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Abstract
In this paper, we present some unitarily invariant norm inequalities for sector matrices
involving a special class of functions. In particular, if Z = (

Z11 Z12
Z21 Z22

) is a 2n× 2nmatrix
such that numerical range of Z is contained in a sector region Sα for some α ∈ [0, π2 ),
then, for a submultiplicative function h of the class C and every unitarily invariant
norm, we have

∥
∥h(|Zij|2)

∥
∥ ≤ ∥

∥hr(sec(α)|Z11|)
∥
∥

1
r
∥
∥hs(sec(α)|Z22|)

∥
∥

1
s ,

where r and s are positive real numbers with 1
r +

1
s = 1 and i, j = 1, 2. We also extend

some unitarily invariant norm inequalities for sector matrices.
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1 Introduction and preliminaries
Let Mn be the algebra of all n×n complex matrices. For Z ∈Mn, the conjugate transpose
of Z is denoted by Z∗. A complex matrix Z ∈M2n can be partitioned as a 2×2 block matrix

Z =

(

Z11 Z12

Z21 Z22

)

, (1)

where Zij ∈Mn (i, j = 1, 2). For Z ∈Mn, let Z = Re(Z) + iIm(Z) be the Cartesian decom-
position of Z, where the Hermitian matrices Re(Z) = Z+Z∗

2 and Im(Z) = Z–Z∗
2i are called

the real and imaginary parts of Z, respectively. We say that a matrix Z ∈ Mn is positive
semidefinite if z∗Zz ≥ 0 for all complex numbers z. For Z ∈ Mn, let s1(Z) ≥ s2(Z) ≥ · · · ≥
sn(Z) denote the singular values of Z, i.e. the eigenvalues of the positive semidefinite matrix
|Z| = (Z∗Z) 1

2 arranged in a decreasing order and repeated according to multiplicity. Note
that sj(Z) = sj(Z∗) = sj(|Z|) for j = 1, 2, . . . , n. A norm ‖ · ‖ on Mn is said to be unitarily in-
variant if ‖UZV‖ = ‖Z‖ for every Z ∈Mn and for every unitary U , V ∈Mn. For Z ∈Mn

and p > 0, let ‖Z‖p = (
∑n

j=1 sp
j (Z))

1
p . This defines the Schatten p-norm (quasinorm) for

p ≥ 1 (0 < p < 1). It is clear that the Schatten p-norm is an unitarily invariant norm. The
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w-norm of a matrix Z ∈ Mn is defined by ‖Z‖w =
∑n

j=1 wjsj(Z), where w = (w1, w2, . . . , wn)
is a decreasing sequence of nonnegative real numbers.

In this paper, we assume that all functions are continuous. It is known that if Z ∈Mn is
positive semidefinite and h is a nonnegative increasing function on [0,∞), then h(sj(Z)) =
sj(h(Z)) for j = 1, 2, . . . , n. For positive semidefinite X, Y ∈ Mn and a nonnegative increas-
ing function h on [0,∞), if sj(X) ≤ sj(Y ) for j = 1, 2, . . . , n, then ‖h(X)‖ ≤ ‖h(Y )‖, where ‖ ·‖
is a unitarily invariant norm. For more information, see [4, 18] and references therein.

We say that a matrix Z is accretive (respectively dissipative) if in the Cartesian decom-
position Z = X + iY , the matrix X (respectively Y ) is positive semidefinite. If both X and
Y are positive semidefinite, Z is called accretive–dissipative.

Another important class of matrices, which is related to the class of accretive–dissipative
matrices, is called sector matrices. To introduce this class, let α ∈ [0, π

2 ) and Sα be a sector
defined in the complex plane by

Sα =
{

z ∈ C : Re(z) ≥ 0,
∣
∣Im(z)

∣
∣ ≤ tan(α)Re(z)

}

.

For Z ∈Mn, the numerical range of Z is defined by

W (A) =
{

z∗Zz : z ∈ C,‖z‖ = 1
}

.

A matrix whose its numerical range is contained in a sector region Sα for some α ∈ [0, π
2 ),

is called a sector matrix. It follows from the definition of sector matrices that Z is posi-
tive semidefinite if and only if W (Z) ⊆ S0 and also Z is accretive–dissipative if and only if
W (e –iπ

4 Z) ⊆ S π
4

. Moreover, if W (Z) ⊆ Sα , then Z is invertible with Re(Z) > 0 and therefore
Z is accretive. For more on sector matrices see [3, 6, 7, 11–15, 17, 19–22] and the references
therein. For x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn with nonnegative components, if
∑k

j=1 xj ≤ ∑k
j=1 yj (

∏k
j=1 xj ≤ ∏k

j=1 yj) for k = 1, 2, . . . , n, then we say that x is weakly (weakly
log) majorized by y and denoted by x ≺ω y(x ≺ω log y). It is known that weak log majoriza-
tion implies weak majorization. A nonnegative function h on the interval [0,∞) is said to
be submultiplicative if h(ab) ≤ h(a)h(b) whenever a, b ∈ [0,∞).

Gumus et al. [8] introduced the special class C involving all nonnegative increas-
ing functions h on [0,∞) satisfying the following condition: If x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) are two decreasing sequences of nonnegative real numbers such that
∏k

j=1 xj ≤ ∏k
j=1 yj (k = 1, 2, . . . , n), then

∏k
j=1 h(xj) ≤ ∏k

j=1 h(yj) (k = 1, 2, . . . , n).
Note that the power function h(t) = tp (p > 0) belongs to class C . For more information

about the class C see [8] and the references therein. For the positive semidefinite matrix
( X Z

Z∗ Y

) ∈M2n, one proved [8] that, if h ∈ C is a submultiplicative function, then

∥
∥h

(|Z|2)∥∥ ≤ ∥
∥hr(X)

∥
∥

1
r
∥
∥hs(Y )

∥
∥

1
s , (2)

where r and s are positive real numbers with 1
r + 1

s = 1. Furthermore, for accretive–
dissipative matrix Z ∈ M2n partitioned as in (1), one showed the following unitarily in-
variant norm inequalities:

∥
∥h

(|Z12|2
)

+ h
(∣
∣Z∗

21
∣
∣
2)∥

∥ ≤ ∥
∥hr(2|Z11|

)∥
∥

1
r
∥
∥hs(2|Z22|

)∥
∥

1
s , (3)
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where h ∈ C is a submultiplicative convex function and

∥
∥h

(|Z12|2
)

+ h
(∣
∣Z∗

21
∣
∣
2)∥

∥ ≤ 4
∥
∥hr(|Z11|

)∥
∥

1
r
∥
∥hs(|Z22|

)∥
∥

1
s , (4)

where h ∈ C is a submultiplicative concave function such that r and s are positive real
numbers with 1

r + 1
s = 1. Moreover, for a sector matrix Z ∈ M2n partitioned as in (1),

Zhang [22] proved the following inequality:

‖Z12‖2 ≤ sec2(α)‖Z11‖‖Z22‖ (5)

for any unitarily invariant norm and α ∈ [0, π
2 ). Alakhrass [1] extended inequality (5) to

‖|Z12|p‖ ≤ secp(α)
∥
∥Z

pr
2

11
∥
∥

1
r
∥
∥Z

ps
2

22
∥
∥

1
s , (6)

where r, s and p are positive numbers in which 1
r + 1

s = 1 and α ∈ [0, π
2 ).

In [8], the authors presented some Schatten p-norm inequalities for accretive–dissipa-
tive matrices Z ∈M2n partitioned as in (1), which compared the off-diagonal blocks of Z
to its diagonal blocks as follows:

‖Z12‖p
p + ‖Z21‖p

p ≤ 2p–1‖Z11‖
p
2
p ‖Z22‖

p
2
p (p ≥ 2) (7)

and

‖Z12‖p
p + ‖Z21‖p

p ≤ 23–p‖Z11‖
p
2
p ‖Z22‖

p
2
p (0 < p ≤ 2). (8)

Let Zij (1 ≤ i, j ≤ n) be square matrices of the same size such that the block matrix

Z =

⎛

⎜
⎜
⎜
⎜
⎝

Z11 Z12 · · · Z1n

Z21 Z22 · · · Z2n
...

... · · · ...
Zn1 Zn2 · · · Znn

⎞

⎟
⎟
⎟
⎟
⎠

(9)

be accretive–dissipative. For such matrices, Kittaneh and Sakkijha [10] showed that

∑

i
=j

‖Zij‖p
p ≤ (n – 1)2p–2

n
∑

i=1

‖Zii‖p
p (p ≥ 2) (10)

and

∑

i
=j

‖Zij‖p
p ≤ (n – 1)22–p

n
∑

i=1

‖Zii‖p
p (0 ≤ p ≤ 2). (11)

Mao and Liu [17] showed the inequality

∑

i
=j

‖Zij‖p
p ≤ (n – 1)2

p
2

n
∑

i=1

‖Zii‖p
p (p > 0), (12)
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where for 0 < p ≤ 4
3 and p ≥ 4, this inequality improved inequalities (10) and (11). Lin and

Fu [16], extended the above inequalities for sector matrices as follows:

∑

i
=j

‖Zij‖p
p ≤ (n – 1) secp(α)

n
∑

i=1

‖Zii‖p
p (p > 0), (13)

in which α ∈ [0, π
2 ).

In the present paper, we establish some unitarily invariant norm inequalities for sector
matrices involving the functions of class C . For instance, we extend inequalities (2) and (6)
to sector matrices and the class C (Theorem 4). Moreover, we improve inequalities (3) and
(4) to sector matrices. Also, we prove inequality (13) for all unitarily invariant norm and
function of the class C .

2 Main result
In the following, we give some lemmas which are needed to prove our main statements.

Lemma 1 ([9, p. 207]) Let X, Y , Z ∈ Mn, and r, s be positive real numbers with 1
r + 1

s = 1.
Then

‖X‖w ≤ ‖Y‖ 1
r
w‖Z‖ 1

s
w ,

where w = (w1, w2, . . . , wn) is a decreasing sequence of nonnegative real numbers if and only
if

‖X‖ ≤ ‖Y‖ 1
r ‖Z‖ 1

s

for every unitarily invariant norm ‖ · ‖.

Lemma 2 ([1, Theorem 3.2]) Suppose that Z ∈ M2n partitioned as in (1) such that
W (Z) ⊆ Sα for some α ∈ [0, π

2 ). Then

k
∏

m=1

sm(Zij) ≤
k

∏

l=1

sec(α)s
1
2
m
(

Re(Zii)
)

s
1
2
m
(

Re(Zjj)
)

(i, j = 1, 2),

where k = 1, 2, . . . , n.

Lemma 3 ([5, p. 73]) Let Z ∈Mn. Then

λj
(

Re(Z)
) ≤ sj(Z) (j = 1, 2, . . . , n).

Consequently, ‖Re(Z)‖ ≤ ‖Z‖ for every unitarily invariant norm ‖ · ‖ on Mn.

In the sequel, we give some unitarily invariant norm inequalities for sector matrices
regarding of special class C . Furthermore, in some special cases those results reduce to
previous ones, which were introduced by other authors.
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Theorem 4 Let Z ∈M2n partitioned as in (1) be a sector matrix and let h ∈ C be submul-
tiplicative and α ∈ [0, π

2 ). If r and s are positive real numbers with 1
r + 1

s = 1, then

∥
∥h

(|Zij|2
)∥
∥ ≤ ∥

∥hr(sec(α)Re(Z11)
)∥
∥

1
r
∥
∥hs(sec(α)Re(Z22)

)∥
∥

1
s

≤ ∥
∥hr(sec(α)|Z11|

)∥
∥

1
r
∥
∥hs(sec(α)|Z22|

)∥
∥

1
s

for every unitarily invariant norm ‖ · ‖ on Mn and i, j = 1, 2.

Proof Assume that w = (w1, w2, . . . , wn) is a decreasing sequence of nonnegative real num-
bers and k = 1, 2, . . . , n. Then Lemma 2 implies that

k
∏

m=1

sm
(|Zij|2

)

=

( k
∏

m=1

sm(Zij)

)2

≤
( k

∏

m=1

sec(α)s
1
2
m
(

Re(Zii)
)

s
1
2
m
(

Re(Zjj)
)

)2

=
k

∏

m=1

sec2(α)sm
(

Re(Zii)
)

sm
(

Re(Zjj)
)

,

where i, j = 1, 2. Therefore

k
∏

m=1

sm
(

h
(|Zij|2

))

=
k

∏

m=1

h
(

sm
(|Zij|2

))

(since h is increasing)

≤
k

∏

m=1

h
(

sec2(α)sm
(

Re(Zii)
)

sm
(

Re(Zjj)
))

(since f ∈ C)

≤
k

∏

m=1

h
(

sec(α)sm
(

Re(Zii)
))

h
(

sec(α)sm
(

Re(Zjj)
))

(since h is submultiplicative)

=
k

∏

m=1

sm
(

h
(

sec(α)Re(Zii)
))

sm
(

h
(

sec(α)Re(Zjj)
))

.

Since w = (w1, w2, . . . , wn) is a decreasing sequence of nonnegative real numbers, it follows
that

k
∏

m=1

wmsm
(

h
(|Zij|2

)) ≤
k

∏

m=1

wmsm
(

h
(

sec(α)Re(Zii)
))

sm
(

h
(

sec(α)Re(Zjj)
))

, (14)

where i, j = 1, 2. Since weak log majorization implies weak majorization, inequality (14)
implies that

k
∑

m=1

wmsm
(

h
(|Zij|2

)) ≤
k

∑

m=1

wmsm
(

h
(

sec(α)Re(Zii)
))

sm
(

h
(

sec(α)Re(Zjj)
))

, (15)
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where i, j = 1, 2, . . . . Now, by applying the previous inequality and Hölder’s inequality, we
deduce that

∥
∥h

(|Z12|2
)∥
∥

w

=
n

∑

m=1

wmsm
(

h
(|Z12|2

))

≤
n

∑

m=1

wmsm
(

h
(

sec(α)Re(Z11)
))

sm
(

h
(

sec(α)Re(Z22)
))

(by inequality (15))

=
n

∑

m=1

w
1
r
msm

(

h
(

sec(α)Re(Z11)
))

w
1
s

msm
(

h
(

sec(α)Re(Z22)
))

≤
( n

∑

m=1

wmsr
m
(

h
(

sec(α)Re(Z11)
))

) 1
r
( n

∑

m=1

wmss
m
(

h
(

sec(α)Re(Z22)
))

) 1
s

(by Hölder’s inequality)

=

( n
∑

m=1

wmsm
(

hr(sec(α)Re(Z11)
))

) 1
r
( n

∑

m=1

wmsm
(

hs(sec(α)Re(Z22)
))

) 1
s

=
∥
∥hr(sec(α)Re(Z11)

)∥
∥

1
r
w

∥
∥hs(sec(α)Re(Z22)

)∥
∥

1
s

w . (16)

If we replace w
1
r
m with w

1
s

m in the third equality, then by a similar process we obtain

∥
∥h

(|Z21|2
)∥
∥

w ≤ ∥
∥hr(sec(α)Re(Z11)

)∥
∥

1
r
w

∥
∥hs(sec(α)Re(Z22)

)∥
∥

1
s

w (17)

for all decreasing sequences w = (w1, w2, . . . , wn) of nonnegative real numbers. It follows
from Lemma 1 and inequalities (16) and (17) that

∥
∥h

(|Zij|2
)∥
∥ ≤ ∥

∥hr(sec(α)Re(Z11)
)∥
∥

1
r
∥
∥hs(sec(α)Re(Z22)

)∥
∥

1
s

≤ ∥
∥hr(sec(α)|Z11|

)∥
∥

1
r
∥
∥hs(sec(α)|Z22|

)∥
∥

1
s (i, j = 1, 2). �

Remark 5 If Z ∈M2n is positive semidefinite, i.e. W (Z) ⊆ S0, then Theorem 4 reduces to
inequality (2). Applying Theorem 4 for h(t) = t

p
2 (p > 0), we get inequality (6). Therefore

Theorem 4 is an extension of inequality (2) and inequality (6).

Corollary 6 Suppose Z ∈ M2n partitioned as in (1) is accretive–dissipative and h ∈ C is
submultiplicative. If r and s are positive real numbers with 1

r + 1
s = 1, then

∥
∥h

(|Zij|2
)∥
∥ ≤ ∥

∥hr(√2Re(Z11)
)∥
∥

1
r
∥
∥hs(√2Re(Z22)

)∥
∥

1
s (i, j = 1, 2),

where ‖ · ‖ is a unitarily invariant norm.

Proof Since Z is accretive–dissipative, i.e. W (e –iπ
4 Z) ⊆ S π

4
and sec( π

4 ) =
√

2, by applying
Theorem 4, we get the statement. �
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Corollary 7 ([2, Theorem 4.2]) Let Z ∈ M2n partitioned as in (1) such that W (Z) ⊆ Sα

for some α ∈ [0, π
2 ). Then

∥
∥|Z12|p

∥
∥

2 ≤ sec2p(α)
∥
∥Zp

11
∥
∥
∥
∥Zp

22
∥
∥

≤ sec2p(α)
∥
∥|Z11|p

∥
∥
∥
∥|Z22|p

∥
∥ (p > 0)

for every unitarily invariant norm.

Proof Applying Theorem 4 for r = 2, s = 2 and h(t) = t
p
2 (p > 0), we get

∥
∥|Z12|p

∥
∥

2 ≤ sec2p(α)
∥
∥Re(Z11)p∥∥

∥
∥Re(Z22)p∥∥

≤ sec2p(α)
∥
∥Zp

11
∥
∥
∥
∥Zp

22
∥
∥

≤ sec2p(α)
∥
∥|Z11|p

∥
∥
∥
∥|Z22|p

∥
∥ (p > 0). �

Corollary 8 ([22, Theorem 3.2]) Let Z ∈ M2n partitioned as in (1) such that W (Z) ⊆ Sα

for some α ∈ [0, π
2 ). Then

max
{‖Z12‖2,‖Z21‖2} ≤ sec2(α)

∥
∥Re(Z11)

∥
∥
∥
∥Re(Z22)

∥
∥

≤ sec2(α)‖Z11‖‖Z22‖ (18)

for every unitarily invariant norm.

Proof Applying Theorem 4 for r = 2, s = 2 and h(t) =
√

t, we get

∥
∥|Z12|

∥
∥ = ‖Z12‖ ≤ ∥

∥sec(α)Re(Z11)
∥
∥

1
2
∥
∥sec(α)Re(Z22)

∥
∥

1
2 .

Therefore

‖Z12‖2 ≤ sec2(α)
∥
∥Re(Z11)

∥
∥
∥
∥Re(Z22)

∥
∥ ≤ sec2(α)‖Z11‖‖Z22‖.

Similarly, we have

‖Z21‖2 ≤ sec2(α)
∥
∥Re(Z11)

∥
∥
∥
∥Re(Z22)

∥
∥

≤ sec2(α)‖Z11‖‖Z22‖.

The above inequalities imply the expected result. �

Corollary 9 ([22]) Let Z ∈ M2n partitioned as in (1) such that W (Z) ⊆ Sα for some α ∈
[0, π

2 ). Then, for any unitarily invariant norm, we have

2‖Z12‖‖Z21‖ ≤ ‖Z12‖2 + ‖Z21‖2

≤ 2 sec2(α)‖Z11‖‖Z22‖.
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Proof By using the arithmetic–geometric mean inequality and inequality (18), we have

2‖Z12‖‖Z21‖ ≤ ‖Z12‖2 + ‖Z21‖2

≤ 2 max
{‖Z12‖2,‖Z21‖2}

≤ 2 sec2(α)‖Z11‖‖Z22‖. �

Remark 10 Assume that h is a nonnegative increasing function on [0,∞). Since sm(|Zij|2) =
sm(|Z∗

ij|2) for m = 1, 2, . . . , n and i, j = 1, 2, we have

h
(

sm
(|Zij|2

))

= sm
(

h
(|Zij|2

))

= sm
(

h
(∣
∣Z∗

ij
∣
∣
2)) = h

(

sm
(∣
∣Z∗

ij
∣
∣
2))

for m = 1, 2, . . . , n and i, j = 1, 2. Therefore ‖h(|Zij|2)‖ = ‖h(|Z∗
ij|2)‖.

Theorem 11 Suppose that Z ∈ M2n partitioned as in (1) is a sector matrix and h ∈ C is
submultiplicative convex. If r and s are positive real numbers with 1

r + 1
s = 1, then

∥
∥h

(|Z12|2
)

+ h
(∣
∣Z∗

21
∣
∣
2)∥

∥ ≤ ∥
∥hr(√2 sec(α)Re(Z11)

)∥
∥

1
r
∥
∥hs(√2 sec(α)Re(Z22)

)∥
∥

1
s

≤ ∥
∥hr(√2 sec(α)|Z11|

)∥
∥

1
r
∥
∥hs(√2 sec(α)|Z22|

)∥
∥

1
s ,

where α ∈ [0, π
2 ).

Proof Applying the triangle inequality, Remark 10 and Theorem 4, we have

∥
∥h

(|Z12|2
)

+ h
(∣
∣Z∗

21
∣
∣
2)∥

∥ ≤ ∥
∥h

(|Z12|2
)∥
∥ +

∥
∥h

(∣
∣Z∗

21
∣
∣
2)∥

∥

=
∥
∥h

(|Z12|2
)∥
∥ +

∥
∥h

(|Z21|2
)∥
∥

≤ 2
∥
∥hr(sec(α)Re(Z11)

)∥
∥

1
r
∥
∥hs(sec(α)Re(Z22)

)∥
∥

1
s .

It is well known that, if h is a convex function, then h(λZ) ≥ λh(Z) for Z ∈Mn and λ ≥ 1.
Since sec(α) ≥ 1 (α ∈ [0, π

2 )), we have

∥
∥h

(|Z12|2
)

+ h
(∣
∣Z∗

21
∣
∣
2)∥

∥ ≤ ∥
∥hr(√2 sec(α)Re(Z11)

)∥
∥

1
r
∥
∥hs(√2 sec(α)Re(Z22)

)∥
∥

1
s

≤ ∥
∥hr(√2 sec(α)|Z11|

)∥
∥

1
r
∥
∥hs(√2 sec(α)|Z22|

)∥
∥

1
s . �

Remark 12 Note that, if Z ∈ M2n is accretive–dissipative, i.e. W (e –iπ
4 Z) ⊆ S π

4
, then The-

orem 11 reduces to inequality (3).

Theorem 13 Assume that Z ∈ M2n partitioned as in (1) is a sector matrix and h ∈ C is
submultiplicative concave. If r and s are positive real numbers with 1

r + 1
s = 1, then

∥
∥h

(|Z12|2
)

+ h
(∣
∣Z∗

21
∣
∣
2)∥

∥ ≤ 2 sec2(α)
∥
∥hr(Re(Z11)

)∥
∥

1
r
∥
∥hs(Re(Z22)

)∥
∥

1
s

≤ 2 sec2(α)
∥
∥hr(|Z11|

)∥
∥

1
r
∥
∥hs(|Z22|

)∥
∥

1
s

for every unitarily invariant norm ‖ · ‖ and α ∈ [0, π
2 ).
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Proof Applying the triangle inequality, Remark 10 and Theorem 4, we have

∥
∥h

(|Z12|2
)

+ h
(∣
∣Z∗

21
∣
∣
2)∥

∥ ≤ ∥
∥h

(|Z12|2
)∥
∥ +

∥
∥h

(∣
∣Z∗

21
∣
∣
2)∥

∥

=
∥
∥h

(|Z12|2
)∥
∥ +

∥
∥h

(|Z21|2
)∥
∥

≤ 2
∥
∥hr(sec(α)Re(Z11)

)∥
∥

1
r
∥
∥hs(sec(α)Re(Z22)

)∥
∥

1
s .

Since h is concave, it follows that h(λZ) ≤ λh(Z) for Z ∈ Mn and λ ≥ 1. Since sec(α) ≥ 1
for α ∈ [0, π

2 ),

∥
∥h

(|Z12|2
)

+ h
(∣
∣Z∗

21
∣
∣
2)∥

∥ ≤ 2 sec2(α)
∥
∥hr(Re(Z11)

)∥
∥

1
r
∥
∥hs(Re(Z22)

)∥
∥

1
s

≤ 2 sec2(α)
∥
∥hr(|Z11|

)∥
∥

1
r
∥
∥hs(|Z22|

)∥
∥

1
s . �

Remark 14 If Z ∈M2n is accretive–dissipative, i.e. W (e –iπ
4 Z) ⊆ S π

4
, then Theorem 13 re-

duces to inequality (4).

Theorem 15 Assume that Z ∈ M2n partitioned as in (1) is a sector matrix, h ∈ C is sub-
multiplicative and α ∈ [0, π

2 ). If p is positive real number, then

∥
∥h

(|Z12|2
)∥
∥

p +
∥
∥h

(|Z21|2
)∥
∥

p ≤ 2
∥
∥h2(sec(α)|Z11|

)∥
∥

p
2
∥
∥h2(sec(α)|Z22|

)∥
∥

p
2

for every unitarily invariant norm ‖ · ‖. In particular, we have

∥
∥h

(|Z12|2
)∥
∥

p
p +

∥
∥h

(|Z21|2
)∥
∥

p
p ≤ 2

∥
∥h2(sec(α)|Z11|

)∥
∥

p
2
p

∥
∥h2(sec(α)|Z22|

)∥
∥

p
2
p .

Proof Theorem 4 for r = s = 2, implies that

∥
∥h

(|Zij|2
)∥
∥ ≤ ∥

∥h2(sec(α)|Z11|
)∥
∥

1
2
∥
∥h2(sec(α)|Z22|

)∥
∥

1
2 (i, j = 1, 2). (19)

By taking the power p of both sides of inequality (19), we have

∥
∥h

(|Zij|2
)∥
∥

p ≤ ∥
∥h2(sec(α)|Z11|

)∥
∥

p
2
∥
∥h2(sec(α)|Z22|

)∥
∥

p
2 (i, j = 1, 2).

Therefore, we have

∥
∥h

(|Z12|2
)∥
∥

p +
∥
∥h

(|Z21|2
)∥
∥

p ≤ 2
∥
∥h2(sec(α)|Z11|

)∥
∥

p
2
∥
∥h2(sec(α)|Z22|

)∥
∥

p
2 . �

Corollary 16 ([16, Theorem 2.8]) Let Z ∈M2n be partitioned as in (1) such that W (Z) ⊆
Sα for some α ∈ [0, π

2 ). Then, for any unitarily invariant norm, we have

‖Z12‖p + ‖Z21‖p ≤ 2 secp(α)‖Z11‖ p
2 ‖Z22‖ p

2 (p > 0).

In particular, we have

‖Z12‖p
p + ‖Z21‖p

p ≤ 2 secp(α)‖Z11‖
p
2
p ‖Z22‖

p
2
p (p > 0).
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Proof Applying Theorem 15, for h(t) =
√

t, we have

‖Z12‖p + ‖Z21‖p ≤ 2 secp(α)‖Z11‖ p
2 ‖Z22‖ p

2 (p > 0).

By showing the particular case, by using the Schatten p-norm, we have the statement. �

In the sequel, we extend our results to n × n block matrices as introduced in (9).

Theorem 17 Suppose that Z is a sector matrix represented as in (9), h ∈ C is submulti-
plicative and α ∈ [0, π

2 ). If p is positive real number, then

∑

i
=j

∥
∥h

(|Zij|2
)∥
∥

p ≤ (n – 1)
n

∑

i=1

∥
∥h2(sec(α)|Zii|

)∥
∥

p (20)

for every unitarily invariant norm ‖ · ‖. In particular, we have

∑

i
=j

∥
∥h

(|Zij|2
)∥
∥

p
p ≤ (n – 1)

n
∑

i=1

∥
∥h2(sec(α)|Zii|

)∥
∥

p
p.

Proof Since Z is a sector matrix, so every principal submatrix of Z is also a sector ma-
trix, it follows that

( Zii Zij
Tji Zjj

)

is a sector matrix. Now, applying Theorem 15 for
( Zii Zij

Zji Zjj

)

, we
get

∥
∥h

(|Zij|2
)∥
∥

p +
∥
∥h

(|Zji|2
)∥
∥

p ≤ 2
∥
∥h2(sec(α)|Zii|

)∥
∥

p
2
∥
∥h2(sec(α)|Zjj|

)∥
∥

p
2

for i 
= j. By using the arithmetic–geometric mean inequality, we have

∥
∥h

(|Zij|2
)∥
∥

p +
∥
∥h

(|Zji|2
)∥
∥

p ≤ ∥
∥h2(sec(α)|Zii|

)∥
∥

p +
∥
∥h2(sec(α)|Zjj|

)∥
∥

p

for i 
= j. Adding the previous inequalities for i, j = 1, 2, . . . , n, we get

∑

i
=j

∥
∥h

(|Zij|2
)∥
∥

p ≤ (n – 1)
n

∑

i=1

∥
∥h2(sec(α)|Zii|

)∥
∥

p.
�

Corollary 18 ([16, Theorem 2.9]) Let Z be a sector matrix as represented in (9) and α ∈
[0, π

2 ). Then

∑

i
=j

‖Zij‖p ≤ (n – 1) secp(α)
n

∑

i=1

‖Zii‖p (p > 0), (21)

for any unitarily invariant norm. In particular, we have

∑

i
=j

‖Zij‖p
p ≤ (n – 1) secp(α)

n
∑

i=1

‖Zii‖p
p (p > 0).
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Proof Applying Theorem 17, for h(t) =
√

t, we have

∑

i
=j

‖Zij‖p ≤ (n – 1) sec(α)
n

∑

i=1

‖Zii‖p (p > 0).

For the particular case, we take the Schatten p-norm. �
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