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The Callebaut inequality says that

n∑
j=1

(
A j �B j

) ≤
⎛
⎝ n∑

j=1

A j σ B j

⎞
⎠ �

⎛
⎝ n∑

j=1

A j σ
⊥B j

⎞
⎠ ≤

⎛
⎝ n∑

j=1

A j

⎞
⎠ �

⎛
⎝ n∑

j=1

B j

⎞
⎠ ,

where A j , B j (1 ≤ j ≤ n) are positive invertible operators, and σ and σ⊥ are
an operator mean and its dual in the sense of Kabo and Ando, respectively. In this
paper we employ the Mond–Pečarić method as well as some operator techniques
to establish a complementary inequality to the above one under mild conditions.
We also present some refinements of a Callebaut-type inequality involving the
weighted geometric mean and Hadamard products of Hilbert space operators.

Keywords: Callebaut inequality; operator mean; Mond–Pečarić method;
Hadamard product; operator geometric mean

AMS Subject Classifications: Primary: 47A63; Secondary: 15A60; 47A60

1. Introduction and preliminaries

Let B(H ) denote the C∗-algebra of all bounded linear operators on a complex Hilbert
space H with the identity I . In the case when dimH = n, we identify B(H ) with the
matrix algebra Mn of all n × n matrices with entries in the complex field. An operator
A ∈ B(H ) is called positive if 〈Ax, x〉 ≥ 0 for all x ∈ H , and we then write A ≥ 0. We
write A > 0 if A is a positive invertible operator. The set of all positive invertible operators
(resp., positive definite for matrices) is denoted by B(H )+ (resp., Pn). For self-adjoint
operators A, B ∈ B(H ), we say B ≥ A if B − A ≥ 0.

It is known that the Hadamard product can be presented by filtering the tensor product
A ⊗ B through a positive linear map. In fact, A ◦ B = U∗(A ⊗ B)U , where U : H →
H ⊗ H is the isometry defined by Ue j = e j ⊗ e j , where (e j ) is an orthonormal basis of
the Hilbert space H ; see [1]. In the case of matrices, one easily observes that the Hadamard

*Corresponding author. Emails: moslehian@um.ac.ir, moslehian@member.ams.org
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2 M. Bakherad and M.S. Moslehian

product of A = (ai j ) and B = (bi j ) is A ◦ B = (ai j bi j ), a principal submatrix of the tensor
product A ⊗ B = (ai j B)1≤i, j≤n .

Let f be a continuous real-valued function defined on an interval J . It is called operator
monotone if A ≤ B implies f (A) ≤ f (B) for all self-adjoint operators A, B ∈ B(H ) with
spectra in J . It said to be operator convex if f (λA + (1 − λ)B) ≤ λ f (A) + (1 − λ) f (B)

for all self-adjoint operators A, B ∈ B(H ) with spectra in J and all λ ∈ [0, 1].
The axiomatic theory for operator means of positive invertible operators have been

developed by Kubo and Ando [2]. A binary operation σ on B(H )+ is called a connection,
if the following conditions are satisfied:

(i) A ≤ C and B ≤ D imply Aσ B ≤ Cσ D;
(ii) An ↓ A and Bn ↓ B imply Anσ Bn ↓ Aσ B, where An ↓ A means that A1 ≥ A2 ≥

· · · and An → A as n → ∞ in the strong operator topology;
(iii) T ∗(Aσ B)T ≤ (T ∗ AT )σ (T ∗ BT ) (T ∈ B(H )).

There exists an affine order isomorphism between the class of connections and the class of
positive operator monotone functions f defined on (0,∞) via f (t)I = Iσ(t I ) (t > 0).
In addition, Aσ B = A

1
2 f (A

−1
2 B A

−1
2 )A

1
2 for all A, B ∈ B(H )+. The operator monotone

function f is called the representing function of σ . The dual σ⊥ of a connection σ with the
representing function f is the connection with the representing function t/ f (t).Aconnection
σ is a mean if it is normalized, i.e. Iσ I = I. The function f�μ(t) = tμ on (0,∞) for

μ ∈ (0, 1) gives the operator weighted geometric mean A�μ B = A
1
2

(
A

−1
2 B A

−1
2

)μ

A
1
2 .

The case μ = 1/2 gives rise to the geometric mean A�B. An operator mean σ is symmetric
if Aσ B = Bσ A for all A, B ∈ B(H )+. For a symmetric operator mean σ , a parametrized
operator mean σt , 0 ≤ t ≤ 1 is called an interpolational path for σ if it satisfies

(1) Aσ0 B = A, Aσ1/2 B = Aσ B, and Aσ1 B = B;
(2) (Aσp B)σ (Aσq B) = Aσ p+q

2
B for all p, q ∈ [0, 1];

(3) The map t ∈ [0, 1] �→ Aσt B is norm continuous for each A and B.

It is easy to see that the set of all r ∈ [0, 1] satisfying

(Aσp B)σr (Aσq B) = Aσr p+(1−r)q B (1.1)

for all p, q is a convex subset of [0, 1] including 0 and 1. The power means

Amr B = A
1
2

(
1 + (A

−1
2 B A

−1
2 )r

2

) 1
r

A
1
2 (r ∈ [−1, 1])

are some typical interpolational means. Their interpolational paths are

Amr,t B = A
1
2

(
1 − t + t (A

−1
2 B A

−1
2 )r
) 1

r
A

1
2 (t ∈ [0, 1]).

In particular, Am1,t B = A∇t B = (1 − t)A + t B, Am0,t B = A�t B and Am−1,t

B = A!t B = ((1 − t)A−1 + t B−1
)−1

. The representing function Fr,t of mr,t is

Fr,t (x) = 1mr,t x = (1 − t + t xr )
1
r (x > 0).
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Linear and Multilinear Algebra 3

Daykin et al. [3] showed the following refinement of the Cauchy–Schwarz inequality. If
f (·, ·) and g(·, ·) are positive functions with two variables on (0,∞) × (0,∞) such that
f (x, y)g(x, y) = x2 y2, f (λx, λy) = λ2 f (x, y) and y f (x,1)

x f (y,1)
+ x f (y,1)

y f (x,1)
≤ x

y + y
x hold for

all positive real numbers x, y, λ, then inequalities

⎛
⎝ n∑

j=1

x j y j

⎞
⎠

2

≤
n∑

j=1

f (x j , y j )

n∑
j=1

g(x j , y j ) ≤
⎛
⎝ n∑

j=1

x2
j

⎞
⎠
⎛
⎝ n∑

j=1

y2
j

⎞
⎠

hold for all positive real numbers x j , y j (1 ≤ j ≤ n). A example of such pair of the
functions are f (x, y) = x1+s y1−s and g(x, y) = x1−s y1+s . Thus, we get the following
inequality due to Callebaut [4]

⎛
⎝ n∑

j=1

x j y j

⎞
⎠

2

≤
n∑

j=1

x1+s
j y1−s

j

n∑
j=1

x1−s
j y1+s

j ≤
⎛
⎝ n∑

j=1

x2
j

⎞
⎠
⎛
⎝ n∑

j=1

y2
j

⎞
⎠ ,

where x j , y j (1 ≤ j ≤ n) are positive real numbers and s ∈ [0, 1]. This is indeed an
extension of the Cauchy–Schwarz inequality. Another example of such pair of the functions
are f (x, y) = x2+ y2 and g(x, y) = x2 y2

x2+y2 . Hence we reach the following Milne inequality
[3]

n∑
j=1

√
x j y j ≤

√√√√ n∑
j=1

(
x j + y j

) n∑
j=1

x j y j

x j + y j
≤
√√√√ n∑

j=1

x j

n∑
j=1

y j ,

where x j , y j (1 ≤ j ≤ n) are positive real numbers.
There have been obtained several Cauchy–Schwarz-type inequalities for Hilbert space

operators and matrices; see [5,6] and references therein. Wada [7] gave an operator version
of the Callebaut inequality. Hiai and Zhan established a matrix analog of the Callebaut
inequality by considering the convexity of a certain norm function [8]. In [9], the authors
showed another operator version of the Callebaut inequality:

n∑
j=1

(
A j�B j

) ≤
⎛
⎝ n∑

j=1

A jσ B j

⎞
⎠ �

⎛
⎝ n∑

j=1

A jσ
⊥B j

⎞
⎠ ≤

⎛
⎝ n∑

j=1

A j

⎞
⎠ �

⎛
⎝ n∑

j=1

B j

⎞
⎠ , (1.2)

where A j , B j ∈ B(H )+ (1 ≤ j ≤ n) and σ is an operator mean. They presented

⎛
⎝ n∑

j=1

A jσs B j

⎞
⎠ �

⎛
⎝ n∑

j=1

A jσ1−s B j

⎞
⎠ ≤

⎛
⎝ n∑

j=1

A jσt B j

⎞
⎠ �

⎛
⎝ n∑

j=1

A jσ1−t B j

⎞
⎠ , (1.3)

where A j , B j ∈ B(H )+ (1 ≤ j ≤ n), σt is an interpolational path for σ such that
σ⊥

t = σ1−t , t ∈ [0, 1] and s is a real number between t and 1 − t .
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4 M. Bakherad and M.S. Moslehian

They also showed that

n∑
j=1

(A j�B j ) ◦
n∑

j=1

(A j�B j ) ≤
n∑

j=1

(A j�s B j ) ◦
n∑

j=1

(A j�1−s B j )

≤
n∑

j=1

(A j�t B j ) ◦
n∑

j=1

(A j�1−t B j )

≤
⎛
⎝ n∑

j=1

A j

⎞
⎠ ◦

⎛
⎝ n∑

j=1

B j

⎞
⎠ , (1.4)

where A j , B j ∈ Pn (1 ≤ j ≤ n) and either 1 ≥ t ≥ s > 1
2 or 0 ≤ t ≤ s < 1

2 .
In this paper, we present some reverses of inequalities (1.2) and (1.3) under some mild

conditions and discuss some related problems. In the last section, we obtain a refinement
of inequality (1.4).

2. Some reverses of the Callebaut inequality for Hilbert space operators

In this section, we provide some reverses of operator Callebaut inequality under some mild
conditions. It is known [10, Theorem 5.7] that for positive operators A j , B j ∈ B(H )

(1 ≤ j ≤ n) it holds that

n∑
j=1

A jσ B j ≤
⎛
⎝ n∑

j=1

A j

⎞
⎠ σ

⎛
⎝ n∑

j=1

B j

⎞
⎠ . (2.1)

We need a reverse of inequality (2.1).
There is an effective method for finding inverses of some operator inequalities. It

was introduced for investigation of converses of the Jensen inequality associated with
convex functions and has been shown that the problem of determining multiple or addi-
tive complementary inequalities is reduced to solving a single variable maximization or
minimization problem, see [10,11] and references therein. This method sometimes gives
also a unified view to several different operator inequalities and can be applied for the
study of the Hadamard product, operator means, positive linear maps and other topics in
the framework of operator inequalities; cf. [12]. We explain it briefly for the operator Choi-
Davis-Jensen inequality. It says that if f is an operator concave function on an interval J
and � : B(H ) → B(K ) is a unital positive linear map, then f (�(A)) ≥ �( f (A)) for
all self-adjoint operators A with spectrum in J . We need the next result appeared in [10,
Chapter 2] in some general forms. We state a sketch of its proof for the reader convenience.
Incidentally, we explain the essence of the Mond–Pečarić method.

Theorem 2.1 Let f be a strictly positive concave function on an interval [m, M] with
0 < m < M and let � be a unital positive linear map. Then

γ�( f (A)) ≥ f (�(A)) (2.2)

for all self-adjoint operators A ∈ B(H ) with spectrum in [m, M], where μ f = f (M)− f (m)
M−m ,

ν f = M f (m)−m f (M)
M−m and γ = max

{
f (t)

μ f t+ν f
: m ≤ t ≤ M

}
.
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Linear and Multilinear Algebra 5

Proof Since f is concave we have f (t) ≥ μ f t +ν f for all t ∈ [m, M]. It follows from the
continuous functional calculus that f (A) ≥ μ f A + ν f and so �( f (A)) ≥ μ f �(A) + ν f

for all self-adjoint operators A with spectrum in [m, M]. To prove (2.2), it therefore is
enough to find a scalar γ such that show that γ (μ f �(A) + ν f ) ≥ f (�(A)), or by the
functional calculus it is sufficient to show that γ (μ f t + ν f ) ≥ f (t) for all t ∈ [m, M].
Thus γ should be max

{
f (t)

μ f t+ν f
: m ≤ t ≤ M

}
, which can be found by maximizing the one

variable function f (t)
μ f t+ν f

by usual calculus computations. One should note that there is no
t ≥ m such that μ f t + ν f = 0. �

In the above theorem, if we put �(X) := �(A)−1/2�(A1/2 X A1/2)�(A)−1/2, where
� is an arbitrary unital positive linear map and take f to be the representing function of an
operator mean σ , then we reach the inequality

max

{
f (t)

μ f t + ν f
: m ≤ t ≤ M

}
�(Aσ B) ≥ �(A)σ�(B) (2.3)

whenever 0 ≤ m A ≤ B ≤ M A.
Finally, if we take � in (2.3) to be the positive linear map defined on the diagonal blocks

of operators by �(diag(A1, · · · , An)) = 1
n

∑n
j=1 A j , then

γ

n∑
j=1

A jσ B j ≥
⎛
⎝ n∑

j=1

A j

⎞
⎠ σ

⎛
⎝ n∑

j=1

B j

⎞
⎠ with γ = max

{
f (t)

μ f t + ν f
: m ≤ t ≤ M

}
(2.4)

for any positive operators 0 < m A j ≤ B j ≤ M A j (1 ≤ j ≤ n). If σ = �α (α ∈ [0, 1]),
then we reach the following inequality appeared in [13]

αα(M − m)(Mmα − m Mα)α−1

(1 − α)α−1(Mα − mα)α

n∑
j=1

A j�α B j ≥
⎛
⎝ n∑

j=1

A j

⎞
⎠ �α

⎛
⎝ n∑

j=1

B j

⎞
⎠ .

In particular, for σ = � = �1/2, we have the following result due to Lee [14]

√
M + √

m

2 4
√

Mm

n∑
j=1

A j�B j ≥
⎛
⎝ n∑

j=1

A j

⎞
⎠ �

⎛
⎝ n∑

j=1

B j

⎞
⎠ . (2.5)

We are ready to prove our main result of this section, which gives a reverse of double
inequality (1.2).

Theorem 2.2 Let 0 < m A j ≤ B j ≤ M A j (1 ≤ j ≤ n) and σ be a mean with the
representing function f . Then

√
γ ζ

⎡
⎣
⎛
⎝ n∑

j=1

A jσ B j

⎞
⎠ �

⎛
⎝ n∑

j=1

A jσ
⊥B j

⎞
⎠
⎤
⎦ ≥

⎛
⎝ n∑

j=1

A j

⎞
⎠ �

⎛
⎝ n∑

j=1

B j

⎞
⎠ (2.6)

where

μ f = f (M) − f (m)

M − m
, ν f = M f (m) − m f (M)

M − m
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6 M. Bakherad and M.S. Moslehian

γ = max
m≤t≤M

f (t)

μ f t + ν f
and ζ = max

m≤t≤M

f (M) f (m)t

f (t)(ν f t + Mmμ f )
. (2.7)

In addition,

√
M + √

m

2 4
√

Mm

n∑
j=1

(
A j�B j

) ≥
⎡
⎣
⎛
⎝ n∑

j=1

A jσ B j

⎞
⎠ �

⎛
⎝ n∑

j=1

A jσ
⊥ B j

⎞
⎠
⎤
⎦ .

Proof Since f (t)� f (t)⊥ =
√

f (t) t
f (t) = √

t , we get

(Aσ B)�(Aσ⊥ B) = A�B (2.8)

for all positive operators A, B; cf. [2]. It follows from (2.4) that

γ

n∑
j=1

(A jσ B j ) ≥
⎛
⎝ n∑

j=1

A j

⎞
⎠ σ

⎛
⎝ n∑

j=1

B j

⎞
⎠

and

ζ

n∑
j=1

(A jσ
⊥ B j ) ≥

⎛
⎝ n∑

j=1

A j

⎞
⎠ σ⊥

⎛
⎝ n∑

j=1

B j

⎞
⎠ ,

where γ and ζ are defined by (2.7). It follows from the property (i) of the mean that⎛
⎝γ

n∑
j=1

A jσ B j

⎞
⎠ �

⎛
⎝ζ

n∑
j=1

A jσ
⊥B j

⎞
⎠ ≥

⎛
⎝ n∑

j=1

A jσ

n∑
i=1

B j

⎞
⎠ �

⎛
⎝ n∑

j=1

A jσ
⊥

n∑
j=1

B j

⎞
⎠ .

Now equality (2.8) yields that

√
γ ζ

⎡
⎣
⎛
⎝ n∑

j=1

A jσ B j

⎞
⎠ �

⎛
⎝ n∑

j=1

A jσ
⊥B j

⎞
⎠
⎤
⎦ ≥

⎛
⎝ n∑

j=1

A j

⎞
⎠ �

⎛
⎝ n∑

j=1

B j

⎞
⎠ .

Finally we have

√
M + √

m

2 4
√

Mm

n∑
j=1

(
A j�B j

) ≥
⎛
⎝ n∑

j=1

A j

⎞
⎠ �

⎛
⎝ n∑

j=1

B j

⎞
⎠ (by (2.5))

≥
⎛
⎝ n∑

j=1

A jσ B j

⎞
⎠ �

⎛
⎝ n∑

j=1

A jσ
⊥B j

⎞
⎠ . (by(1.2)).

�
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Linear and Multilinear Algebra 7

Remark 2.3 Applying (2.5) and (1.2), we get the following inequality

√
M + √

m

2 4
√

Mm

⎡
⎣
⎛
⎝ n∑

j=1

A jσ B j

⎞
⎠ �

⎛
⎝ n∑

j=1

A jσ
⊥ B j

⎞
⎠
⎤
⎦ ≥

⎛
⎝ n∑

j=1

A j

⎞
⎠ �

⎛
⎝ n∑

j=1

B j

⎞
⎠ , (2.9)

where 0 < m A j ≤ B j ≤ M A j (1 ≤ j ≤ n). Now, if we consider the operator function
f (t) = 1+t

2 corresponding to the arithmetic mean, M = 4 and m = 1 in (2.7), then we
observe that

γ = max
1≤t≤4

1 + t

2(μ f t + ν f )
= 1 �= 10

9
= max

1≤t≤4

2 f (4) f (1)t

(1 + t)(ν f t + 4μ f )
= ζ.

√
γ ζ =

√
10
3 < 3

2
√

2
=

√
M+√

m

2 4√Mm
.

Using Theorem 2.2 for the function f (t) = 1+t
2 , due to γ = max

m≤t≤M

f (t)

μ f t + ν f
= 1 and

ζ = max
m≤t≤M

f (M) f (m)t

f (t)(ν f t + Mmμ f )
= (1 + M)(1 + m)

(1 + √
Mm)2

we obtain the following operator

version of the reverse Milne inequality.

Corollary 2.4 Let 0 < m A j ≤ B j ≤ M A j (1 ≤ j ≤ n). Then

√
M + √

m

2 4
√

Mm

n∑
j=1

(
A j�B j

) ≥
⎡
⎣
⎛
⎝ n∑

j=1

A j∇B j

⎞
⎠ �

⎛
⎝ n∑

j=1

A j !B j

⎞
⎠
⎤
⎦

≥ 1 + √
m M√

(1 + M)(1 + m)

⎛
⎝ n∑

j=1

A j

⎞
⎠ �

⎛
⎝ n∑

j=1

B j

⎞
⎠ . (2.10)

Now, we show a reverse of (1.3) under some mild conditions. First we need the following
lemma.

Lemma 2.5 Let

Hr,t (x) = Fr,t (x)

Fr,1−t (x)
(x > 0, r ∈ [−1, 1], 0 ≤ t ≤ 1).

Then for a fixed r, Hr,t is decreasing for t ∈ [0, 1
2 ] and increasing for t ∈ [ 1

2 , 1].

Proof The case when r = 0 is clear. Let r ∈ [−1, 1] − {0}. It follows from

d

dx

(
Hr,t (x)

) =
(

(1 − t) + t xr

t + (1 − t)xr

) 1
r −1 xr−1(2t − 1)

(t + (1 − t)xr )2

that d
dx

(
Hr,t (x)

) ≤ 0 for t ∈ [0, 1
2 ] and d

dx

(
Hr,t (x)

) ≥ 0 for t ∈ [ 1
2 , 1]. Therefore, Hr,t (x)

is decreasing for t ∈ [0, 1
2 ] and is increasing for t ∈ [ 1

2 , 1]. �

D
ow

nl
oa

de
d 

by
 [

L
ib

ra
ry

 S
er

vi
ce

s,
 U

ni
ve

rs
ity

 o
f 

th
e 

W
es

t o
f 

E
ng

la
nd

] 
at

 0
6:

21
 2

9 
Ja

nu
ar

y 
20

15
 



8 M. Bakherad and M.S. Moslehian

Theorem 2.6 Let 0 < m A j ≤ B j ≤ M A j (1 ≤ j ≤ n), r ∈ [−1, 1] and t ∈ [0, 1].
Then

√
γ ζ
[( n∑

j=1

(
A j mr,s B j

) )
�
( n∑

j=1

(
A j mr,1−s B j

) )]

≥
⎛
⎝ n∑

j=1

A j mr,t B j

⎞
⎠ �

⎛
⎝ n∑

j=1

A j mr,1−t B j

⎞
⎠ , (2.11)

where s = s0t + (1 − s0)(1 − t) for some s0 ∈ [0, 1] is any number between t and 1 − t ,

μr,s0 = Fr,s0(Hr,t (M)) − Fr,s0(Hr,t (m))

Hr,t (M) − Hr,t (m)
,

νr,s0 = Hr,t (M)Fr,s0(Hr,t (m)) − Hr,t (m)Fr,s0(Hr,t (M))

Hr,t (M) − Hr,t (m)
,

γ = max

{
Fr,s0(x)

μr,s0 x + νr,s0

: x is between Hr,t (m) and Hr,t (M)

}

and

ζ = max

{
Fr,s0(Hr,t (M))Fr,s0(Hr,t (m))x

Fr,s0(x)(νr,s0 x + Hr,t (M)Hr,t (m)μr,s0)
: x is between Hr,t (m) and Hr,t (M)

}
.

Proof Assume that t ∈ [ 1
2 , 1]. It follows from 0 < m A j ≤ B j ≤ M A j (1 ≤ j ≤ n) that

m ≤ A−1/2
j B j A−1/2

j ≤ M (1 ≤ j ≤ n). Using Lemma 2.5, we have

Hr,t (m) ≤ Hr,t

(
A−1/2

j B j A−1/2
j

)
≤ Hr,t (M) (−1 ≤ r ≤ 1, 1 ≤ j ≤ n).

So

Hr,t (m)Fr,1−t

(
A−1/2

j B j A−1/2
j

)
≤ Fr,t

(
A−1/2

j B j A−1/2
j

)
≤ Hr,t (M)Fr,1−t

(
A−1/2

j B j A−1/2
j

)
,

where −1 ≤ r ≤ 1 and 1 ≤ j ≤ n. Multiplying both sides by A
1
2 we reach

Hr,t (m)
(

A j mr,1−t B j
) ≤ A j mr,t B j ≤ Hr,t (M)

(
A j mr,1−t B j

)
(−1 ≤ r ≤ 1, 1 ≤ j ≤ n).
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Linear and Multilinear Algebra 9

Let s be any number between 1 − t and t . So s = s0t + (1 − s0)(1 − t) for some s0 ∈ [0, 1].
Using inequality (2.6), we get

( n∑
j=1

A j mr,t B j

)
�

( n∑
j=1

A j mr,1−t B j

)

≤ √γ ζ

⎡
⎣
⎛
⎝ n∑

j=1

(
(A j mr,t B j )mr,s0(A j mr,1−t B j )

)⎞⎠

�

⎛
⎝ n∑

j=1

(
(A j mr,t B j )mr,1−s0(A j mr,1−t B j )

)⎞⎠
⎤
⎦

= √γ ζ

⎡
⎣
⎛
⎝ n∑

j=1

(
A j mr,ts0+(1−t)(1−s0) B j

)⎞⎠ �

⎛
⎝ n∑

j=1

(
A j mr,1−(ts0+(1−t)(1−s0)) B j

)⎞⎠
⎤
⎦

(by (1.1))

= √γ ζ
[( n∑

j=1

(
A j mr,s B j

) )
�
( n∑

j=1

(
A j mr,1−s B j

) )]
.

Next, assume that t ∈ [0, 1
2 ]. It follows from 0 < m A j ≤ B j ≤ M A j (1 ≤ j ≤ n) that

m ≤ A−1/2
j B j A−1/2

j ≤ M (1 ≤ j ≤ n). Using Lemma 2.5 we have

Hr,t (M) ≤ Hr,t

(
A−1/2

j B j A−1/2
j

)
≤ Hr,t (m) (−1 ≤ r ≤ 1, 1 ≤ j ≤ n).

So

Hr,t (M)Fr,1−t

(
A−1/2

j B j A−1/2
j

)
≤ Fr,t

(
A−1/2

j B j A−1/2
j

)
≤ Hr,t (m)Fr,1−t

(
A−1/2

j B j A−1/2
j

)
,

where −1 ≤ r ≤ 1 and 1 ≤ j ≤ n. Hence

1

Hr,t (m)
Fr,t

(
A−1/2

j B j A−1/2
j

)
≤ Fr,1−t

(
A−1/2

j B j A−1/2
j

)

≤ 1

Hr,t (M)
Fr,t

(
A−1/2

j B j A−1/2
j

)
,

where −1 ≤ r ≤ 1 and 1 ≤ j ≤ n. Multiplying both sides by A
1
2 we reach

1

Hr,t (m)

(
A j mr,t B j

) ≤ A j mr,1−t B j

≤ 1

Hr,t (M)

(
A j mr,t B j

)
(−1 ≤ r ≤ 1, 1 ≤ j ≤ n).
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10 M. Bakherad and M.S. Moslehian

Let s be any number between t and 1 − t . So s = (1 − s0)t + s0(1 − t) for some s0 ∈ [0, 1].
It follows from

Fr,s0(x−1) = (1 − s0 + s0x−r )
1
r = x−1((1 − s0)xr + s0)

1
r = Fr,1−s0(x)

x
(x > 0)

(2.12)

that

μr,1−s0 =
Fr,1−s0

(
1

Hr,t (m)

)
− Fr,1−s0

(
1

Hr,t (M)

)
1

Hr,t (m)
− 1

Hr,t (M)

=
Fr,s0(Hr,t (m))

Hr,t (m)
− Fr,s0(Hr,t (M))

Hr,t (M)

Hr,t (M)−Hr,t (m)

Hr,t (M)Hr,t (m)

= Hr,t (M)Fr,s0

(
Hr,t (m)

)− Hr,t (m)Fr,s0

(
Hr,t (M)

)
Hr,t (M) − Hr,t (m)

= νr,s0 (2.13)

and

νr,1−s0 =
1

Hr,t (m)
Fr,1−s0

(
1

Hr,t (M)

)
− 1

Hr,t (M)
Fr,1−s0

(
1

Hr,t (m)

)
1

Hr,t (m)
− 1

Hr,t (M)

= Fr,s0

(
Hr,t (M)

)− Fr,s0

(
Hr,t (m)

)
Hr,t (M) − Hr,t (m)

= μr,s0 . (2.14)

Therefore,

max

{
Fr,1−s0(x)

μr,1−s0 x + νr,1−s0

: x is between
1

Hr,t (m)
and

1

Hr,t (M)

}

= max

{
Fr,1−s0(x−1)

μr,1−s0 x−1 + νr,1−s0

: x is between Hr,t (m) and Hr,t (M)

}

= max

⎧⎨
⎩

Fr,s0 (x)

x

νr,s0 x−1 + μr,s0

: x is between Hr,t (m) and Hr,t (M)

⎫⎬
⎭

(by (2.12), (2.13) and (2.14))

= max

{
Fr,s0(x)

νr,s0 + μr,s0 x
: x is between Hr,t (m) and Hr,t (M)

}
= γ

and

max

⎧⎨
⎩

Fr,1−s0

(
1

Hr,t (m)

)
Fr,1−s0

(
1

Hr,t (M)

)
x

Fr,1−s0 (x)(νr,1−s0 x + 1
Hr,t (M)

1
Hr,t (m)

μr,1−s0 )
: x is between

1

Hr,t (m)
and

1

Hr,t (M)

⎫⎬
⎭

= max

⎧⎨
⎩

Fr,1−s0

(
1

Hr,t (m)

)
Fr,1−s0

(
1

Hr,t (M)

)
x−1

Fr,1−s0 (x−1)
(
νr,1−s0 x−1 + 1

Hr,t (M)
1

Hr,t (m)
μr,1−s0

) : x is between Hr,t (m) and Hr,t (M)

⎫⎬
⎭

= max

⎧⎨
⎩

Fr,s0 (Hr,t (m))
Hr,t (m)

Fr,s0 (Hr,t (M))
Hr,t (M)

x−1

Fr,s0 (x)

x

(
μr,s0 x−1 + 1

Hr,t (M)
1

Hr,t (m)
νr,1−s0

) : x is between Hr,t (m) and Hr,t (M)

⎫⎬
⎭

(by (2.12), (2.13) and (2.14))
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Linear and Multilinear Algebra 11

= max

{
Fr,s0 (Hr,t (M))Fr,s0

(
Hr,t (m)

)
x

Fr,s0 (x)
(
νr,s0 x + Hr,t (M)Hr,t (m)μr,s0

) : x is between Hr,t (m) and Hr,t (M)

}

= ζ.

Using inequality (2.6), we get

( n∑
j=1

A j mr,t B j

)
�

( n∑
j=1

A j mr,1−t B j

)

≤ √γ ζ

⎡
⎣
⎛
⎝ n∑

j=1

(
(A j mr,t B j )mr,1−s0(A j mr,1−t B j )

)⎞⎠

�

⎛
⎝ n∑

j=1

(
(A j mr,t B j )mr,s0(A j mr,1−t B j )

)⎞⎠
⎤
⎦

= √γ ζ

⎡
⎣
⎛
⎝ n∑

j=1

(
A j mr,t (1−s0)+(1−t)s0 B j

)⎞⎠ �

⎛
⎝ n∑

j=1

(
A j mr,1−(t (1−s0)+(1−t)s0) B j

)⎞⎠
⎤
⎦

(by (1.1))

= √γ ζ
[( n∑

j=1

(
A j mr,1−s B j

) )
�
( n∑

j=1

(
A j mr,s B j

) )]
.

�

Utilizing Theorem 2.7 for the special case r = 0, we get the following result.

Corollary 2.7 Let 0 < m A j ≤ B j ≤ M A j (1 ≤ j ≤ n) and t ∈ [0, 1]. Then

ss0
0 (M2t−1 − m2t−1)(M2t−1ms0(2t−1) − m2t−1 Ms0(2t−1))s0−1

(1 − s0)(s0−1)(Ms0(2t−1) − ms0(2t−1))s0[( n∑
j=1

(
A j�s B j

) )
�
( n∑

j=1

(
A j�1−s B j

) )]

≥
⎛
⎝ n∑

j=1

A j�t B j

⎞
⎠ �

⎛
⎝ n∑

j=1

A j�1−t B j

⎞
⎠ , (2.15)

where s = s0t + (1 − s0)(1 − t) for some s0 ∈ [0, 1] is any number between t and 1 − t .
In particular, if t = 1, then

ss(M − m)(Mms − m Ms)s−1

(1 − s)s−1(Ms − ms)s

⎡
⎣
⎛
⎝ n∑

j=1

A j�s B j

⎞
⎠ �

⎛
⎝ n∑

j=1

A j�1−s B j

⎞
⎠
⎤
⎦

≥
⎛
⎝ n∑

j=1

A j

⎞
⎠ �

⎛
⎝ n∑

j=1

B j

⎞
⎠ . (2.16)
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12 M. Bakherad and M.S. Moslehian

3. A refinement of the Callebaut inequality

In this section, we obtain a refinement of inequality (1.4) for operators. We need the
following lemmas.

Lemma 3.1 (See [15]) Let a, b > 0 and ν �∈ [0, 1]. Then

(a + b) + 2(ν − 1)(
√

a − √
b)2 ≤ aνb1−ν + bνa1−ν .

Proof Let ν �∈ [0, 1]. Assume that f (t) = t1−ν − ν + (ν − 1)t (t ∈ (0,∞)). It is easy to
see that f (t) has a minimum at t = 1 in the interval (0,∞). Hence f (t) ≥ f (1) = 0 for
all t > 0. Assume that a, b > 0. Letting t = b

a , we get

νa + (1 − ν)b ≤ aνb1−ν . (3.1)

Now by inequality (3.1) we have

νa + (1 − ν)b + (ν − 1)(
√

a − √
b)2 = (2 − 2ν)

√
ab + (2ν − 1)a

≤ (
√

ab)2−2νa2ν−1 = aνb1−ν . (3.2)

Similarly

νb + (1 − ν)a + (ν − 1)(
√

b − √
a)2 ≤ bνa1−ν . (3.3)

Adding inequalities (3.2) and (3.3), we get the desired inequality. �

Lemma 3.2 Let A, B ∈ B(H )+ and either 1 ≥ t ≥ s > 1
2 or 0 ≤ t ≤ s < 1

2 . Then

As ⊗ B1−s + A1−s ⊗ Bs +
(

t − s

s − 1/2

)(
As ⊗ B1−s + A1−s ⊗ Bs − 2(A

1
2 ⊗ B

1
2 )
)

≤ At ⊗ B1−t + A1−t ⊗ Bt . (3.4)

Proof If we put a−1 instead of b and s instead of 2ν − 1, respectively, in Lemma 3.1 we
get

a + a−1 + (s − 1)(a + a−1 − 2) ≤ as + a−s (a > 0, s ≥ 1).

Let us fix positive real numbers α, β such that β ≥ α. Using the functional calculus, if we
replace a by Aα ⊗ B−α and s by β

α
, then we get

Aα ⊗ B−α + A−α ⊗ Bα +
(

β − α

α

) (
Aα ⊗ B−α + A−α ⊗ Bα − 2I

)
≤ Aβ ⊗ B−β + A−β ⊗ Bβ. (3.5)

Multiplying both sides of (3.5) by A
1
2 ⊗ B

1
2 we reach

A1+α ⊗ B1−α + A1−α ⊗ B1+α

+
(

β − α

α

)(
A1+α ⊗ B1−α + A1−α ⊗ B1+α − 2(A ⊗ B)

)
≤ A1+β ⊗ B1−β + A1−β ⊗ B1+β. (3.6)
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Linear and Multilinear Algebra 13

Now, if we replace α, β, A, B by 2s − 1, 2t − 1, A
1
2 , B

1
2 , respectively, in (3.6), we obtain

As ⊗ B1−s + A1−s ⊗ Bs +
(

t − s

s − 1/2

)(
As ⊗ B1−s + A1−s ⊗ Bs − 2(A

1
2 ⊗ B

1
2 )
)

≤ At ⊗ B1−t + A1−t ⊗ Bt .

�

We are ready to establish the main result of this section.

Theorem 3.3 Let A j , B j ∈ B(H )+ (1 ≤ j ≤ n). Then

n∑
j=1

(A j�s B j ) ◦
n∑

j=1

(A j�1−s B j )

≤
n∑

j=1

(A j�s B j ) ◦
n∑

j=1

(A j�1−s B j )

+
(

t − s

s − 1/2

)⎛⎝ n∑
j=1

(A j�s B j ) ◦
n∑

j=1

(A j�1−s B j ) −
n∑

j=1

(A j�B j ) ◦
n∑

j=1

(A j�B j )

⎞
⎠

≤
n∑

j=1

(A j�t B j ) ◦
n∑

j=1

(A j�1−t B j ),

for 1 ≥ t ≥ s > 1
2 or 0 ≤ t ≤ s < 1

2 .

Proof The first inequality is clear. We prove the second one. Put C j = A
− 1

2
j B j A

− 1
2

j
(1 ≤ j ≤ n). By inequality (3.4), we get

Cs
j ⊗ C1−s

i + C1−s
j ⊗ Cs

i +
(

t − s

s − 1/2

)(
Cs

j ⊗ C1−s
i + C1−s

j ⊗ Cs
i − 2

(
C

1
2
j ⊗ C

1
2
i

))
≤ Ct

j ⊗ C1−t
i + C1−t

j ⊗ Ct
i (1 ≤ i, j ≤ n). (3.7)

Multiplying both sides of (3.7) by A
1
2
j ⊗ A

1
2
i we get

(A j�s B j ) ⊗ (Ai�1−s Bi ) + (A j�1−s B j ) ⊗ (Ai�s Bi )

+
(

t − s

s − 1/2

) (
(A j�s B j ) ⊗ (Ai�1−s Bi ) + (A j�1−s B j ) (3.8)

⊗(Ai�s Bi ) − 2(A j�B j ) ⊗ (Ai�Bi )
)

≤ (A j�t B j ) ⊗ (Ai�1−t Bi ) + (A j�1−t B j ) ⊗ (Ai�t Bi ). (3.9)
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14 M. Bakherad and M.S. Moslehian

for all 1 ≤ i, j ≤ n. Therefore,

n∑
j=1

(A j�s B j ) ◦
n∑

j=1

(A j�1−s B j )

+
(

t − s

s − 1/2

)⎛⎝ n∑
j=1

(A j�s B j ) ◦
n∑

j=1

(A j�1−s B j ) −
⎛
⎝ n∑

j=1

A j�B j

⎞
⎠ ◦

⎛
⎝ n∑

j=1

A j�B j

⎞
⎠
⎞
⎠

= 1

2

n∑
i, j=1

(
(A j�s B j ) ◦ (Ai�1−s Bi ) + (A j�1−s B j ) ◦ (Ai�s Bi )

+
(

t − s

s − 1/2

) (
(A j�s B j ) ◦ (Ai�1−s Bi ) + (A j�1−s B j )

◦(Ai�s Bi ) − 2(A j�B j ) ◦ (Ai�Bi )
) )

≤ 1

2

n∑
i, j=1

(
(A j�t B j ) ◦ (Ai�1−t Bi ) + (A j�1−t B j ) ◦ (Ai�t Bi )

)
(by inequality (3.8))

=
n∑

j=1

(A j�t B j ) ◦
n∑

j=1

(A j�1−t B j ).

�

If we put B j = I (1 ≤ j ≤ n) in Theorem 3.3, then we get the next result.

Corollary 3.4 Let A j ∈ B(H )+ (1 ≤ j ≤ n). Then

⎛
⎝ n∑

j=1

As
j

⎞
⎠ ◦

⎛
⎝ n∑

j=1

A1−s
j

⎞
⎠

+
(

t − s

s − 1/2

)⎛⎝
⎛
⎝ n∑

j=1

As
j

⎞
⎠ ◦

⎛
⎝ n∑

j=1

A1−s
j

⎞
⎠−

⎛
⎝ n∑

j=1

A
1
2
j

⎞
⎠ ◦

⎛
⎝ n∑

j=1

A
1
2
j

⎞
⎠
⎞
⎠

≤
⎛
⎝ n∑

j=1

At
j

⎞
⎠ ◦

⎛
⎝ n∑

j=1

A1−t
j

⎞
⎠ ,

where 1 ≥ t ≥ s > 1
2 or 0 ≤ t ≤ s < 1

2 .
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[6] Ilišević D, Varošanec S. On the Cauchy-Schwarz inequality and its reverse in semi-inner product

C∗-modules. Banach J. Math. Anal. 2007;1:78–84.
[7] Wada S. On some refinement of the Cauchy-Schwarz inequality. Linear Algebra Appl.

2007;420:433–440.
[8] Hiai F, Zhan X. Inequalities involving unitarily invariant norms and operator monotone

functions. Linear Algebra Appl. 2002;341:151–169.
[9] Moslehian MS, Matharu JS, Aujla JS. Non-commutative Callebaut inequality. Linear Algebra

Appl. 2012;436:3347–3353.
[10] Furuta T, Mićić Hot J, Pečarić J, Seo Y. Mond Pečarić method in operator inequalities. Zagreb:

Element; 2005.
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