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Abstract. We generalize several inequalities involving powers of the numerical radius for off-
0B

co } , where B,C are two operators.

diagonal part of 2 x 2 operator matrices of the form 7' = {

0B

In particular, if 7 = { co

},thenweget
— L max {901} < w(T) < o max{lu], 11}
2%('«71) IJ' ) 77 X \2r+l IJ' ) 77 )

where r > 2, u=|(C—B*)+i(C+B")|"+|(B*—C)+i(C+B*)[" and n = |(B—C*) +i(B+
CHI"+1(C" =B)+i(B+C7)|".

1. Introduction

Let (J#,(.,.)) be a complex Hilbert space and B(.7#) denotes the C*-algebra of
all bounded linear operators on 7. In the case when dim.7Z = n, we identify B(5¢)
with the matrix algebra M, of all n x n matrices with entries in the complex field. The
numerical radius of T € B(.%) is defined by

w(T) :=sup{| (Tx,x) |:x € 7, || x||=1}.

It is well known that w(-) defines a norm on B(#), which is equivalent to the usual
operator norm ||. . In fact, for any 7 € B(¢), 5||T|| <w(T) < ||T|; see [11]. An
important inequality for w(A) is the power inequality stating that w(A") < w(A)" (n =
1,2,--+). It has been shown in [8], that if 7 € B(s¢), then

1 .
w(T) < SIITI+ T (1.1)
where |T| = (T*T)% is the absolute value of 7. Recently in [12] the authors showed

1
) < 5 (P +
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’ —fPr(| A% ) + = g‘” A*)*)) H) (1.2)
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in which f, g are nonnegative continuous functions on [0,e0) satisfying the relation
f(0)gt) =1 (1€[0,%)), r>1, p>g>1suchthat 2 +1=1and pr>2.

Let 4,56, - - -, 7, be Hilbert spaces, and consider the direct sum 7" = @7:1 I .
With respect to this decomposition, every operator T € B(.#°) has an n X n operator
matrix represantation T’ = [7j;| with entries T;; € B(.7¢}, ), the space of all bounded
linear operators from Z; to . Operator matrices provide a usual tool for studying
Hilbert space operators, which have been extensively studied in the literatures. The
classical Young inequality says that if p,q > 1 such that 1 +1 =1 then ab < % +4
for positive real numbers a,b. A refinement of the scalar Young inequality is presented
in [3] as following (afl’b%)m +ra? —b7)? < (5+ g)m, where ry = mln{ } and
m=1,2,---. In particular, if p = ¢ =2, then

(a2b?)m + (%)m(a% —b7)2 <27 (a+b)". (1.3)

Let T1,D5,---,T, € B(2¢). The functional w, of operators Ty,---,T, for p > 1 is
defined in [13] as following

n
wp(Th, -, T) := sup Z [(Tix,x)]|

In [14] the authors showed the following inequality

an (B PTDB + (A7 (1T DA

i=1

wh(ATTiBy, -+ A TyBy) < — inf ¢(X),

IX11=1

where A;,B;,T; € B(2Z) (i =1,2,---,n), f, g are nonnegative continuous functions
on [0,00) such that f(r)g(t) =1t (t € [0,00)), pyr >m, m=1,2,---, and

c) =2 % (B 2ITDBIEx.0F — (Wi DAgEe0?)

For further information about numerical radius inequalities we refer the reader to [, 4,
14] and references therein.

In this paper, we establish some generalizations of inequalities that is based on the
off-diagonal parts of 2 x 2 operator matrices. We also show some inequalities involving
powers of the numerical radius for the off-diagonal parts of 2 x 2 operator matrices.

2. Main results
To prove our first result, we need several well known lemmas.

LEMMA 2.1. [6, 15] Let A€ B(JA), Be B(s6,54), C € B(A1,54) and D €
B(J%). Then the following statements hold:

@w([3p]) = maxtsarwon:
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0B] 0C
w(leal) =+ ([55])
0B i —i0
(C)W<[CO ) = Lsupgey || €OB+e 10C* ||;

(d) w ( {gﬁ: ) — max{w(A+B),w(A —B)}.

In particular,
0B
W<[30D — w(B)

The second lemma is a simple consequence of the classical Jensen and Young
inequalities; see [5].

LEMMA 2.2. Let a,b >0 and p,q > 1 such that %+§ =1. Then

al bl (apr bqr)%
p q

ab < —+ — <
p q

forr>1.

The next lemma follows from the spectral theorem for positive operators and
Jensen inequality; see [7].

LEMMA 2.3. (McCarty inequality) Let T € B(J¢), T >0 and x € I be a unit
vector. Then
(a) (Tx,x)" < (T"x,x) for r > 1,
(b) (T"x,x) < (Tx,x)" for0<r<1.
The following lemma is a consequence of convexity of the absolute value function.
LEMMA 2.4. Let T € B(.5) be self-adjoint and x € 7€ be a unit vector. Then
[ {Tx,) [< AT | x,%).

LEMMA 2.5. [7, Theorem 1] Let T € B(.%¢) and x,y € F be any vectors.
(a) If f, g are nonnegative continuous functions on [0,0) which are satisfying
the relation f(t)g(t) =1t (¢t € [0,0)), then
| {Toxey) IIEAAT D (Il g(1 77 Dl
(b) If0< a< 1, then
[(Tx,y) P<AI T Pxn) (| T P09 ).

Now we are in a position to state the main results of this section.
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THEOREM 2.6. Let T = [g l(ﬂ € B(%5,74) and f, g be nonnegative contin-

uous functions on [0,00) satisfying the relation f(t)g(t) =t (¢ € [0,%0)). Then
r 1 pr 1 qr * 1 pr 1 qr *
wI) Smax |2 CD+ 28" (BT D)) 27 (B D+ g™ (€T D) ¢ @D

in which r}l,p>q>1suchthat%—i—é:landpr)l

Proof. For any unit vector X = [il ] € 7 ® 75 we have
2

(T X) "< fATDX (T )X |I”  (by Lemma 2.5)
= (AT DX, X)3 (| T* )X, X)?
1 el 5 1B 0 %
(S m])x) (e ([T ])x)
(by Lemma 2.2)
1/[fric| 0 L/1g"|B"| 0
(70 s )+ 5 {10 gl 2
(by Lemma?2.3(a))
sr(c))+ g‘”(lB*I) 0 ¥ x
S(B)+ggr(Cc |7
Then
] S C D+ g (1B* ) 0
|<TX7X>|<<l” 0" s+ X’X>'

Now, applying the definition of numerical radius and Lemma 2.1(a), we have

1 » 1
r < _ r C _ qr * ,
w<T><max{pr (ch+ien(s )

Lriah+Lenger| b

0B

COROLLARY 2.7. [2, Corollary 3] Let T = [C 0

] € B(4,54) be a positive

operator matrix and r > 1. Then

1
w(T) =3 | B+C|.

Proof. Putting f(t) = g(t) = 7, r=1 and p = q = 2 in inequality (2.1) and
applying Lemma 2.1(c), we get the equality. [
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THEOREM 2.8. Let T = [g l(ﬂ € B(%5,74) and f, g be nonnegative contin-

uous functions on [0,00) satisfying the relation f(t)g(t) =t (1 € [0,%0)). Then

2r l 2pr l 2qr * H Hl 2pr l 2qr ok H}
v <T><max{pr (en+ser(s || s+ erie |}

(2.2)
where r}landp>q>1suchthat%+%]:1andpr}l.
Proof. Assume that X = [il] € S @ 7 is a unit vector. Then
2
HTXX) < AT DX PN g(| T [ X I (by Lemma2.5)
=(UTDXX)" (| T X, X)"
(5o =22 (15 )
X, X) +- " X, X
(155 S\ o e
(by Lemma 2.2)
L/1ericl o V/[g7 B 0
;<|: 0 prr|B| X, X +5 0 ngr|C*| X, X
(by Lemma 2.3(a))
B+ a5 0 x
Lpr (| B )+ ety [ V8 )
Thus
1 2pr 1 ,2qr *
I CD) 4587187 ) 0
TX,X) < (| P q X, X ).
x| <l 0 Ly (| B )+ b2 )

Now by the definition of numerical radius and Lemma 2.1(a), we have

r 1 T 1 T *
W (T) <maX{H;f2” €D+ B )

l 2pr qur o H} O
,pf (|B|)+qg (e ¢

Inequality (2.2) induces several numerical radius inequalities as follows.

0B

COROLLARY 2.9. Let T = {C 0

} € B(s#4,54). Then

1
smax{[[[ C[** 4| B MU | B[ 4 | c* [FU9)

2r
T) <

forany r>1and 0 < a < 1.
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Proof. Letting f(t) =1t%, g(t) =t'"% and p = ¢ =2 in inequality (2.2), we get
the desired inequality. [

COROLLARY 2.10. Let BEB(7), 0< <1 and r > 1. Then
1
W (B) < 5 [ B[+ | B M) (2.3)

Proof. We put f(t) =t%, g(t) =t'"%, p=g=2and T = [g g} and apply
Lemma 2.1(d), we get the desired result. [

0 B;

THEOREM 2.11. Let T; = |:Ci 0

] eB(5 ¢ 1) forany i=1,2,--- ,n. Then
WZ(T15T27"'7T}1)
n n
gmax{HZa|c,-|f’+(1—a)|Bj|PH,Hza|3i|ﬂ+(1—a)|c,.*|PH} 2.4)
i=1 i=1

forO<oa<1landp=>2.

Proof. For any unit vector X = [il ] € I @ I, we have
2

¥l
- ,il(' (TX,X) )’

il<<| TP X )T PO X X)) (by Lemma2.5 (b))

il<| T; |P* X, X){(| T* |PU~% X, X) (by Lemma2.3 (b))

i1<| TP XX T P X, X))
< z< ITPXX)+(1-a) (T PX.X)  (by Lemma22)
:i_il(“<[|c<3|p |B?|"]X’X>+“‘“)<[|Bg "\a |P]X’X>)
:;":1<[a|c,- |”+(B—a)|Bif P a|Bi|p+(i)_a)|C? |p]x,x>
_ [z;’_mc,» |”;(1—a)|B? P s ol BP +0(1—a)|C,~* |p]x,x>.
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By the definition of numerical radius and Lemma 2.1, we have

Wg(ThTZu o '7Tn)

n n

<max{ Za|ci|"+(1—a)|37|P“,“Za|3i|f’+(1—a)|c7|PH}. 0
i=1 i=1

REMARK 2.12. As a special case for o = 5 L and B;=C; forany i =1,2,-

we have the following inequality

n
(B17B27 ,B Z B; |IJ+|B;F |p||7

NI'—‘

which already shown in [13, Proposition 3.9].

Now using a refinement of the classical Young inequality, we have the following
theorem.

THEOREM 2.13. Let T = {gﬁ] € B(s6,54) and f, g be nonnegative con-

tinuous functions on [0,00) satisfying the relation f(t)g(t) =1t (¢t € [0,00)). Then for
m=1,2,---and p,r >m

w(r) < (5) max{l| 75 CI)+g¥ (1B ) |, £% (1 Bl +g¥ (¢ |> "}

2
- Ilf 2.5

con=m (% (16 5 ] xx) (e (51,2 ) x) )

Proof Let X = || ¢ J & % be a unit vector. Applying Lemmas 2.5, 2.3
X pplying
2

and inequality (1.3), respectively, we have
[TX,3) <L AT DX I (T DX I
= (AT DX X)B (T )x.X) %)
r m r m 2
—2(UFAT XX E - (g7 (1 T )X, X)2)

<GEA (R )l (5 2 )e)

=

< (UFAT DX N (T )X.X)
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(5 ) G (8 )
_<l<[f%(lcl) ¥ (18 ) 0 ]XX>>
2 0 (BN +gn(Cc |
m . w 2
—2’”<<f%<[|g||g|bx,x>z (1)) ) |

Therefore

w(r) < (5) " maxtll £ (1 Cl)+gh (B ) I, 5 (1B 1) +g¥ () ")
—H)ngfIC( )-

Hence we get the desired inequality. [

REMARK 2.14. Ininequality (2.5) if m = 1, then we get a refinement of inequal-
ity (2.1).

3. Numerical radius of the operator matrix 2 x 2
. . . . . . |AB
In this section, we estimate numerical radius of matrix cDl

LEMMA 3.1. Let T = [gg} € B(s4 @ H53). Then

1 * *
wi(T) < 5 max{[[|A]"+ A", lIDI"+ D[]} 3.1

forr>1.

Proof. Let X = [il ] € J & J6 be any unit vector. Then
2

“af

(TX,X)| <

o=

X)2(|T*1X,X)

?AH&] 310 1o ]x) |
(1515 )x X>r+%<[|§||g*|}x’x>r)r
S o3 ([ o [xx)

~1—

<
<
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B (<[%(|A o LD |r0+|D*|r>}X’X>):’

KX, X< <F<|A |rOHA*V) 5(1D |’0+|D*|r)} X’X>'

and so

Therefore
1 * *
wi(T) < 5 max{[[|A]"+ A" [ID]" + D[]} O

REMARK 3.2. By letting r =1 and A = D in inequality (3.1), we obtain inequal-
ity (1.1), that is

1 *
w(A) < 5 lllAal+ AT

The following proposition follows from inequalities (2.1) and (3.1).

PROPOSITION 3.3. Let T = [é g] with A,B,C,D € B(5). Then

1 * * 1 * *
w(T) < 5 max{[||C]+[B"[[l,[[|B] +[C7[||} + 5 max{[|A] + |A%[[l, [P} + D"}

In particular,

w([54]) < 5001+ Wit s+ .

THEOREM 3.4. Let T = [gg] € B(sH @A) and r = 2. Then
ax{lll Iy <w ()< (5) 7 maxflullnly, G2
where
p=|[(C—B")+i(C+B")| +|(B*—C)+i(C+B")|",
and

n=|[B-C")+i(B+C")|"+|[(C*—B)+i(B+C")|".
Proof. Let X = [il } € JA @ 4 be a unit vector. Let T = S+ iW be the Carte-
2
sian decomposition of 7. Then applying [9, Theorem 1], we have

wHT) = S (S£EW)?.

l\)l'—‘
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Therefore
W(T) 227 2||(SEW) |2 =272 IS = W],
and so
2w (T) 2 272 (|S+ W[ +[1IS = W/'l])
> 27 5IS+ W)+ IS WI'|
> 275 [{(IS+ W)+ IS = W)X X))
= e
0 (3)
where
p=[C=B)+i(C+B")[ +|(B"-C)+i(C+B),
and

n=|B-C")+i(B+C"|"+|(C*—B)+i(B+C")|".

Taking the supremum over X € B(J#4 @ 7%) with || X|| =1 in the above inequality and
applying the numerical radius of diagonal matrices, we deduce the first inequality.
For the second inequality, we have

HTX,X)|" = ((SX,X)> + (WX, X)?)2
=23 (((S+ W)X, X)2+ ((S—W)X,X)?)2
<2722 N ([((S+ W)X, X)|" + (S — W)X, X)|")
(since (1) =17 is convex)
({IS+WIX,X)" + (IS - W[X,X)")
({(IS+WI'X,X) + (]S —W['X,X))

(IS+W|"+|S—W|"X,X)

{14 gl

Now, applying the definition of numerical radius and Lemma 2.1, we get the desired
inequality. [

N = I\JI>—‘NI>—‘NI>—‘

REMARK 3.5. If 72 =0, then w(T) = }||T||, |T*T +TT*| = ||T||*, and
11+ W[+ 1S~ WP )| =2 57T 4 777 =27
On the other hand, from ||[S+W|"+|S —W|"|| = supx | [{[S+ W[ +[S—W|"X,X)],

we conclude that (1)"max{||u||,||n||} =272*||T||". Therefore 27 max{||u||, |0}
=27"||T||"=w"(T), where u and 1 are defined above.
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