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Noncommutative Chebyshev Inequality Involving
the Hadamard Product

M. Bakherad∗, S.S. Dragomir

Abstract. We present several operator extensions of the Chebyshev inequality for Hilbert
space operators. The main version deals with the synchronous Hadamard property for
Hilbert space operators. Among other inequalities, it is shown that if A is a C∗-algebra,
T is a compact Hausdorff space equipped with a Radon measure µ as a totally ordered
set, then∫
T

α(s)dµ(s)

∫
T

α(t)(At ◦Bt)dµ(t) ≥
(∫

T

α(t)(Atmr,αBt)dµ(t)
)
◦
(∫

T

α(s)(Asmr,1−αBs)dµ(s)
)
,

where α ∈ [0, 1], r ∈ [−1, 1] and (At)t∈T , (Bt)t∈T are positive increasing fields in C(T,A).

Key Words and Phrases: Chebyshev inequality, Hadamard product, Bochner integral,
operator mean.

2010 Mathematics Subject Classifications: 47A63, 47A60

1. Introduction and preliminaries

Let B(H) denote the C∗-algebra of all bounded linear operators on a complex
Hilbert space H. In the case where dimH = n, we identify B(H) with the matrix
algebra Mn of all n × n matrices with entries in the complex field. An operator
A ∈ B(H) is called positive (A ≥ 0) if 〈Ax, x〉 ≥ 0 for all x ∈ H. The set of all
positive operators is denoted by B(H)+. For selfadjoint operators A,B ∈ B(H),
we say B ≥ A if B −A ≥ 0.

The Gelfand map f(t) 7→ f(A) is an isometric ∗-isomorphism between the C∗-
algebra C(sp(A)) of continuous functions on the spectrum sp(A) of a selfadjoint
operator A and the C∗-algebra generated by A and the identity operator I. If
f, g ∈ C(sp(A)), then f(t) ≥ g(t) (t ∈ sp(A)) implies that f(A) ≥ g(A).
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Let f be a continuous real valued function on an interval J . The function
f is called operator monotone if A ≤ B implies f(A) ≤ f(B) for all A,B ∈
B(H) with spectra in J . Given an orthonormal basis {ej} of a Hilbert space
H, the Hadamard product A ◦ B of two operators A,B ∈ B(H) is defined by
〈A ◦Bei, ej〉 = 〈Aei, ej〉〈Bei, ej〉. It is known that the Hadamard product can be
presented by filtering the tensor product A ⊗ B through a positive linear map.
In fact, A ◦ B = U∗(A ⊗ B)U, where U : H → H ⊗ H is the isometry defined
by Uej = ej ⊗ ej ; see [1, 2, 9]. For matrices, one easily observe [14] that the
Hadamard product of A = (aij) and B = (bij) is A ◦ B = (aijbij), a principal
submatrix of the tensor product A ⊗ B = (aijB)1≤i,j≤n. From now on when we
deal with the Hadamard product of operators, we explicitly assume that we fix
an orthonormal basis.

The axiomatic theory of operator means has been developed by Kubo and
Ando [10]. An operator mean is a binary operation σ defined on the set of
strictly positive operators, if the following conditions hold:

(1) A ≤ C,B ≤ D imply AσB ≤ CσD;

(2) An ↓ A,Bn ↓ B imply AnσBn ↓ AσB, where An ↓ A means that A1 ≥
A2 ≥ · · · and An → A as n→∞ in the strong operator topology;

(3) T ∗(AσB)T ≤ (T ∗AT )σ(T ∗BT ) (T ∈ B(H));

(4) IσI = I.

There exists an affine order isomorphism between the class of operator means
and the class of positive operator monotone functions f defined on (0,∞) with

f(1) = 1 via f(t)I = Iσ(tI) (t > 0). In addition, AσB = A
1
2 f(A

−1
2 BA

−1
2 )A

1
2 for

all strictly positive operators A,B. The operator monotone function f is called
the representing function of σ. Using a limit argument by Aε = A + εI, one
can extend the definition of AσB to positive operators. An operator mean σ is
symmetric if AσB = BσA for all A,B ∈ B(H)+. For a symmetric operator mean
σ, a parametrized operator mean σt, 0 ≤ t ≤ 1 is called an interpolational path
for σ if it satisfies

(1) Aσ0B = A, Aσ1/2B = AσB, and Aσ1B = B;

(2) (AσpB)σ(AσqB) = Aσ p+q
2
B for all p, q ∈ [0, 1];

(3) The map t ∈ [0, 1] 7→ AσtB is norm continuous for each A and B.

It is easy to see that the set of all r ∈ [0, 1] satisfying

(AσpB)σr(AσqB) = Aσrp+(1−r)qB (1)
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for all p, q is a convex subset of [0, 1] including 0 and 1. The power means
interpolational paths are

Amr,tB = A
1
2

(
1− t+ t(A

−1
2 BA

−1
2 )r
) 1
r
A

1
2 (t ∈ [0, 1]).

In particular, we have the operator weighted arithmetic mean Am1,tB =
A∇tB = (1−t)A+tB, the operator weighted geometric meanAm0,tB = A]tB and

the operator weighted harmonic meanAm−1,tB = A!tB =
(
(1− t)A−1 + tB−1

)−1
.

The representing function Fr,t for mr,t is defined as Fr,t(x) = 1mr,tx = (1 − t +

txr)
1
r (x > 0).; see [1, 2] and references therein. Let us consider the real se-

quences a = (a1, · · · , an), b = (b1, · · · , bn) and the non-negative sequence w =
(w1, · · · , wn). Then the weighed Chebyshev function is defined by T (w; a, b) :=∑n

i=1wi
∑n

i=1wjajbj−
∑n

i=1wiai
∑n

j=1wjbj . In 1882, Chebyshev [6] proved that
if a and b are monotone in the same sense, then

n∑
i=1

ωi

n∑
j=1

ωjajbj ≥
n∑
i=1

ωiai

n∑
j=1

ωjbj . (2)

Behdzed in [5] extended inequality (2) to

n∑
i=1

ωi

n∑
j=1

νjajbj +

n∑
i=1

νi

n∑
j=1

ωjajbj ≥
n∑
i=1

νiai

n∑
j=1

ωjbj +

n∑
i=1

ωiai

n∑
j=1

νjbj , (3)

where a1 ≤ · · · ≤ an, b1 ≤ · · · ≤ bn and ω1, · · · , ωn, ν1, · · · , νn are nonnegative
real numbers. Some integral generalizations of the Chebyshev inequality were
given by Barza, Persson and Soria [4]. The Chebyshev inequality is a complement
of the Grüss inequality; see [11] and references therein. Dragomir presented some
Chebyshev inequalities for selfadjoint operators acting on Hilbert spaces in [8, 7].

A related notion is synchronicity. Recall that two continuous functions f, g :
J → R are synchronous on an interval J , if(

f(t)− f(s)
)(
g(t)− g(s)

)
≥ 0

for all s, t ∈ J . It is obvious that if f, g are monotonic and have the same
monotonicity, then they are synchronic.

Let A be a C∗-algebra of operators acting on a Hilbert space, T be a com-
pact Hausdorff space and µ(t) be a Radon measure on T . A field (At)t∈T of
operators in A is called a continuous field of operators if the function t 7→ At is
norm continuous on T and the function t 7→ ‖At‖ is integrable. One can form
the Bochner integral

∫
T Atdµ(t), which is the unique element in A such that
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ϕ
(∫
T Atdµ(t)

)
=
∫
T ϕ(At)dµ(t) for every linear functional ϕ in the norm dual A∗

of A. By [12] for operators B,At ∈ A we have∫
T

(At ◦B)dµ(t) =

∫
T
Atdµ(t) ◦B (At, B ∈ A). (4)

We say that two fields (At)t∈T and (Bt)t∈T have the synchronous Hadamard
property if (

At −As
)
◦
(
Bt −Bs

)
≥ 0

for all s, t ∈ T . We say (At) is an increasing (decreasing, resp.) field, whenever
t � s implies that At ≤ As (At ≥ As, resp.).

In [12], the authors showed that∫
T
α(s)dµ(s)

∫
T
α(t)(At ◦Bt)dµ(t) ≥

(∫
T
α(t)Atdµ(t)

)
◦
(∫

T
α(s)Bsdµ(s)

)
,

(5)

where A is a C∗-algebra, T is a compact Hausdorff space equipped with a
Radon measure µ, (At)t∈T and (Bt)t∈T are fields in C(T,A) with the synchronous
Hadamard property and α : T → [0,+∞) is a measurable function. They also
presented ∫

T
α(s)dµ(s)

∫
T
α(t)(At ◦Bt)dµ(t) ≥

(∫
T
α(t)(At]µBt)dµ(t)

)
◦
(∫

T
α(s)(As]1−µBs)dµ(s)

)
, (6)

where A is a C∗-algebra, T is a compact Hausdorff space equipped with a Radon
measure µ as a totally ordered set, (At)t∈T , (Bt)t∈T are positive increasing fields
in C(T,A), α : T → [0,+∞) is a measurable function and µ ∈ [0, 1].

In this paper, we provide several operator extensions of the Chebyshev in-
equality of the form (5) and (6). We present our main results dealing with the
Hadamard product for Hilbert space operators.

2. Chebyshev inequality involving Hadamard product

This section is devoted to the presentation of some operator Chebyshev in-
equalities dealing with the Hadamard product. The first result reads as follows.
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Theorem 1. Let A be a C∗-algebra, T be a compact Hausdorff space equipped
with a Radon measure µ, let (At)t∈T and (Bt)t∈T be fields in C(T,A) with the syn-
chronous Hadamard property and let α, β : T → [0,+∞) be measurable functions.
Then∫

T
α(s)dµ(s)

∫
T
β(t)(At ◦Bt)dµ(t) +

∫
T
β(s)dµ(s)

∫
T
α(t)(At ◦Bt)dµ(t) ≥

(∫
T
α(t)Atdµ(t)

)
◦
(∫

T
β(s)Bsdµ(s)

)
+
(∫

T
β(t)Atdµ(t)

)
◦
(∫

T
α(s)Bsdµ(s)

)
.

(7)

Proof. We put

Λ =

∫
T
α(s)dµ(s)

∫
T
β(t)(At ◦Bt)dµ(t) +

∫
T
β(s)dµ(s)

∫
T
α(t)(At ◦Bt)dµ(t)

−
(∫

T
α(t)Atdµ(t)

)
◦
(∫

T
β(s)Bsdµ(s)

)
−
(∫

T
β(t)Atdµ(t)

)
◦
(∫

T
α(s)Bsdµ(s)

)
.

Then

Λ =

∫
T

∫
T
α(s)β(t)(At ◦Bt)dµ(t)dµ(s) +

∫
T

∫
T
β(s)α(t)(At ◦Bt)dµ(t)dµ(s)

−
∫
T

(∫
T
α(t)Atdµ(t)

)
◦ β(s)Bsdµ(s)

∫
T

(∫
T
β(t)Atdµ(t)

)
◦ α(s)Bsdµ(s)

(by (4))

=

∫
T

∫
T
α(s)β(t)(At ◦Bt)dµ(t)dµ(s) +

∫
T

∫
T
β(s)α(t)(At ◦Bt)dµ(t)dµ(s)

−
∫
T

∫
T
α(t)β(s)(At ◦Bs)dµ(t)dµ(s)−

∫
T

∫
T
β(t)α(s)(At ◦Bs)dµ(t)dµ(s)

(by (4))

=

∫
T

∫
T

[
α(s)β(t)(At ◦Bt) + β(s)α(t)(At ◦Bt)

−α(t)β(s)(At ◦Bs)− β(t)α(s)(At ◦Bs)
]
dµ(t)dµ(s)

=
1

2

(∫
T

∫
T

[
α(s)β(t)(At ◦Bt) + β(s)α(t)(At ◦Bt)

−α(t)β(s)(At ◦Bs)− β(t)α(s)(At ◦Bs)
]
dµ(t)dµ(s)

+

∫
T

∫
T

[
α(s)β(t)(At ◦Bt) + β(s)α(t)(At ◦Bt)
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−α(t)β(s)(At ◦Bs)− β(t)α(s)(At ◦Bs)
]
dµ(t)dµ(s)

)

Now, if we interchange s with t in the second expression of the last equation,
then we get

Λ ≥ 1

2

(∫
T

∫
T

[
α(s)β(t)(At ◦Bt) + β(s)α(t)(At ◦Bt)

−α(t)β(s)(At ◦Bs)− β(t)α(s)(At ◦Bs)
]
dµ(t)dµ(s)

+

∫
T

∫
T

[
α(t)β(s)(As ◦Bs) + β(t)α(s)(As ◦Bs)

−α(s)β(t)(As ◦Bt)− β(s)α(t)(As ◦Bt)
]
dµ(s)dµ(t)

)

=
1

2

(∫
T

∫
T

[
α(s)β(t)(At ◦Bt) + β(s)α(t)(At ◦Bt)

−α(t)β(s)(At ◦Bs)− β(t)α(s)(At ◦Bs)
]
dµ(t)dµ(s)

+

∫
T

∫
T

[
α(t)β(s)(As ◦Bs) + β(t)α(s)(As ◦Bs)

−α(s)β(t)(As ◦Bt)− β(s)α(t)(As ◦Bt)
]
dµ(t)dµ(s)

)

=
1

2

∫
T

∫
T

[
β(s)α(t)

(
At −As

)
◦
(
Bt −Bs

)
+α(s)β(t)

(
At −As

)
◦
(
Bt −Bs

)]
dµ(t)dµ(s)

≥ 0. (since the fields (At) and, (Bt) have the synchronous Hadamard property)

J

In the discrete case T = {1, · · · , n}, let α(i) = ωi and β(i) = νi, where
ωi, νi ≥ 0 (1 ≤ i ≤ n). Then Theorem 1 yields the following corollary.

Corollary 1. Suppose that Aj , Bj ∈ B(H) (1 ≤ j ≤ n) are selfadjoint operators
with the synchronous Hadamard property and ω1, · · · , ωn, ν1, · · · , νn are positive
numbers. Then

n∑
i=1

ωi

n∑
j=1

νj(Aj ◦Bj) +

n∑
i=1

νi

n∑
j=1

ωj(Aj ◦Bj)
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≥
( n∑
i=1

ωiAi

)
◦
( n∑
j=1

νjBj

)
+
( n∑
i=1

νiAi

)
◦
( n∑
j=1

ωjBj

)
. (8)

Example 1. If f1, f2, g1, g2 ∈ L1(R) so that f1, f2 are increasing and g1, g2 are

decreasing on R, then we put At =

(
f1(t) h(t)

0 g1(t)

)
and Bt =

(
f2(t) 0
k(t) g2(t)

)
where h, k ∈ L1(R) are arbitrary and t ∈ R. From

(
f1(t)− f1(s)

)(
f2(t)− f2(s)

)
and

(
g1(t)− g1(s)

)(
g2(t)− g2(s)

)
being positive for all s, t ∈ R it follows that the

matrix (
At −As

)
◦
(
Bt −Bs

)
=

=

(
(f1(t)− f1(s)) (f2(t)− f2(s)) 0

0 (g1(t)− g1(s)) (g2(t)− g2(s))

)
is positive. Using Theorem 1 we have the inequality( ∫

R α(s)ds
∫
R β(t)f1(t)f2(t)dt 0

0
∫
R α(s)ds

∫
R β(t)g1(t)g2(t)dt

)
+

( ∫
R β(s)ds

∫
R α(t)f1(t)f2(t)dt 0

0
∫
R β(s)ds

∫
R α(t)g1(t)g2(t)dt

)
≥
( ∫

R
∫
R α(t)β(s)f1(t)f2(s)dtds 0

0
∫
R α(t)β(s)g1(t)g2(s)dtds

)
+

( ∫
R
∫
R α(s)β(t)f1(t)f2(s)dtds 0

0
∫
R α(s)β(t)g1(t)g2(s)dtds

)
,

where α, β ∈ L1(R).

Let us consider Aj , Bj ∈ B(H) (1 ≤ j ≤ n) and the nonnegative numbers
ω1, · · · , ωn, ν1, · · · , νn such that Wn =

∑n
j=1 ωj , Vn =

∑n
j=1 νj . We define the

mapping Q : N+ ×N+ → B(H) as follows:

Q(k, n,Aj , Bj) = Wk

k∑
j=1

νj(Aj ◦Bj) + Vk

n∑
j=1

ωj(Aj ◦Bj)

+
( n∑
i=k+1

ωiAi

)
◦
( n∑
j=1

νjBj

)
+
( n∑
i=1

νiAi

)
◦
( n∑
j=k+1

ωjBj

)
+
( n∑
i=k+1

νiAi

)
◦
( n∑
j=1

ωjBj

)
+
( n∑
i=1

ωiAi

)
◦
( n∑
j=k+1

ωjBj

)
,
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where k = 1, 2, · · · , n, and

n∑
j=n+1

ωjAj =
n∑

j=n+1

ωjBj =
n∑

j=n+1

νjAj =
n∑

j=n+1

νjBj = 0. (9)

Using the definition of Q and the relation (9) we get

(a) Q(1, n,Aj , Bj) =
(∑n

i=1 ωiAi

)
◦
(∑n

j=1 νjBj

)
+
(∑n

i=1 νiAi

)
◦
(∑n

j=1 ωjBj

)
(b) Q(n, n,Aj , Bj) =

∑n
i=1 ωi

∑n
j=1 νj(Aj ◦Bj) +

∑n
i=1 νi

∑n
j=1 ωj(Aj ◦Bj).

Now, in the next theorem we show a refinement of inequality (8).

Theorem 2. Suppose that Aj , Bj ∈ B(H) (1 ≤ j ≤ n) are selfadjoint opera-
tors with the synchronous Hadamard property, Q is defined as above, ω1, · · · , ωn,
ν1, · · · , νn are positive numbers. Then

Q(n, n,Aj , Bj) ≥ · · · ≥ Q(k, n,Aj , Bj) ≥ · · · ≥ Q(1, n,Aj , Bj)

for each k = 1, 2, · · · , n.

Proof. For all k = 2, 3, · · · , n, we have

Q(k, n,Aj , Bj)−Q(k − 1, n,Aj , Bj) =

= (Wk−1 + ωk)

k−1∑
j=1

νj(Aj ◦Bj) + νkAk ◦Bk

+

+(Vk−1 + νk)

k−1∑
j=1

ωj(Aj ◦Bj) + ωkAk ◦Bk


Wk−1

k−1∑
j=1

νj(Aj ◦Bj) + Vk−1

k−1∑
j=1

ωj(Aj ◦Bj)

+

 n∑
j=k+1

ωjAj

 ◦
 n∑
j=1

νjBj



+

ωkAk +
k−1∑
j=1

ωjAj

 ◦ n∑
j=k+1

νjBj −

ωkAk +
n∑

j=k+1

ωjAj

 ◦ n∑
j=1

νjBj

−
k−1∑
j=1

ωjAj ◦

νkBk +
n∑

j=k+1

νjBj

+

 n∑
j=k+1

νjAj

 ◦
 n∑
j=1

ωjBj

+
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k−1∑
j=1

νjAj

 ◦ n∑
j=k+1

ωjBj −

νkAk +
n∑

j=k+1

νjAj

 ◦ n∑
j=1

ωjBj

−
k−1∑
j=1

ωjBj ◦

ωkBk +
n∑
j=1

ωjBj


=

ωj k−1∑
j=1

νj(Aj ◦Bj) + ωk(Ak ◦Bk)
k−1∑
j=1

νj

−

ωkAk ◦ k−1∑
j=1

νjBj

−
ωkBk ◦ k−1∑

j=1

νjAj


+

νk k−1∑
j=1

ωj(Aj ◦Bj) + νk(Ak ◦Bk)
k−1∑
j=1

ωj

−

νkAk ◦ k−1∑
j=1

ωjBj

−
νkBk ◦ k−1∑

j=1

ωjAj


= ωk

k−1∑
j=1

νj(Ak −Aj) ◦ (Bk −Bj) + νk

k−1∑
j=1

ωj(Ak −Aj) ◦ (Bk −Bj) ≥ 0

(since the sequences (Aj)
n
j=1 and (Bj)

n
j=1 have synchronous Hadamard property).

J

Remark 1. If we put ωj = νj (1 ≤ j ≤ n) in Theorem 2, then we get the
inequalities

q(n, n,Aj , Bj) ≥ · · · ≥ q(k, n,Aj , Bj) ≥ · · · ≥ q(1, n,Aj , Bj),

where

q(k, n,Aj , Bj) =
k∑
j=1

ωj

k∑
j=1

ωj(Aj ◦Bj) +
( n∑
i=k+1

ωiAi

)
◦
( n∑
j=1

ωjBj

)
+
( n∑
i=k+1

ωiAi

)
◦
( n∑
j=1

ωjBj

)
(k = 1, 2, · · · , n).

In the next result, we show an extension of (6) for interpolational means.
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Theorem 3. Let A be a C∗-algebra, T be a compact Hausdorff space equipped
with a Radon measure µ as a totally ordered set, let (At)t∈T , (Bt)t∈T be positive
increasing fields in C(T,A) and let α : T → [0,+∞) be a measurable function.
Then ∫

T
α(s)dµ(s)

∫
T
α(t)(At ◦Bt)dµ(t)

≥
(∫

T
α(t)(Atmr,αBt)dµ(t)

)
◦
(∫

T
α(s)(Asmr,1−αBs)dµ(s)

)
for all α ∈ [0, 1] and all r ∈ [−1, 1].

Proof. We have

At ◦Bt = (At ◦Bt)mr,α(At ◦Bt) = (U∗(At ⊗Bt)U)mr,α(U∗(Bt ⊗At)U)

≥ U∗((At ⊗Bt)mr,α(Bt ⊗At))U ≥ U∗((Atmr,αBt)⊗ (Btmr,αAt))U

= (Atmr,αBt) ◦ (Btmr,αAt) = (Atmr,αBt) ◦ (Atmr,1−αBt), (10)

where t ∈ T ; see [13, p. 174]. Let s, t ∈ T . Without loss of generality, assume that
s � t. Then by the property (i) of the operator mean, we have 0 ≤ (Atmr,1−αBt)−
(Asmr,1−αBs) and 0 ≤ (Atmr,αBt)− (Asmr,αBs). Then∫

T
α(s)dµ(s)

∫
T
α(t)(At ◦Bt)dµ(t)

−
(∫

T
α(t)(Atmr,αBt)dµ(t)

)
◦
(∫

T
α(s)(Asmr,1−αBs)dµ(s)

)
=

∫
T

∫
T
α(s)α(t)(At ◦Bt)dµ(t)dµ(s)

−
∫
T

∫
T
α(t)α(s)

(
(Atmr,αBt) ◦ (Asmr,1−αBs)

)
dµ(t)dµ(s) (by 4)

≥
∫
T

∫
T
α(s)α(t)

(
(Atmr,αBt) ◦ (Atmr,1−αBt)

)
dµ(t)dµ(s)

−
∫
T

∫
T
α(t)α(s)

(
(Atmr,αBt) ◦ (Asmr,1−αBs)

)
dµ(t)dµ(s)

(by equation (10))

=

∫
T

∫
T
α(s)α(t)

(
(Atmr,αBt) ◦ (Atmr,1−αBt)

)
−α(t)α(s)

(
(Atmr,αBt) ◦ (Asmr,1−αBs)

)
dµ(t)dµ(s)
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=
1

2

[ ∫
T

∫
T
α(s)α(t)

(
(Atmr,αBt) ◦ (Atmr,1−αBt)

)
−α(t)α(s)

(
(Atmr,αBt) ◦ (Asmr,1−αBs)

)
dµ(t)dµ(s)

+

∫
T

∫
T
α(t)α(s)

(
(Asmr,αBs) ◦ (Asmr,1−αBs)

)
−α(s)α(t)

(
(Asmr,αBs) ◦ (Atmr,1−αBt)

)
dµ(s)dµ(t)

]
(interchanging s and t in the second term)

=
1

2

∫
T

∫
T

[
α(s)α(t)

(
(Atmr,tBt) ◦ (Atmr,1−αBt)

)
−α(t)α(s)

(
(Atmr,αBt) ◦ (Asmr,αBs)

)
+α(t)α(s)

(
(Asmr,αBs) ◦ (Asmr,1−αBs)

)
−α(s)α(t)

(
(Asmr,αBs) ◦ (Atmr,1−αBt)

)]
dµ(t)dµ(s)

(by equation (4))

=
1

2

∫
T

∫
T
α(s)α(t)

[
(Atmr,αBt)− (Asmr,αBs)

]
◦
[
(Atmr,1−αBt)− (Asmr,1−αBs)

]
dµ(t)dµ(s)

(by the property (i) of the operator mean).

J

In the discrete case T = {1, · · · , n}, if α(i) = ωi and β(i) = νi, where ωi, νi ≥ 0
(1 ≤ i ≤ n), then Theorem 3 yields the following result.

Corollary 2. Assume that (Aj)
n
j=1, (Bj)

n
j=1 ∈ B(H) are positive increasing se-

quences and ω1, · · · , ωn, ν1, · · · , νn are positive numbers. Then

n∑
i=1

wi

n∑
i=1

νi(Ai ◦Bi) ≥
( n∑
i=1

wi(Aimr,αBi)
)
◦
( n∑
j=1

νj(Ajmr,1−αBj)
)

for all α ∈ [0, 1] and all r ∈ [−1, 1].
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