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a b s t r a c t 

In this paper, an explicit analytical method called the variational iteration method is presented for solving 

the second-order singular initial value problems of the Lane–Emden type. In addition, the local conver- 

gence of the method is discussed. It is often useful to have an approximate analytical solution to describe 

the Lane–Emden type equations, especially in the case that the closed-form solutions do not exist at all. 

This convince us that an effective improvement of the method will be useful to obtain a better approx- 

imate analytical solution. The improved method is then treated as a local algorithm in a sequence of 

intervals. Besides, an adaptive version is suggested for finding accurate approximate solutions of the non- 

linear Lane–Emden type equations. Some examples are given to demonstrate the efficiency and accuracy 

of the proposed method. 
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. Introduction 

Recently, a lot of attention has been focused on the study of

ingular initial value problems (IVPs) in the second-order ordi-

ary differential equations (ODEs). Many problems in mathemati-

al physics and astrophysics can be modelled by the so-called IVPs

f the Lane–Emden type equation ( Chandrasekhar, 1967; Davis,

962; Richardson, 1921 ): 

 

y ′′ + 

2 

x 
y ′ + f (x, y ) = g(x ) , 

y (0) = a, y ′ (0) = b, 

(1) 

here a and b are constants, f ( x, y ) is a continuous real val-

ed function, and g ( x ) ∈ C [0, ∞ ]. When f (x, y ) = K(y ) , g(x ) = 0 ,

q. (1) reduces to the classical Lane–Emden equation, which was

sed to model several phenomena in mathematical physics and

strophysics such as the theory of stellar structure, the thermal

ehavior of a spherical cloud of gas, isothermal gas sphere, and
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heory of thermionic currents ( Chandrasekhar, 1967; Davis, 1962;

ichardson, 1921 ). 

The Lane–Emden type equations have significant applications

n many fields of scientific and technical world. Therefore vari-

us forms of f ( x, y ) and g ( x ) have been investigated by many re-

earchers (e.g., Chowdhury and Hashim, 2007; Shawagfeh, 1993;

azwaz, 2001 ). A discussion of the formulation of these models

nd the physical structure of the solutions can be found in the lit-

rature. The numerical solution of the Lane–Emden equation (1) , as

ell as other types of linear and nonlinear singular IVPs in quan-

um mechanics and astrophysics ( Krivec and Mandelzweig, 2001 ),

s numerically challenging because of the singularity behavior at

he origin x = 0 . But analytical solutions are more needed to un-

erstand physical better. Recently, many analytical methods were

sed to solve the Lane–Emden equation ( He, 2003; Liao, 2003;

ildirim and Ozis, 2007 ). Those methods are based on either se-

ies solutions or perturbation techniques ( Bender et al., 1989; Man-

elzweig and Tabakin, 2001; Ramos, 2005; 2008 ). However, the

onvergence region of the corresponding results is very small. 

The variational iteration method (VIM) was first introduced by

he Chinese mathematician J.H. He ( He, 1999; 1997a; 1997b; 1998;

e et al., 1999; He, 20 0 0, 20 06; He and Wu, 20 07; He, 20 07 )

http://dx.doi.org/10.1016/j.newast.2016.12.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/newast
http://crossmark.crossref.org/dialog/?doi=10.1016/j.newast.2016.12.004&domain=pdf
mailto:aghorbani@um.ac.ir
http://dx.doi.org/10.1016/j.newast.2016.12.004
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and has been widely applied by many researchers to handle lin-

ear and nonlinear problems. The VIM is used in Tatari and De-

hghan (2007) to solve some problems in calculus of variations.

This technique is used in Ozer (2007) to solve the boundary

value problems with jump discontinuities. Authors of Biazar and

Ghazvini (2007) applied the variational iteration method to solve

the hyperbolic differential equations. This method is employed

in Odibat and Momani (2006) to solve the nonlinear differential

equations of fractional order. For more and new applications of

the method the interested reader is referred to Lu (2015) , Lu and

Ma (2016) , Hu and He (2016) . 

The strategy being pursued in this work rests mainly on estab-

lishing a useful algorithm based on the VIM ( He, 1999; Ghorbani

and Momani, 2010 ) to find highly accurate solution of the Lane–

Emden type equations, which it 

• overcomes the main difficulty arising in the singularity of the

equation at x = 0 . 
• is simple to implement, accurate when applied to the Lane–

Emden type equations and avoid tedious computational works. 

The examples analyzed in the present paper reveal that the

newly developed algorithms are easy, effective and accurate to

solve the singular IVPs of the Lane–Emden type equation. 

2. Description of the method and its convergence 

The basic idea of the VIM is constructing a correction functional

by a general Lagrange multiplier where the multiplier in the func-

tional could be identified by variational theory ( He and Wu, 2007;

He, 2007 ). 

Here, the VIM is described for solving Eq. (1) . This method pro-

vides the solution as a sequence of iterations. It gives convergent

successive approximations of the exact solution if such a solution

exists, otherwise approximations can be used for numerical pur-

poses. 

To explain the basic idea of the VIM, we first consider Eq. (1) as

follows: 

L [ y (x )] + N[ y (x )] = g(x ) , (2)

with 

L [ y (x )] = y ′′ (x ) + 

2 

x 
y ′ (x ) and N[ y (x )] = f (x, y (x )) , (3)

where L denotes the linear operator with respect to y and N is a

nonlinear operator with respect to y . The basic character of the

VIM is to construct a correction functional according to the vari-

ational method as: 

y n +1 (x ) = y n (x ) + 

∫ x 

0 

λ(t ) 
(

y ′′ n (t ) + 

2 

t 
y ′ n (t ) + f (t , ̃  y n (t )) − g(t) 

)
dt , 

(4)

where λ is a general Lagrange multiplier, which can be identi-

fied optimally via variational theory, the subscript n denotes the

n th approximation, and ˜ y n is considered as a restricted variation,

namely δ ˜ y n = 0 . Successive approximations, y n +1 (x ) ’s, will be ob-

tained by applying the obtained Lagrange multiplier and a properly

chosen initial approximation y 0 ( x ). Consequently, the exact solu-

tion can be obtained by using 

y (x ) = lim 

n −→∞ 

y n (x ) . (5)

Now, if we want to determine the optimal value of λ( t ), we con-

tinue as follows: 

δy n +1 (x ) = δy n (x ) + δ

∫ x 

0 

λ(t ) 
(

y ′′ n (t ) + 

2 

t 
y ′ n (t ) 

)
dt , (6)
hich the stationary conditions can be achieved from the relation

6) as: 

 

1 − λ′ (x ) + 

2 
x 
λ(x ) = 0 , 

λ(x ) = 0 , 

λ′′ (x ) − 2 

xλ′ (x ) −λ(x ) 
x 2 

= 0 , 

(7)

nd the Lagrange multiplier is gained via the relation 

(t) = −
(

t − t 2 

x 

)
. (8)

Finally, the iteration formula can be given as: 

 n +1 (x ) = y n (x ) −
∫ x 

0 

(
t − t 2 

x 

)
(

y ′′ n (t) + 

2 

t 
y ′ n (t) + f (t, y n (t)) − g(t) 

)
dt. (9)

It is interesting to note that for linear Lane–Emden type equa-

ions, its exact solution can be obtained easily by only one iteration

tep due to the fact that the multiplier can be suitably identified,

s will be shown in this paper later. 

Now we give the following lemma for the iteration formula (9) .

emma 1. If y ( x ) ∈ C 2 [0, T ], then, for x ≤ T 

 x 

0 

(
t − t 2 

x 

)(
y ′′ (t) + 

2 

t 
y ′ (t) 

)
dt = y (x ) − y (0) . (10)

roof. The left hand side of the relation (10) can be written as

elow: 
 x 

0 

(
t − t 2 

x 

)(
y ′′ (t) 

)
d t + 

∫ x 

0 

(
2 − 2 t 

x 

)(
y ′ (t) 

)
d t. (11)

Now integrating by parts first integral (11) yields 

 

′ (t ) 

[
t − t 2 

x 

]t= x 

t=0 

−
∫ x 

0 

(
1 − 2 t 

x 

)(
y ′ (t) 

)
dt + 

∫ x 

0 

(
2 − 2 t 

x 

)(
y ′ (t) 

)
dt 

= 

∫ x 

0 

y ′ (t) dt = y (x ) − y (0) , (12)

his completes the proof of (10) . �

Using (9) and (10) , we have the following simple variational it-

ration formula: 

 n +1 (x ) = y (0) −
∫ x 

0 

(
t − t 2 

x 

)
( f (t , y n (t )) − g(t) ) dt. (13)

The VIM (13) makes a recurrence sequence { y n ( x )} for x ∈ [0,

 ]. Obviously, the limit of this sequence is the solution of (1) if

his sequence is convergent. 

heorem 2. If N[ y (x )] = f (x, y ) is Lipschitz-continuous in [0, T ] and

 ( x ) ∈ C [0, T ], then the sequence { y n ( x )} produced by (13) is conver-

ent for x ∈ [0, T ] . 

roof. In order to prove the sequence { y n ( x )} is uniformly conver-

ent to the solution y ( x ) of (1) , we first note that y n ( x ) can be writ-

en as 

 n (x ) = y 0 (x ) + y 1 (x ) − y 0 (x ) + · · · + y n (x ) − y n −1 (x ) 

= y 0 (x ) + 

n −1 ∑ 

j=0 

[ y j+1 (x ) − y j (x )] . 
(14)

Shortly we show that 

 

y n (x ) − y n −1 (x ) | ≤ N 

L 

(MLx ) n 

n ! 
, (15)
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hich this allows us to conclude that the series 

∞ 

 

n =0 

[ y n +1 (x ) − y n (x )] , (16)

s absolutely and uniformly convergent on the interval [0, T ] since

t is dominated by an infinite series 
∑ ∞ 

n =0 
N 
L 

(MLx ) n 

n ! which obviously

oes converge uniformly on the interval [0, T ] with no restriction

n M . 

According to (13) , note that 

 

y 1 (x ) − y 0 (x ) | = 

∣∣∣∣∫ x 

0 

(
t − t 2 

x 

)
( f (t, y 0 (t)) − g(t) ) dt 

∣∣∣∣ ≤ MNx, 

(17) 

here 

 = max 
0 ≤t≤x ≤T 

∣∣∣∣t − t 2 

x 

∣∣∣∣ and N = max 
0 ≤t≤x ≤T 

| f (t, y 0 (t)) − g(t) | . (18)

From (13) and (17) , and the assumption that | f (t, y n ) −
f (t, y n −1 ) | ≤ L | y n − y n −1 | where L denotes the Lipschitz constant of

 ( x, y ), it follows that 

 

y 2 (x ) − y 1 (x ) | ≤ M L 

∣∣∣∣∫ x 

0 

| y 1 (t) − y 0 (t ) | dt 

∣∣∣∣ ≤ N 

L 

(M Lx ) 2 

2! 
, (19) 

 

y 3 (x ) − y 2 (x ) | ≤ M L 

∣∣∣∣∫ x 

0 

| y 2 (t) − y 1 (t ) | dt 

∣∣∣∣ ≤ N 

L 

(M Lx ) 3 

3! 
, (20) 

. . . 

 

y n (x ) − y n −1 (x ) | ≤ N 

L 

(MLx ) n 

n ! 
. (21) 

So with the uniform convergence of the series (16) which we

ave here on the right side of (14) , we can take the limit of both

ides of (14) as n → ∞ to conclude that lim n → ∞ 

y n ( x ) exists for all

 ∈ [0, T ]. But this is exactly the sequence y n ( x ) in (13) , and since

e assumed that f ( t, y n ( t )) is continuous in y n ( t ), we can take the

imit as n → ∞ on both sides of (13) , allowing lim n →∞ 

f ( t , y n (t ) ) =
f ( t , y (t ) ) , to conclude that lim n →∞ 

y n (t) = y (t) , the solution to

1) . �

.1. A truncated VIM 

The successive iterations of the VIM may be very complex, so

hat the resulting integrals in the relation (4) may not be per-

ormed analytically. Also, the implementation of the VIM generally

eads to calculation of unneeded terms, which more time is con-

umed in repeated calculations for series solutions. Here, an effec-

ive modification of the VIM is applied to eliminate these repeated

alculations. To completely stop these repeats in each step, pro-

ided that the integrand of (4) in each of iterations is expanded in

ultivariate Taylor series around 0, we propose the following im-

rovement of the VIM (4) , which is called the truncated VIM (TV):

 n +1 (x ) = y n (x ) −
∫ x 

0 

F n (x, t ) dt , (22)

here 

t − t 2 

x 

)(
y ′′ n (t) + 

2 

t 
y ′ n (t) + f (t, y n (t)) − g(t) 

)
= F n (x, t) + O (x n +1 ) + O (t n +1 ) . (23) 

It is noteworthy to point out that the TV formula (22) can can-

el all the repeated calculations and terms that are not needed as
ill be shown below. Furthermore, it can reduce the size of calcu-

ations. Most importantly, however, it is the fact that the TV algo-

ithm (22) will solve a Lane–Emden equation exactly if its solution

s an algebraic polynomial up to some degree. 

.2. A local VIM 

In general, by using the TV formula (22) , we obtain a series

olution, which in practice is a truncated series solution. This se-

ies solution gives a good approximation to the exact solution in a

mall region of x . An easy and reliable way of ensuring validity of

he approximations (22) for large x is to determine the solution

n a sequence of equal subintervals of x , i.e. I i = [ x i , x i +1 ] where

 i = x i +1 − x i , i = 0 , 1 , · · · , N − 1 , with x 0 = 0 and x N = T . Accord-

ng to the relation (22) , we can construct the following piecewise

V approximations (PTV) in the subintervals I i . On [ x 0 , x 1 ], let 

 

 

 

 

 

 

 

 

 

 

 

 

 

y 1 ,m +1 (x ) = y 1 ,m 

(x ) −
∫ x 

x 0 

F 1 ,m 

(x, t ) dt , m = 0 , 1 , · · · , n 1 − 1 , 

y 1 , 0 (x ) = y (0) + y ′ (0)(x − x 0 ) = c 0 + c ′ 0 (x − x 0 ) , (
t − t 2 

x 

)(
y ′′ 1 ,m 

(t)+ 

2 

t 
y ′ 1 ,m 

(t) + f (t , y 1 ,m 

(t )) − g(t) 
)

= F 1 ,m 

(x, t) 

+ O ((x − x 0 ) 
n +1 ) + O ((t − x 0 ) 

n +1 ) . 

(24) 

Then we can obtain the n 1 -order approximation y 1 ,n 1 (x ) on [ x 0 ,

 1 ]. On [ x 1 , x 2 ], let 

 

 

 

 

 

 

 

 

 

 

 

 

 

y 2 ,m +1 (x ) = y 2 ,m 

(x ) −
∫ x 

x 1 

F 2 ,m 

(x, t ) dt , m = 0 , 1 , · · · , n 2 − 1 , 

y 2 , 0 (x ) = y 1 ,n 1 (x 1 ) + y ′ 1 ,n 1 (x 1 )(x − x 1 ) = c 1 + c ′ 1 (x − x 1 ) , (
t − t 2 

x 

)(
y ′′ 2 ,m 

(t)+ 

2 

t 
y ′ 2 ,m 

(t) + f (t , y 2 ,m 

(t )) − g(t) 
)

= F 2 ,m 

(x, t)

+ O ((x − x 1 ) 
n +1 ) + O ((t − x 1 ) 

n +1 ) . 

(25) 

Then we can obtain the n 2 -order approximation y 2 ,n 2 (x ) on [ x 1 ,

 2 ]. In a similar way, on [ x i , x i +1 ] , i = 2 , 3 , · · · , N − 1 , we set 

 

 

 

 

 

 

 

 

 

 

 

 

 

y i +1 ,m +1 (x ) = y i +1 ,m 

(x ) −
∫ x 

x i 

F i +1 ,m 

(x, t ) dt , m = 0 , 1 , · · · , n i +1 − 1

y i +1 , 0 (x ) = y i,n i (x i ) + y ′ i,n i (x i )(x − x i ) = c i + c ′ i (x − x i ) , (
t − t 2 

x 

)(
y ′′ i +1 ,m 

(t) + 

2 

t 
y ′ i +1 ,m 

(t) + f (t , y i +1 ,m 

(t )) − g(t) 
)

= F i +1 ,m 

(x, t) + O ((x − x i ) 
n +1 ) + O ((t − x i ) 

n +1 ) , 

(26) 

o obtain the n i +1 -order approximation y i +1 ,n i +1 
(x ) on [ x i , x i +1 ] . 

Therefore, according to (24) –(26) , the approximation of

q. (1) on the entire interval [0, T ] can be obtained. It should

e emphasized that the VIM and TV algorithms provide analyti-

al solutions in [0, T ], while the PTV technique provides analyti-

al solutions in [ x i , x i +1 ] , which are continuous at the end points

f each interval, i.e., y i,n i (x i ) = c i = y i +1 ,n i +1 
(x i ) and y ′ 

i,n i 
(x i ) = c ′ 

i 
=

 

′ 
i +1 ,n i +1 

(x i ) , i = 1 , 2 , · · · , N − 1 . 

It is obvious that the best PTV method of (26) can be achieved

y using a variable order of n i +1 and a variable step size h i in the

olution to obtain a specified tolerance. Therefore, the following

daptive strategy based on the variable step size is proposed for

he PTV method, which we summarize it as the APTV (see, e.g.,

airer and Wanner, 1991 and the references therein). This tech-

ique simplifies computation, and saves time and work, as will be

bserved later in this paper. 

Let y i +1 ,k be the solution of the fixed k -order PTV formula with

he step size h i and ̂

 y i +1 ,k the solution with the step size h i /2. Tak-

ng the difference of y i +1 ,k and ̂

 y i +1 ,k , the local error estimator of
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y i +1 ,k 

Est = ̂

 y i +1 ,k − y i +1 ,k , (27)

is defined. This value is an estimation of the main part of the lo-

cal discretization error of the method. Additionally, let r be the di-

mension of the ODE system, and Atol and Rtol the user-specified

absolute and relative error tolerances, respectively. The tolerances

occurring in each step are denoted by 

T ol j = Atol + Rtol. | y j 
i +1 ,k 

| , j = 1 , . . . , r. (28)

Taking

err = 

√ √ √ √ 

1 

r 

r ∑ 

j=1 

(
Est 

T ol j 

)2 

, (29)

as a measure we find an optimal step size h opt by comparing err to

1. Thus we obtain the optimal step size as 

h opt = h i . 

(
1 

err 

)α

, (30)

where for err ≤ fac err ( fac err ∈ (0, 1]), we use α = 

1 
k +1 

, and for err >

fac err , α = 

1 
k 

. This is, of course, not the best choice for all problems.

The new step size 

h new 

= h i +1 = h i .min 

{
fac max , max 

{
fac min , fac. 

(
1 

err 

)α
}}

, (31)

is obtained by using err with k as order of the approximation, in-

stead of order of consistency. The integration of the growth factors

fac max and fac min to relation (31) prevents for too large step in-

crease and contribute to the safety of the code. Additionally, using

the safety factor fac makes sure that err will be accepted in the

next step with high probability. The step is accepted, in the case

when err ≤ fac err , otherwise it is rejected and then the procedure

is redone. In both cases the new solution is computed with h new 

as step size. 

3. Implementations 

To give a clear overview of the content of this study, sev-

eral Lane–Emden type equations will be studied. These equations

will be tested by the above-mentioned algorithms, which will ulti-

mately show the usefulness and accuracy of these methods. More-

over, the numerical results indicate that the approach is easy to

implement. All the results here are calculated by using the sym-

bolic calculus software Maple 17. Also, all calculations are car-

ried out in a Toshiba Tecra A8 (Windows 8.1 Professional): Intel(R)

Core(TM)2 Duo Processor T720 0 (2.0 0 GHz, 4 MB Cache, 997 MHz,

0.99 GB of RAM). 

Example 1. As a first example, we consider the following lin-

ear, non-homogeneous Lane–Emden equation, i.e., Eq. (1) with

f (x, y ) = y and g(x ) = 6 + 12 x + x 2 + x 3 (see, e.g., Parand et al.,

2010 ): 

y ′′ + 

2 

x 
y ′ + y = 6 + 12 x + x 2 + x 3 , (32)

subject to the initial conditions 

y (0) = 0 and y ′ (0) = 0 . 

The VIM has a very simple approach. Its concepts begin with

dividing the left hand side of (32) into two parts, i.e., the linear

operator L and the nonlinear operator N as: 

L [ y (x )] = y ′′ + 

2 

x 
y ′ + y and N[ y (x )] ≡ 0 . (33)
c  
This allows us to construct a variational iteration relation for

q. (32) as follows: 

 n +1 (x ) = y n (x ) −
∫ x 

0 

(
t 

x 
sin (x − t) 

)
(

y ′′ n (t) + 

2 

t 
y ′ n (t) + y n (t) − 6 − 12 x − x 2 − x 3 

)
dt. (34)

By using simple integration by parts, similar to Lemma 1 , we

ave 

 x 

0 

(
t 

x 
sin (x −t) 

)(
y ′′ n (t)+ 

2 

t 
y ′ n (t) + y n (t) 

)
dt =y (x ) − y (0) 

sin (x ) 

x 
. 

(35)

In the light of (34) and (35) , therefore, we have the following

IM: 

 n +1 (x ) = y 0 
sin (x ) 

x 
+ 

∫ x 

0 

(
t 

x 
sin (x − t) 

)(
6 + 12 x + x 2 + x 3 

)
dt, 

(36)

here y 0 = y (0) and y 0 (x ) = y (0) + y ′ (0) x . Utilizing (36) , we

et the following approximations with starting the initial guess

 0 (x ) = 0 : 

 n (x ) = x 2 + x 3 for all n ≥ 1 , (37)

hich is the exact solution of the Lane–Emden equation (32) . This

roves our above-mentioned claim that the VIM could solve the

inear Lane–Emden equation by only one iteration. 

xample 2. As another example, we consider the nonlinear, non-

omogeneous Lane–Emden equation, i.e., Eq. (1) with f (x, y ) = y 3 

nd g(x ) = 6 + x 6 (see, e.g., Parand et al., 2010 ): 

 

′′ + 

2 

x 
y ′ + y 3 = 6 + x 6 , (38)

ubject to the initial conditions 

 (0) = 0 and y ′ (0) = 0 . 

Here, we aim to solve the equation (38) by means of the TV al-

orithm (22) . According to (22) , we can easily obtain the following

pproximations of the TV with starting the initial approximation

 0 (x ) = 0 : 

y 1 (x ) = 0 , 

y n (x ) = x 2 for all n ≥ 2 , 
(39)

hich the TV algorithm yields the exact solution. This also demon-

trates our above-noted claim that the PV algorithm can solve the

inear/nonlinear Lane–Emden equation exactly if its solution is an

lgebraic polynomial up to some degree. 

xample 3. As final example, we consider the nonlinear, homoge-

eous Lane–Emden-type equation, i.e., Eq. (1) with f (x, y ) = e y and

(x ) = 0 (see, e.g., Parand et al., 2010 ): 

 

′′ + 

2 

x 
y ′ + e y = 0 , (40)

ubject to the initial conditions 

 (0) = 0 and y ′ (0) = 0 . 

Here, we aim to solve the equation (40) by means of the above-

roposed methods. Since the integration of the nonlinear term e y 

n Eq. (40) is not easily evaluated, thus the VIM requires a large

mount of computational work to obtain few iterations of the so-

ution (we can replace the nonlinear term with a series of finite

omponents). However, we use the modified VIM method, i.e., the
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Fig. 1. Approximate solution for Example 3 using the TV algorithm where the 

dotted-line: the 20th-order TV algorithm and symbol: the numerical solution. 

Table 1 

The numerical results obtained from solving Example 3 using the 

4th-order APTV algorithm when fac err = 1 , fac = 0 . 9 , fac min = 0 . 5 and 

fac max = 1 . 5 . 

Algorithm T Atol Rtol No. of steps CPU time (s) 

APTV 10 0 0 10 −10 10 −10 1030 4 .156 

APTV 10 0 0 10 −11 10 −11 1819 7 .047 

APTV 10 0 0 10 −12 10 −12 3223 12 .156 

APTV 10 0 0 10 −13 10 −13 5720 21 .765 
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y
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e  

e

 

s

Fig. 2. Shows the absolute error ( E(x ) = | y 4 (x ) − y Numeric (x ) | ) of the 4th-order PTV 

solution for Example 3 . 

Fig. 3. Variable step size of the 4th-order APTV algorithm when At ol = Rt ol = 10 −13 

for Example 3 . 

u  

p

 

r  

T  

c

 

e  

t  

i  

f

4

 

t  

l  

t  
V algorithm (22) . According to (22) , we can easily obtain the fol-

owing approximations of (40) with starting the initial approxima-

ion y 0 (x ) = 0 : 

 2 (x ) = −1 

6 

x 2 , 

 4 (x ) = −1 

6 

x 2 + 

1 

120 

x 4 , 

 6 (x ) = −1 

6 

x 2 + 

1 

120 

x 4 − 1 

1890 

x 6 , (41) 

nd so on. Fig. 1 shows a comparison of approximation ob-

ained using the 20th-order TV algorithm with the numerical so-

ution of Eq. (40) . As observed, the TV algorithm (22) in solv-

ng Eq. (40) gives good approximations to the exact solution in a

mall region of x , i.e., x ∈ [0, 2.5]. In order to enlarge the conver-

ence region of the series solution, here we implement the PTV

26) proposed in Section 2.2 . According to (26) , taking N = 40 0 0

nd n i +1 = 4 , we can obtain the approximations of (36) on [0,

0 0 0]. Fig. 2 shows the absolute error (the difference between the

pproximate value and the numerical value) of the PTV solution

or n i +1 = 4 and h i = 0 . 25 . From Fig. 2 , it is easily found that the

resent approximation is efficient for a larger interval. 

Now, in order to show the efficiency of the above adaptive

echanism controlling the truncation error, we solve the above

quation using the before-mentioned APTV algorithm. The numer-

cal results can be observed in Table 1 . In Table 1 , we listed the

osted number of steps (labeled as No. of steps) for some differ-

nt values of T, Atol and Rtol , and the corresponding costed CPU

lapsed time (labeled as CPU time). 

Moreover, in Fig. 3 , one can see the plot of the variable step

ize using the fourth-order APTV algorithm for At ol = Rt ol = 10 −13 
nder the assumptions of Table 1 . By observing this graph we can

erfectly comprehend how the developed method works. 

Furthermore, the local discretization error of the APTV algo-

ithm for the value At ol = Rt ol = 10 −13 under the assumptions of

able 1 , which is an estimation of the principal portion of the lo-

al error, have been given in Fig. 4 . 

In closing our analysis, we point out that three concreted mod-

ling equations of second-order singular IVPs of the Lane–Emden

ype equation were investigated by using the algorithms proposed

n this paper, and the obtained results have shown noteworthy per-

ormance. 

. Conclusion 

Our application of the methods based on the VIM presented in

his paper to three Lane–Emden type equations indicates that for

inear Lane–Emden type equations, its exact solution can be ob-

ained easily by only one iteration step. This is due to the fact that
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Fig. 4. Local error of the 4th-order APTV algorithm when Rt ol = At ol = 10 −13 for 

Example 3 . 
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the multiplier can be suitably identified. Moreover, the TP algo-

rithm can solve a nonlinear Lane–Emden differential equation ex-

actly if its solution is an algebraic polynomial up to some degree.

For nonlinear Lane–Emden type equations, the method can be use-

ful in general. It is well-known that the achievement of methods to

solve the nonlinear IVPs of ODEs depends on the use of adaptive

step size mechanisms controlling the truncation error. For this rea-

son, an adaptive version of the VIM was proposed. The numerical

results demonstrate that the VIM is a useful analytic tool for solv-

ing the Lane–Emden type equations. 
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