=¢pU2,AnU,NU))=U,~(p(ANU,NU)), and hence, 0< u,,(¢(AN
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U)) = t(Unei (@(AN U, NU))) < 302 (AN U, N U)). Now, it suffices to
show that for each positive integer n, u,,(p(AN U, NU)) = 0.

If not, otherwise, let there exists a positive integer n such that 0 < p,,, (@ (AN U, N
U)). We have to arrive at a contradiction. Since 0<p,(p(ANU,NU)),
e(ANU,NU) # 0, and hence, AN U, N U # (. It follows that U, N U # (. Since
U,NU#O and (U,,9,), (U,e) are admissible coordinate charts for M, ¢ o
(@)™ : 9,(U,NU) = @(U,NU) is smooth. Here, ANU,NU #0, so
¢,(AN U, NU)isanonempty subsetof ¢,(U, N U)(C R™). Since ¢, (AN U, NT)
is a nonempty subset of ¢, (U, N U),and ¢ o ((¢,) ") : ¢, (U, N U) — @(U, N V)
is smooth, the restriction (¢ o ((¢,)™")) o.(AnU,nw) 1 smooth. Since (U,, ¢,) €
{(U ;) riel}, 0<p,(0,(ANnU,NU))<p,(¢,(ANU,)) =0, and hence
(@, (AN U, NU)) = 0. Now, we can apply Lemma 6.12. It follows that

(0@ 0,00) = (00 ((00™)] 10, ) AN TN 0D)
-0,

which is a contradiction. O

Lemma 6.14 Let M be an m-dimensional smooth manifold. Let {A,} be a col-
lection of nonempty subsets of M. For every k=1,...,m, let y, denote the k-
dimensional measure over R¥. Let each A, has measure zero in M. Then, U;’C:l A,
has measure zero in M.

Proof For this purpose, let us take any admissible coordinate chart (U, ¢) for M.
We have to prove that u,(¢((U;—;A,) NU))=0. Here, 0<p,(o((U,",Ax)
0)) = (01 (40 1 U) = (U (0(An 1 0)) < 52, (040 0 0)),
so it suffices to show that for each positive integer n, ,,(¢(A, N U)) = 0. If not,
otherwise, let there exists a positive integer n such that 0 <y, (p(A, NU)). We
have to arrive at a contradiction. Since A, has measure zero in M, and (U, ¢) is an
admissible coordinate chart for M, u,,(¢(A, N U)) =0, a contradiction. 0

Lemma 6.15 Let M be an m-dimensional smooth manifold. Let A be a nonempty
subset of M. For every k = 1,...,m, let y denote the k-dimensional measure over
R¥. Let A has measure zero in M. Then, A°(= M — A) is a dense subset of M.

Proof We have to show that A° is dense in M, that is, (A°)” = M, that is,
((A9)7)“(= A°) = (. If not, otherwise, let A° # (). We have to arrive at a contra-
diction. Since A° # (), there exists a point p € A such that p is an interior point of A.
Since p is an interior point of A, there exists an open neighborhood G of p in M
such that p € G C A. Since p € A C M, and M is an m-dimensional smooth
manifold, there exists an admissible coordinate chart (U, ¢) for M such that p € U.
Clearly, U N G(C U) is an open neighborhood of p. Since U N G(C U) is an open
neighborhood of p, and (U,¢) is an admissible coordinate chart for M,
(UNG, @|yng) is an admissible coordinate chart for M. Here, ¢(p) is an interior
point of the subset (¢|;ng)(UNG)(=@(UNG)) of R™, and hence, pu,(¢
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(UNG)) > 0. Since (U N G, ¢|yng) is an admissible coordinate chart for M, and A
has measure zero in M,

0= t,((2lyng) (AN (UNG))) =, (p(AN (UNG)))
= t(@(UN (AN G))) = w,(¢(UNG)).

This is a contradiction. O

Lemma 6.16 Let M be an n-dimensional smooth manifold, N be an n-dimensional
smooth manifold, F : M — N be a smooth map, and A be a nonempty subset of M.
Let A has measure zero in M. Then, F(A) has measure zero in N.

Proof We have to prove that F(A) has measure zero in N. For this purpose, let us
take an admissible coordinate chart (V,y) for N such that (F(A)) NV # 0. We
have to show that u,(¥((F(A)) NV)) =0, where y, denotes the n-dimensional
measure over R”. Clearly, F(ANF~1(V)) = (F(A))N V.

(Reason: LHS =F(ANF~Y(V)) C (F(A)Nn(F(FY(V))) C (FA)NV =
RHS. So, LHS C RHS. Next, let us take any ¢ € RHS = (F(A)) N V. It follows that
there exists p € A such that F(p) =g € V. Since F(p) € V, p € F~1(V). Since
pE€F Y (V),andp € A,p € ANF~!(V),and hence,q = F(p) € FANF~1(V)) =
LHS. Hence, RHS C LHS).

Since M is an n-dimensional smooth manifold, by Lemma 4.47, there exists a
countable collection {(Uy, ¢,), (U2, ¢,), (U3, @3),...} of admissible coordinate
charts for M such that {U;, U,, Us, ...} is a basis of M.

Letus take any p € AN F~1(V). Sincep € ANF~1(V),p € F~'(V), and hence,
F(p) € V. Thus, V is an open neighborhood of F(p) in N. Since F : M — N is a
smooth map, F : M — N is continuous. Since F' : M — N is continuous, and V is an
open neighborhood of F(p), F~! (V) is an open neighborhood of p in M. Since F~! (V)
is an open neighborhood of p in M, and {U,, U,, Us, . . .} is a basis of M, there exists a
positive integer k(p) such that p € Uy, C F~'(V), and hence, AN Uy C AN
F~'(V).Sincep € ANF~'(V),p € A.Sincep € A,and p € Uy(p),p € AN Uy It
follows that for every p € A N F~1(V), there exists a positive integer k(p) such that
pEANUi CANFY(V), and hence, ANF (V) =U{AN Uy :p € AN
F'(V)}. Now, (F(A)NV=FANF (V) =FU{ANUy, :p e ANF(V)}) =
U{F(ANUyp) :p € ANF1(V)}, and hence y((F(A)) NV) = y(U{F(AN Uyp) :
peANF(V)}) = U(F(A N Uggy)) :p € ANFU(V)} = U{( 0 F)(AU U
k(p)) :p € ANF~1(V)}. Thus, y/((F(A)) N V) is the union of countable many sets
(Y o F)(AN Uyp)), where pe ANF (V). Here, {k(p): pcANF '(V)} C
{1,2,3,...}, s0 {k(p) : p € ANF~1(V)} can be written as {ki, k2, ks, ...}. It fol-
lows that

{Uk([’) ‘P EAﬂF_l(V)} = {Uk17Uk27Uk37"'}7
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and hence,

U{( o F)(ANUy) :p e ANF I (V)} = J((W o F)(ANUY)).

lat

J
It follows that

1, (W (FA)NV)) = w,(U{(y o F)(ANUyp) :p EANF(V)})

Now, it suffices to show that each

w((woro (o) ) (o) anw))) o

Since F : M — N is a smooth map, o F o ((pkj)_l is smooth. Also, since A has
measure zero in M, p,((¢;)(ANUy)) = 0. Now, we can apply Lemma 6.12. It

follows that
,un(<(/joFo((pk/_)l)((wkj)(AﬂUkj>>> —0. O

Note 6.17 In the following discussion, if a = (a',...,a") € R", and ¢ > 0, then

a L a1+ls wooox (a =L a”+£g
27 2 27 2

will be denoted by C,(a), and

al—lsal—&—ls X e X a"—lsa”—i—ls
27 2 27 2

will be denoted by C[a]. Here, C.(a) will be called an open cube of side length e,
and C;la] will be called a closed cube of side length ¢.

Let G be a nonempty open subset of R". Let 0 <e. We shall try to show that
there exists a countable collection {U,} of open cubes such that (J,~, U, =
G, U, (U,)” = G, and side length of each U, is strictly less than &.

Let us take any a = (a',...,d") € G. Since a € G, and G is open in R", there
exists a positive rational number r such that C,(a) C G, and r <e. Now, since the
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collection {s : s € R", and all coordinates of s are rational numbers} is dense in R”,
there exists s = (s',...,5") € R" such that s € C;(a), and all coordinates of s are
rational numbers. Since s € Cx(a), for every i =1,...,n,

i i ai’ < r

_si|:|s 4’

|a
and hence, a € Cs(s). Now, clearly C:[s] C C,(A). (Reason: Let us take any x =
(x',...,x") € Gils]. It follows that for every i=1,...,n,|x' —s'| < 4. Now, for
everyi=1,...,n,

W —d| < =+ | —d| < T4 I | < 7 =3

X a X N N a N a 4 4 3 s
and hence, x € C,(a).) Thus, for every a € G, there exist a positive rational number
r, and s € R" such that all coordinates of s are rational numbers, and

ae@@c(qu—%HCC()cG

Now, since the collection of all open cubes of the form C;(s), where r is a positive
rational number, and all coordinates of s(€ R") are rational numbers, is a countable
set, there exists a countable collection {U,} of open cubes such that | J,~, U, =
G, U,~,(U,)” = G, andside length of each U, is strictly less than ¢. O

Note 6.18 Let G be a nonempty open subset of R”. Let 0 <¢. We shall try to show
that there exist a countable collection {U,} of open cubes, and a countable col-
lection {V,} of open cubes such that |J°,U,=6G, U, ,(U,)” =G,
U, Va=G, U, C (U,)” CVu(n=1,2,3,...), and side length of each V, is
strictly less than e.

Let us take any a = (a',...,a") € G. Since a € G, and G is open in R”, there
exists a positive rational number r such that C.(a) C G, and r <¢. Now, since the
collection {s:s € R", and all coordinates of sare rationalnumbers} is dense in

R”, there exists s = (s',...,s") € R" such that s € Cg(a), and all coordinates of s
are rational numbers. Since s € Cﬁ(a), for every i =1,...,n,
. . . . r
’a’ —s’| = |s’ — a” < 3

and hence, a € C:(s). Now, clearly C:[s] C C:(a). (Reason: Let us take any x =
(x',...,x") € Ci[s]. It follows that for every i =1,...,n, |x' —s'| < §. Now, for
everyi=1,...,n,

’xi_ai’<|xi_si|+|Si_ai’<£+|si_ai|<£+£:£’

- -8 8 8 4

and hence, x € C:(A).) Also, it is clear that C:[s] C C.(A). (Reason: Let us take any
x= @l . x) € Cr[ ]. It follows that for every i =1,...,n, [x' —s'| < 4. Now,
forevery i=1,.
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. . . . . . r . . r r r
X —d|<|x=s|4+|s—-d|<-+|s—-d|<-+=-<=
} ‘ — | ’ ’ ‘ — 4 | | 4 8 2’
and hence, x € C,(A).) Thus, for every a € G, there exist a positive rational number

r, and s € R" such that all coordinates of s are rational numbers, and

aeCls) C (cg(s))fz C:ls] € Gils| C C.(A) C G.

Now, since the collection of all open cubes of the form C:(s), where r is a positive
rational number, and all coordinates of s(€ R") are rational numbers, is a countable
set, there exist a countable collection {U,} of open cubes, and a countable col-
lection {V,} of open cubes such that ", U, =G, U,~,(U,)” =G, U=, Va =
G, U, C (Uy)” CVy(n=1,2,3,...), and side length of each V, is strictly less
than e. O

6.2 Taylor’s Inequality

Note 6.19 We want to prove the following result:
Letp € U C R?. Let Ubeanopenset. LetS C U, and S be star shaped with respect
to point p = (p',p*) € S. Letf : U — Rbe C*® on U. Let x = (x',x?) € S. Then,

10 =F0) + ('~ p) (} (- +,x>)dz>

+ (- )(Z( ((1zp+tx))dz>

+;( > <fpf><xfpf><<z>af><p>>>
(

ij)e{1,2y

+% ( > =P -p) (P -p) }((1 — 1)’ Dy (1 = 1)p +tx)>dt)
( 0

ijk)e{1,2y?
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Proof Let us take any ¢ satisfying 0 <z<1. Now, since § is star shaped with
respect to point p, and x € S, (1 — 7)p + zx is in S, and hence, f((1 — t)p + #x) is a
real number. Here,

(p +t(x fp)p +t(x fp))

= p ) = f
(aff(lfthrtx)(; (p1+f(xlfpl)))
I (ai 1—tp+tx)) <§t(p2+f(x2—172)))
(a_f( 1—tp+tx> (x' = p")

N

<al((1 —p+ tx)> (& —p?),

1

(' = p") }(g(u — i+ tx))dt—l— (@ - p?) é(aafz (1= )p —Hx))dt
—Z(( o ((1 —t)p—l—tx)> (x' =p") + (;f;((l - t)p+tx)) (o —pz))dt
= (1 = p + ) Z9=f(x) = £ (p)-

Now,
f@) =f(p)+ (' =p') </<a—f((1 - t)p+tx))d>
+ (& =p%) <;<66f2 (1—10)p+ tx)>dt>.

On applying integration by parts, we get

0

f@) =f(p)+ (' =p') <}((Dxf)((l —p+ tx))df>

+ (= p?) </l((sz)((1 - f)p+zx))d’>
0
= f(p)+ (' = ") (D)1 = p + )|
—/t( (Dyf)(( 1—t)p+tx))%((l —1p' +ux')
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RN = 0p +0) (1= 002 +02) )

+ (2 = ) (DA (1 = 1)p + ) i het

—/r( Duf)((1p + ) S (1 - p' + o)

HDa( —r>p+zx>>§ (109 + 02 )
=f(p)+ (' =p")((D /t( (Duf)((1 = 1)p + ) (x' —p')
+((D12f)((1—l)l7+fx))(x2 p))a)

(=) (D)) — [ (Do) (1 - p + ) (&~ p)

0
H((Dof) (1 = Op + 1)) (2 — p) ) d)

() + (¥ =) ((Daf) (%))

((

=f(p) + ((' =p") (DY)
(1 —1)p+1x)))dt

(x —-p )21t Duf

T

0

—2(x' =p")(x* = p?) ;t (D12f)((1 = t)p + tx))dt
0

— (- P) / H(((Daf)((1 = t)p + tx)))dt

=f(p) + ((xl -p') ((le>(P) + (' =p") } (D11f)((1 — £)p + tx)dt

((1 —1)p + x)d )

( (' =p") [(Daf) (1 = 1)p + tx)dr

0

+(@=p) J(

o\—-

—_

—_

+( = p?) [(D2f)((1 —f)p+tx)d>>

o

= (= p (D) (1 = 1)p + 1))
0
—2(x' = p") (x* - )/lt (D12f) (1 = t)p + 1x))dt
0

- (@ =p?) / 1(((Doaf (1 = 1)p + 1x)) )dr
0



6.2 Taylor’s Inequality

=f(p) + ((=' —p')(DLf)(p) (o = p*)(Daf)(P))
(x —p) / Duf)(1 =t)p +1x) — t((D1f)((1 = t)p + 1x))))de

0
2 = p!) (€ = ) J(DA)((1 = 1)p+ 15) — H(Drf) (1 = 1)p + 1))
0

1 2
+2(x1 _pl)(xz _pz) é((l - t)%((l —1)p +tx))dt

+(x2—p2)2/1'<(1 0 )((l—t)p—i-zx))dt)
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1
ll P = p7) [((1 = )Dy((1 = 1)p + ) dr |
11)6{1 2} x{1, 2} 0

Similarly,

This result can be generalized in R”, and is known as Taylor’s theorem.
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Note 6.20 Let p € U C R". Let U be an open set. Let S C U, and S be star shaped
with respect to point p = (p',...,p") €S. Let f : U — R be C* on U. Let x =
(x!,...,x") €S. Let all the third-order partial derivatives of f be bounded in
absolute value by a constant M on S. Then,

PM—{ﬂm+%<§:(ﬂmWWﬁwg
+%( > (xi—Pi)(xj—Pj)((Dijf)(p)))}|
(i) :

5( > @Lﬁxgq@w_ﬁ)ﬁpﬂmMU—W+mﬁJ
" ,

o

(¢ =) (7 = p) (¢ = ) [ (1= 0°Di((1 = 1)p 4+ 1) ) o

o

(i k)e(l,..n

:§ > W—MW—MW—ﬁQOFﬁ%MU—W+mﬁt

1 . o . 1
<o D W =P = plE =M I = P Dg((1 = 0)p + 1x)|de
0
1 . L . 1
Sj Z |x’_pl‘|xl_pl||x]‘—pk|él|Dijk((1—t)p—l—tx)’dt

1 , S . 1
<= E |x’—p"|x’—p/||xk—pk|/Mdt
0

1
<5 >, l-pll—ply—plm

1 1
=5 Z M|x—p\3:§(nann)<M|x—p\3)
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Thus
%) - {f(p) to ({Z} & p’)((Df)(p)))
ty (( 3 f—pf)((Dm(p))) H
< gl piM,
etc.

Conclusion: Let p € U C R". Let U be an open set. Let S C U, and S be star
shaped with respect to point p = (p',...,p") € S. Letf : U — R be C* on U. Let
x=(x',...,x") €S. Let all the third-order partial derivatives of f be bounded in
absolute value by a constant M on S. Then,

In the following discussion, we shall use this inequality.

6.3 Sard’s Theorem on R”

Lemma 6.21 Let G be an open subset of R(=R'). Let F : G — R? be a smooth
function. Let F = (Fy,F,,F3). For every k = 1,2,3, let , denote the k-dimen-
sional measure over R¥. Then,

(e )
| F| ¢ x:x € G,and rank | (D1 F2)(x) | =0 =0.
(D1F3)(x)

{ |:(D1Fl)(x)] }
C=({x:x€G,and rank | (DF>)(x) | =0 .

(D1F3)(x)

Proof Put
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We have to show that u;(F(C)) = 0. Here,

(DiF1)(x)
C=<{x:x€G,and rank | (D;F;)(x)| =0
(D1F3)(x)
={x:x€ G, and (D,F,)(x) =0,(D\F>)(x) =0, (D F3)(x) =0}
={x:x€ G, and (D;Fy)(x) =0} N{x:x € G,and (D,F>)(x) =0}

N{x:x € G,and (D,F3)(x) =0}
= (DiF1) " ({0}) N (DiF2) ™ ({0}) N (DiF3) ™' ({0}).

Since F : G — R? is a smooth function, D, F; : G — R is continuous. Since D,
Fi : G — R is continuous, and {0} is closed, (D;F;)~' ({0}) is closed in G. Simi-
larly, (D1F,)”"({0}), (D1F3)~"'({0}) are closed in G. It follows that (D\F;)”"
({0}) N (D1F>) ' ({0}) N (D1F3) "' ({0})(= C) is closed in G, and hence, C is
closed in G. Put

C1 = {x X E G, and 0 = (DlFl)()C) = (Dle)(x) = (D1F3)()C)}
Clearly, C; = C, and C; is closed in G. Put

Cy ={x:x € G,and0 = (D1 F1)(x) = (D1F2)(x) = (D1F3)(x) = (D11 F1)(x)
= (D11F2)(x) = (D11 F3)(x)}.

Clearly, C, C Cy, and C; is closed in G. Similarly, we define C; = {x : x € G,
and 0 = (D F;)(x) = (D11 F;)(x) = (D11 Fy)(x)for every i = 1,2, 3}, etc. Clearly,
- CCysCC3CCyCCp=C, and each C; is closed in G.

Now, we shall try to show that 15 (F(C;)) = 0. Since G is an open subset of R, there
exists a countable collection { U, } of open bounded intervals such that | J,~, U, = G,
and |J),(U,)” = G. Now, F(Cy) = F({x:x € G,and 0 = (DyFy)(x) = (D1 F>)
() = (DiF3)(0)}) = F({x:x € U,2,(Un) ", and 0 = (D1 F1)(x) = (D1F)(x) =
(D1F3)(x)}) = F(U, 2 {x 1 x € (Uy) ", and 0 = (D1 Fy)(x) = (D1F2)(x) = (D1F3)
() = U2y F({x 3 € (U,) ,and 0 = (DiFy)() = (DiF2)(x) = (D1Fs) ()})
— U F(C O (Un) ), 500 < 155(FIC) = (UL, FIC N (U) ) < S50,
w3 (F(Cy N ((Uy)7))). Hence, it suffices to show that each w3 (F(C, N ((U,)7))) = 0.
Let us first try to show that 3 (F(C, N ((U;)7))) =0.

Since Dy F; : G — R is continuous, and (U;)~ is compact, (D1 Fy)((U;)") is
compact, and hence, (Dy1F;)((U;)”) is bounded. Similarly, (DyF)((U1)"),
(D11F3)((U1)_) are bounded. It follows that (D”Fl)((Ul)_) @] (Dlle)((Ul)_) @]
(D11F3)((Uy)™) is bounded, and hence, there exists a positive number K such that
(DllFl)((Ul)i) @] (D]le)((Ul)i) @] (D11F3)((U1)7) is contained in [—K, K]

Case I when C; N ((Uy)”) = 0. In this case,
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w3 (F(Cr N ((U1)))) = ms(F(0)) = u3(0) = 0.

Thus, u3(F(C1 N ((U1)))) = 0.

CaseIl: when C; N ((U;) ™) # 0. Now, let R be the length of closed interval (Uy) ™.
Letus fix any positive integer N > 1. Let us subdivide the closed interval (U;)~ into N
closed intervals Ey, E,, ..., Ey such that each E; is of length %. Thus, (U;)” =
E1 UE2 U--- UEN. It follows that Cl n ((Ul)i) = C1 N (E] UE2 U--- UEN) =
(CINE)U(CINE)U---U(CiNEy)=U{CINE,: CiNE; #0}. Hence, F
(C] N ((U])i)) = F(U{C] NE;: CiNE; 7é @}) = U{F(C] ﬂEk) :C1NE 75 @},
and hence, 0<u;(F(CyN((U1)7"))) =w(U{F(CiNE) :CiNE#0}) <>
{i5(F(Cy NEy)) : C1 NE; # 0}. Now, it suffices to show that if C; N Ey # (), then
w3 (F(Cy N EL)) = 0. For this purpose, let C; N E; # (0. Since C; N E; # (), there
existsa € C; N E;. Sincea € Cy N Ey, a € E;.

Now, by Taylor’s theorem, for every x € Ey,

|F1(x) — Fi(a)| = [F1(x) — {Fi(a) + 0}]

= |F1(x) — {Fi(a) + (D1F1)(a)}|

IN
=] =
/N

>
S
2| =
N~

5]
~—

Thus, for every x € E,

IF1(x) — Fy(a)| < % <K<§>2>.

Similarly, for every x € Ej,

F2(x) ~ Fala)] < 7 <K(§>> and |F5() ~ Fa(a) < <K<§)>

It follows that for every x € E,

|F(x) = F(a)| = |(F1(x), F2(x), F3(x)) — (Fi(a), F2(a), F3(a))]
= [(Fi(x) = Fi(a), F2(x) — F2(a), F3(x) — F3(a))|
<|F
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Hence, for every x € Ey,

Thus,

F(Cl ﬂEk) C F(Ek) C B3(ﬁ(1((§)2)) (F(a)),

and hence,

0P 1ED) <1 By ) (F)) < (2 (3 G (K @)))))

— 0asN — oo.

This shows that y;(F(C; NEy)) = 0. Hence, u3(F(Cy N ((Uy)7))) = 0.

Thus, in all cases, u3(F(C; N ((Uy)7))) = 0. Similarly, u;(F(Cy N ((U2)7))) =
0,u3(F(C N ((Us)7))) = 0, ete. Thus, p3(F(C)) = u3(F(C1)) = 0. O
Note 6.22 Similar to Lemma 6.21, we can prove the following result:

Let G be an open subset of R(= R'). Let F : G — R" be a smooth function. Let
F=(F,...,F,). Forevery k = 1,...,n, let y, denote the k-dimensional measure
over R*. Then,

(D1F1)(x)
| Fl x:x€G, and rank | : =0 =0.
(D1F) (%)

Lemma 6.23 Let m,n be positive integers satisfying m <n. Let G be a nonempty
open subset of R™. Let f : G — R" be a smooth function, and f = (fi, .. fn). Let u
denote the Lebesgue measure over R". Let C be the collection of all critical points
of f, that is,

(D) (%) (Dufi)(x)

C=qx:x€G, andrank | : <n

(Dufu)(x) (D) (x)

Then, u(f(C)) =0.

Proof Since G is a nonempty open subset of R™, there exists a countable collection
{C.,} of open cubes in R™ such that | J,~, C, = G, |J,—,(C,)” = G, and for each
n=1,2,3,..., the side length R, of C,, is <1. Now,
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(lel)(x) (Dmfl)(x)
f(C)=f| {x:x€G, and rank | : <n

(D) () (Dufa)(x)
. DA (Daft) W
=fl<x:x€ U(Cn)_,andrank ; <n

(Dif) (%) (Dufa)(x)

N (Difi)(x)  (Dufi)(x)
=f U x:x€(C,) ,and rank | : L <n
{ (D)) (Dafy) ()
. (Difi)(x)  (Dufi)(x)
— Uf x:x€(C,) ,and rank | : o <n
{ (D)) (Dufy) ()
= Urtente)

Since f(C) = U, f(C N (C)7),
0<u(f(C)) = u(@f(c n (Cn))> < iu(f(c N(Cu)7))-
n=1 n=1

Hence, it suffices to show that each p(f(C N (C,)")) = 0.

We first try to show that u(f(CN(C;)”")) =0. Since f : G — R" is a smooth
function, each (Dyfy) : G — R is a smooth function, and hence, each (Dyf;) : G —
R is continuous. Since (Dyfi): G — R is continuous, and (C;)” is a compact
subset of G, (Dyfi)((C1)™) is compact, and hence, (Dyfi)((C1)™) is bounded. Since
(Dyfi)((C1)7) is bounded, there exists a real M >0 such that for every
2€ (1) (D) ()] < M.

Put M =max{My :1<i<m,1<j<m,1<k<n}. Since f:G—R is a
smooth function, each Dif; : G — R is a smooth function, and hence, each Df; :
G — R is continuous. Since Df; : G — R is continuous, and (C;)~ is a compact
subset of G, (Df;)((C1)~) is compact, and hence, (D;f;)((C;)") is bounded. Since
(Difi)((€1)7) is bounded, there exists a real M;; > 0 such that for every z € (C;)™,
(D) (2)| < M.

Put My = max{M;; : 1 <i<m,1<j<n}. Letus fix any positive integer N > 1.
Let us subdivide the closed cube (C;)~ into N™ closed cubes Ej, Es, . .., Ey» such
that each E; is of length %. Thus, (C1)” = E; UE, U - - U Eyn. It follows that C N
(C1)7 =Cn (El UE2U"'UENW) = (CﬂEl) U(CﬂEg) U---u (CﬂENm) =
U{CNE: CNE# 0,1 <k<N™}. Hence, f(CN(C1)" ) =fU{CNE:CN
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E #0,1<k<N"})=U{f(CNE;): CNE# 0,1 <k<N"}, and hence, 0 <
(F(CN(C) ) = U (CAE) : CAE A0, L<k<N"}) < Y{ulf(C N E))
:CNE #0,1<k<N"}

Let us take any positive integer k satisfying 1 <k <N™, and C N Ej # (. Now,
by Taylor’s theorem, for every x = (xi,...,%y) € Ex, and y = (1, . -, ¥m) € Ex,

IF(y) = (F) + (7 () v = )]
[Ai(y)] [Aix)] [ (D)) (Dmfl)(x)] {ylm )

=1 - :

o] A\ ] Lome O] L -

0] ([AD] [@AEIE=x) + -+ (Puf)) ()0 —50)
ol [ L

0] AL ] L@@ =0) -+ (Duh)(9)0n =50

[A() = (i) + ((Dufi) () 01 = x1) + -+ + ((Duef1) (%)) O — Xim)) ]

L) = () + (D) () 1 = 2) + -+ A+ (Do) (%)) om = X))
<Ii(y) = (Ll + (D)) n —x1) + -+ + ((Dmfl)( D Om = X)) -
1) = () + ((Dufa) () 01 = 261) 4= 4 (Do) () O = 5 )))|

1 m

e LA G L (e ey

Thus, for every x,y € Ej,

1

F) = () + (D = )] < (M) 5.

Since C N E;, # 0, there exists a € C N E; # (), and hence, for every y € C N Ey,

() = (F(A) + (F () (v — @))| < (nm*M) M

N2’

Again, by Taylor’s theorem, for every x = (x1,..., %),y = (1, - -, Ym) € Ex,
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H) fi(x) Ay) —filx)
fy) —f)=|]: - | =1
£ (y) Ju(x) Ja(y) = fa(x)
<) —A@+ -+ () —falx)
1

R 1
Saml(\/ﬁﬁl) My+-+—m (

E_
=
5

n

1 1
= nm3/2Mo —R; <nm3/2M0—.
N N

Hence, for every y € CNE |f(y)—f(a)|<nm®*MyL. It follows that
f(CNEy) is contained in an open ball of radius nm>2Mj & with center f(a). Since
a € CNE, so a € C, and hence,

(Difi)(a)  (Dufi)(a)

rank <n.

(Difu)(@)  (Dufa)(a)
So, the range space of f'(a) : R” — R" is contained in an (n — 1)-dimensional

subspace, say V, of R”. It follows that for every y € C N Ey, f(a) + (f'(a))(y — a)
contained in f(a) + V. Since for every y € C N E,

F() = (F(a) + (F (@) (v — )| < (nm* M) %

so all points of f(C N Ey) is at most (nm*M) 7 distance “above” or “below” the
affine hyperplane f(a) + V. Thus, f(C N E) contained in a “box” whose height is

2 ((nm3M) %) ,

and (n — 1)-dimensional base area is

(o))
and hence,
wocnmn(((meg)) ) (o)

3 1
_ (2nnnm‘( 2+1)(M0)n71M)

Nnt+l”
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It follows that

pF(CN(C)7)N <D {rF(CNE)) : CNE#D, 1 <k<N"}

3(n+1)

S (znnnm 3 (Mo)nflM)

N™ — 0asN — oo,
Nitl

because m <n. Thus, u(f(CN(Cy)”)) = 0. Similarly, u(f(CN(Cz)")) =0, etc.
Thus, u(f(C)) = 0. O

Lemma 6.24 Let m, n be any positive integers. Let G be a nonempty open subset of
R™. Let f : G — R" be a smooth function, and f = (fi,.. f,). Let C be the col-
lection of all critical points of f, that is,

(Difi)(x)  (Dufi)(x)
C=qx:x€G,and rank | : <n

(Duf) () (Dfa) (%)

Let for every i =1,2,3, ...,
C; = {x:x € G, andall Ist,2nd, . . ., ith order partial derivatives of fat x are zero}.

Then,

I....cCysCcCGiCcCG,CcCCcCCa,.
2. each C; and C are closed in G.

Proof

1. This is clear from the definitions of C; and C.
2. Since f : G — R" is smooth, each Djf; : G — R is continuous. Since each D;f; :

G — R is continuous, and {0} is closed in R, each (D;f;)~" ({0}) is closed in G.
It follows that

N (0f) ({0} (= {x:x € G,and0 = (D) (x) foreveryj € {1,...,k},
jed{l,.. .k}
ie{l,...,n}
and foreveryi € {1,...,n}} = Cy)

is closed in G, and hence, C| is closed in G. Similarly, C,, C3, . . . are closed in G.
Here,
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(D)%) (Dif)(x)

C=({x:x€G,andrank | : <n

(Dif)(x)  (Difa) (%)
(Difi)(x)  (Difi)(x)
= ﬂ x:x€ G, anddet | : =0

iyt € 4L b Difi)(®)  (Dif)(x)
i1, ..., I, are distinct

Now, since each D;f; : G — R is continuous, each

(Difi)(x)  (Difi)(x)
x:x € G,anddet | : =0

(Difu)(x)  (Difa)(x)

is closed in G, and hence,

(Difi)(x)  (Difi)(x)

x:x € G,anddet | : =0
iyl €{1,...,k}, (Dif)(x) (D f)(x)
i1, ..., I, are distinct
is closed in G. This shows that C is closed in G. U
Lemma 6.25 Let m,n be any positive integers. For every k= 1,...,n, let

denote the k-dimensional measure over R*. Let G be a nonempty open subset of
R™. Let f : G — R" be a smooth function, and f = (fi,...,f,). Let C be the col-
lection of all critical points of f, that is,

(Difi)(x)  (Dufi)(x)

C=({x:x€G,andrank | : <n
(Duf)(x)  (Dufa)(x)

Let, for every i =1,2,3,...,

C;={x:x€G,and all 1st,2nd,...,ith order partial derivatives of f at x are zero}.
Then,

m(r(cp)) =0

where 2] denotes the greatest integer less than or equal to ™

n
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Proof Since G is a nonempty open subset of R"™, there exists a countable collection

{U,} of open cubes such that | J;°, U, = G, U;2,(U;)” = G, and side length of each
U, is strictly less than 1. It follows that

fy=Cgno=cyn (Jw) = §egner)

and hence,

and therefore, it suffices to show that each
U, (f(C[m] N (U;)_)) is zero.

For this purpose, let us fix a positive integer /. We have to show that

m(f(cgnwr)) =o

Let us fix any positive integer N > 1. Let us subdivide the closed cube (U;)~
into N™ closed cubes E;,E,,...,Ey» such that each E; is of length
%(Side length of U;). For simplicity, let the side length of U; be 1. Thus, (U;)” =
E,UE, U---UEpyn. It follows that

C[%] N = C[ﬂ] N(EyZUEyU---UEym)

- (e (e ) o (e o)

= { w] M Eg : [m]ﬂEk%@,ISkSN'n}.

Hence,

f(C[’,’;’} ) f(U{ NEg: Cm NE, #0,1 SkﬁNm})
U{f( m ﬁEk) : C[’f,‘l] NE; # @JSkSNm}’
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and hence,

0= (f(Cy 0 007)) = m(Ufr (e n ) : Gy 2 01 k)

n

< Z{un(f(cm ﬂEk)) Cpy NECAD,1 gngm}.

Let us take any positive integer k satisfying 1 <k <N", and Cp N E; # 0.
Let all the ([%] 4 1) th order partial derivatives of f be bounded in absolute value by

n.
a constant M on the compact set (U;)".
Now, by Taylor’s theorem, for every x= (xi,...,x,) € Cp NEy, and

y = (ylﬂ"wym) € C['yﬂ_,] ﬁEk,

f(x) =fW =10, fa(x) = (AY), - fa ()]
=0A(x) =fi(¥), - fa(x) = ()]
<G =AW+ -+ ax) =)

- %x)— {f1<y>+f!<o>+2!<o>+--~+[%f]!m)}

m

N EETRN STV

n

- i)

<t () )

(it () [%“IM),

and hence,
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Thus,

o< (r(ey o)) < ( (2o

— 0as N — oo,

E‘
g
®
~
B
2|~
N
SE
x
<
~
~
~
=
~_

because
m<([Z]+ )0 (that s, < [2] +1).
n n n
Thus,
w(F(c nwn)) =o. =
Lemma 6.26 Let m,n be any positive integers. For every k=1,...,n, let

denote the k-dimensional measure over R*. Let G be a nonempty open subset of
R™. Let f : G — R" be a smooth function, and f = (fi,...,f,). Let C be the col-
lection of all critical points of f, that is,

(D) (x)  (Dufi)(x)

C=(x:x€G,andrank | : <n

(Duf)(x)  (Dufa)(x)

Then, u,(f(C)) = 0.

Proof (Induction on m): By Lemma 6.23, the theorem is true for m = 1.
Case I when m <n. By Lemma 6.23, u,(f(C)) = 0.
Case II: when n<m. Fori=1,2,3,..., put

C; = {x: x € G,and all partial derivatives of f at xupto ith order are zero},

and Cp = C. By Lemma 6.24, --- C C4, C C3 C C, C C; C C C G. It follows that

C=(C—C)U(CI —C)U(Cy—C3)U---U (C[ﬂ]fl —C[T_:]) uc

m] )
n n

and hence,

£(C) :f((C —C)U(C— C)U(Cr— C3)U---U (cmf1 - CH) U C[%])

= f(C—C)UF(Cl —C) U F(Cr—C3)U---U f(C[ﬂ]_l - CH) Uf(CH).

n
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It follows that

0<u,(f(C) = 1, (f(C = C1) UF(C1 = C2) UF(C2 — C3)

0 Ur (s~ ) s (Cp)

<, (f(C = C1)) + 1, (F(Cr = C2)) + 14, (F(C2 = C3))
+“+MV@M4—QM)+MGWMD~
Since, by Lemma 6.25, w,(f(Cpy)) = 0, it suffices to show that

L 0= pu,(f(Cr = C2)) = 1, (f(C2 = C3)) = -+ = 1, (f (Cg—1 = Cpum))),

For 1: For simplicity of discussion, here we shall assume 3 for . Since R™ is
a second countable space, there exists a countable basis 5 of R™. SinceC; is
closed in the open set G, G — C; is open in R™. Since C, C C; C G,
C -G, cG-(C,Ca.

Let us take any a € C; — C;. It follows that a € Cy, and a ¢ C;. Since a € Cy,
for every i € {1,...,m}, and for every j € {1,2,3}, (Dyf;)(a) = 0. Further, since
a & C,, there exist i1,i» € {1,...,m}, and j; € {1,2,3} such that (D; ;,f;,)(a) # 0.
For simplicity, let (Dy,f1)(a) # 0, that is, (D (D1f1))(a) # 0. Observe that Df; :
G — R is a smooth function.

Let us define a function (F',F?,....,F")=F :G — C, — R™ as follows: For
every x = (x',x%,...,x") € G — (3,

(Fl(x X ) (xl, , x'”) ..,F’"(xl,xz,...7)d”)):F(xl,xZ,...,xm)
= (D)o o)),

Clearly, F(C, — C;) C {0} x R""!. (Reason: For every x = (x',x%,...,x") €

Ci — C(CG—C, CG), we have x € Cy, and hence, F(x) = ((Difi)(x),x?,

XM = (0,x2,...,x") € {0} x R"") Since (Df;) : G — R is a smooth func-
tion, F : (G — C;) — R™ is smooth. Here,

(D1(Difi))(@) (D2(Difi))(@)  (Dw(Difi))(a)

det(F'(a)) = det 0 1 0
.0 b .1 mxm
= (Di(Dif))(a),

which is nonzero. So, by Theorem 4.1, there exists an open neighborhood U, of a
such that U, is contained in G — C,, F(U,) is open in R™, and F has a smooth
inverse on F(U,). Thus, F : U, — F(U,) is a diffeomorphism, and F~! : F(U,) —
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U, is a diffeomorphism. Since F~!: F(U,) — U, is a diffeomorphism, U, C
G—C, C G,and f : G — R? is smooth, their composite f o (F~!) : F(U,) — R
is a smooth function.

Since U, is an open neighborhood of a in R™, there exists an open set V, € B
such that a € V, C (V,)” C U,, and (V,)” is compact. Since (V,)” C U, C
G—0C,, N (Va)7 = 0.

Let us observe that (C; — C;) N (V,)” is compact.

(Reason: Since C; C G, Cisclosedin G, and Gisopenin R™, C; U (G°)is closed
in R™. Since C; U (G°) is closed in R™, and (V,)” (C U, C G) is compact, their
intersection (C; U (G)) N ((Va)")(=CiN((V,)")) is compact, and hence, C; N
(V)™ is compact. Since C; N (V,)™ is compact, and (C; — C2) N (V,)” = (CiN
(Va) ) = (G2 N (Va) ) = (€1 A (Vo) ) =0 = C N (V) s (Cr—Ca) (Vi) s
compact).

Since f : G — R? is a continuous function, and (C; — C;) N (V,)~ is compact,
f(Cr = C)N(V,)") is compact. We shall try to show that u;(f((Ci— Cz) N
(V4)7)) = 0. Now, since f((C; — C2) N (V,)") is compact, by Lemma 6.1, for
every real ¢, 1,({(»',3?) : (c,y',*) € f((C1 — C2) N (V,)7)}) = 0. For this pur-
pose, let us fix any real c. We have to show that u,({(»',y*): (c,y',)?) €
f(Cr—C)N(V,))}) =0, that is, wr({(HE",. ... 2", AE& .., x"): (...,
XM € (C1 — C)N (V) ,andfi(x!, ..., x") = c}) = 0.

Let us take any u = (u',u?,...,u™) € F(U,). Since F~': F(U,) = U, is a
diffeomorphism, the rank of (F~!')'(y) for every y € F(U,,) is m. Now, since u €
F(U,), the rank of (F~')'(u) is m. Since the rank of (F~')'(u) is m, and

(Dfiofoufs) o (F7)) ) = (D fo. ) (F) @) (F7) (@),

rank(((DLfl,fz,ﬁ) ° (F*l))’(u)) = rank ((Difi, fo.5)' (F~1) ().

Since u € F(U,), and F is 1-1 over U,, there exists a unique x = (x!,x?
..,X™) € U, such that F(x) = u, and hence, F~!(u) = x. Also, since ((D1f)(x!,
X2, X)) = F( a2, ) = F(x) =u= (u',u?,.. ., u™), (Difi)(x)
= (Dif))(x", 2%, .., X)) = ul, x? = u?, .., X" = u™. Now,

((lel,f27f3) o (F’l))(ul,uz, .. .,u’”) = (lel,fz,f3)(F’1(ul,u2, .. ,u”’))
= (Difi.fo.15) (F~ () = (Difi, fo.f5) (%)
(Dif1) (%), /2(x),f5(x) = (u' /o (x),f3(x))
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((Dufifoufs) o (F71)) (u' 02, ou™)
= (ul, (fz ) (Ffl))(ul,uz, .. .,um), (]‘3 ) (Ffl))(ul,uz, .. ,um))
It follows that for every u = (u!,u?, ..., u™) € F(U,),

!/

rank (Dfi, fo.f3) ((F7) (w))) = rank (D fo.5) @ (F7)) (w)

1 0 0

(Di(fa 0 (F))(u) (Da(fr 0 (F71)))() . (Du(fa 0 (F71)) () |-

(Di(fs 0 (F71)))(u) (D2(fs o (F71))) () (Du(fs o (F71)))(u)
Now, let x = (x',x%,...,x™) € (C; — C2) N U,,. It follows that x € (C; — C2) N

U, C (C; — Cy), and hence, F(x) € F((C; — C,) N U,) C F(U,). Thus,

(Di(Dif1))(x)  (Du(D1f1))(x)
3> 1>rank| 0 '

= rank

.0
0 0 3xm
[(D1(D11))(x)  (Du(D1£1))(x)
=rank | (Df5)(x) (D) (x)
L (D1f3)(x) (Duf3)(x) 3om

= rank((D1f1 b fs) (x)
= rank(( Sup.6) (FY)(F(x)))

(1 0 0
=rank | (Di(fy o (F~)))(F(x)) (Da(fa 0 (F~)(F(x)) . (Du(f2 0 (F“)))(F(X))] :
L(D1(fs 0 (F)))(F(x))

It follows that
0 = det
= det

0 = det

= det
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rank[wchz o (FOFW) (Ds(fro (F)))(F() . (Dulfro <F*>>><F<x>>} -
(D2(fs o (F-)(F() (D3(fs o (FD))EQ)  (Dulfs o (F-))(F()

Thus, for every u = (u',u?,...,u™) € F((C, — C)NU,),

rank[(Dz(fz o (F~))(w) (Ds(f2 o (F))(u) . (Dulfo <F-'>>><u>} s
(Dafs o (F~))(w) (Ds(fs o (F~))w)  (Dulfs o (F~)))(w)

Since F(U,) is open in R”, {(y?,...,y"): (0,y*,...,y™) € F(U,)} is open in
Rmfl.

Let us define a function f. : {(y?,...,y") : (0,3%,...,y") € F(U,)} — R? as
follows: For every (y2,...,y") satisfying (0,y%,...,y") € F(U,),

fc(yz,...,y’") = ((fz ) (F_l))(O,yz, .. .,ym), (f3 o (F_l))(07y2,...,ym)).

Since (2, ...,y")+ (0,¥%,...,y") is smooth, and (f, o (F7!)) : F(U,) — R is

smooth, their composite (y?,...,y") — (f, o (F71))(0,y?,...,y") is smooth. Simi-
larly, (y,...,y") (f50 (F~ 1))(0 ¥, ...,y™) is smooth. It follows that f, :
{02,y (0 ¥, ¥") € F(Us)} — R? is smooth.

For every u= (u?,...,u") satisfying (0,u?,...,u™) € F(U,), we have (D;

(fo) ) ol ) (Dz(fzO(F’l)))(O,MZ,---,M’"), (D2 (fe)) (@, ..., u™) = (Ds

(o0 (F71)))(0,u? u™), etc., and hence,
’ ) m Dl(fcl) ) (D2fc1) (u) - ( m— l(fcl)(“
G0 =0T = (1)) ) (D)) ) (Do )0
_ [(Da(fao (F71)))(0,22,....u") (D3(fa 0 (F~1)))(0,0%, ..., u™)
(Da(fs o (F71)))(0,u%,...,u™) (Ds3(fs 0 (F1)))(0,u, ... ., u")
- (Dulfao (F~ 1)))(0’M2»--~au'")}
"(Dy(fs o (F~9)))(0,62,...,u™) ]

Clearly, every point of {(y?,...,y") : (0,y*,...,y") € F((C; — C)NU,)} is a
critical point of f.. (Reason: Take any u = (1?,...,u™) € {(3?,...,y") : (0,)%,.. .,
Y") € F((Cy — C) N U,)}. It follows that (0,y2,...,y") € F((C; — C2) N U,) C

F(U,), and

/ _ (D2(fZ © (F_l)))(oauzv ce m) ( (fz © ( )))( YU, ’Mm)
rank((6)' () = rank | 1y o (P ))(0,08, ) (Dalfs 0 (F1)(0, 12t
'..(Dm(on(Fil)))(oﬂ’t 5. - vum) <2.
(Dulfs o (F-)) (0,12, .1
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Now, by induction hypothesis, i, (f.({(3?,...,y™) : (0,y?,...,y") € F((C,—
C>) NU,)})) = 0. Now, since (V,)” C U,

z({((sz( N3, (o (F1))(0,5%,5™)
(0,07 € F((CL = C) N (V) )}
<u({((fro (F)) 0y (o (F)) (02 .y"))
(0,07 )") €F((C1 = )N U)) |
({02 5 (0. y™) € F(C — )N U)) =0,
and hence,

w({((f e (F7)) (057 y"), (o (F71)) (0,57, -03"))

))(0,y
1(0,5%,..,Y") €F((C1 — C)N(Vy)7)}) =0.
It suffices to show that

{(BE ) A x) (LX)
€(C—C)Nn(V,) ", and (DLfl)(xl, LX) =c}

c{((ho (F’l))(O,y2 "), (o (F’l))(O,yz,...,ym)) : (O,y2,...,ym)
-

F((C1 — ) N (Vo) )}
Let us take any (f(x!,...,x"),f(x!,...,x™)) € LHS, where (x',.. x’")
(Cy —C)N(V,)", and fi(x ,...,x’”) =c. Now since (x!,...,x") € (C; — Cy)N
(Va)ia
(0,x2, ..7)«,’") ((DLfl)(xl,...,x’"),xz,...,x'") :F(xl,...,)d")

eF((Ci=G)Nn(Va)),
and hence, F~1(0,x%,...,x") = (x',...,x™). It follows that

(B ) A ox) = (BE (0.2 ) s (F10,02, .. x™)))
= (o (F1))(0.2,..x), (s o (F1))(0,2,....¥")) € RHS.

Thus, LHS C RHS.

We have shown that for every a € C; — C,, there exists an open neighborhood V,
GBofasuchthat,u3(f((C1 - CG)N(V,) ))=0,anda €V, C ( 2)” C G. Here,
U{(C—G)N(Va) :ac(Ci-G)} = (C1 G2),50f(C1 = Co) = f(Uf(C1 -
C) N (Va) ra€ (€ —C)l) = UG~ C2) N (V) )ia e (Cr — Co)}. Since
each V, € B, and B is a countable collection, {f((Ci—C)N(V,)"):a€
(Cy — C,)} is acountable collection, and hence, 15 (f(C1 — C2)) = us(U{F((C1 —
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(Va)i) rac (Cl - CZ)}> S Ecountable ,LL3(f((C1 - C2) N (Va)i)) = Ecountableo =0.
Thus, p;(f(Cy — C2)) = 0. Similarly,

0=13(f(C2—C3)) = =113 (f<c[%]71 - C[%]))'

For 2: For simplicity of discussion, here, we shall assume 3 for n. Since R™ is a
second countable space, there exists a countable basis B of R™.

Since C; is closed in the open set G, G — C; is open in R™. Since C; C C C G,
C—C, CG—C; CG. Now, since f: G — R? is a smooth function, Flig=c
(G — Cy) — R? is smooth. Clearly, the collection of all critical points of f lG-c,) is
C — (Cq, that is,

(D1fi) (%) (Dufi)(x)
C—-Ci=(x:x€G—Cyandrank | (D1f5)(x) . (Duf2)(x) | <3

(Difs) (%) (Duf3)(x)

Let us take any a € C — C;. Since a € C — C; C G, a € G. Now, since a ¢
C| = {x: x € G, and all first order partial derivatives of F at x are zero}, there exists
je{1,2,...,m},andi € {1,2,3} such that (D;f;)(a) # 0. For simplicity, let i =
j=1. Thus, (Difi)(a) #0. Let us define a function (F!,F? .. .F")=F:
(G — C) — R™ as follows: For every x = (x',x%,...,x") € G — Cy,

(Fl(xl,xz,...,x’”),Fz(xl,xz,...,x’"),...,Fk(xl,xz,...,)K")) :F(xl,xz,...,x’”)
= (fl(xl,...,xm),xz,...,xm).

Since f: G — R3 is a smooth function, fi : G — R is a smooth function, and
hence, F : (G— C)) — R¥ is smooth. Here,

(Difi)(A) (D2f1)(A)  (Duf1)(A)
0 1 . 0
det(F'(A)) = det | . : . = (Dif1)(A),

O 0 1 mxm
which is nonzero. So, by Theorem 4.1, there exists an open neighborhood U, of a
such that U, is contained in (G — Cy), F(U,) is open in R™, and F has a smooth
inverse on F(U,). Thus, F : U, — F(U,) is a diffeomorphism, and F~! : F(U,) —
U, is a diffeomorphism. Since F~!: F(U,) — U, is a diffeomorphism, U, C
(G—Cy)CG, and f: G — R? is smooth, their composite f o (F~'): F(U,) —
RR? is a smooth function. Since U, is an open neighborhood of @ in R™, there exists
an open set V, € B such that a €V, C (V,)” C U, C (G—Cy), and (V,) is
compact.

Let us observe that (C — C;) N (V,)” is compact.
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(Reason: Since C C G, C is closed in G, and G is open in R", CU (G°) is
closed in R™. Since C U (G°) is closed in R™, and (V,) (C U, C (G — C;) C G)
is compact, their intersection (C U (G%)) N ((V,) " )(=CN((V,)")) is compact,
and hence, CN(V,)” is compact. Since CN(V,)  is compact, and (C — C;)N
(Vo) =(€NnVa) ) =(Cin(Va) ) =(CN(Va) ) =0=CN(Va)", (C—Ci)
N(V,)” is compact.) Since f : G — R® is a continuous function, and (C — C;) N
(Vo))" (C (Vu)~ C G) is compact, f((C — C;)N(V,)") is compact. We shall try to
show that u;(f((C —C)N(V,)")) =0.

Now, since f((C — Cy) N (V,)~) is compact, by Lemma 6.1, it suffices to show
that for every real c, i, ({(y',y?) : (¢,y',3*) € f((C - C1) N (V,)7)}) = 0. For
this purpose, let us fix any real c. We have to show that u,({(y',?) : (c,y',)?)
ef((C—C)N(Vy) )} =0, that is, pw{{HE,. ), AE, .. x"):
(xh .o ) € (C—C) N (V) andfi(x!,...,x") =c}) = 0.

Let us take any u = (u',u?, .. )EF( ). Since F~':F(U,) - U, is a
diffeomorphism, the rank of (F~!)’ ( ) for every y € F(U,) is m. Now, since u €
F(U,), the rank of (F~')'(u) is m. Since the rank of (F~!)'(x) is m, and

rank ((f o (F~1)) ()} = rank (' ((F ") (w))).

Since u € F(U,), and F is 1-1 over U,, there exists a unique x = (x',x
., X™) € U, such that F(x) =u, and hence, F~'(u) =x. Also, since (fi(x
X2, X)X LX) = ()cl ¥, X =Fx) =u= (', u?, ..., um), fi(x)
fAGL 2 X =ul =P x’” =u". Now, (fo(F~ 1))(141,142 ...,u’”)
f(
(
(
u

L8]

“II*H II“~

(
Flu' o, u™)) :f(Ffl(u)) f@) = (fi(x),A(x).f(x) = (', fo(x),
X)=@ f  (F W), F W)= (fzo(F D)), (fs0 (F71))(u ))
ul, (o (F~Y))(u',u?,...,um), (fs o (F~1))(u',u?,...,u™)). Hence, for every (u
2 ..., um) € F(U,),

It follows that for every u = (u',u*,...,u™) € F(U,)

rank (f' ((F~') (u))) = rank((fo (
1 0 0
k| (Di(fro (F)))w)  (Dafao (F))w) . (Dulfao (F1))(u)
(Di(fs o (F ) () (Da(fs o (F71)))(u) (Du(fs 0 (F71)))(u)
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Now, let x = (x',x%,...,x™) € (C — C,) N U,. It follows that x € (C — C;) N
U, C (C — (}), and hence, F(x) € F((C — C,) NU,) C F(U,). Thus,

(D)%) (Dufi) ()
3 > rank | (D1f5)(x) . (Duf2)(x) = rank(f'(x)) = rank (f' ((F ") (F(x))))
DA D)W s,

1 0 0
=rank | (Di(fho(F)(F(x) (Da(fro (F)))F(x) . (Dulfro (F‘)))(F(X))]~
L (Do (FON(F(x)  (Dafso (FT))(F(x))  (Dulfs o (F7'))(F(x))
1 0 0
0=det| (Di(ho (F1))(F(x)) (Da(fo o (F~1))(F(x)) (D3(fa 0 (F~1)))(F(x))
= det

1 0 0
0 =det| (Di(Ho (F)))(F(x)) (D2(fs o (F~1)))(F(x) (D4(fzo(F1)))(F(x))]

:det-(
(

etc. Hence, for every x = (x!,x2,.. ., xX") € (C—Cy)NU,

rank[(Dz(fzo (F)))(F(x)) (Ds(f2 0 (F”)))(F(X))-..(Dm(sz(F”)))(F(X))} <2,
(Da(fs o (F)(F(x)) (D3(fs o (FT)))(F(x)) " (Du(fs o (F71)(F(x))

Thus, for every u = (u',u?,...,u™) € F((C— Cy) NU,),

rank[wz(fz o (F)(w) (Ds(fs o (F-H)(w)-. (Du(fso <Fl>>><“>} <
(D2(fs o (F~)(w) (Da(fs 0 (F)))w)  (Dulfs o (F))) ()

Since F(U,) is open in R¥, {(4?,...,y") : (¢,¥?,...,y") € F(U,)} is open in
R™

Let us define a function f; : {(y?,...,y") : (¢,y?,. .., y") € F(U,)} — R? as fol-
lows: For every (y*, ...,y") satisfying (c,y?,...,y") € F(U,),
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fc(yz,...,ym) = ((fzo(F*l))(c,y2 ..... y"’),(3o(F71))(c,y2 ..... ym)).

Since (y2,...,y") (c,y%,...,y™) is smooth, and (f, o (F7!)) : F(U,) — R is
smooth, their composite (y?,...,y")+— (f2 0 (F~1))(c,y?,...,y") is smooth. Simi-
larly, (%, ...,y")— (s 0 (F71))(c,?,...,y™) is smooth. It follows that f; : {(y*,

oY) (6,32, .., Y") € F(U,)} — R? is smooth.

For every u = (u2, ..., u™) satisfying (c,u?, ..., um) F(U,), (D1(f.),)(?,
") = (Da(fr o (F71)))(c, 2, ou™), (Da(fe)) (..., u™) = (Ds(fao (F~ )))(
u?,...,u™), etc., and hence,

") = (£ (12 UM = (Dl(ﬂ)l)(”) (D 1) (u) - (Dk 1(1%)1)(”)

0 = ) = | (1)) ) (Do) ) (Decr(5),) 0

(Da(fa o (F71))(c,u?, ..., u™) (D3(fo0 (F71))(c,u?, ..., u™)
(Da(fs o (F71)) (e, u, . ..u™) (Ds(fs o (F~ 1)))( W2, um)
(Di(fa o (F~9)))(c,u?, . . ., um)}
(Di(fs o (F7Y)))(c,u?, . . ., u™)

Clearly, every point of {(y?,...,y") : (¢,y*,...,y") € F(CNU,)} is a critical
point of f.. (Reason: Take any u = (u?,...,u™) € {(?,...,y") : (0,)%,...,y")
€EF((C; —C)NU,)}. It follows that (0,y%,..., Yy eF({(C-C)NU,) C
F(U,), and

rank ((f;)' (u))
. (Da(fa 0 (F71))(c,u?, ..., u™) (D3(fo0 (F71))(c,u?, ..., u™)
(D2(fs o (F~1))) (e, 2, ..ou™) (Ds(fs 0 (F71))(e,u?, . u™)
Do (F ) e
(Di(fs o (F71)))(c,?, . ou™)

Now, by induction hypothesis, i, (f.({ (%, ..., y") : (¢,*,...,y") € F((C —C})
NU,)})) = 0. Since (V,)” C Uy,

0< i ({((2o (F7') (e y"), (o (F7)) (3% 5"))
(e ") e F((C—Ci) N (Va))})
<w({((Bo (F) (a3 (o (F7)) (e 0y")
:(c,y2 ..... y )GF(CHU)})
= ({02 s (e o)) €F((C— C1)NT)Y)) =0,
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m({((o (F7)) (e y), (o (F7)) (e y"))
e,y . Y") EF((C—C)N(V)7)}) =0.
It suffices to show that
{BE ) A X)) () e (C=C)n (V)7

and fi (x',...,%") = ¢}
c{((ho (FN)) (e oy (o (F)) (e 5™")
c

ey, .Y EF((C—C)N (V) )}
Let us take any (fz(xl,.. X), f(x ..., x") € LHS, where (x!,....x") €
(C—-C)N(V,)", and fi(x',...,x") =c. Now since (x!,...,x") € (C— ()
m(VG)7:

(e, ) it y%uﬂmzpw,ww)
and hence F~1(c,x2,...,x") = (x!,...,x™). It follows that

(B ) Ao 2™)
= (fz(Ffl(c,xz,...,x’")),f3(F71(c,x2,...,xm)))
= ((fz o (Ffl))(c,xz,...,xm), (f3 o (Ffl))(c,xz,...,)ﬂn)) € RHS.

Hence, LHS C RHS.

Thus, we have shown that for every a € (C — C}), there exists an open
neighborhood V,, € B of a such that u;(f((C—C;)N(V,)")) =0,and a € V, C
(Vo))" € G. Here, | J{(C—-C)N(V,) :ae(C—-Cy)} =(C—-Cy), so f((C

—C)) =fU{(C-C)n(Va) sae(C-C)}) =U{f((C —C)n(Va)) :
a € (C—Cy)}. Since each V, € B, and B is a countable collection, {f((C — C})
N(V,)"):a € (C— Cy)} is a countable collection, and hence,

(F(C - 1) ua(U{f (c-cyn a>>~ae<c—c1>})

< > mf(Cc-c)n = > 0=0
countable

countable

Thus, s (f(C — Cy)) = 0. O
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6.4 Sard’s Theorem on Manifolds

Theorem 6.27 Let m,n be positive integers such that m<n. Let M be an
m-dimensional smooth manifold, and N be an n-dimensional smooth manifold. Let
f M — N be a smooth mapping. Then, f(M) has measure zero in N.

Proof For simplicity, let n =m + 1. Let us define a mapping F: M xR — N
as follows: For every p € M, and t € R, F(p,t) = f(p). Clearly, F is smooth.
(Reason: We know that the mapping (p, 7) — p from product manifold M x R to M
is smooth. Since (p,7) — p from M x R to M is smooth, and f : M — N is smooth,
their composite (p,t) — f(p)(= F(p,t)) from M x R to N is smooth, and hence, F
is smooth).

Observe that {(p,0) : p € M}(C M x R) is of measure zero in M x R. (Reason:
Let (U x R, (¢ x Idg)) be an admissible coordinate chart of the product manifold
M x R, where (U, @) is an admissible coordinate chart of M, and (R,Idg) is an
admissible coordinate chart of R. We know that M x R is an (m + 1)-dimensional
smooth manifold. We have to show that u,  ,((¢ x Idg)({(p,0): pe M} N
(U x R))) =0, where p,,, denotes the (m + 1)-dimensional Lebesgue measure

over R™"!. Here,

tons1 (@ x 1d)({(p,0) : p € M} N (U x R)))
=t (@ X 1) ({(P, 0) : p € UY)) b1 ((9(p) x 1dg(0)) : p € U)
= tur1((@(p),0) 1 p € U) < g, (R" x {0}) = 0).

Since F : M x R — N is smooth, and {(p,0) : p € M}(C M x R) is of measure
zero in M X R, by Lemma 6.16, F({(p,0):p € M})(={F(p,0) :p e M} =
{f(p) : p € M} = f(M)) has measure zero in N, and hence, f (M) has measure zero
in N. O

Theorem 6.28 Let M be an m-dimensional smooth manifold, and N be an n-
dimensional smooth manifold. Let f : M — N be a smooth mapping. Let C be the
collection of all critical points of f. Then, f(C) has measure zero in N.

Proof Let us take any admissible coordinate chart (V, ) for N. We have to show
that

#(((F(C)) N V)) =0,

where p, denotes the n-dimensional Lebesgue measure over R”. Since M is an m-
dimensional smooth manifold, by Lemma 4.49, there exists a countable collection
{(Ur,0,), Uz, @,), (Us, @3), ...} of admissible coordinate charts of M such that
{U17U27U3,...} is a basis of M. Here, CCM =U,UU,UU3U---, so
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0<p,(¥((F(C))NV))
= w,W(F(CNUHU(CNU)U(CNU;)U---))NV))

= mW((F(CNUN))UFICNL))UF(CNU;))U--)NV))

= 1w, (F(CNUN))NVIU(FICNU))NV)U((F(CNUz)NV)U--))
= 1w, (W((FCNUN))NV)UR((F(CNU))NV)U((F(CNUs)NV)U--)
S, (W ((F(CNUN)NV)) + 1, (W((F(CN U2)) N V))

1, (W((F(CNTU))AV)) + -

(
(W (

a (W
(W (
(W (

Since

0 < p, (W((f
<un( ((f

+ 1, (W ((F(CNU2)) N V))

+ 1, (W ((F(CNU))NV)) + -+,

it suffices to show that for each k = 1,2, ...,

c)nv))

(
(CNU))NV))

1, (b ((F(CNUY)NV)) =0.

Let us try to show that

1w, ((f(CNU))NV)) =0.

Since ¢, is a diffeomorphism from open set U; onto open set ¢, (U, ), and i} is a
diffeomorphism from open set V onto the open set y(V), the collection of all critical

points of f in U; is equal to (¢,)" (the collection of all critical points of (i o fo
()" Din ¢, (Uy)).Sincef : M — N is asmooth mapping, y o f o (¢,) " is smooth.
Since Y of o (¢,)" " is smooth, by Lemma 6.26, 0 = w,((Wofo(p) ") (the
collectionof all ~critical points of (Y of o (@,)"") in @, (U)))) = u,((Y of)

((¢;)”" (thecollection of all critical pointsof (o f o (¢,) ")in @, (U1)))) = u,
((y o f)(collectionof all critical points of fin U;)) = w, (¥ (f(collection of all
critical points of fin Uy))) = w, (Y ((f(CNUy)) NV)). Thus, w, (Y ((f(CN Up))N
V)) = 0. Similarly,

1, (W ((F(CNU))NV)) =0, 1,(p((F(CNU3))NV)) = 0, ete.

Theorem 6.28 is known as Sard’s theorem.



Chapter 7
Whitney Embedding Theorem

This is the smallest chapter of this book, because it contains only two theorems
which are due to Whitney. These theorems have three serious reasons to study.
Firstly, in its proof the celebrated Sard’s theorem got an application. Secondly, the
statement of Whitney embedding theorem was contrary to the common belief that a
smooth manifold may not have any ambient space. Thirdly, in its proof, Whitney
used almost all tools of smooth manifolds developed at that time. Fortunately, in
this chapter we have all the prerequisite for its proof in the special case of compact
smooth manifolds. For the general case, which is more difficult, one can find its
proof somewhere else.

7.1 Compact Whitney Embedding in R

Lemma 7.1 Let M be an m-dimensional smooth manifold. Let M be compact.
Then, there exists a positive integer N such that M is embedded in the Euclidean
space RY.

Proof Since M is an open cover of M, by Lemma 4.52, there exists a countable
collection (Uy, ¢,), (Uz, @5), (Us, @3),... of admissible coordinate charts of
M such that

1. Uy, U,,Us,... covers M,

2. Uy, U,, Us, ... is locally finite,

3. Each ¢,(U,) is equal to the open ball B3(0),

4. 7' (B1(0)), 3 (B1(0)), 3" (B1(0)),. .. is an open cover of M.

Since ¢ 1(B1(0)), ¢5 1 (B1(0)), @3 (B1(0)), ... is an open cover of M, and M is
compact, there exists a positive integer k such that ¢! (B1(0)), ..., ¢; ' (B1(0)) is
an open cover of M. For every i = 1,...,k, ¢; ! is continuous, and B[0] is com-
pact, so ¢; ' (B;[0]) is compact. ¢; ' (B[0]) is compact in M, and M is Hausdorff, so
@71 (B1[0]) is a closed subset of M. Since ¢;'(B;[0]) is a closed subset of M,
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¢;1(B2(0)) is an open subset of M, and ¢;!(B[0]) C ¢;'(B2(0)), by Lemma
4.58, there exists a smooth function ¥, : M — [0, 1] such that

a. for every x in ¢; 1(B,[0]),¢;(x) = 1,
b. supp ¥; C ;' (B2(0)).

Here, ¢, : Uy — ¢ (U1)(C R™), so let ¢; = (¢yy, ..., @1,), Where each ¢y; :
U, — R. Similarly, let @5 = (@, . . ., ¢2,,), Where each @,; : Uy — R, etc.

Take any p € Ui N (o7 (B2[0])). Clearly, y,(p)¢;,(p) = 0. (Reason: Since
supp ¥, is contained in ¢!(B2(0)), ¥, (x) = 0 for every x & ¢;'(B,(0)). Since
p € UIN (o7 (Ba[0]) = Ut — (o1 (B2[0))) € Ut — (97" (B2(0))), ¥,(p) =0,
and hence, ¥/, (p)@;(p) = 0- ¢;,(p) = 0. This shows that the following definition
of function is well-defined.

Let us define a function ¢;, : M — R as follows: for every p € M,

G — {%(1’)@11(17) if pe U )
0 it p € (o7 (B2[0])".

Now we want to show that ¢,; : M — R is a smooth function. Since (U, ¢,) is
an admissible coordinate chart of M, ¢, : Uy — ¢(U,) is a diffeomorphism, and
hence, ¢, :U; — ¢,(U;) is smooth. Since (@,...,0,) = ¢;: U —
¢, (U;)(C R™) is smooth, ¢,; : U; — R is smooth. Since ¢, : U; — R is smooth,
Y, :M —[0,1] is smooth, and U, is an open subset of M, their product
p— 1y (p)ey;(p) is smooth over open set U;. Also the constant function p+— 0 is
smooth over the open set (@7 !(B2[0]))°. Now since @, is well-defined, ¢ :
M — R is smooth. Since the function {,; : M — R is well-defined, for every
peEM,

o1(p) = {gl(p)(pn(p) ﬁi E &3?(9;32))]))

C

Similarly, the function ¢, : M — R defined as follows: for every p € M,

A _ [P)en(p) ifpe o' (B0])
P12(p) = {0 PP ifi € ((P(/gfl(Bz[O]))c

is smooth, etc. Further the function ¢,, : M — R is defined as follows: for every
peM,

0))

G (p) = {g2(p)§02l(p) if p € (92_15?1232[0]»5

if p € (o3

is smooth. Similarly, the function ¢,, : M — R is defined as follows: for every
pEM,
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) = {Wz( p)pxn(p) if p € ¢3! (B:[0])

Px(p ifpe ((p21( 2[0 ]))C

is smooth, etc. Now let us define a function

F:M — <}R><---><R> X -+ X (Rx---xR)
N——_———— N————

as follows: for every p € M,

F(p) = ((@11(P)s -+ @1m(P))s s (@11 (P)s -+ Pan(P))s (W1 (D), - 5 ¥ (P)))-

Since each component function of F is smooth, F : M — RY is smooth, where
N = k(m + 1). We shall try to show that

1. F: M — RV is 1-1,
2. F: M — R is a smooth immersion, that is, for every p € M, the linear map
dF, : T,M — TrpRY(=RY) is 1-1.

For 1: Let F(p) = F(q), where p,q € M. We have to show that p = q. Here,
(G110)s s PnP))s s (D1 ()s - s BinP)), (U1 (0, U () = Flp) =
F@) = (1@ o Pr@)s- s @ (@) s Pan@)s 2(@)s - (),
so  (Yy(p)y-.¥i(p) = W(q),.., ¥ (q), and for each i=1,...k,
(@0(P)s- - oun(P)) = (Ga(@)s- - Pinl).  Since  p €M = (B1(0))
U--- U@ (B1(0)), there exists a positive 1nteger [ such that 1<[<k, and
p €@ '(Bi1(0)), and hence, Y,(p)=1. Since 1<I<k, and
Wi @), ¥i(p)) = (Wi(q), - ¥i(q), 1= l/fz(p) =V(q). Since Y (p) =
V,(q), and ¥,(p) = 1, ¥,(¢) = 1. Since ¥,(p) # 0, and supp , is contained in
@7 (B2(0)), p € ¢ (B2(0))(C ;' (B[0])), and hence, p € ¢; ' (B2[0]). Since
P € o' (Baf0)), du(p) = viP)ou(p) = 101 (p) = 0u(P)s - s Pin(p) = ¥i(P) @1 (P)
- l(plm(p) - q)lm<p) Slmllarly’ 60[1( ) ¢ll( ) e 7@1}71( ) qDlm(q) Since
o) = (o), Pu(P)) = (G0 (P), - - P1n(P)) = (P11(@), - P1(@)) =
E(PIII<CI)7"~7@lm(Q)) = ¢1(a), ¢i(p) = @:(q). Since @,(p) = ¢,(q), and ¢, is
L, p=q.

For 2: Let us take any p € M. We have to show that the linear map dF), :
T,M — R" is 1-1. For this purpose, let (dF,)(v) = 0, where v € T,M. We have
to show that v = 0.



480 7 Whitney Embedding Theorem

Since p € M = o7 (B1(0)) U - U ' (B1(0)), there exists a positive integer
such that 1<[<k, and p€ (p[l(Bl (0)). It follows that for every x €
o7 (BUO)(C 7 (B0]). we have Yy() =1, and (fy(x).... y(¥)) =
(‘//l(x>(pll (x)7 ) lﬁ[(X)QDlm(X)) = (1(1011 (X), RS IQDlm()C)) = QDI(X). For SImphCIty’
let I = 1. Thus, for every x € ¢, 1(B1(0)), we have (¢y1(x), ..., 1n(x)) = @1 (x).

Here, 0 = (dF,)(v) = ((d(§1),)(v), .-, (d(P1),) (v), (d(¥1),)(v), - (), ) (v)) =
((d(@1),) (V) -5 (d(@),) (v), (@ (1)) V), - -, (A1), ) (v)), s0 (d(@y),)(v) = 0.
Since ¢, is a diffeomorphism, d((pl)p is an isomorphism. Since d((pl)pis an iso-
morphism, and (d(¢;),)(v) =0, v = 0.

Since F: M — RN is 1-1, F: M — R" is a smooth immersion, and M is
compact, by Note 5.72, F : M — R" is a smooth embedding. O

Note 7.2 The above Lemma 7.1 is known as the compact Whitney embedding in
RV,

7.2 Compact Whitney Embedding in R*"*!

Lemma 7.3 Let M be an m-dimensional smooth manifold. Let M be compact.
Then, there exists an embedding F : M — R+

Proof By Lemma 7.1, there exists a positive integer N such that M is embedded in
the Euclidean space R". Since M is embedded in the Euclidean space R", there

exists a smooth embedding f : M — RV, O
Case I when N <2m + 1. Let us not distinguish between (xi,...,xy)(€ RY)
and

2m+1
Xty 0xy, 0,...,0 | (€ R,
—— N —

N (2m+1)—-N

Thus, RN ¢ R¥*! RY is an N-slice of R*""! and R" satisfies local N-slice
condition. It follows, by Note 5.97, that RY is an N-dimensional embedded sub-
manifold of R*"! and hence, there exists a smooth embedding g : RY — R?"*!,
Since f: M — RY is a smooth embedding, and g:RY — R*"*! is a smooth
embedding, their composite map g o f : M — R*"*! is a smooth embedding.

Case II when 2m + 1 <N. Since M is an m-dimensional smooth manifold, and R
is a 1-dimensional smooth manifold, the product M x M x R is a
(2m + 1)-dimensional smooth manifold. Let us define a mapping o :
M x M x R — RY as follows: for every p,q € M, and t € R,



7.2 Compact Whitney Embedding in R*"*! 481
O((paQa t) = t(f(p) _f(Q))

Clearly, o is smooth. (Reason: Since (p, g, ) — p is smooth, and f : M — R is
smooth, their composite (p,q,?)+— f(p) is smooth. Similarly, (p,q,t)—f(q) is
smooth. Since (p,q,t)—f(p) is smooth, and (p,q,t)—f(g) is smooth,
(»,q,0)— (f(p),f(q)) from M xMxR to RYxRM is smooth. Since
(P, g, 1) — (f(p),f(q)) fromM x M x RtoRY x R is smooth, and (x,y) > (x — y)
from RY x RY to R is smooth, their composite (p, q,1) — (f(p) — f(q)) from M x
M x R to RY is smooth. Since (p,q,?)+ ¢ from M x M x R to R is smooth, and
(p,q,t)— (f(p) —f(q)) from MxMxR to RY is smooth, (p,q,t)—
(t,(f(p) —f(q))) from M xM xR to RxRY is smooth. Since (p,q,t)r
(t,(f(p) — f(q))) from M x M x R to R x R" is smooth, and (7, x) — tx from R x
RY to R" is smooth, their composite (p, q,1) — t(f(p) — f(q)) (= a(p,q,t)) from
MxMxR to RY is smooth, and hence, a: M x M x R — RY is smooth.)
Since o: M x M x R — RY is smooth, and dim(M x M x R) =2m+ 1 <N =
dim(R"), by Theorem 6.27, uy(a(M x M x R)) = 0, where uy denotes the N-
dimensional Lebesgue measure over R".

Let us define a mapping f:TM — RY as follows: for every (p,v)€
TM(= 11,c, T-M), where p € M, and v € T,M,

Bp,v) = (df)(v)-

Recall that TM, the tangent bundle of M, is a 2m-dimensional smooth manifold.
Clearly, o is smooth. (Reason: Since f : M — R is smooth, by Theorem 5.24,
()= (F(p), (dfy)()) from TM 1o TRY(= [[,epn (TRY) = [ BY =
{(r,x):r € RVandx € RV} =RY x RY) is smooth. Since (p,v)— (f(p),
(df,)(v)) from TM to RY x RN is smooth, and (x,y)+y from RY x RY to R is
smooth, their composite (p,v) +— (df,)(v)(= B(p,v)) from TM to R" is smooth, and
hence, f:TM — R is smooth.) Since f:TM — R" is smooth, and
dim(TM) = 2m<2m + 1 <N = dim(R"), by Theorem 6.27, uy(B(TM)) = 0. Since
a(M x M x R) C RN, B(TM) C RY, py(a(M x M x R)) = 0, and uy(B(TM)) = 0,

0 < puy(((M x M xR))U (B(TM))) <y (ee(M x M x R)) + py (B(TM))

and hence, uy(((M x M x R))U (B(TM))) =0. This shows that RY —
(((M x M x R))U (B(TM))) is nonempty, and hence, there exists a € R such
that a &€ o(M x M x R),a &€ S(TM), and |a| # 0.

Let H,({=v:v € R",v-a = 0}) denotes the orthogonal complement of a. We
know that H,, is a “hyperplane” of R", so we shall not distinguish between H, and
RVN~!. Let us define a function P, : R¥Y — RY~! as follows: for every v € RY,
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P,(v) (: v — (VC;?) a)

is the orthogonal projection of v on the hyperplane H,. Clearly, P, : RN — RV~ is
linear, and smooth, and therefore, d(P,), = P, for every v in RN, Since f : M — RY
is smooth, and P, : RY — RY~! is smooth, their composite (P, of) : M — RV~ ! is
smooth. Now we shall try to show that

1. (Pyof): M — RV 1is 1-1,

2. (Pyof): M — RY~! is an immersion, that is, for every p € M, the linear map
d(Paof),  T,M — T(p,or)p) RV ") (= RY™!) is 1-1, that is, for every p € M,
(d(Pgof),)(w) =0 implies w = 0.

For 1: Let (P, of)(p) = (P.of)(q), where p,q € M. We have to show that
p = q. We claim that p = ¢. If not, otherwise, let p # gq. We have to arrive at a
contradiction. Since p # ¢, and f : M — RY is a smooth embedding (and hence,

fis 1=D), f(p) # f(q). Since Py(f(p)) = (Pa o f)(P) = (Paof)(q) = Pu(f(q)),

and P, : RV — RV~ is linear,

()~ F(g)) — M — Pu(F(p) —£(q)) = 0.
Since
((p) —flg) - LR a,

jal®

and f(p) # f(q), (f(p) —f(q)) - @ # 0, and hence,

P o f
“=F) @y -a P D) (”"”(f(m —f(q))-a>

€ a(M x M x R).

Thus, a € o(M x M x R), which is a contradiction. So our claim is true, that is,

p=gq. Thus, (P,of): M — R¥"is 1-1.
For 2: Let us take any p € M. Let (d(P,of),)(w) =0 where w € T,M. We
have to show that w = 0. If not, otherwise, let w # 0. We have to arrive at a
contradiction. Since f : M — R is a smooth embedding (and hence, f : M —
RY is an immersion), and p € M, the linear map df, : T,M — Ty, (R")(=R")
is 1-1. Since the linear map df, : T,,M—>RN is 1-1, and 0 #w € T,M,
(df,)(w) # 0. Here,
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() w) — % = Pu((df)0) = (Puo (df)) ()

Since

((dfy)(w)) - a

jal®

(dfy) (w) =

)

and (df,)(w) # 0, ((df,)(w)) - a # 0, and hence,

2

P vy gy (e
ai((dﬁ,)(w))ﬂ((dﬁ’)( )) (dﬁ’)<((d]g)(w))~a )

_ o
=/ (p’<<dfz><w>> e ) < B(IM).

Thus, a € (TM), which is a contradiction. Hence, w = 0.

483

Since (P, of): M — R¥"is 1-1, (P, of) : M — RY"! is an immersion, and
M is compact, by Note 5.72, (P,of): M — RY"! is a smooth embedding.
Continuing this construction repeatedly for finite number of times, we get a map

F : M — R*"*! which is an embedding.

Note 7.4 The Lemma 7.3 is known as the compact Whitney embedding in

O

R2m+ 1
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