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ABSTRACT

In this paper, we define the generalised relative operator entropy
and investigate some of its properties such as subadditivity and
homogeneity. As application of our result, we obtain the information
inequality. In continuation, we establish some reverses of the operator
entropy inequalities under certain conditions by using the Mond–
Pečarić method.
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1. Introduction and preliminaries

Let B(H ) denote the C∗-algebra of all bounded linear operators on a complex Hilbert
space H with the identity IH . In the case when dimH = n, we identify B(H ) with
the full matrix algebra Mn(C) of all n × n matrices with entries in the complex field.
An operator A ∈ B(H ) is called positive if 〈Ax, x〉 ≥ 0 for all x ∈ H and in this case
we write A ≥ 0. We write A > 0 if A is a positive invertible operator. For self-adjoint
operators A,B ∈ B(H ), we say A ≤ B if B − A ≥ 0. The Gelfand map f (t) �→ f (A) is
an isometrical ∗-isomorphism between the C∗-algebra C(sp(A)) of continuous functions
on the spectrum sp(A) of a self-adjoint operator A and the C∗-algebra generated by A and
IH . If f , g ∈ C(sp(A)), then f (t) ≥ g(t) (t ∈ sp(A)) implies that f (A) ≥ g(A).

Let f be a continuous real-valued function defined on an interval J . It is called operator
monotone if A ≤ B implies f (A) ≤ f (B) for all self-adjoint operators A,B ∈ B(H )

with spectra in J ; see [1] and references therein for some recent results. It said to be
operator concave if λf (A) + (1− λ)f (B) ≤ f (λA+ (1− λ)B) for all self-adjoint operators
A,B ∈ B(H ) with spectra in J and all λ ∈ [0, 1]. Every nonnegative continuous function
f is operator monotone on [0,+∞) if and only if f is operator concave on [0,+∞); see [2,
Theorem 8.1].

A linear map � : B(H ) → B(K ), where H and K are complex Hilbert spaces,
is called positive if �(A) ≥ 0 whenever A ≥ 0 and is said to be normalized if �(IH ) =
CONTACT Ali Morassaei morassaei@znu.ac.ir
© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/03081087.2018.1434116&domain=pdf


2 M. BAKHERAD AND A. MORASSAEI

IK . We denote by PN [B(H ),B(K )] the set of all normalised positive linear maps � :
B(H ) → B(K ). If � ∈ PN [B(H ),B(K )] and f is an operator concave function on an
interval J , then

f (�(A)) ≥ �(f (A)) (Davis-Choi-Jensen’s inequality) (1.1)

for every selfadjoint operator A on H , whose spectrum is contained in J , see also [2–4].
LetA be a C∗-algebra of operators acting on a Hilbert space, let T be a locally compact

Hausdorff space and μ(t) be a Radon measure on T . A field (At)t∈T of operators in A is
called a continuous field of operators if the function t �→ At is norm continuous on T and
the function t �→ ‖At‖ is integrable, one can form the Bochner integral

∫
T Atdμ(t), which

is the unique element in A such that

ϕ

(∫
T
Atdμ(t)

)
=
∫
T

ϕ(At)dμ(t) (1.2)

for every linear functional ϕ in the norm dual A ∗ of A ; see [5].
In 1850 Clausius [6] introduced the notion of entropy in thermodynamics. Since

then several extensions and reformulations have been developed in various disciplines;
cf. [7–10]. There have been investigations of the so-called entropy inequalities by some
mathematicians; see [11–13] and references therein. A relative operator entropy of strictly
positive operatorsA,Bwas introduced in the noncommutative information theory by Fujii
and Kamei [14] by

S(A|B) = A
1
2 log (A− 1

2BA− 1
2 )A

1
2 .

In the same paper, it is shown that S(A|B) ≤ 0 if A ≥ B.
Next, recall that X�qY is defined by X

1
2

(
X− 1

2YX− 1
2

)q
X

1
2 for any real number q and

any strictly positive operators X and Y . For p ∈ [0, 1], the operator X�pY coincides with
the well-known geometric mean of X,Y .

Furuta [15] defined the operator Shannon entropy by

Sp(A|B) = A
1
2

(
A− 1

2BA− 1
2

)p
log

(
A− 1

2BA− 1
2

)
A

1
2 ,

where p ∈ [0, 1] andA,B are strictly positive operators on aHilbert spaceH . Suppose that
A = (At)t∈T ,B = (Bt)t∈T are (continuous) fields of strictly positive operators, q ∈ R and
f is a nonnegative operator monotone function on (0,∞). Then we have the definition of
the generalised relative operator entropy

S̃fq(A|B) :=
∫
T
Sfq(As|Bs)dμ(s) , (1.3)

where Sfq(As|Bs) = A1/2
s

(
A−1/2
s BsA

−1/2
s

)q
f
(
A−1/2
s BsA

−1/2
s

)
A1/2
s . In the discrete case

T = {1, 2, . . . , n}, we get

Sfq(A|B) :=
n∑

j=1

Sfq(Aj|Bj). (1.4)
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For q = 0, f (t) = log t and A,B > 0, we get the relative operator entropy Sf0(A|B) =
A

1
2 log

(
A− 1

2BA− 1
2

)
A

1
2 = S(A|B).

Moslehian et al. [16] showed the following operator entropy

f

⎡⎣ n∑
j=1

(Aj�p+1Bj) + t0

⎛⎝IH −
n∑

j=1

Aj�pBj

⎞⎠⎤⎦ − f (t0)

⎛⎝IH −
n∑

j=1

Aj�pBj

⎞⎠
≥ Sfp(A|B) (p ∈ [0, 1]), (1.5)

where A = (A1, . . . ,An) and B = (B1, . . . ,Bn) are finite sequences of strictly positive
operators such that

∑n
j=1 Aj = ∑n

j=1 Bj = IH , f is a nonnegative operator monotone
function on (0,∞) and t0 is a positive fixed real number.

We present some extensions of the operator entropy inequality. Also, we show some
reverses of the operator entropy inequalities under certain conditions using the Mond–
Pečarić method. In this direction, we show a reverse of (1.5).

2. Some extensions of the operator entropy inequality

First, we present a variational form of Sfq(A|B) where A and B are two strictly positive
operator in B(H ) and q is an arbitrary real number.
Lemma 2.1: If A and B are strictly positive, then

Sfq(A|B) = BSfq−1
(
B−1|A−1)B . (2.1)

In particular, Sf0(A|B) = ASf0
(
B−1|A−1)B.

Proof: Since Xg(X∗X) = g(XX∗)X for every X ∈ B(H ) and every continuous function
g on [0, ‖X‖2] [2, Lemma 1.7], considering X = B1/2A−1/2 we have

Sfq(A|B) = A
1
2

(
A− 1

2BA− 1
2

)q
f
(
A− 1

2BA− 1
2

)
A

1
2

= A
1
2
(
X∗X

)q f (X∗X
)
A

1
2

= B
1
2B− 1

2A
1
2
(
X∗X

)q f (X∗X
)
A

1
2B− 1

2B
1
2

= B
1
2X∗−1 (X∗X

)q f (X∗X
)
X−1B

1
2

= B
1
2X(X∗X)−1 (X∗X

)q f (X∗X
)
(X∗X)−1X∗B

1
2

= B
1
2X(X∗X)q−2f

(
X∗X

)
X∗B

1
2

= B
1
2 (XX∗)q−2Xf

(
X∗X

)
X∗B

1
2

= B
1
2 (XX∗)q−2f

(
XX∗)XX∗B

1
2

= B
1
2 (XX∗)q−1f

(
XX∗)B 1

2

= B
1
2

(
B

1
2A−1B

1
2

)q−1
f
(
B

1
2A−1B

1
2

)
B

1
2

= BSfq−1(B
−1|A−1)B ,

as desired.
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Also,

Sf0(A|B) = BSf−1(B
−1|A−1)B

= B
[
B− 1

2

(
B

1
2A−1B

1
2

)−1
f
(
B

1
2A−1B

1
2

)
B− 1

2

]
B

= A
[
B− 1

2 f
(
B

1
2A−1B

1
2

)
B− 1

2

]
B

= ASf0
(
B−1|A−1)B .

The above lemma says that if B is also invertible, then we can define Sfq(A|B) by (2.1).
Furthermore, if A and B commute, then

Sfq(A|B) = A
(
A−1B

)q f (A−1B
)

.

Note that, in the general case, the generalised relative operator entropy for noninvertible
positive operators does not always exist. For instance, give f (t) = log t and q = 0,
consequently Sf0(IH |εIH ) = ( log ε)IH is not bounded below and hence Sf0(IH |0) does
not make sense. For more information, see [2].

Now, we have the following lemmas.
Lemma 2.2: Let A = (At)t∈T and B = (Bt)t∈T be continuous fields of strictly positive
operators. Then ∫

T
(As�pBs)dμ(s) ≤

(∫
T
Asdμ(s)

)
�p

(∫
T
Bsdμ(s)

)
, (2.2)

where p ∈ [0, 1].
Proof: For continuous fields of strictly positive operators A = (At)t∈T and B = (Bt)t∈T ,
we take the positive unital linear map �(X) = ∫

T C∗XCdμ(t) (X ∈ A ), where C =
B

1
2
t
(∫

T Bsdμ(s)
)− 1

2 . Thus for p ∈ [0, 1] we have(∫
T
Atdμ(t)

)
�p

(∫
T
Bsdμ(s)

)
=
(∫

T
Bsdμ(s)

) 1
2
((∫

T
Bsdμ(s)

)− 1
2
∫
T
Atdμ(t)

(∫
T
Bsdμ(s)

)− 1
2
)p (∫

T
Bsdμ(s)

) 1
2

=
(∫

T
Bsdμ(s)

) 1
2
(∫

T

(∫
T
Bsdμ(s)

)− 1
2
B

1
2
t (B− 1

2
t AtB

− 1
2

t )B
1
2
t

(∫
T
Bsdμ(s)

)− 1
2
dμ(t)

)p

×
(∫

T
Bsdμ(t)

) 1
2

=
(∫

T
Bsdμ(s)

) 1
2
(∫

T
C∗B− 1

2
t AtB

− 1
2

t Cdμ(t)
)p (∫

T
Bsdμ(t)

) 1
2
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=
(∫

T
Bsdμ(s)

) 1
2
(

�

(
B− 1

2
t AtB

− 1
2

t

))p (∫
T
Bsdμ(s)

) 1
2

≥
(∫

T
Bsdμ(s)

) 1
2
�

((
B− 1

2
t AtB

− 1
2

t

)p)(∫
T
Bsdμ(s)

) 1
2

(by (1.1))

=
(∫

T
Bsdμ(s)

) 1
2
(∫

T
C∗

(
B− 1

2
t AtB

− 1
2

t

)p
Cdμ(t)

)(∫
T
Bsdμ(t)

) 1
2

=
∫
T
B

1
2
t

(
B− 1

2
t AtB

− 1
2

t

)p
B

1
2
t dμ(t)

=
∫
T

(At�pBt)dμ(t) .

Lemma 2.3: If X,Cs ∈ A (s ∈ T) such that 0 < m ≤ X ≤ M, f : (0,∞) → [0,∞) is an
operator monotone function and t0 ∈ [m,M], then

f
(∫

T
C∗
s XCsdμ(s) + t0

(
IH −

∫
T
C∗
s Csdμ(s)

))
≥
∫
T
C∗
s f (X)Csdμ(s) + f (t0)

(
IH −

∫
T
C∗
s Csdμ(s)

)
,

where
∫
T C∗

s Csdμ(s) ≤ IH .

Proof: We put D = (IH − ∫
T C∗

s Csdμ(s))
1
2 . Assume that the positive unital linear map

�
(
diag(X,Y)

) = ∫
T C∗

s XCsdμ(s) + D∗YD (X,Y ∈ A ), where

diag(X,Y) =
[
X 0
0 Y

]
.

Using inequality (1.1) and the operator monotonicity of f , we have

f
(∫

T
C∗
s XCsdμ(s) + t0

(
IH −

∫
T
C∗
s Csdμ(s)

))
= f

(
�

([
X 0
0 t0

]))
≥
(

�

([
f (X) 0
0 f (t0)

]))
(by (1.1))

=
∫
T
C∗
s f (X)Csdμ(s) + D∗f (t0)D ,

whenever 0 < m ≤ X ≤ M and t0 ∈ [m,M]. Therefore we get the desired inequality.

In the next theorem, we have an extension of (1.5).
Theorem 2.4: Let A = (At)t∈T ,B = (Bt)t∈T be continuous fields of strictly positive
operators such that 0 < mAs ≤ Bs ≤ MAs (s ∈ T) for some positive real numbers m,M,
where m < 1 < M, and

∫
T Asdμ(s) = ∫

T Bsdμ(s) = IH , f : (0,∞) → [0,∞) is operator
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concave and p ∈ [0, 1]. Then

f
[∫

T
(As�p+1Bs)dμ(s) + t0

(
IH −

∫
T
As�pBsdμ(s)

)]
− f (t0)

(
IH −

∫
T
As�pBsdμ(s)

)
≥ S̃fp(A|B) . (2.3)

Proof: It follows from (2.2) and
∫
T Asdμ(s) = ∫

T Bsdμ(s) = IH that
∫
T As�pBsdμ(s) ≤

IH (p ∈ [0, 1]).

f
[ ∫

T
(As�p+1Bs)dμ(s) + t0

(
IH −

∫
T
As�pBsdμ(s)

)]
= f

[ ∫
T

((
A− 1

2
s BsA

− 1
2

s

) p
2A

1
2
s

)∗ (
A− 1

2
s BsA

− 1
2

s

)((
A− 1

2
s BsA

− 1
2

s

) p
2A

1
2
s

)
dμ(s)

+ t0
(
IH −

∫
T
As�pBsdμ(s)

)]
≥
∫
T
A

1
2
s

(
A− 1

2
s BsA

− 1
2

s

) p
2
f
(
A− 1

2
s BsA

− 1
2

s

)(
A− 1

2
s BsA

− 1
2

s

) p
2
A

1
2
s dμ(s)

+ f (t0)
(
IH −

∫
T
As�pBsdμ(s)

)
(by Lemma 2.3)

=
∫
T
A

1
2
s

(
A− 1

2
s BsA

− 1
2

s

)p
f
(
A− 1

2
s BsA

− 1
2

s

)
A

1
2
s dμ(s) + f (t0)

(
IH −

∫
T
As�pBsdμ(s)

)
=
∫
T
Sfp(As|Bs)dμ(s) + f (t0)

(
IH −

∫
T
As�pBsdμ(s)

)
.

In the next theorem, we present the lower and upper bounds of the generalised relative
operator entropy.
Theorem 2.5: With above notations, the following statements hold:

(i) S̃fq(A|B) ≥ 0.
(ii) If f (t) ≤ t − 1, then S̃fq(A|B) ≤ ∫

T (As�q+1Bs − As�qBs)dμ(s). In particular,
S̃f0(A|B) ≤ ∫

T (Bs − As)dμ(s) and S̃f1(A|B) ≤ ∫
T (BsA−1

s Bs − Bs)dμ(s).

Proof: (i) Since f is a continuous nonnegative function, Xqf (X) ≥ 0 for every X ≥ 0 and
q ∈ R. Hence

(
A− 1

2
s BsA

− 1
2

s

)q
f
(
A− 1

2
s BsA

− 1
2

s

)
≥ 0 .

Consequently, S̃fq(A|B) ≥ 0.
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(ii) Since f (t) ≤ t − 1, we have

S̃fq(A|B) =
∫
T
A

1
2
s

(
A− 1

2
s BsA

− 1
2

s

)q
f
(
A− 1

2
s BsA

− 1
2

s

)
A

1
2
s dμ(s)

≤
∫
T
A

1
2
s

(
A− 1

2
s BsA

− 1
2

s

)q (
A− 1

2
s BsA

− 1
2

s − IH
)
A

1
2
s dμ(s)

=
∫
T

(
As�q+1Bs − As�qBs

)
dμ(s) .

Hence

S̃f0(A|B) ≤
∫
T

(
As�1Bs − As�0Bs

)
dμ(s) =

∫
T

(
Bs − As

)
dμ(s) ,

and

S̃f1(A|B) ≤
∫
T

(
As�2Bs − As�1Bs

)
dμ(s)

=
∫
T

[
A

1
2
s

(
A− 1

2
s BsA

− 1
2

s

)2
A

1
2
s − A

1
2
s

(
A− 1

2
s BsA

− 1
2

s

)
A

1
2
s

]
dμ(s)

=
∫
T

(
BsA−1

s Bs − Bs
)
dμ(s) .

Corollary 2.6 [2, Theorem 5.12]: Assume that A and B are two strictly positive operators
in B(H ). Then the relative operator entropy is upper bounded; i.e.

S(A|B) ≤ B − A . (2.4)

Equality holds if and only if A = B.

Proof: By taking T = {1}, f (t) = log t and q = 0 in Theorem 2.5(ii), (2.4) follows from
the Klein inequality log t ≤ t − 1. Also, in the Klein inequality, equality holds if and only
if t = 1 [17, Lemma 3.8]. So equality holds in (2.4) if and only if A = B.

Corollary 2.7 (Information inequality, [18, Lemma 3.1]): Given two probability mass
functions {aj} and {bj}, that is, two countable or finite sequences of positive numbers that
sum to one, then ∑

j

aj log
aj
bj

≥ 0 , (2.5)

with equality if and only if aj = bj, for all j.

Proof: If we take A and B in Corollary 2.6 as follows

A =

⎛⎜⎜⎜⎝
a1 0 0 · · ·
0 a2 0 · · ·
0 0 a3 · · ·
...

...
...

. . .

⎞⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎝
b1 0 0 · · ·
0 b2 0 · · ·
0 0 b3 · · ·
...

...
...

. . .

⎞⎟⎟⎟⎠ ,
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then, we have

S(A|B) =

⎛⎜⎜⎜⎝
a1 0 0 · · ·
0 a2 0 · · ·
0 0 a3 · · ·
...

...
...

. . .

⎞⎟⎟⎟⎠ log

⎛⎜⎜⎜⎜⎝
b1
a1 0 0 · · ·
0 b2

a2 0 · · ·
0 0 b3

a3 · · ·
...

...
...

. . .

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝
a1 log

(
b1
a1

)
0 0 · · ·

0 a2 log
(
b2
a2

)
0 · · ·

0 0 a3 log
(
b3
a3

)
· · ·

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ .

Consequently,

〈
S(A|B)

⎛⎜⎜⎜⎝
1
1
1
...

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1
1
1
...

⎞⎟⎟⎟⎠
〉

=
〈
⎛⎜⎜⎜⎜⎜⎜⎝
a1 log

(
b1
a1

)
0 0 · · ·

0 a2 log
(
b2
a2

)
0 · · ·

0 0 a3 log
(
b3
a3

)
· · ·

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
1
1
1
...

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1
1
1
...

⎞⎟⎟⎟⎠
〉

=
∑
j

aj log
(
bj
aj

)
.

On the other hand,

〈
(B − A)

⎛⎜⎜⎜⎝
1
1
1
...

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1
1
1
...

⎞⎟⎟⎟⎠
〉

=
〈⎛⎜⎜⎜⎝

b1 − a1 0 0 · · ·
0 b2 − a2 0 · · ·
0 0 b3 − a3 · · ·
...

...
...

. . .

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
1
1
1
...

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1
1
1
...

⎞⎟⎟⎟⎠
〉

=
∑
j

(bj − aj) = 0 .

We, therefore, deduce the desired inequality (2.5). Using Corollary 2.6, equality holds if
and only if A = B, or equivalently aj = bj for all j.

In the next theorem, we show that the generalised relative operator entropy is subaddi-
tive.
Theorem 2.8: For q = 0, the generalised relative operator entropy is subadditive,

S̃f0(A + B|C + D) ≥ S̃f0(A|C) + S̃f0(B|D) .
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Proof: Without loss of generality, we assume that As and Bs (s ∈ T) are invertible. Put
Xs = A1/2

s (As + Bs)−1/2 and Ys = B1/2s (As + Bs)−1/2. Therefore,

X∗
s Xs + Y∗

s Ys =
[
(As + Bs)−

1
2A

1
2
s

] [
A

1
2
s (As + Bs)−

1
2

]
+
[
(As + Bs)−

1
2B

1
2
s

] [
B

1
2
s (As + Bs)−

1
2

]
= (As + Bs)−

1
2As(As + Bs)−

1
2 + (As + Bs)−

1
2Bs(As + Bs)−

1
2

= (As + Bs)−
1
2 (As + Bs)(As + Bs)−

1
2

= IH ,

and this implies that

S̃f0(A + B|C + D)

=
∫
T
Sf0(As + Bs|Cs + Ds)dμ(s)

=
∫
T

(As + Bs)
1
2 f
[
(As + Bs)−

1
2 (Cs + Ds)(As + Bs)−

1
2

]
(As + Bs)

1
2 dμ(s)

=
∫
T

(As + Bs)
1
2 f
[
(As + Bs)−

1
2Cs(As + Bs)−

1
2 + (As + Bs)−

1
2Ds(As + Bs)−

1
2

]
× (As + Bs)

1
2 dμ(s)

=
∫
T

(As + Bs)
1
2 f
[
X∗
s

(
A− 1

2
s CsA

− 1
2

s

)
Xs + Y∗

s

(
B− 1

2
s DsB

− 1
2

s

)
Ys

]
(As + Bs)

1
2 dμ(s)

≥
∫
T

(As + Bs)
1
2

[
X∗
s f

(
A− 1

2
s CsA

− 1
2

s

)
Xs + Y∗

s f
(
B− 1

2
s DsB

− 1
2

s

)
Ys

]
(As + Bs)

1
2 dμ(s)

(by operator concavity of f and Theorem 1.9 in [2])

=
∫
T

[
A

1
2
s f

(
A− 1

2
s CsA

− 1
2

s

)
A

1
2
s + B

1
2
s f

(
B− 1

2
s DsB

− 1
2

s

)
B

1
2
s

]
dμ(s)

=
∫
T
Sf0(As|Cs)dμ(s) +

∫
T
Sf0(Bs|Ds)dμ(s)

= S̃f0(A|C) + Ŝf0(B|D) .

Lemma 2.9: The generalised relative operator entropy is homogenous; i.e. for any real
number α > 0

S̃fq(αA|αB) = α̃Sfq(A|B) ,

where αA = (αAs)s∈T .
Theorem 2.10: For q = 0, the generalised relative operator entropy is jointly concave; i.e.
if A = αA1 + βA2 and B = αB1 + βB2 for α,β > 0 with α + β = 1, then

S̃f0(A|B) ≥ α̃Sf0(A1|B1) + βSf0(A2|B2) .
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Proof: Assume thatAk = (Aks) andBk = (Bks) (k = 1, 2, s ∈ T). By using of subadditivity
and homogeneity of the generalised relative operator entropy, we get

S̃f0(A|B) = S̃f0(αA1 + βA2|αB1 + βB2)

=
∫
T
Sf0(αA1s + βA2s|αB1s + βB2s)dμ(s)

≥
∫
T

[
Sf0(αA1s|αB1s) + Sf0(βA2s|βB2s)

]
dμ(s)

=
∫
T

[
αSf0(A1s|B1s) + βSf0(A2s|B2s)

]
dμ(s)

= α̃Sf0(A1|B1) + βS̃f0(A2|B2) .

We say that A = (As)s∈T is invertible, if As is invertible for every s ∈ T .
In the following theorem, we show that the generalised relative operator entropy has

informational monotonicity.
Theorem 2.11: For q = 0 and � ∈ PN [B(H ),B(K )],

�
(̃
Sf0(A|B)

)
≤ S̃f0

(
�(A)|�(B)

)
.

Proof: Assume that A is invertible. Then so does �(A) = (
�(As)

)
s∈T . Define

	(X) = �(As)
− 1

2 �

(
A

1
2
s XA

1
2
s

)
�(As)

− 1
2 .

So 	 is a normalised positive linear map. Consequently,

�
(̃
Sf0(A|B)

)
=
∫
T

�
(
Sf0(As|Bs)

)
dμ(s) (by (1.2))

=
∫
T

�

(
A

1
2
s f

(
A− 1

2
s BsA

− 1
2

s

)
A

1
2
s

)
dμ(s)

=
∫
T

�(As)
1
2

[
�(As)

− 1
2 �

(
A

1
2
s f

(
A− 1

2
s BsA

− 1
2

s

)
A

1
2
s

)
�(As)

− 1
2

]
× �(As)

1
2 dμ(s)

=
∫
T

�(As)
1
2 	

(
f
(
A− 1

2
s BsA

− 1
2

s

))
�(As)

1
2 dμ(s)

≤
∫
T

�(As)
1
2 f
(

	

(
A− 1

2
s BsA

− 1
2

s

))
�(As)

1
2 dμ(s) (by (1.1))

=
∫
T

�(As)
1
2 f
[
�(As)

− 1
2 �

(
A

1
2
s A

− 1
2

s BsA
− 1

2
s A

1
2
s

)
�(As)

− 1
2

]
�(As)

1
2 dμ(s)

=
∫
T

�(As)
1
2 f
[
�(As)

− 1
2 �(Bs)�(As)

− 1
2

]
�(As)

1
2 dμ(s)
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=
∫
T
Sf0
(
�(As)|�(Bs)

)
dμ(s)

= S̃f0
(
�(A)|�(B)

)
.

3. Some operator entropy inequalities

There is an impressive method for finding inverses of some operator inequalities. It was
introduced for investigation of converses of the Jensen inequality associated with convex
functions, see [2] and [19] and references therein. We need the essence of the Mond–
Pečarić method where appeared in [2, Chapter 2] in some general forms.

If f is a strictly concave differentiable function on an interval [m,M] with m < M and
� : B(H ) −→ B(K ) is a positive unital linear map,

μf = f (M) − f (m)

M − m
, νf = Mf (m) − mf (M)

M − m
and

γf = max
{

f (t)
μf t + νf

: m ≤ t ≤ M
}
, (3.1)

then

f (�(A)) ≤ γf �(f (A)). (3.2)

Lemma 3.1: Assume that X,Cs ∈ A (s ∈ T) such that 0 < m ≤ X ≤ M, f : (0,∞) →
[0,∞) is an operator monotone function, t0 ∈ [m,M] and γf is given by (3.1). Then

f
(∫

T
C∗
s XCsdμ(s) + t0

(
IH −

∫
T
C∗
s Csdμ(s)

))
≤ γf

[∫
T
C∗
s f (X)Csdμ(s) + f (t0)

(
IH −

∫
T
C∗
s Csdμ(s)

)]
,

where
∫
T C∗

s Csdμ(s) ≤ IH .

Proof: Using (3.2), the proof is similar to Lemma 2.3.

Theorem 3.2: Let A = (At)t∈T ,B = (Bt)t∈T be continuous fields of strictly positive
operators such that 0 < mAs ≤ Bs ≤ MAs (s ∈ T) for some positive real numbers m,M,
where m < 1 < M,

∫
T Asdμ(s) = ∫

T Bsdμ(s) = IH , f : (0,∞) → [0,∞) is operator
concave and p ∈ [0, 1]. Then

f
[∫

T
(As�p+1Bs)dμ(s) + t0

(
IH −

∫
T
As�pBsdμ(s)

)]
− γf f (t0)

(
IH −

∫
T
As�pBsdμ(s)

)
≤ γf S̃

f
p(A|B), (3.3)

where t0 ∈ [m,M] and γf is given by (3.1).
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Proof: It follows from (2.2) and
∫
T Asdμ(s) = ∫

T Bsdμ(s) = IH that
∫
T As�pBsdμ(s) ≤

IH (p ∈ [0, 1]).

f
[ ∫

T
(As�p+1Bs)dμ(s) + t0

(
IH −

∫
T
As�pBsdμ(s)

)]
=f

[ ∫
T

((
A− 1

2
s BsA

− 1
2

s

) p
2A

1
2
s

)∗ (
A− 1

2
s BsA

− 1
2

s

)((
A− 1

2
s BsA

− 1
2

s

) p
2A

1
2
s

)
dμ(s)

+ t0
(
IH −

∫
T
As�pBsdμ(s)

)]
≤γf

[ ∫
T
A

1
2
s

(
A− 1

2
s BsA

− 1
2

s

) p
2
f
(
A− 1

2
s BsA

− 1
2

s

)(
A− 1

2
s BsA

− 1
2

s

) p
2
A

1
2
s dμ(s)

+ f (t0)
(
IH −

∫
T
As�pBsdμ(s)

)]
(by Lemma 3.1)

=γf

[ ∫
T
A

1
2
s

(
A− 1

2
s BsA

− 1
2

s

)p
f
(
A− 1

2
s BsA

− 1
2

s

)
A

1
2
s dμ(s)

+ f (t0)
(
IH −

∫
T
As�pBsdμ(s)

)]
=γf

[∫
T
Sfp(As|Bs)dμ(s) + f (t0)

(
IH −

∫
T
As�pBsdμ(s)

)]
.

For the discrete case T = {1, 2, . . . , n}, we give a reverse of (2.3).
Corollary 3.3: Let 0 < mAj ≤ Bj ≤ MAj (1 ≤ j ≤ n) for some positive real numbers
m,M such that m < 1 < M,

∑n
j=1 Aj = ∑n

j=1 Bj = IH and f : (0,∞) → [0,∞) be
operator concave. Then

f

⎡⎣ n∑
j=1

(Aj�p+1Bj) + t0

⎛⎝IH −
n∑

j=1

Aj�pBj

⎞⎠⎤⎦ − γf f (t0)

⎛⎝IH −
n∑

j=1

Aj�pBj

⎞⎠
≤ γf S

f
p(A|B) , (3.4)

where t0 ∈ [m,M], p ∈ [0, 1] and γf is given by (3.1).
There is another method to find a reverse of the Choi–Davis–Jensen inequality. If f is a

strictly concave differentiable function on an interval [m,M]withm < M and� is a unital
positive linear map, then

ζf IH + �(f (A)) ≥ f (�(A)), (3.5)

Where

μf = f (M) − f (m)

M − m
, νf = Mf (m) − mf (M)

M − m
and ζf = max

m≤t≤M

{
f (t) − μf t − νf

}
,(3.6)

A ∈ B(H ) is a self-adjoint operator with spectrum in [m,M]; see [2, p.101].
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Lemma 3.4: Let X,Cs ∈ A (s ∈ T) such that
∫
T C∗

s Csdμ(s) ≤ IH and 0 < m ≤ X ≤ M,
let f : (0,∞) → [0,∞) be an operator monotone function and t0 ∈ [m,M]. Then

f
(∫

T
C∗
s XCsdμ(s) + t0

(
IH −

∫
T
C∗
s Csdμ(s)

))
≤
∫
T
C∗
s f (X)Csdμ(s) + f (t0)

(
IH −

∫
T
C∗
s Csdμ(s)

)
+ ζf ,

where ζf is given by (3.6).

Proof: We put D = (IH − ∫
T C∗

s Csdμ(s))
1
2 . Applying inequality (3.5) for the positive

unital linear map �
(
diag(X,Y)

) = ∫
T C∗

s XCsdμ(s) + D∗YD (X,Y ∈ A ) we get the
desired inequality.

Using Lemma 3.4, by the same argument in the proof of Theorem 3.3 we give the next
result.
Theorem 3.5: Let A = (At)t∈T ,B = (Bt)t∈T be continuous fields of strictly positive
operators such that 0 < mAs ≤ Bs ≤ MAs (s ∈ T) for some positive real numbers m,M,
where m < 1 < M,

∫
T Asdμ(s) = ∫

T Bsdμ(s) = IH , f : (0,∞) → [0,∞) is operator
concave, t0 ∈ [m,M] and p ∈ [0, 1]. Then

f
[∫

T
(As�p+1Bs)dμ(s) + t0

(
IH −

∫
T
As�pBsdμ(s)

)]
− f (t0)

(
IH −

∫
T
As�pBsdμ(s)

)
≤ S̃fp(A|B) + ζf , (3.7)

where ζf is given by (3.6).
In the discrete case, we get a reverse of inequality (2.3).

Corollary 3.6: Let 0 < mAj ≤ Bj ≤ MAj (1 ≤ j ≤ n) for some positive real numbers
m,M such that m < 1 < M,

∑n
j=1 Aj = ∑n

j=1 Bj = IH and f : (0,∞) → [0,∞) be
operator concave, p ∈ [0, 1] and t0 ∈ [m,M]. Then

f

⎡⎣ n∑
j=1

(Aj�p+1Bj) + t0

⎛⎝IH −
n∑

j=1

Aj�pBj

⎞⎠⎤⎦ − f (t0)

⎛⎝IH −
n∑

j=1

Aj�pBj

⎞⎠
≤ Sfp(A|B) + ζf , (3.8)

where ζf is given by (3.6).
Using Corollary 3.6 for the operator monotone functions f (t) = −t log t and g(t) =

log t, respectively, we get the following example.
Example 3.7: Let 0 < mAj ≤ Bj ≤ MAj (1 ≤ j ≤ n) for some positive real numbers
m,M such thatm < 1 < M,

∑n
j=1 Aj = ∑n

j=1 Bj = IH and t0 ∈ [m,M]. Then
⎡⎣ n∑

j=1

(Aj�p+1Bj) + t0

⎛⎝IH −
n∑

j=1

Aj�pBj

⎞⎠⎤⎦
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× log

⎡⎣ n∑
j=1

(Aj�p+1Bj) + t0

⎛⎝IH −
n∑

j=1

Aj�pBj

⎞⎠⎤⎦
− t0 log (t0)

⎛⎝IH −
n∑

j=1

Aj�pBj

⎞⎠
≥ S1(A|B) + L(1/m, 1/M)−1 − I(m,M)

and

log

⎡⎣ n∑
j=1

(Aj�p+1Bj) + t0

⎛⎝IH −
n∑

j=1

Aj�pBj

⎞⎠⎤⎦ − log (t0)

⎛⎝IH −
n∑

j=1

Aj�pBj

⎞⎠
≤ S(A|B) + log

[
1
e

(
Mm

mM

) 1
M−m

L(m,M)

]
,

where

L(a, b) =
{

b−a
log b−log a ; a �= b
a ; a = b

and I(a, b) =
⎧⎨⎩ 1

e

(
bb
aa

) 1
b−a ; a �= b

a ; a = b

are the logarithmic mean and the identric mean of positive real numbers a and b, respec-
tively.
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