
Chapter 1

Measures of dependence in

bivariate distributions families

1.1 Measures of dependence

In this section we explore ways in which copulas can be used in the study of

dependence or association between random variables.Jogdeo(1982): Dependence

relations between random variables is one of the most widely studied subjects in

probability and statistics. The nature of the dependence can take a variety of

forms and unless some specific assumptions are made about the dependence, no

meaningful statistical model can be contemplated.

1.1.1 Kendall’s tau

The sample version of the measure of association known as Kendall’s tau is de-

fined in terms of concordance as follows (Kruskal 1958; Hollander and Wolfe

1973; Lehmann 1975): Let (X1, Y1) and (X2, Y2) be independent and identically

distributed random vectors each with joint distribution function H. Then the

population version of Kendall’s tau is defined as the probability of concordance

1



2

minus the probability of discordance:

τ = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0]

Theorem 1(Nelsen 2007).Let (X1, Y1) and (X2, Y2) be independent and identi-

cally distributed random vectors each with joint distribution function H1 and H2

respectively, with common margins F (of X1 and X2) and G (of Y1 and Y2). Let

C1 and C2 denoted the difference between the probabilities of concordance and

discordance of (X1, Y1) and (X2, Y2), i.e. let

Q = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0].

Then

Q = Q(C1, C2) = 4
∫ 1

0

∫ 1

0
C2(u, v)dC1(u, v)− 1.

Corollary 1 Under the assumption of the Theorem

i- Q(C1, C2) = Q(C2, C1).

ii-Q is non decreasing in each argument:

C1 < ′C1, C2 < ′C2 ⇒ Q(C1, C2) ≤ Q(′C1, ′C2).

iii- Copulas can be replaced by survival copulas in Q

Q(C1, C2) = Q(Ĉ1, Ĉ2)

Theorem 2(Nelsen 2007).Let (X,Y ) be Joint df F with copula C then

τ = Q(C,C) = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1 = 4E(C(U, V ))− 1.

Example Let Π, M and W are multiple , And Frechet’s bounds respectively

Then

Q(M,M) = 1, Q(M,Π) = 1/3, Q(M,W ) = 0Q(W,Π) = −1/3, Q(W,W ) = −1, Q(Π,Π) = 0

Theorem 3(Nelsen 2007).Let (X,Y ) be Joint df F with Archimedean copula Cϕ

generated by ϕ, then

τ = 1 + 4
∫ 1

0

ϕ(t)
′ϕ(t)

dt.
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Theorem 4(Li et.al.2002). Let C1 and C2 be copulas. Then∫ ∫
I2

C(u, v)dC2(u, v) =
1
2
−

∫ ∫
I2

∂

∂u
C1(u, v)

∂

∂v
C2(u, v)dudv.

Remark The form of τC given in Theorem 2 is often not amenable to compu-

tation, especially when C is singular or if C has both an absolutely continuous

and a singular component. For many such copulas, the expression the following

for which is a consequence of Theorem 4 is more tractable.

τC = 1− 4
∫ ∫

I2

∂

∂u
C(u, v)

∂

∂v
C(u, v)dudv.

Example Let Cα,β be a member of the Marshall-Olkin family of copulas for

0 < α, β < 1.

Then

τα,β =
αβ

α− αβ + β

In the next Theorem, we relate Likelihood ration dependence to Kendall τ , in

the following theorem we see that Kendall’s τ can be interpreted as a measure of

average likelihood ration dependence. :

Theorem 5 Let X and Y be random variable with copula density function

c, then

τ = 2
∫ 1

0

∫ 1

0

∫ s

0

∫ t

0
[c(u, v)c(t, s)− c(u, s)c(t, v)]dudvdtds

Corollary 2 Under the assumption of the Theorem 5,

PLRD(X,Y)⇒ τC ≥ 0 and NLRD(X,Y) ⇒ τ ≤ 0.

1.1.2 Spearman’s rho

As with Kendall’s tau, the population version of the measure of association

known as Spearman’s rho is based on cocordance and discordance. To obtain

the population version of this measure (Kruskal 1958; Lehmann 1966), we now

let (X1, Y1), (X2, Y2) and (X3, Y3) be three independent random vectors with a
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common joint df H (whose margins are given F and G) and copula C. Spearman’s

rho is defined as following:

ρX,Y = 3(P [(X1 −X2)(Y1 − Y3) > 0]− P [(X1 −X2)(Y1 − Y3) < 0]).

Theorem 1(Nelsen,2007) Let X and Y be continuous random variables whose

copula is C. Then the population version of Spearman’s rho for X and Y is given

by

ρX,Y = ρC = 3Q(C,Π) = 12
∫ ∫

I2

uvdC(u, v)− 3 = 12
∫ ∫

I2

C(u, v)dudv − 3.

Remark 1 Since support of M is the diagonal v = u in I2, then∫ ∫
I2

g(u, v)dM(u, v) =
∫ 1

0
g(u, u)du

where g is an integrable function whose domain is I2. Similarly, since the support

of W is the secondary diagonal v = 1− u, hence∫ ∫
I2

g(u, v)dW (u, v) =
∫ 1

0
g(u, 1− u)du.

So

i-

Q(W,Π) = −1/3, Q(W,W ) = −1, Q(Π,Π) = 0,

and

Q(C,C) ∈ [−1, 1], Q(C,M) ∈ [0, 1], Q(C,W ) ∈ [−1, 0], Q(C,Π) ∈ [−1/3, 1/3].

Corollary 1 Let X and Y be continuous random variables whose copula is C,

then

ρS = 12
∫ ∫

I2

[C(u, v)− uv]dudv

Thus ρS is a measure of average distance between the distribution of X and Y

and independence. In fact Spearman’s rho can be interpreted as a measure of

average quadrant dependence.
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Definition 1 A numeric measure K of association between two continuous ran-

dom variables X and Y whose copula is C is a measure of concordance if it

satisfies the following properties.

1- K is defined for every pair X,Y of continuous random variables;

2- −1 ≤ K ≤ 1, KX,X = 1,KX,−X = −1, and KX,Y = KY,X ;

3- If X and Y are independent, then KX,Y = KΠ = 0;

4-K−X,Y = KX,−Y = −KX,Y ;

5- If C1 and C2 are copulas such that C1 < C2, then KC1 ≤ KC2 ;

7- If {(Xn, Yn)} is a sequence of continuous random variables with copulas Cn,

and if {Cn} converges pointwise to C, then limn→∞KCn = KC .

As a consequence of Definition we have the following theorem.

Theorem 2(Nelsen, 2007).Let K be a measure of concordance for continuous

random variables X and Y :

1-If Y is almost surely an increasing function of X, then KX,Y = KM = 1;

2-If Y is almost surely an decreasing function of X, then KX,Y = KW = −1;

3-If α and β are almost surely strictly monotone functions on Ran(X) and

Ran(Y ), respectively, then Kα(X)β(Y ) = KX,Y .

The next Theorem show that both Kendall’s tau and Spearman’s rho are mea-

sures of concordance according to the Definition.

Theorem 2(Nelsen, 2007) If X and Y are continuous random variables whose

copula is C, then the population versions of Kendall’s tau and Spearman’s rho

satisfy the properties in Definition and Theorem 2 for a measure of concordance.

Corollary 2If X and Y are continuous random variables whose copula is C,

then,

ρS = 12
∫ ∫

I2

uvdC(u, v)− 3 =
Cov(U, V )√

V ar(U).V ar(V )
.

1.1.3 The relationship between ρs and τ

Although both Kendall’s tau and Spearman’s rho measure the probability of

concordance between random variables with a given copula, the values of ρ and

τ are often quit different. In this section, we will determine just how different ρ
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and τ can be.The following Theorem due to Daniels (1950), for proof see Nelsen

(2007).

Theorem 1 Let X and Y be continuous random variables,then

−1 ≤ 3τ − 2ρS ≤ 1.

The next Theorem gives a second set of universal inequalities relating τ and ρS .

It is due to Durbin and Sauart (1951); Proof in Nelsen (2007).

Theorem 2 Let X and Y be continuous random variables,then

1 + ρS
2

≥ (
1 + τ

2
)2

and
1− ρS

2
≥ (

1− τ
2

)2

The inequalities in the preceding two theorems combine to yield.

Corollary 1 under the assumptions of Theorems 1,2 we have,

3τ − 1
2

≤ ρS ≤
1 + 2τ − τ2

2
, τ ≥ 0,

and
τ2 + 2τ − 1

2
≤ ρS ≤

1 + 3τ
2

, τ ≤ 0.

Theorem 3 Let X and Y be continuous random variables with joint distribution

function H, margins F and G, respectively, and copula C.

1- If X and Y are PQD, then

τ ≥ Q(C,C) ≥ Q(C,Π) ≥ Q(Π,Π),

and

τ ≥ 0, ρS ≥ 0, and 3τ ≥ ρS ≥ 0.

2-If X and Y are NQD, then

τ ≤ Q(C,C) ≤ Q(C,Π) ≤ Q(Π,Π),

and

τ ≤ 0, ρS ≤ 0, and 3τ ≤ ρS ≤ 0.
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Theorem 4 Let X and Y be continuous random variables.

1-(Caperaa and Genest, 1993) If LTD(Y |X) and RTI(Y |X) (or LTD(X|Y ) and

RTI(X|Y )), then

1 ≥ ρS ≥ τ ≥ 0.

2-( Fredricks and Nelsen,2007)If LTI(Y |X) and RTD(Y |X) (or LTI(X|Y ) and

RTD(X|Y )), then

−1 ≤ ρS ≤ τ ≤ 0.

1.1.4 The Blomqvist medial coefficient

This coefficient, also known as quadrant test of Blomqvist, evaluates the de-

pendence at the center of a distribution. This measure, often called the medial

correlation coefficient, will be denoted β, and given by

β = βX,Y = P [(X − x̃)(Y − ỹ) > 0]− P [(X − x̃)(Y − ỹ)]

where x̃ and ỹ are medians of X and Y , respectively. But if X and Y are

continuous with joint df H and margins F and G respectively, and Copula C, then

F (x̃) = G(ỹ) = 1/2 and we have β = 4H(x̃, ỹ) − 1.But H(x̃, ỹ) = C(1/2, 1/2),

and thus

β = 4C(
1
2
,
1
2

)− 1.

If X and Y are independent then in particular C(1
2 ,

1
2) = 1

4 , then

β = 4C(
1
2
,
1
2

)− 1 = 0

in FGM family β = 1
4 + θ

16 .
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1.1.5 Gini’s γ coefficient

Let X and Y be continuous r.v.’s with joint distribution function H and margins

F and G and copula C. The Gini’s γ coefficient, defined as the following:

γC = 2
∫ 1

0

∫ 1

0
(|u+ v − 1| − |u− v|)dC(u, v).

The following Theorem show that γ, like ρS and τ , is a measure of association

based upon concordance.

Theorem 1(Nelsen,2007) Let X and Y be continuous random variables whose

copula is C. Then the population version of Gini’s measure of association for X

and Y is given by,

γX,Y = γC = Q(C,M) +Q(C,W ).

Corollary 1Under the assumptions of Theorem 1, we have another form for

Gini’s γ is given by

γC = 4{
∫ 1

0
C(u, 1− u)du−

∫ 1

0
[u− C(u, u)]du}.

In FGM family we have γc = 4θ
15 . Like Kendall’s tau and Spearman’s rho, both

γ and β are also measures of concordance according Definition.The following

Theorem show that this. Theorem 2(Nelsen, 2007) If X and Y are continuous

random variables whose copula is C, then the population versions of Gini’s γ and

Blomqvist’s β satisfy the properties in Definition and Theorem 2 for a measure

of concordance.

1.1.6 Schweizer-Wolff’s index of dependence

An index closely related to Spearman’s ρs is the index σXY introduced by Scweizer

and Wolff (1981). Instead of considering the difference C(u, v)−uv Definition ρs

they use its absolute value to define:

σC = 12
∫ 1

0

∫ 1

0
|C(u, v)− uv|dudv.
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σXY is a measure of the volume between the surfaces C(u, v) and uv. Since∫ 1
0

∫ 1
0 |min{u, v} − uv|dudv = 1

12 , we have the two equivalences:

σXY = 0⇔ (X,Y )independent

σXY = 1⇔ XisamonotonefunctionofY.

1.1.7 Mutual information, relative entropy and derivatives mea-

sures

If X is a random variable, with density f1(x), then the entropy or the measure

of uncertainty is defined by:

EX = −
∫
f1(x) log(f1(x)dx.

If (X,Y ) is a pair of random variables with the density f(x, y), and the marginal

densities f1(x) and f2(y), then the entropy for this pair is:

EXY = −
∫ ∫

f(x, y) log(f(x, y))dxdy.

This entropy is maximum, when X and Y are independent. This definition can

be generalized with an n-vector (X1, X2, ..., Xn) in place of (X,Y ).The mutual

information of relative entropy is then defined as the following

δX,Y =
∫ ∫

f(x, y) log(
f(x, y)

f1(x)f2(y)
)dxdy.

If the components of (X,Y ) are independent, then δX,Y is zero and conversely

when the dependence is maximal, δX,Y approaches infinity. To normalize this

index, Joe(1989) defines:

δ∗ =
√

(1− exp(−2δ))

The index δ∗ is confined to the interval [0, 1], and in the case when the pair

(X,Y ) is bivariate normal is equal to the absolute value of the linear correlation

coefficient |ρ|. In FGM family δ =?.
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1.1.8 The quadratic Mutual information measure

The matual information between two random variables can be measured either

by Renyi’s divergence measure or by Kullback-Leibler divergence between their

joint pdf and the factorized marginal pdfs. Unfortunately, non of them can be

integrated with the Parzen window method to produce a simple from for mu-

tual information estimation. Based on the Cauchy-Schwartz inequality Principe

and Xu (—-) proposed a new mutual information measure between two random

variables Y1 and Y2 called the Quadratic mutual information defined as:

C(Y1, Y2) = log
(
∫ ∫

f2
12(y1, y2)dy1dy2)(

∫ ∫
f2

1 (y1)f2
2 (y2)dy1dy2)

(
∫ ∫

f12(y1, y2)f1(y1)f2(y2)dy1dy2)2

where f12(x, y) is the joint pdf and fi(x) are the marginal pdfs. All the quan-

tities are non-negative and equal to zero if and only if Y1 and Y2 are statistically

independent.

Let

f(u, v) = uv[1 + θ(1− u)(1− v)], u, v ∈ [0, 1], −1 ≤ θ ≤ 1.

then

C(U, V ) = log(1 +
θ2

9
) = 0⇔ θ = 0⇔ (U, V )isindependent.

1.1.9 Kochar and Gupta’s dependence measure

Let k be a fixed integer and consider dk(x, y) = F k(x, y)−F k1 (x).F k2 (y),∀x, y ∈ R

(according to notations of Kochar (1987)[3]).

Then it is obvious that for all k ≥ 1, if H0 : F (x, y) = F1(x).F2(y) true then

dk(x, y) = 0, if H1 : F (x, y) < F1(x).F2(y) true then dk(x, y) < 0, and if

H2 : F (x, y) > F1(x).F2(y) true then dk(x, y) > 0, that means significants of

independence , NQD and PQD respectively. The following measure of deviation

between H0 and H1 or (H2) considered,

Dk =
∫ ∫

R2

dk(x, y)dF (x, y) = D1k −D2k
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where,

P [ max
1≤i≤k

Xi ≤ Xk+1, max
1≤i≤k

Yi ≤ Yk+1] =

=
∫ ∫

R2

P [ max
1≤i≤k

Xi ≤ Xk+1, max
1≤i≤k

Yi ≤ Yk+1|Xk+1 = x, Yk+1 = y]dF (x, y)

=
∫ ∫

R2

P [ max
1≤i≤k

Xi ≤ x, max
1≤i≤k

Yi ≤ y|Xk+1 = x, Yk+1 = y]dF (x, y)

=
∫ ∫

R2

P [
k⋂
i=1

{(Xi ≤ x, Yi ≤ y)}]dF (x, y)

=
∫ ∫

R2

F k(x, y)dF (x, y) = D1k

and

D2k =
∫ ∫

R2

F k1 (x)F k2 (y)dF (x, y) =
∫ ∫

R2

F̄ (x, y)dF k1 (y)dF k2 (y), k ≥ 1.

It is obvious that the equality of the right hand of D2k obtain via the following∫ ∫
R2

F k1 (x)F k2 (y)dF (x, y) =
∫ ∫

R2

{
∫ y

−∞

∫ x

−∞
dF k1 (t)dF k2 (s)}dF (x, y)

=
∫ ∫

R2

{
∫ ∞
s

∫ ∞
t

dF (x, y)}dF k1 (x)dF k2 (y)(by Fubini′s theorem)

=
∫ ∫

R2

F̄ (x, y)dF k1 (y)dF k2 (y).

Note that in here (X1, Y1), · · · , (Xk+1, Yk+1) is a random sample of (X,Y ) with

common joint distribution function F (x, y). Now it follows that under H0 D1k =

D2k = 1
(k+1)2 . and under H1 we get

D1k =
∫ ∫

R2

F k(x, y)dF (x, y)

≤
∫ ∫

R2

F k1 (x)F k2 (y)dF (x, y)

=
∫ ∫

R2

F̄ (x, y)dF k1 (y)dF k2 (y)

<

∫ ∫
R2

F̄1(x).F̄2ydF
k
1 (y)dF k2 (y) =

1
(k + 1)2

.

Similarly under H2, we get D1k >
1

(k+1)2 . So, if H1 true then D1k < D2k <
1

(k+1)2 ,

and if H2 true then D1k > D2k >
1

(k+1)2 . for all k ≥ 1, respectively.
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Lemma Let (X,Y ) be a random vector with FGM distribution function.Then

for all k ≥ 1

i)

D1k =
k∑
i=0

{θi(Bet(k + 1, i+ 1))2 + θi+1(Bet(k + 1, i+ 1))2}

− 4
k∑
i=0

{θi+1Bet(k + 2, i+ 1)Bet(k + 1, i+ 1) + 4θi+1(Bet(k + 2, i+ 1))2}

ii)

D2k =
1

(k + 1)2
+

k2θ

(k + 1)2(k + 2)2
.

Corollary Under the assumptions of above Lemma, for all k ≥ 1 we get

θ = 0⇔ Dk =
1

(k + 1)2
− 1

(k + 1)2
= 0⇔ (X,Y ) is independent.

1.1.10 Tail dependence coefficients

Let X and Y be the r.v.’s with distribution functions F and G respectively.

Coles, et.al. (2000) have proposed two indices to measure tail dependence and a

diagnosis of such a dependence. The lower tail dependence coefficient is defined

as:

λL = lim
t→0+

P [Y ≤ G−1(t)|X ≤ F−1(t)]

and the upper tail dependence coefficient is defined as:

λU = lim
t→1−

P [Y > G−1(t)|X > F−1(t)]

If the above limits existed. In FGM family It can be checked that λL = λU = 0.

means that the FGM families are independence in tails.

Theorem Let C(u, v) be the copula of X and Y . If the limit in above exist then

λL = lim
t→0+

C(u, v)
u

and

λL = lim
t→1−

C̄(u, v)
1− u

= 2− lim
t→1−

1− C(u, v)
1− u



13

Corollary Let Cϕ be an archimedean copula with generator ϕ. Then

λL = lim
x→∞

ϕ−1(2x)
ϕ−1(x)

,

and

λU = 2− lim
x→0+

1− ϕ−1(2x)
1− ϕ−1(x)

.

1.1.11 Extremal tail dependence coefficients

(Frahm (2006)) Let ( X1, X2, . . . , Xn ) be a random vector with joint distribution

function F (x1, x2, . . . , xn) and marginal distribution functions F1 , . . . , Fn . More-

over, Fmin = min {F1(X1), . . . , F2(Xn)} and Fmax = max {F1(X1), . . . , F2(Xn)}.

The Lower extremal dependence coefficient (LEDC) of (X1, X2, . . . , Xn) is defined

as EL = lim
t→0+

P (Fmax ≤ t|Fmin ≤ t), whereas the upper extremal dependence

coefficient(UEDC)of(X1, X2, . . . , Xn)is defined as Eu = lim
t→1−

P (Fmin > t|Fmax > t)

, provided the corresponding limits exist.

Proposition ( Frahm (2006)) we can derive EL and EU via the quantities

λl and λu as follows.

EL =
λl

2− λl
and EU =

λu
2− λu

.

1.1.12 Clayton-Oakes association measure.

Clayton(1978) and Oakes (1989) defined the following association measure

θ(x, y) =
F̄ (x, y)D12F̄ (x, y)
D1F̄ (x, y)D2F̄ (x, y)

where D12F̄ (x, y) = ∂2

∂x∂y F̄ (x, y) , D1F̄ (x, y) = ∂
∂x F̄ (x, y) and

D2F̄ (x, y) = ∂
∂y F̄ (x, y) . The parameter θ(x, y) measures the degree of associ-

ation between X and Y , independence being implied by θ(x, y) = 1, positive

dependence by θ(x, y) > 1 and negative dependence by θ(x, y) < 1 (Gupta

(2003)).
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1.2 example and measures of dependence

In this section, we first discuss three local dependence measures, such as γ- mea-

sure, the Clayton-Oakes association measure(θ-measure) and ψ- measure and

drive the relationship of these measures with hazard negative dependence,then

we give some examples.

. γ-Measure:

Holland and Wang [9] defined, the local dependence function γh(x, y) as follows;

γ
h
(x, y) =

∂2Logh(x, y)
∂x∂y

=
1

h(x, y)
{h11(x, y)− h10(x, y)h01(x, y)

h(x, y)
}, (1.1)

where h(x, y) ≥ 0, hij = ∂i+jh(x,y)
∂xi∂yj , i, j = 0, 1, the mixed partial derivative of

h(x,y) exists and h is defined on a Cartesian product set. They show that this

measure is symmetric and γ = 0 if and only if X and Y are independent. Also,

Jones [11] and [12] studied dependence properties of this measure and proved

that γ is an appropriate index for measuring local likelihood ration dependence.

Remark 1.2.1. Let X and Y be continuous random variables with bivariate dis-

tribution function F (x, y) and survival function F̄ (x, y). Then, it is easy to show

that,

γF (x, y) =
f(x, y)F (x, y)−

∫ x
−∞ f(u, y)du

∫ y
−∞ f(x, v)dv

F 2(x, y)
,

and

γF̄ (x, y) =
f(x, y)F̄ (x, y)−

∫ ∞
x f(u, y)du

∫ ∞
y f(x, v)dv

F̄ 2(x, y)
.

Therefore,

• Lemma 4.2 in Holland and Wang [9] implies that X and Y are independent

if and only if γF (x, y) = 0 ( γ
F̄

(x, y) = 0) or, equivalently equality occur

in (1) or (2).

• Moreover, it is easy to show that the following implications hold

HND(X,Y )(HPD(X,Y ))⇔ γ
F̄

(x, y) ≤ (≥)0,
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and

LND(X,Y )(LPD(X,Y ))⇔ γF (x, y) ≤ (≥)0.

. Θ-Measure

Clayton[4] and Oakes[19] defined the following associated measure:

Θ(x, y) =
F̄ (x, y)D12F̄ (x, y)
D1F̄ (x, y)D2F̄ (x, y)

, (1.2)

whereD12F̄ (x, y) = ∂2

∂x∂y F̄ (x, y), D1F̄ (x, y) = ∂
∂x F̄ (x, y) andD2F̄ (x, y) = ∂

∂y F̄ (x, y).

The function Θ(x, y) measures the degree of association between X and Y , and

has direct relation to local dependence function, γ
F̄

(x, y).

• Θ(x, y) = 1 if and only if γ
F̄

(x, y) = 0 i.e X and Y are independent,

• Θ(x, y) > 1 if and only if γ
F̄

(x, y) > 0 i.e X and Y are positively dependent,

• Θ(x, y) < 1 if and only if γ
F̄

(x, y) < 0 or equivalently X and Y are nega-

tively dependent.

According to Gupta [7] we have the following quantities to formulate Θ(x, y).

r1(x, y) := − ∂

∂x
[log F̄ (x, y)] = −D1F̄ (x, y)

F̄ (x, y)
, r2(x, y) := − ∂

∂y
[log F̄ (x, y)] = −D2F̄ (x, y)

F̄ (x, y)

and
∂2

∂x∂y
log F̄ (x, y) = r1(x, y)r2(x, y)(Θ(x, y)− 1). (1.3)

So,

r(x, y) = r1(x, y)r2(x, y)Θ(x, y), (1.4)

where r(x, y) = f(x,y)
F̄ (x,y)

is Basu’s failure rate. We observe that,

Θ(x, y) < 1⇔ ∂2

∂x∂y
log F̄ (x, y) < 0⇔ RCSD(X,Y )⇔ r(x, y) < r1(x, y)r2(x, y).

. ψ- Measure

The following associated measure (known as ψ- measure) defined by Anderson et

al.[2];

ψ(x, y) =
P (X > x|Y > y)

P (X > x)
=

F̄ (x, y)
F̄1(x)F̄2(y)

(1.5)
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Under the some regular conditions, the following statements are valid for ψ-

measure in (15);

• ψ(x, y) = 1 ⇔ X and Y are independent.

• ∂2

∂x∂yψ(x, y) = γ
F̄

(x, y).

• If ψ(x, y) > 1 then (X,Y ) is PQD.

• If ψ(x, y) < 1 then (X,Y ) is NQD.

• If Θ(x, y) < (>)1 then ψ(x, y) < (>)1 (the converse is not true).

For more details, see Gupta [7].

The following proposition gives relationship between the mentioned local depen-

dence measures.

Proposition 1.2.2. Let (X,Y ) be an absolutely continuous random vector having

survival function F̄ (x, y). The following statements are equivalent

• Θ(x, y) < 1,

• γ
F̄

(x, y) < 0,

• ∂2

∂x∂yψ(x, y) < 0,

• r(x, y) < r1(x, y)r2(x, y),

• (X,Y ) is HND.

Proof. Combining (6), (11), (12), (13) and (14) the proposition proved immedi-

ately.

Example 1.2.3. (Farlie-Gumble-Morganstern distribution (FGM) [6]) Consider

the family of bivariate distribution functions

F (x, y) = F1(x)F2(y)[1 + α(1− F1(x))(1− F2(y))]
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where |α| ≤ 1 and F1(x) and F2(y) are continuous distribution functions. It can

be shown that,

γF (x, y)
αf1(x)f2(y)

[1 + αF̄1(x)F̄2(y)]2
≤ (≥)0 ⇔ α − 1 ≤ α ≤ 0(0 ≤ α ≤ 1).

Therefore, LND(X,Y )(LPD(X,Y )) if and only if −1 ≤ α ≤ 0(0 ≤ α ≤ 1).

In terms of survival functions F̄ (x, y) = P [X > x, Y > y]; F̄i(xi) = P [Xi >

xi]; i = 1, 2 the FGM family equivalent to

F̄ (x, y) = F̄1(x)F̄2(y)[1 + αF1(x)F2(y)], |α| ≤ 1.

It follows from simple calculations that

γ
F̄

(x, y) =
α f1(x)f2(y)

[1 + αF1(x)F2(y)]2
≤ (≥)0 ⇔ − 1 ≤ α ≤ 0(0 ≤ α ≤ 1),

so HND(X,Y )(HPD(X,Y )) if and only if −1 ≤ α ≤ 0(0 ≤ α ≤ 1).

For more details about FGM family see Mari and Kotz [15].

Example 1.2.4. (Gumbel’s bivariate exponential distribution) The survival func-

tion of Gumbel’s bivariate distribution is

F̄ (x, y) = exp{−α1x− α2y − βxy}, α1, α2 > 0 and 0 ≤ β ≤ α1α2.

For x < x′ and y < y′;

F̄ (x, y)F̄ (x′, y′) −F̄ (x, y′)F̄ (x′, y)

= exp{−α1(x+ x′)− α2(y + y′)}

×
[

exp{−β(xy + x′y′)} − exp{−β(xy′ + x′y)}
]
≤ 0.

Since xy + x′y′ ≥ xy′ + x′y , hence F̄ is RR2, and this implies that (X,Y ) is

HND.

Example 1.2.5. (Ali-Mikhail-Haq distribution [1]) Consider Ali-Mikhail-Haq

family of bivariate distribution functions

F (x, y) =
F1(x)F2(y)

1− β F̄1(x)F̄2(y)
, |β| ≤ 1
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where F1 and F2 are continuous distribution functions and F̄i = 1−Fi i = 1, 2.

by simple calculation, we obtain

γF (x, y) =
β f1(x)f2(y)

[1− β F̄1(x)F̄2(y)]2
≤ 0(≥ 0) ⇔ − 1 ≤ β ≤ 0(0 ≤ β ≤ 1).

So, LND(X, Y)(LPD(X, Y)) if and only if −1 ≤ β ≤ 0(0 ≤ β ≤ 1).

Remark 1.2.6. In the Example 1.2.4 we can use the Proposition 1.2.2 and obtain

r1(x, y) = − ∂

∂x
[log F̄ (x, y)] = α1 + βy

r2(x, y) = − ∂

∂y
[log F̄ (x, y)] = α2 + βx

r(x, y) =
f(x, y)
F̄ (x, y)

= (α1 + βy)(α2 + βx)− β

Θ(x, y) =
r(x, y)

r1(x, y)r2(x, y)
=

(α1 + βy)(α2 + βx)− β
(α1 + βy)(α2 + βx)

since αi > 0, i = 1, 2 and β ≥ 0 , therefore Proposition (3.1) implies that

(X,Y ) is HND.

1.2.1 measure of dependence based on copula

The copula function C(u, v) is a bivariate distribution function with uniform

marginals on [0, 1], such that

F (x, y) = CF (F1(x), F2(y))

By Sklar’s Theorem (Sklar, 1959), this copula exists and is unique if F1 and

F2 are continuous. Thus we can construct bivariate distributions F (x, y) =

CF (F1(x), F2(y)) with given univariate marginals F1 and F2 by using copula

CF ,(Nelsen, 2006). Then we have the following properties:

• (Nelsen, [16]) Let X and Y be continuous random variables with joint

distribution function F (x, y) and marginals F1(x) and F2(y) respectively,

then
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i) The copula C(u, v) and survival copula which refer to Ĉ(u, v) are given

by

CF (u, v) = F (F−1
1 (u), F−1

2 (v)), ∀u, v ∈ [0, 1],

and

Ĉ(u, v) = F̄ (F̄−1
1 (u), F̄−1

2 (v)), ∀u, v ∈ [0, 1]

Where, F−1
i and F̄−1

i are quasi-inverses of Fi and F̄i, i = 1, 2 respectively.

Note that;

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v), ∀u, v ∈ [0, 1]

ii) The partial derivatives ∂CF (u,v)
∂u and ∂CF (u,v)

∂v exist and c(u, v) = ∂2CF (u,v)
∂u∂v

is density function of CF (u, v).

• The Sklar’s theorem implies that in FGM family for −1 ≤ α ≤ 1

C(u, v) = Ĉ(u, v) = uv(1 + α(1− u)(1− v)), (1.6)

and

c(u, v) = 1 + α(1− 2u)(1− 2v). (1.7)

Also in Gumbel family for α1 = α2 = 1, the survival copula is

Ĉ(u, v) = uv. exp(−β ln(u) ln(v)), ∀0 ≤ β ≤ 1. (1.8)

Proposition 1.2.7. Let (X,Y) be a random vector with FGM distribution func-

tion and copula function given in (16), then

i) ψ(u, v) = Ĉ(u,v)
uv = 1 + α(1− u)(1− v),

ii) γC(u, v) = γĈ(u, v) = ∂2 log(C(u,v))
∂u.∂v

α
[1+α(1−u)(1−v)]2

,

iii) Θ(u, v) = Ĉ(u,v)
∂2Ĉ(u,v)

∂u.∂v
∂Ĉ(u,v)

∂u
∂Ĉ(u,v)

∂v

= (1+α(1−u)(1−v)).(1+α(1−2u)(1−2v))
(1+α(1−u)(1−2v))(1+α(1−v)(1−2u)) .
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• Figure 1 shows the surface of γα2(u, v)− γα1(u, v) for some values of α1, α2

such that α1 < α2 in FGM family with uniform marginals on (0, 1). These

surfaces, show that γα(u, v) increases in α.

• Figure 2 shows the surface of Θα2(u, v)−Θα1(u, v) for some values of α1, α2

such that α1 < α2 in FGM family with uniform marginals on (0, 1). These

surfaces, show that Θα(u, v) increases in α.

Proposition 1.2.8. Let (X,Y) be a random vector with Gumbel distribution func-

tion with α1 = α2 = 1 and survival copula given in (18), then

i) ψ(u, v) = exp(−β ln(u) ln(v)),

ii) γĈ(u, v) = βuv ln(uv)(1+β)−βuv−βu2v2 ln(u)−β2 ln(u) ln(v)
u3v3 ,

iii) Θ(u, v) = u2v2−βuv−βu2v2 ln(u)+β2uv ln(u) ln(v)
u2v2−βuv ln(u)−βuv ln(v))+β2 ln(u) ln(v)

.

• Figure 3 shows the surface of γβ2(u, v)− γβ1(u, v) for some values of β1, β2

such that β1 < β2 in Gumbel family. These surfaces, show that γβ(u, v)

decreases in β.

• Figure 4 shows the surface of Θβ2(u, v)−Θβ1(u, v) for some values of β1, β2

such that β1 < β2 in Gumbel family. These surfaces, show that Θβ(u, v) is

not monotone in β.

Remark 1.2.9. It is clear that ψα(u, v) in FGM family is increasing in α and

ψβ(u, v) in Gumbel family is decreasing in β.


