
Chapter 1

Positive and Negative dependence

orderings

• Axioms for a bivariate dependence ordering

• PQD order

• POD order

• Supermodular order

• Positive orthant orders

• The weak orthant ratio orders

• The strong orthant ratio orders

• The convex order

• LTD, RTI and SI orders

• Super-additive and sub-additive dependence

• PLRD order (Kimeldorf and Sampson (1987))

• Association orders

• PDD order

1.0.1 Introduction

Notions of positive dependence of two random variables X1 and X2 have been introduced in
the literatures in an effort to mathematically describe the property that large (respectively,
small ) values of X1 tend to go together with large (respectively, small) values of X2. Many
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of the notions of positive dependence are defined by means of some comparison of the joint
distribution of X1 and X2 with their distribution under the theoretical assumption that X1

and X2 are independence. Often such a comparison can be extended to general pairs of
bivariate distributions with given marginals. This fact led researchers to introduce various
notions of positive dependence orders. These orders are designed to compare the strength
of the positive dependence of the two underlying bivariate distributions. In this chapter we
describe some such notions.

in many sections of this chapter we first describe a positive dependence order which compares
two bivariate random vectors (or distributions). When the order can be extended to general
n-dimensional (n > 2) random vectors, we will describe the extension in a later of that section.

Most of orders that we describe in this chapter are defined on the Frechet class F(F1, F2)
of bivariate distributions with fixed marginals F1 and F2. The upper bound of this class
is the distribution defined by FU (x) = min{F1(x), F2(x)} (whose probability mass is the
concentrated on the set {(x1, x2) : F1(x1) = F2(x2)}). The lower bound of this class is the
distribution defined by FL(x) = max{F1(x) + F2(x) − 1, 0} (whose probability mass is the
concentrated on the set {(x1, x2) : F1(x1) + F2(x2) = 1})

1.0.2 Axioms for a bivariate dependence ordering

In this subsection, we list properties or axioms that an ordering of distributions should have
in order that higher in the ordering means more positive dependence.Let F and G are two
bivariate distributions in class of Frechet. Desirable properties or axioms are:

• P1. (concordance), F ≤ G implies F (x, y) ≤ G(x, y) for all real values x, y.

• P2. (transitivity). F ≤ G and G ≤ H imply F ≤ H.

• P3.(reflexivity) F ≤ F.

• P4. (equivalency) F ≤ G and G ≤ F imply F = G.

• P5.(bounds) FL ≤ F ≤ FU , where FL and FU are lower and upper bounds of class of
Frechet respectively.

• P6.(invariance to limit in the distribution) Fn ≤ Gn, n ≥ 1 and Fn → F, Gn → G as
n→∞, imply F ≤ G.

• P7. (invariance to increasing transforms) (X1, X2) ≤ (Y1, Y2) in all notions implies
(φ(X1), X2) ≤ (φ(Y1), Y2) for all strictly increasing functions φ. and (ϕ(Y1), Y2) ≤
(ϕ(X1), X2) for all decreasing functions ϕ where (X1, X2) and (Y1, Y2) have the distri-
butions F and G respectively.



3

• P8.(invariance to order of indices) (X1, X2) ≤ (Y1, Y2) implies (X2, X1) ≤ (Y2, Y1).

An ordering that satisfies the night properties is called a bivariate positive dependence or-
dering.

1.1 PQD order

Let (X1, X2) be a bivariate random vector with distribution function F , and let (Y1, Y2) be
another bivariate random vector with distribution function G, such that F,G ∈ F(F1, F2),
for some univariate distribution functions F1 and F2. If for all real values x1 and x2,

F (x1, x2) ≤ G(x1, x2) (1)

then we say that (X1, X2) is smaller than (Y1, Y2) in the PQD order (denoted by (X1, X2) ≤PQD
(Y1, Y2)). Sometimes it will be useful to write this as F ≤PQD G. Using the assumption that
F and G have the same univariate marginals, it is easy to see that for all real values x1 and
x2, (1) is equivalent to

F̄ (x1, x2) ≤ Ḡ(x1, x2)

Corollary 1 i). F is PQD ⇔ F I ≤PQD F

ii) Let (X1, X2) be a bivariate random vector with distribution function F , and let (Y1, Y2)
be another bivariate random vector with distribution function G, such that F,G ∈ F(F1, F2).
Then

(X1, X2) ≤PQD (Y1, Y2)⇒ Cov(X1, X2) ≤ Cov(Y1, Y2) and ρ(X1, X2) ≤ ρ(Y1, Y2).

Proof The proof of Part (i) is obvious. (ii) Using the Hoeffding”s Lemma we have

Cov(X1, X2) =
∫ ∞
−∞

∫ ∞
−∞

[F (x, y)− F1(x)F2(y)]dxdy

≤
∫ ∞
−∞

∫ ∞
−∞

[G(x, y)− F1(x)F2(y)]dxdy = Cov(Y1, Y2).

and therefore V ar(Xi) = V ar(Yi), i = 1, 2 we have that ρ(X1, X2) ≤ ρ(Y1, Y2).
Yanagimoto and Okamoto (1969) have shown that some other correlation measures, such as
Kendall’s tau, Spearman’s rho and Blomquist’s q are preserved under the PQD order.
Corollary Let (X1, X2) be a bivariate random vector with distribution function F , and let
(Y1, Y2) be another bivariate random vector with distribution function G, such that F,G ∈
F(F1, F2) and (X1, X2) ≤PQD (Y1, Y2). Then
(i) For all real values x, y F̄ (x, y) ≤ Ḡ(x, y).
(ii) For all real value x1, E[X2|X1 > x1] ≤ E[Y2|Y1 > x1], this condition can be used to define
a positive dependence stochastic order. Such an order is discussed in Muliere and Petrone
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(1992).
(iii) For every distribution F ∈ F(F1, F2) we have

FL ≤PQD F ≤PQD FU .

1.1.1 Closure properties

A powerful closure property of the PQD order is given in the next theorem.
Theorem 1 Suppose that the four random vectors (X1, X2), (Y1, Y2), (U1, U2) and (V1, V2)
satisfy

(X1, X2) ≤PQD (Y1, Y2) and (U1, U2) ≤PQD (V1, V2)

and suppose that (X1, X2) and (U1, U2) are independent, and also that (Y1, Y2) and (V1, V2)
are independent. Then for all increasing functions φ and ϕ,

(φ(X1, U1), ϕ(X2, U2)) ≤PQD (φ(Y1, V1), ϕ(Y2, V2)).

Corollary Under the assumption above theorem we have
(i) (X1 + U1, X2 + U2) ≤PQD (Y1 + V1, Y2 + V2)
(ii)For all increasing functions φ and ϕ it follows that

(X1, X2) ≤PQD (Y1, Y2)⇒ (φ(X1), ϕ(X2)) ≤PQD (φ(Y1), ϕ(Y2))

The closure properties that are stated in the next theorem are easy to verify.
Theorem 2i) Let {(X(n)

1 , X
(n)
2 )} and {(Y (n)

1 , Y
(n)
2 )} be two sequences of random vectors such

that (X(n)
1 , X

(n)
2 )→st (X1, X2) and (Y (n)

1 , Y
(n)
2 )→st (Y1, Y2) as n→∞. If (X(n)

1 , X
(n)
2 ) ≤PQD

(Y (n)
1 , Y

(n)
2 ) for all n ≥ 1 then (X1, X2) ≤PQD (Y1, Y2).

ii) Let (X1, X2), (Y1, Y2) and Θ be random vectors such that [(X1, X2)|Θ = θ] ≤PQD
[(Y1, Y2)|Θ = θ] for all θ in the support of Θ. Then (X1, X2) ≤PQD (Y1, Y2). That is,
the PQD order is closed under mixtures.
Example 1 Let φ and ψ be two Laplace transforms of positive random variables. Then F

and G, defined by

F (x, y) = φ(φ−1(x) + φ−1(y)), (x, y) ∈ [0, 1]2,

and
G(x, y) = ψ(ψ−1(x) + ψ−1(y)), (x, y) ∈ [0, 1]2,

are bivariate distribution functions with uniform [0, 1] marginals (such as F and G are called
Archimedean copulas). Let (X1, X2) and (Y1, Y2) be distributed according to F and G re-
spectively. Then (X1, X2) ≤PQD (Y1, Y2) if and only if ψ−1oφ is superadditive (that is for
all x, y ≥ 0, ψ−1φ(x+ y) ≥ ψ−1φ(x) + ψ−1φ(y)). Also, if φ−1oψ has a completely monotone
derivative, then (X1, X2) ≤PQD (Y1, Y2).
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1.2 NQD order

In this section we review researches on NQD order such as Ebrahimi (1982) that studied
the ordering of NQD.Moreover we will study some stochastic orders for concepts of negative
dependence if it is possible.

1.3 POD order

Let X = (X1, X2, ..., Xn) be a random vector with distribution function F and survival
function F̄ . Let Y = (Y1, Y2, ..., Yn) be another random vector with distribution G and
survival function Ḡ. if for all x,

F (x) ≤ G(x) and F̄ (x) ≤ Ḡ(x), (1)

then we say that X is smaller then Y in the positive orthant dependence (POD) order
[denoted by X ≤POD Y ] from (1) it follows that only random vectors with same univariate
marginals can be compared in the POD order. ¿From (1)it follows that

X ≤POD Y ⇔ {X ≤uo Y and X ≤lo Y }. (2)

An extension of Theorem 4.1.1 to the general multivariate case is the following. The proof
of Theorem 4.2.1 is a strainghtforward extension of the proof of Theorem 4.1.1 and therefore
it is omitted.
Theorem 1 Suppose that the four random vectors X = (X1, X2, ..., Xn), Y = (Y1, Y2, ..., Yn),
U = (U1, U2, ..., Un) and V = (V1, V2, ..., Vn) satisfy

X ≤POD Y and U ≤POD V (3)

and suppose that X and U are independent,and also that Y and V are independent.Then for
all increasing functions φi, i = 1, 2, ..., n

(φ(X1, U1), ..., φ(Xn, Un) ≤POD (φ(Y1, V1), ..., φ(Yn, Vn).

Corollary 1 Under the assumptions of Theorem 4.2.1
i)

X + U ≤POD Y + V,

that is the PQD order is closed under convolutions.
ii) For all increasing functions φi, i = 1, 2, ..., n, X ≤POD Y implies that

(φ(X1), φ(X2), ..., φ(Xn)) ≤POD (φ(Y1), φ(Y2), ..., φ(Yn)).

The closure properties that are stated in the next Theorem are easy to verify.
Theorem 2 i) Let X1, X2, ..., Xm be a set of independent random vectors where the dimen-
sion of Xi, is ki, i = 1, 2, ...,m. Let Y1, Y2, ..., Ym be another set of independent random
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vectors where the dimension of Yi, is ki, i = 1, 2, ...,m. If Xi ≤POD Yi for i = 1, 2, ...,m,
then

(X1, X2, ..., Xm) ≤POD (Y1, Y2, ..., Ym).

That is , the POD order is closed under conjunctions.
ii) Let X = (X1, X2, ..., Xn) and Y = (Y1, Y2, ..., Yn) be two n-dimensional random vectors.
If X ≤POD Y then XI ≤POD YI for each I ⊆ {1, 2, ..., n}. That is, the POD order is closed
under marginalization.
iii) Let {Xn, n ≥ 1} and {Yn, n ≥ 1} be two sequences of random vectors such that Xn →st X

and Yn →st Y as n→∞. If Xn ≤POD Yn for all n ≥ 1 then X ≤POD Y.

iv) Let X, Y and Θ be random vectors such that [X|Θ = θ] ≤POD [Y |Θ = θ] for all θ in the
support of Θ. Then X ≤POD Y . That is, the POD order is closed under mixtures.
Corollary 2 Under the assumptions of Theorem 4.2.2, if

(X1, X2, ..., Xn) ≤POD (Y1, Y2, ..., Yn)

then for all i 6= j, we have that

Cov(Xi, Xj) ≤ Cov(Yi, Yj)

and since the univariate marginals of X and Y are equal, it follows that for all i 6= j

ρ(Xi, Xj) ≤ ρ(Yi, Yj)

Joe(1997) has shown that some multivariate versions of the correlation measures Kendall’s
tah, Spearman’s rho and Blomquist’s qu are monotone with respect to the POD order.
Another preservation property of the POD order is described in the next Theorem. In the
following Theorem we define

∑0
j=1 xj ≡ 0 for any sequence {xj , j ≥ 1}.

Theorem 3 Let Xj = (Xj,1, Xj,2, ..., Xj,m), j = 1, 2, ..... be a sequence of nonnegative ran-
dom vectors, and let M = (M1,M2, ...,Mm) and N = (N1, N2, ..., Nm) be two vectors of
nonnegative integer-valued random variables. Assume that both M and N are independent
of the Xj ’s. If M ≤POD N , then

(
M1∑
j=1

Xj,1,

M2∑
j=1

Xj,2, ...,

Mm∑
j=1

Xj,m) ≤POD (
N1∑
j=1

Xj,1,

N2∑
j=1

Xj,2, ...,

Nm∑
j=1

Xj,m).

Consider now, n families of univariate distribution functions {G(i)
θ , θ ∈ χi} where χi is a

subset of the real line R, i = 1, 2, ..., n. Let Xi(θ) denote a random variable with distribution
function G(i)

θ , i = 1, 2, ..., n.Below we give a result which provides comparisons of two random
vectors, with distribution functions of the form (6.B.18), in the POD order.
Theorem 4 Let {G(i)

θ , θ ∈ χi} be n families of univariate distribution functions as above.
Let Θ1 and Θ2 be two random vectors with supports in

∏n
i=1 χi and distribution functions
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F1 and F2, respectively. Let Y1 and Y2 be two random vectors with distribution functions H1

and H2 given by

Hj(y1, y2, ..., yn) =
∫
χ1

∫
χ2

· · ·
∫
χn

n∏
i=1

G
(i)
θ (yi)dFj(θ1, θ2, ..., θn),

(y1, y2, ..., yn) ∈ Rn, j = 1, 2, ....

If Θ1 ≤POD Θ2 then Y1 ≤POD Y2.

Example 1 Let X be an n-dimensional random vector with a density f of the form

f(x) = |Σ|−1/2g(xΣ−1x),

where Σ = (σij) is a positive definite n × n matrixs, and g satisfies
∫∞
0 rn−1g(r2)dr < ∞.

Such density functions are called elliptically contoured. Let Y be and n-dimensional random
vector with a density function h of the form

h(x) = |Λ|−1/2g(xΛ−1x),

where Λ = (λij) is a positive definite n × n matrix. If σii = λii, i = 1, 2, ..., n, and σij ≤
λij , 1 ≤ i < j ≤ n, then X ≤POD Y . In particular, multivariate normal random vectors
with means 0 and the same variances are ordered in the POD order if their covariances are
pointwise order.

1.4 Supermodular order

The supermodular order, which is described in this section, is a sufficient condition that
implies the PQD order, but it is also of independent interest.

Definition 1.4.1. A non negative function f(x) is subadditive (superadditive)if for all x, y,

f(x+ y) ≤ (≥)f(x) + f(y)

Remark If f is twice differentiable, then
i) f is superadditive if and only if ∂2f

∂x∂y ≥ 0.

ii) f is subadditive if and only if ∂2f
∂x∂y ≤ 0.

Definition 1.4.2. A function φ : Rn → R is said to be supermodular if for any x, y ∈ Rn it
satisfies

φ(x) + φ(y) ≤ φ(x ∧ y) + φ(x ∨ y),

where the operators ∧ and ∨ denote coordinatewise minimum and maximum, respectively.

Note that if φ : Rn → R is supermodular, then the function ψ, defined by ψ(x1, x2, . . . , xn) =
φ(g1(x1), g2(x2), . . . , gn(xn)), is also supermodular, whenever gi : R→ R, i = 1, 2, . . . , n, are
all increasing or are all decreasing.



8

Definition 1.4.3. Let X and Y be two n-dimensional random vectors such that E[φ(X)] ≤
E[φ(Y)] for all supermodular functions φ : Rn → R, provided the expectations exist. Then
X is said to be smaller than Y in the supermodular order (denoted by X ≤sm Y ).

Since the functions φx = I{y:y>x} and ψx = I{y : y ≤ x} are supermodular for each fixed
x, it is immediate that

X ≤sm Y ⇒ X ≤PQD Y. (1.1)

When n = 2 we have that

(X1, X2) ≤sm (Y1, Y2)⇔ (X1, X2) ≤PQD (Y1, Y2) (1.2)

¿From (2.1) it is seen that if X ≤sm Y , then X and Y must have the same univariate
marginals.
Some closure properties of the supermodular order are described in the next theorem.

Theorem 1.4.4. (a) Let (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) be two n-dimensional random
vectors. If (X1, X2, . . . , Xn) ≤sm (Y1, Y2, . . . , Yn), then

(g1(X1), g2(X2), . . . , gn(Xn)) ≤sm (g1(Y1), g2(Y2), . . . , gn(Yn))

whenever gi : R→ R, i = 1, 2, . . . , n, are all increasing or are all decreasing.
(b) Let X1,X2, . . . ,Xm be a set of independent random vectors where the dimension of Xi is
ki, i = 1, 2, . . . ,m. Let Y1,Y2, . . . ,Ym be another set of independent random vectors where
the dimension of Yi is ki, i = 1, 2, . . . ,m. If Xi ≤sm Yi for i = 1, 2, . . . ,m, then

(X1,X2, . . . ,Xm) ≤sm (Y1,Y2, . . . ,Ym).

That is, the supermodular order is closed under conjunctions.
(c) Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two n-dimensional random vectors.
If X ≤sm Y , then XI ≤sm YI for each I ⊆ {1, 2, . . . , n}.
That is, the supermodular order is closed under marginalization.
(d) Let X, Y , and Θ be random vectors such that [X|Θ = θ] ≤sm [Y |Θ = θ] for all θ in the
support of Θ. Then X ≤sm Y. That is, the supermodular order is closed under mixtures.
(e) Let {Xj , j = 1, 2, . . . } and {Yj , j = 1, 2, . . . } be two sequences of random vectors such
that Xj →st X and Yj →st Y as j →∞, where →st denotes convergence in distribution. If
Xj ≤sm Yj , j = 1, 2, . . . , then X ≤sm Y
. Proof. Part (a) follows from the fact that a composition of a supermodular function with
coordinatewise functions, that are all increasing or are all decreasing, is a supermodular
function. In order to see part (b) let X1 and X2 be two independent random vectors, and
let Y1 and Y2 be two other independent random vectors. Suppose that X1 ≤sm Y1 and that
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X2 ≤sm Y2. Then, for any supermodular function φ (of the proper dimension) we have that

Eφ(X1,X2) = E[Eφ(X1,X2)|X2]

≤ E[Eφ(Y1,X2)|X2]

= Eφ(Y1,X2)

≤ Eφ(Y1,Y2),

where the first inequality follows from the fact that φ(x1,x2) is supermodular in x1 when x2

is fixed, and the second inequality follows in a similar manner. Part (b) of Theorem 7 follows
from the above by induction.
Parts (c) and (d) are easy to prove.�

¿From parts (a) and (d) of Theorem 7 we obtain the following corollary.

Corollary 1.4.5. If X ≤sm Y, then for each i 6= j, (Xi, Xj) ≤sm (Yi, Yj) if and only if
(Xi, Xj) ≤PQD (Yi, Yj).

Corollary 1.4.6. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two random vectors
such that X ≤sm Y , and let Z be an m-dimensional random vector which is independent of
X and Y . Then

(h1(X1,Z), h2(X2,Z), . . . , hn(Xn,Z)) ≤sm (h1(Y1,Z), h2(Y2,Z), . . . , hn(Yn,Z)),

whenever hi(x, z), i = 1, 2, . . . , n, are all increasing or are all decreasing in x for every z.

Example 1.4.7. Let X and Y be two n-dimensional random vectors such that X ≤sm Y ,
and let Z be an n-dimensional random vector which is independent of X and Y . Then from
Corollary 3 it follows that

X ∧ Z ≤sm Y ∧ Z,

and that
X + Z ≤sm Y + Z.

By applying Corollary 3 twice (letting Z there be an n-dimensional random vector, and
letting each hi depend only on its first argument and on the ith component of the second
argument, i = 1, 2, . . . , n), we get the following result.

Theorem 1.4.8. Let Xj = (Xj,1, Xj,2, . . . , Xj,m), j = 1, 2, . . . , be a sequence of nonnegative
random vectors, and let M = (M1,M2, . . . ,Mm) and N = (N1, N2, . . . , Nm) be two vectors
of nonnegative integer-valued random variables. Assume that both M and N are independent
of the Xj,s. If M ≤sm N, thenM1∑

j=1

Xj,1,

M2∑
j=1

Xj,2, . . . ,

Mm∑
j=1

Xj,m

 ≤sm
 N1∑
j=1

Xj, 1,
N2∑
j=1

Xj,2, . . . ,

Nm∑
j=1

Xj,m

 .
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Proof. Let φ be a supermodular function. Conditioning on the possible realizations of
(X1,X2, . . . ) we can write

E

φ
M1∑
j=1

Xj,1,

M2∑
j=1

Xj,2, . . . ,

Mm∑
j=1

Xj,m


= E

E
φ
M1∑
j=1

Xj,1,

M2∑
j=1

Xj,2, . . . ,

Mm∑
j=1

Xj,m

 | (X1,X2, . . . )

 .

Now, it is easy to see that for any realization (x1,x2, . . . ) of (X1,X2, . . . ), the function ψ,

defined by ψ(n1, n2, . . . , nm) = φ(
n1∑
j=1

xj,1,

n2∑
j=1

xj,2, . . . ,

nm∑
j=1

xj,m), is supermodular. Therefore,

since M ≤sm N, we have that

E

φ
M1∑
j=1

Xj,1,

M2∑
j=1

Xj,2, . . . ,

Mm∑
j=1

Xj,m

 | (X1,X2, . . . ) = (x1,x2, . . . )


≤ E

φ
 N1∑
j=1

Xj,1,

N2∑
j=1

Xj,2, . . . ,

Nm∑
j=1

Xj,m

 | (X1,X2, . . . ) = (x1,x2, . . . )

 ,
and thus

E

φ
M1∑
j=1

Xj,1,

M2∑
j=1

Xj,2, . . . ,

Mm∑
j=1

Xj,m


≤ E

E
φ
 N1∑
j=1

Xj,1,

N2∑
j=1

Xj,2, . . . ,

Nm∑
j=1

Xj,m

 | (X1,X2, . . . )


= E

φ
 N1∑
j=1

Xj,1,

N2∑
j=1

Xj,2, . . . ,

Nm∑
j=1

Xj,m

 .�
Theorem 1.4.9. Let X and Y be two random vectors. If X ≤sm Y , then φ(X) ≤icx φ(Y)
for any increasing supermodular function φ : Rn → R.

Theorem 1.4.10. Let (X1, X2) and (Y1, Y2) be two random vectors. If (X1, X2) ≤sm (Y1, Y2)
(that is, (X1, X2) ≤PQD (Y1, Y2);), then

Y1 − Y2 ≤cx X1 −X2.

Proof. Let φ be a univariate convex function. Then the function ψ, defined by

ψ(x1, x2) = −φ(x1 − x2),

is easily seen to be supermodular ( ∂2ψ
∂x1∂x2

≥ 0). Thus Eφ(Y1 − Y2) ≤ Eφ(X1 − X2). This
proves the inequality. �
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Example 1.4.11. Let X1, X2, . . . and Y1, Y2, . . . be two sequences of random variables. Let
N1 and N2 be two independent and identically distributed positive integer-valued random
variables independent of the Xi’s and of the Yi’s. Then

N1∑
i=1

Xi +
N2∑
i=1

Yi ≤cx
N1∑
i=1

(Xi + Yi).

Solution.(i) (Theorem 11)⇒ (N1, N2) ≤sm (N2, N2) and (N1, N2) ≤sm (N1, N1)

(ii)(Theorem 8) ⇒
( N1∑
i=1

Xi,

N2∑
i=1

Yi
)
≤sm

( N1∑
i=1

Xi,

N1∑
i=1

Yi
)

(iii)(Theorem 9)⇒
N1∑
i=1

Xi +
N1∑
i=1

Yi ≤cx
N1∑
i=1

(Xi + Yi).

Example 1.4.12. Let X be a multivariate normal random vector with mean vector 0 and
variance-covariance matrix Σ, and let Y be a multivariate normal random vector with mean
vector 0 and variance-covariance matrix Σ + D, where D is a matrix with zero diagonal
elements such that Σ + D is nonnegative definite. Then X ≤sm Y if, and only if, all the
entries of D are nonnegative.

Theorem 1.4.13. Let X = (X1, X2, . . . , Xn) be a random vector and let FXi be the marginal
distribution of Xin. Then, for a uniform [0, 1] random variable U we have that

X ≤sm
(
F−1
X1

(U), F−1
X2

(U), . . . , F−1
Xn

(U)
)
,

and therefore
X ≤PQD

(
F−1
X1

(U), F−1
X2

(U), . . . , F−1
Xn

(U)
)
.

Proof. Suppose n = 2,
FU (x, y) = min{F1(x), F2(y)}(
F−1

1 (u), F−1
2 (u)

)
G(x, y) = P

{
F−1

1 (U) ≤ x, F−1
2 (U) ≤ y

}
= P {U ≤ F1(x), U ≤ F2(y)}

= P {U ≤ min{F1(x), F2(y)}} = P{U ≤ FU} = FU

⇒ (X1, X2) ≤PQD
(
F−1

1 (u), F−1
2 (u)

)
⇔ (X1, X2) ≤sm

(
F−1

1 (u), F−1
2 (u)

)
.�

Corollary 1.4.14. particular, if the Xi,s in Theorem 11, marginally, have the same (uni-
variate) distribution function, then

X ≤sm (X1, X1, . . . , X1),

and therefore
X ≤PQD (X1, X1, . . . , X1).
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Corollary 1.4.15. Using the notation of Theorem 11, that

X1 +X2 + · · ·+Xn ≤cx F−1
X1

(U) + F−1
X2

(U) + · · ·+ F−1
Xn

(U).

Theorem 1.4.16. Let X = (X1, X2, . . . , Xn) be a random vector, and let Y = (Y1, Y2, . . . , Yn)
be a vector of independent random variables such that, marginally, Xi =st Yi, i = 1, 2, . . . , n.
(a) If X1, X2, . . . , Xn are weakly positively associated, then X ≥sm Y.
(b)If X1, X2, . . . , Xn are negatively associated, then X ≤sm Y .

1.5 Positive orthant orders

In this section we study some stochastic orders of positive dependence that arise when the un-
derlying random vectors are ordered with respect to some multivariate hazard rate stochastic
orders, and have the same univariate marginal distributions. A pair of such orders is studied
in Section 2. After giving the definitions and some basic properties, we show how the orders
can be studied by restricting them to copulae. We then give a number of examples, and study
ordering of parametric families by using in orders. A pair of stronger positive dependence
orders is introduced and studied in Section 3.

1.6 The weak orthant ratio orders

Let X = (X1, ..., Xn) and Y = (Y1, ..., Yn) be two random vectors with respective distribution
functions F and G, and with survival functions F̄ and Ḡ. We suppose that F and G belong
to the same Fr’echet class; that is, have the same univariate marginals.

Definition 1. We say that X is smaller than Y in the lower orthant decreasing ratio order
(denoted by X ≤lodr Y or F ≤lodr G) if

F (y)G(x) ≥ F (x)G(y), x ≤ y.G(x)
F (x)

↘ in x ∈ {x : G(x) > 0}, (1.3)

where in (2.2) we use the convention a/0 ≡ ∞ whenever a > 0. Note that (2.2) can be
written equivalently as

F (x− u)
F (x)

≤ G(x− u)
G(x)

, u ≥ 0, x ∈ {x : F (x) > 0} ∩ {x : G(x) > 0}, (1.4)

and it is also equivalent to

[X − x|X ≤ x] ≥lo [Y − x|Y ≤ x], x ∈ {x : F (x) > 0} ∩ {x : G(x) > 0}. (1.5)

Note that if in (2.1) y → ∞ then it follows that {x : F (x) > 0} ⊆ {x : G(x) > 0}. Thus, in
(2.3) and (2.4) we can formally replace the expression {x : F (x) > 0} ∩ {x : G(x) > 0} by
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the simpler expression {x : F (x) > 0}.

Definition 2. We say that X is smaller than Y in the upper orthant increasing ratio order
(denoted by X ≤uoir Y or F ≤uoir G) if

F̄ (y)Ḡ(x) ≤ F̄ (x)Ḡ(y), x ≤ y. (1.6)

This is equivalent to
Ḡ(x)
F̄ (x)

↗ in x ∈ {x : Ḡ(x) > 0}, (1.7)

where here, again, we use the convention a/0 ≡ ∞ whenever a > 0. Note that the above can
be written equivalently as

F̄ (x− u)
F̄ (x)

≤ Ḡ(x− u)
Ḡ(x)

, u ≥ 0, x ∈ {x : F̄ (x) > 0} ∩ {x : Ḡ(x) > 0}, (1.8)

and it is also equivalent to

[X − x|X > x] ≤uo [Y − x|Y > x], x ∈ {x : F̄ (x) > 0} ∩ {x : Ḡ(x) > 0}. (1.9)

Formally the expression {x : F̄ (x) > 0} ∩ {x : Ḡ(x) > 0} in (2.7) and (2.8) can be replaced
by the simpler expression {x : F̄ (x) > 0}.

Definition 3. We say that X is smaller than Y in the multivariate hazard rate order (denoted
by X ≤hr Y ) if

F̄ (x)Ḡ(y) ≤ F̄ (x ∧ y)Ḡ(x ∨ y), ∀ x, y ∈ Rn. (1.10)

and we say that X is smaller than Y in the weak multivariate hazard rate order (denoted by
X ≤whr Y ) if

Ḡ(x)
F̄ (x)

↗ in x ∈ {x : Ḡ(x) > 0}, (1.11)

where in (2.10) we use the convention a/0 ≡ ∞ whenever a > 0.
Note that (2.10) can be written equivalently as

F̄ (y)Ḡ(x) ≤ F̄ (x)Ḡ(y), x ≤ y. (1.12)

Thus, from (2.9) and (2.11) it follows that

X ≤hr Y ⇒ X ≤whr Y. (1.13)

We note that if X and Y have the same marginals, then X ≤uoir Y if, and only if, X ≤whr Y.

Remark 1: Suppose that the X ≤lodr Y , if in (2.4) y → ∞ then it follows that for all
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x, F (x) ≤ G(x). Similarly, if X ≤uoir Y , then from (2.5) follows that for all x, F̄ (x) ≤ Ḡ(x).
Thus we have that

(X ≤lodr Y and X ≤uoir Y )⇒ X ≤POD Y. (1.14)

The two orders ≤lodr and ≤uoir are closely related, as is indicated in the next result.
Theorem 1 Let X = (X1, ..., Xn) and Y = (Y1, ..., Yn) be two random vectors in the same
Fr’echet class.

1. If X ≤lodr Y , then (φ1(X1), φ2(X2), ..., φn(Xn)) ≤uoir (φ1(Y1), φ2(Y2),
..., φn(Yn)) for any decreasing functions φ1, φ2, ..., φn. Conversely, if (φ1(X1), φ2(X2), ..., φn(Xn)) ≤uoir
(φ1(Y1), φ2(Y2), ..., φn(Yn)) for some strictly decreasing functions φ1, φ2, ..., φn, then
X ≤lodr Y .

2. If X ≤uoir Y , then (φ1(X1), φ2(X2), ..., φn(Xn)) ≤lodr (φ1(Y1), φ2(Y2),
..., φn(Yn)) for any decreasing functions φ1, φ2, ..., φn. Conversely, if (φ1(X1), φ2(X2), ..., φn(Xn)) ≤lodr
(φ1(Y1), φ2(Y2), ..., φn(Yn)) for some strictly decreasing functions φ1, φ2, ..., φn, then
X ≤uoir Y .

The next result is similar to Theorem 1, but it involves increasing, rather than decreasing,
functions. It shows that the orders ≤lodr and ≤uoir are closed under componentwise increasing
transformations.
Theorem 2 Let X = (X1, ..., Xn) and Y = (Y1, ..., Yn) be two random vectors in the same
Fr’echet class.

1. If X ≤lodr Y , then (φ1(X1), φ2(X2), ..., φn(Xn)) ≤lodr (φ1(Y1), φ2(Y2),
..., φn(Yn)) for any increasing functions φ1, φ2, ..., φn. Conversely, if (φ1(X1), φ2(X2), ..., φn(Xn)) ≤lodr
(φ1(Y1), φ2(Y2), ..., φn(Yn)) for some strictly increasing functions φ1, φ2, ..., φn, then
X ≤lodr Y .

2. If X ≤uoir Y , then (φ1(X1), φ2(X2), ..., φn(Xn)) ≤uoir (φ1(Y1), φ2(Y2),
..., φn(Yn)) for any increasing functions φ1, φ2, ..., φn. Conversely, if (φ1(X1), φ2(X2), ..., φn(Xn)) ≤uoir
(φ1(Y1), φ2(Y2), ..., φn(Yn)) for some strictly increasing functions φ1, φ2, ..., φn, then
X ≤uoir Y .

Remark 2: Order ≤uoir is

1. a preorder(reflexive and transitive).

2. antisymmetric.

3. imply the POD order.

4. closed under permutation of the component.
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5. closed under marginalization.

6. closed under convergence in distribution.

7. closed under componentwise strictly increasing transformation.

8. not closed under convolutions.

9. not maximal at the upper Fr’echet bound.

10. minimal at the lower Fr’echet bound in the bivariate case.

Using Theorem 1 it is seen that also the order ≤lodr is closed under these operations.
Postulates (1) and (2) is trivial, Postulate (3) is remark 1, Postulates (4), (5) and (6)

follow from results of Shaked[2], Postulate (7) follow from theorem 2 and Postulates (8), (9)
and (10) is shown in the next examples.

Example 1. Show that the order ≤uoir is not closed under convolutions.

Solution: Let (X1, X2), (Y1, Y2), and (Z1, Z2) be random vectors with probability mass
functions

x2 y2 z2

x1 0 1

0 .1 .1
1 .1 .7

y1 0 1

0 .2 0
1 0 .8

z1 0 1

0 .3 0
1 0 .7

Suppose that (Z1, Z2) is independent of (X1, X2) and of (Y1, Y2). It is easy to see that
(X1, X2) ≤uoir (Y1, Y2), and, obviously, (Z1, Z2) ≤uoir (Z1, Z2). The probability mass func-
tions of (U1, U2) = (X1, X2) + (Z1, Z2) and (V1, V2) = (Y1, Y2) + (Z1, Z2) are
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u2 v2

u1 0 1 2

0 .03 .03 0
1 .03 .28 .07
2 0 .07 .49

v1 0 1 2

0 .06 0 0
1 0 .38 0
2 0 0 .56

and it is easily seen that (U1, U2) 6≤uoir (V1, V2). ¿From Theorem 1, with φ1(x) = φ2(x) = −x,
it also follows that the order ≤lodr is not closed under convolutions. 4

Example 1.6.1. Suppose that (X1, X2) has distribution function F, such that F ∈M(F1, F2),
then

F− ≤lodr F and F− ≤uoir F,

where F− is lower bound in Fr’echet class.

Solution. We will give the solution only for the order ≤uoir; the solution for the order
≤lodr is similar. Fix (x1, x2) ≤ (y1, y2). We want to show that

max{F̄1(y1) + F̄2(y2)− 1, 0}F̄ (x1, x2)

≤ max{F̄1(x1) + F̄2(x2)− 1, 0}F̄ (y1, y2).

If F̄1(y1) + F̄2(y2)− 1 ≤ 0 then relation is trivially true. If F̄1(y1) + F̄2(y2)− 1 > 0 then we
have

[1− F̄1(y1)− F̄2(y2)]F̄ (x1, x2) ≥ [1− F̄1(x1)− F̄2(x2)]F̄ (y1, y2). (1.15)

Note that 1 − F̄1(z1) − F̄2(z2) = F (z1, z2) − F̄ (z1, z2) for any (z1, z2). Plugging this in
(2.14) and simplifying, it is seen that (2.14) is equivalent to

F (y1, y2)F̄ (x1, x2) ≥ F (x1, x2)F̄ (y1, y2),

which is trivially true. 4

In the next example it is shown that if F ∈M(F1, F2) then it does not necessarily follow
that F ≤lodr F+ or that F ≤uoir F+, where F+ is the upper Fr’echet bound.

Example 3. Let (X1, X2) and (Y1, Y2) have distribution functions F and G. If (X1, X2)
and (Y1, Y2) are bounded from below, and if for some (x1, x2) ≤ (y1, y2) we have F̄ (y1, y2) =
Ḡ(y1, y2) > 0 and F̄ (x1, x2) 6= Ḡ(x1, x2), then (X1, X2) and (Y1, Y2) are not comparable with
respect to the order ≤uoir . This follows from (2.6). Similarly, if (X1, X2) and (Y1, Y2) are
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bounded from above, and if for some (x1, x2) ≥ (y1, y2) we have F (y1, y2) = G(y1, y2) > 0
and F (x1, x2) 6= G(x1, x2), then (X1, X2) and (Y1, Y2) are not comparable with respect to the
order ≤lodr. This follows from (2.2). In particular, let (X1, X2), with distribution function F,
take on the values (1, 1), (1, 2), (2, 1), (3, 3) with probabilities 1/5, 1/5, 1/5, and 2/5. Then
F̄+(1, 1) 6= F̄ (1, 1) and F̄+(2, 2) = F̄ (2, 2), so F+ and F are not comparable with respect
to the order ≤uoir. Taking here G to be the distribution function of (−X1,−X2), it can be
verified that G+ and G are not comparable with respect to the order ≤lodr. 4
Theorem 3 Let X and Y have, respectively, distribution functions F and G in Γn(F1, F2, ..., Fn).
Then X ≤lodr Y [X ≤uoir Y ] if, and only if, there exist copulae CF and CG such that
CF ≤lodr CG[CF ≤uoir CG].

Proof. We give only the proof for the order ≤lodr; the proof for the other order is similar.
Suppose that X ≤lodr Y , If F is continuous then CF is unique and it can be constructed as
follows:

CF (u1, u2, ..., un) ≡ F (F−1
1 (u1), F−1

2 (u2), ..., F−1
n (un)),

ui ∈ [0, 1], i = 1, 2, ..., n,

For i = 1, 2, ..., n the function F−1
i is strictly increasing function. Therefore, by Theorem 2,

CF ≤lodr CG.

Conversely, suppose that there exist copulae CF and CG such that CF ≤lodr CG. Then
from (2.2) we have that

CG(u)
CF (u)

↘ in u ∈ {u : CG(u) > 0}. (1.16)

Substitute ui = Fi(xi), i = 1, 2, ..., n, in (2.15) to obtain (2.2). �

Theorem Let U and V be two random vectors whose distribution functions are copulae.
Then

U ≤lodr V ⇔ 1− U ≤uoir 1− V,

U ≤uoir V ⇔ 1− U ≤lodr 1− V

Proof. By Theorem 1 and using from φi(xi) = 1−xi, i = 1, 2, ..., n, it is straightforward. �

We close this section with two examples of distributions that are ordered with respect to
the orders ≤lodr and ≤uoir (For more examples see Colangelo et al.[1]).

Example 4. Let F⊥ and F+ denote, respectively, the distribution functions corresponding to
the independence case, and to the upper Fr’echet bound, in the class M(F1, F2, ..., Fn); that is,
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F⊥(x1, x2, ..., xn) = Πn
i=1Fi(xi) and F+(x1, x2, ..., xn) = min1≤i≤n{F1(x1), F2(x2), ..., Fn(xn)}.

Then
F⊥ ≤lodr F+ and F⊥ ≤uoir F+.

In order to see it we may assume, by Theorem 3, that Fi, i = 1, 2, ..., n, are all uniform[0,
1] distribution functions. First we show that F⊥ ≤lodr F+. That is, we need to verify, for
x ≤ y ∈ [0, 1]n, that[

n∏
i=1

yi

]
min

1≤i≤n
{x1, x2, ..., xn} ≥

[
n∏
i=1

xi

]
min

1≤i≤n
{y1, y2, ..., yn}

and this is straightforward. The inequality above is reversed if we replace xi by 1 − xi and
yi by 1− yi , but still require x ≤ y ∈ [0, 1]n,. This shows that F⊥ ≤uoir F+. 4

Remark 3. Let {Fα} be a parametric family of n-dimensional distributions, all in the
same Fr’echet class, where the parameter space is a subset of R. Then Fα ≤lodr Fβ for all
α ≤ β if, and only if,

Fβ(x1, x2, ..., xn)
Fα(x1, x2, ..., xn)

↘ in x1, x2, ..., xn when α ≤ β,

that is (if the partial derivatives below exists), if, and only if,

∂

∂xi
logFα(x1, x2, ..., xn) ↘ in α for i = 1, 2, ..., n. (1.17)

Similarly, Fα ≤uoir Fβ if, and only if,

∂

∂xi
logF̄α(x1, x2, ..., xn) ↗ in α for i = 1, 2, ..., n (1.18)

(this really means that F̄α(x1, x2, ..., xn) is TP2 (totally positive of order 2) in (α, xi) for
i = 1, 2, ..., n).

Example 5.(Ali.Mikhail.Haq). Consider the family of bivariate copulae Cα defined by

Cα(u, v) =
uv

1− α(1− u)(1− v)
, (u, v) ∈ (0, 1)2,

where |α| ≤ 1. Denote the corresponding survival copulae by Dα. Their survival functions
are given by

Dα(u, v) = Cα(1− u, 1− v) =
(1− u)(1− v)

1− αuv
, (u, v) ∈ (0, 1)2.

We will show that Cα ≤lodr Cβ whenever −1 ≤ α ≤ β ≤ 1 In order to see it we compute

∂

∂u
logCα(u, v) =

1− α(1− v)
u(1− α(1− u)(1− v))

and this is decreasing in α ∈ [0, 1]. Similarly, ∂
∂v logCα(u, v) is decreasing in α ∈ [0, 1]. The

claim thus follows from (2.16). The inequality Cα ≤lodr Cβ,−1 ≤ α ≤ β ≤ 1. Using Theorem
4 we also see that Dα ≤uoir Dβ whenever −1 ≤ α ≤ β ≤ 1. 4
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1.7 The strong orthant ratio orders

Let X = (X1, ..., Xn) and Y = (Y1, ..., Yn) be two random vectors with respective distribution
functions F and G, and with survival functions F̄ and Ḡ. We suppose that F and G belong
to the same Fr’echet class; that is, have the same univariate marginals.

Definition 4. We say that X is smaller than Y in the strong lower orthant decreasing
ratio order (denoted by X ≤slodr Y or F ≤slodr G) if

F (x)G(y) ≤ F (x ∨ y)G(y ∧ x), x, y ∈ Rn. (1.19)

Definition 5. We say that X is smaller than Y in the strong upper orthant increasing ratio
order (denoted by X ≤suoir Y or F ≤suoir G) if

F̄ (x)Ḡ(y) ≤ F̄ (x ∧ y)Ḡ(y ∨ x), x, y ∈ Rn. (1.20)

We note that if X and Y have the same marginals, then X ≤suoir Y if, and only if, X ≤hr Y .

Remark 4: By choosing x ≤ y in (3.1) we get (2.1), and by choosing x ≥ y in (3.2)
we get (2.5), that is,

X ≤slodr Y ⇒ X ≤lodr Y and X ≤suoir Y ⇒ X ≤uoir Y. (1.21)

Thus the orders ≤slodr and ≤suoir are often useful as a tool to identify random vectors that
are ordered with respect to the orders ≤lodr and ≤uoir.

The two orders ≤slodr and ≤suoir are closely related, and are preserved under componen-
twise increasing transformations, as is indicated in the next analog of Theorems 1 and 2.
Theorem 1 Let X = (X1, ..., Xn) and Y = (Y1, ..., Yn) be two random vectors in the same
Fr’echet class.

1. If X ≤slodr Y , then (φ1(X1), φ2(X2), ..., φn(Xn)) ≤suoir (φ1(Y1), φ2(Y2),
..., φn(Yn)) for any decreasing functions φ1, φ2, ..., φn. Conversely, if (φ1(X1), φ2(X2), ..., φn(Xn)) ≤suoir
(φ1(Y1), φ2(Y2), ..., φn(Yn)) for some strictly decreasing functions φ1, φ2, ..., φn, then
X ≤slodr Y .

2. If X ≤suoir Y , then (φ1(X1), φ2(X2), ..., φn(Xn)) ≤slodr (φ1(Y1), φ2(Y2),
..., φn(Yn)) for any decreasing functions φ1, φ2, ..., φn. Conversely, if (φ1(X1), φ2(X2), ..., φn(Xn)) ≤slodr
(φ1(Y1), φ2(Y2), ..., φn(Yn)) for some strictly decreasing functions φ1, φ2, ..., φn, then
X ≤suoir Y .

3. If X ≤slodr Y , then (φ1(X1), φ2(X2), ..., φn(Xn)) ≤slodr (φ1(Y1), φ2(Y2),
..., φn(Yn)) for any increasing functions φ1, φ2, ..., φn. Conversely, if (φ1(X1), φ2(X2), ..., φn(Xn)) ≤slodr
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(φ1(Y1), φ2(Y2), ..., φn(Yn)) for some strictly increasing functions φ1, φ2, ..., φn, then
X ≤slodr Y .

4. If X ≤suoir Y , then (φ1(X1), φ2(X2), ..., φn(Xn)) ≤suoir (φ1(Y1), φ2(Y2),
..., φn(Yn)) for any increasing functions φ1, φ2, ..., φn. Conversely, if (φ1(X1), φ2(X2), ..., φn(Xn)) ≤suoir
(φ1(Y1), φ2(Y2), ..., φn(Yn)) for some strictly increasing functions φ1, φ2, ..., φn, then
X ≤suoir Y .

The orders ≤slodr and ≤suoir satisfy most of the postulates given in Section 2(see Colangelo
et al.[1] and Shaked[2]). For example the order ≤suoir is closed under permutation of the
component, marginalization, and convergence in distribution. Using Theorem 5 it is seen
that also the order ≤slodr is closed under these operations.

The converses of the implications in (3.3) are not true in general. However, under an
additional assumption they are valid; these are given in the following theorem.
Theorem Let X and Y be two random vectors in the same Fr’echet class with respective
distribution functions F and G, and respective survival functions F̄ and Ḡ.

1. If F and/or G are/is MTP2, then X ≤lodr Y ⇒ X ≤slodr Y.

2. If F̄ and/or Ḡ are/is MTP2, then X ≤uoir Y ⇒ X ≤suoir Y.

Proof. First we prove part (2) when Ḡ is MTP2. Fix x, y ∈ Rn(y ≤ x). From X ≤uoir Y it
follows that

F̄ (x)Ḡ(y) ≤ F̄ (y)Ḡ(x) ⇒ F̄ (x)Ḡ(x ∧ y) ≤ F̄ (x ∧ y)Ḡ(x)

⇒ Ḡ(x ∧ y)
Ḡ(x)

≤ F̄ (x ∧ y)
F̄ (x)

and from the MTP2 property of Ḡ it follows that

Ḡ(x)Ḡ(y) ≤ Ḡ(x ∧ y)Ḡ(x ∨ y)⇒ Ḡ(y)
Ḡ(x ∨ y)

≤ Ḡ(x ∧ y)
Ḡ(x)

Multiplication of these two inequalities yields

F̄ (x)Ḡ(y) ≤ F̄ (x ∧ y)Ḡ(y ∨ x),

that is X ≤suoir Y . �
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1.8 The convex order

1.8.1 Definition and equivalent conditions

Let X and Y be two random variables such that

E[φ(X)] ≤ E[φ(Y )] for all convex functions φ : R → R (1.22)

provided the expectations exist. Then X is said to be smaller than Y in the convex order
(denoted as X ≤cx Y ). Roughly speaking, convex functions are functions that take on their
(relatively) larger values over regions of the form (−∞, a) ∪ (b,+∞) for a < b. Therefore, if
(1.1) holds, then Y is more likely to take on ”extreme” values than X. That is, Y is ”more
variable” than X. It should be mentioned here that in (1.1) it is sufficient to consider only
functions φ that are convex on the union of the supports of X and Y rather than over the
whole real line; we will not keep repeating this point throughout this section.
One can also define a concave order by requiring (1.1) to hold for all concave functions φ
(denoted as X ≤cv Y ). However, X ≤cv Y if, and only if, Y ≤cx X. Therefore, it is not
necessary to have a separate discussion for the concave order.
Note that the functions φ1 and φ2, defined by φ1(x) = x and φ2(x) = −x, are both convex.
Therefore, from (1.1) it easily follows that

X ≤cx Y ⇒ E[X] = E[Y ] (1.23)

provided the expectations exist. Later it will be helpful to observe that if E[X] = E[Y ], then∫ +∞

−∞
[F (u)−G(u)]du =

∫ +∞

−∞
[F̄ (u)− Ḡ(u)]du = 0 (1.24)

provided the integrals exist, where F̄ [F ] and Ḡ [G] are the survival [distribution] functions
of X and Y , respectively. The function φ defined by φ(x) = x2, is convex. Therefore, from
(1.1) and (1.2), it follows that

X ≤cx Y ⇒ V ar[X] ≤ V ar[Y ], (1.25)

whenever V ar(Y ) <∞.
For a fixed a, the function φa, defined by φa(x) = (x− a)+, and the function ϕa, defined by
ϕa = (a− x)+, are both convex. Therefore, if X ≤cx Y , then

E[(X − a)+] ≤ E[(Y − a)+] for all a (1.26)

and

E[(a−X)+] ≤ E[(a− Y )+] for all a (1.27)
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provided the expectations exist. Alternatively, using a simple integration by parts, it is seen
that (1.5) and (1.6) can be rewritten as∫ ∞

x
F̄ (u)du ≤

∫ ∞
x

Ḡ(u)du for all x (1.28)

and ∫ x

−∞
F (u)du ≤

∫ x

∞
G(u)du for all x (1.29)

provided the integrals exist.
In fact, when E[X] = E[Y ], (1.7) is equivalent to X ≤cx Y . To see this equivalence,

note that every convex function can be approximated by (that is, is a limit of) positive linear
combinations of the functions φa’s, for various choices of a’s, and of the function φ(x) = −x.
By (1.7), E[φa(X)] ≤ E[φa(Y )] for all a’s, and this fact, together with the equality of the
means of X and Y , implies (1.1). We thus have proved the first part of the following result.
The other part is proven similarly.
Theorem 1 Let X and Y be two random variables such that E[X] = E[Y ]. Then

(a) X ≤cx Y if, and only if, (1.7) holds.
(b) X ≤cx Y if, and only if, (1.8) holds.
By adding a to both sides of the inequality in (1.5), it is seen that (1.5) can be rewritten

as
E[max{X, a}] ≤ E[max{Y, a}] for all a. (1.30)

Thus, when E[X] = E[Y ], then (1.9) is equivalent to X ≤cx Y . In a similar manner (1.6) can
be rewritten. The following theorem provides another characterization of the convex order.
Theorem 2 Let X and Y be two random variables such that E[X] = E[Y ]. Then X ≤cx Y
if, and only if,

E|X − a| ≤ E|Y − a| for all a ∈ R. (1.31)

Proof.Clearly, if X ≤cx Y , then (1.10) holds. So suppose that (1.10) holds. Without loss of
generality it can be assumed that E[X] = E[Y ] = 0. A straightforward computation gives

E|X − a| = a+ 2
∫ ∞
a

F̄ (u)du = −a+ 2
∫ a

−∞
F (u)du. (1.32)

The result now follows from (1.7) or (1.8). �

Theorem 3 The random variables X and Y satisfy X ≤cx Y if, and only if, there exist
two random variables X̂ and Ŷ , defined on the same probability space, such that

X̂ =st X, Ŷ =st Y,

and {X̂, Ŷ } is a martingale, that is,

E[Ŷ |X̂] = X̂ a.s. (1.33)
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Proof.

E[φ(X)] = E[φ(X̂)] = Eφ(E[Ŷ |X̂]) ≤ E{E[φ(Ŷ )|X̂]} = E[φ(Ŷ )] = E[φ(Y )],

which is (1.1). �

Remark 1 If Y1 ≥cx X1 and Y2 ≥cx X2,then E[max{Y1;Y2}] ≥ E[max{X1;X2}] that (Y1;Y2)
and (X1;X2) are pairs of independent random variables.
Theorem 4 Suppose (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) are sets of mutually independent
random variables. If:
(i)Yi ≥cx Xi for all i, and
(ii)f is a component-wise convex function,
then E[f(Y1, Y2, . . . , Yn)] ≥ E[f(X1, X2, . . . , Xn)].
Theorem 5 Suppose Y1 ≥cx X1 andY2 ≥cx X2. Then E[max(Y1, Y2)] ≥ E[max(X1, X2)],
if Cov(Y1, Y2) < Cov(X1, X2) and (Y1, Y2), (X1, X2) are both negatively dependent pairs of
random variables.
Corollary 1 Suppose Y1 ≥cx X1 and Y2 ≥cx X2. Then E[max(Y1, Y2)] ≥ E[max(X1, X2)], if
(Y1, Y2) is negatively dependent and (X1, X2) is independent.
Theorem 6 Suppose Yi ≥cx Xi for each i = 1, 2, . . . , N . Then E[max(Y1, Y2, . . . , YN )] ≥
E[max(X1, X2, . . . , XN )] if (Y1, Y2, . . . , YN ) is negatively dependent and (X1, X2, . . . , XN ) is
positively dependent.
Remark 2 Suppose Yi ≥cx Xi for each i = 1, 2, . . . , N . Then E[max(Y1, Y2, . . . , YN )] ≥
E[max(X1, X2, . . . , XN )] if (Y1, Y2, . . . , YN ) ≤NQD (X1, X2, . . . , XN ).

1.9 LTD, RTI and SI orders

For any random vector (X1, X2) with distribution function F ∈ F(F1, F2) we define the
conditional distribution function FLx by

FLx1
(x2) = P [X2 ≤ x2|X1 ≤ x1], (1)

for all x1 for which this conditional distribution is well defined. Barlow and Proschan (1972)
defined F (or X1 and X2) to be left tail decreasing (LTD) if for all x1 ≤ x′1, and x2

FLx1
(x2) ≥ FLx′1(x2)

or,equivalently,if x1 ≤ x′1, and u ∈ [0, 1]

(FLx1
)−1(u) ≤ (FLx′1)−1(u), (2)

Note that when (FLx1
)−1(u) is continuous in u for all x1 then (2) can be equivalently written

as
FLx′1

[(FLx1
)−1(u)] ≤ u, for all x1 ≤ x′1 and u ∈ [0, 1]. (3)
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This notion to the following definition. Let (X1, X2) be a bivariate random vector with
distribution function F ∈ F(F1, F2) and let (Y1, Y2) be another bivariate random vector with
distribution G ∈ F(F1, F2) suppose that for any x1 ≤ x′1 we have

(FLx1
)−1(u) ≤ (FLx′1)−1(v)⇒ (GLx1

)−1(u) ≤ (GLx′1)−1(v), u, v ∈ [0, 1] (4)

Then we say that (X1, X2) is smaller than (Y1, Y2) in the LTD order [denoted by or (X1, X2) ≤LTD
(Y1, Y2) or F ≤LTD G.

Note that for all x1 ≤ x′1 and u ∈ [0, 1] (4) can be equivalently written as

GLx′1
[(GLx1

)−1(u)] ≤ FLx′1 [(FLx1
)−1(u)], (5)

It can be shown that if FLx1
(x2) andGLx1

(x2) are continuous in x2 for all x1 then (X1, X2) ≤LTD
(Y1, Y2) if,and only if,for any x1 ≤ x′1

FLx1
(x2) ≥ GLx1

(x′2)⇒ FLx′1
(x2) ≥ GLx′1(x′2), for any x− 2, x− 2′ (6)

Note that for all x1 ≤ x′1 and x2 (6) can be equivalently written as

(GLx1
)−1[FLx1

(x2)] ≤ (GLx′1)−1[FLx′1(x2)]

that is, (GLx1
)−1[FLx1

(x2)] is increasing in x1 for all x2.
in the continuous case,it is immediate from (3) and (5) that F is LTD if,and only if,

F I ≤LTD F,

this is true also when F is not continuous.
Theorem 1 Let (X1, X2) and (Y1, Y2) be two random vectors with distribution functions
F,G ∈ F(F1, F2) such that FLx1

(x2) and GLx1
(x2) are continuous in x2 for all x1, then

(X1, X2) ≤LTD (Y1, Y2)⇒ (X1, X2) ≤PQD (Y1, Y2)

The LTD order is not symmetric in the sense that (X1, X2) ≤LTD (Y1, Y2) does not necessarily
imply that (Y1, Y2) ≤LTD (X1, X2). However, it satisfies the following closure under monotone
transformations property.
Theorem 2.Let (X1, X2) and (Y1, Y2) be two random vectors with distribution functions in
the same frechet class. if (X1, X2) ≤LTD (Y1, Y2) then (φ(X1), ψ(X2)) ≤LTD (φ(Y1), ψ(Y2))
for all increasing functions φ and ψ.
Example 1.Let φθ(t) = (1− tθ)

1
θ , t ∈ [0, 1], θ ∈ (0, 1). Then the function Cθ defined as

Cφθ(x, y) = φ−1
θ (φθ(x) + φθ(y)), x, y ∈ [0, 1].

is a bivariate distribution function with uniform [0, 1] marginals (it is a particular Archimedean
copula). if θ1 ≤ θ2 then Cφθ1 ≤LTD Cφθ2 . An order that is similar to the LTD order,but which
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is based on conditioning on right tails,rather than on left tails,is described next. for any ran-
dom vector (X1, X2) with distribution function F ∈ F(F1, F2) we define the conditional
distribution FRx by

FRx1
(x2) = P [X2 ≤ x2|X1 > x1]

for all x1 for which this conditional distribution is well defined.Barlow and Proschan [36]
defined F (or X1 and X2) to be right tail increasing [RTI]if

FRx1
(x2) ≥ FRx′1(x2),∀x1 ≤ x′1 and x2,

or, equivalently,if

(FRx1
)−1(u) ≤ (FRx′1)−1(u), for all x1 ≤ x′1 and u ∈ [0, 1].

when (FRx1
)−1(u) is continuous in u for all x1 then the above inequality can be written as

FRx′1
(FRx1

)−1(u) ≤ u for all x1 ≤ x′1 and u ∈ [0, 1].

this notion leads to the following definition. Let (X1, X2) be a bivariate random vector with
distribution function F ∈ F(F1, F2) and let (Y1, Y2) be another bivariate random vector with
distribution function G ∈ F(F1, F2) .Suppose that for any x1 ≤ x′1 we have

(FRx1
)−1(u) ≤ (FRx′1)−1(v)⇒ (GRx1

)−1(u) ≤ (GRx′1)−1(v) for all v, u ∈ [0, 1].

Then we say that (X1, X2) is smaller than (Y1, Y2) in the RTI order [denoted by (X1, X2) ≤RTI
(Y1, Y2) or F ≤RTI G In analogy to [9.C.5] we note that [9.C.11] can be written as

GRx′1
(GRx1

)−1(u) ≤ FRx′1(FRx1
)−1(u) for all x1 ≤ x′1 and u ∈ [0, 1]

It can be shown that if FRx1
(x2) and GRx1

(x2) are continuous in x2 for all x1 then (X1, X2) ≤RTI
(Y1, Y2) if,and only if,for any x1 ≤ x′1,

FRx1
(x2) ≥ GRx1

(x′2)⇒ FRx′1
(x2) ≥ GRx′1(x′2), [9.C.13]

for any x2 and x′2. Note that [9.C.13] can be written as

(GRx1
)−1[FRx1

(x2)] ≤ (GRx′1)−1[FRx′1(x2)] for all x1 ≤ x′1 and x2,

that is,(GRx1
)−1[FRx1

(x2)] is increasing in x1 for all x2. In the continuous case,it is immediate
from [9.C.10]and [9.C.12] that F is RTI if,and only if, F I ≤RTI F, where F I is independence
case,but this is true also when F is not continuous. The following result is an analog of
Theorem 9.C.I,its proof is similar to the proof of that theorem,and is therefore omitted.
Theorem 3 Let (X1, X2) and (Y1, Y2) be two random vectors with distribution functions
F,G ∈ F(F1, F2) such that FRx1

(x2) and GRx1
(x2) are continuous in x2 for all x1. Then

(X1, X2) ≤RTI (Y1, Y2)⇒ (X1, X2) ≤PQD (Y1, Y2).
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The RTI order is not symmetric in the sense that (X1, X2) ≤RTI (Y1, Y2) does not necessarily
imply that (X2, X1) ≤RTI (Y2, Y1) However,it satisfies the following closure under monotone
transformations property.
Theorem 4. Let (X1, X2) and (Y1, Y2) be two random vectors with distribution functions
in the same Frechet class.If (X1, X2) ≤RTI (Y1, Y2) then (φ(X1), ϕ(X2) ≤RTI (φ(Y1), ϕ(Y2)
for all increasing functions φ and ϕ.
The LTD and RTI orders are related to each other as follows. Theorem 5. Let (X1, X2)
and (Y1, Y2) be two random vectors in the same Frechet class.
(a) If (X1, X2) ≤LTD (Y1, Y2) then (φ1(X1), φ2(X2)) ≤RTI (φ1(Y1), φ2(Y2)) For any decreas-
ing functions φ1 and φ2 Conversely,if (φ1(X1), φ2(X2)) ≤RTI (φ1(Y1), φ2(Y2)) for some strictly
decreasing functions φ1 and φ2 then (X1, X2) ≤LTD (Y1, Y2).

(b) If (X1, X2) ≤RTI (Y1, Y2) then (φ1(X1), φ2(X2) ≤LTD (φ1(Y1), φ2(Y2) for any decreas-
ing functions φ1 and φ2 Conversely,if (φ1(X1), φ2(X2) ≤LTD (φ1(Y1), φ2(Y2) for some strictly
decreasing functions φ1 and φ2 then (X1, X2) ≤RTI (Y1, Y2).
The orders ≤slodr and ≤suodr imply the LTD and RTI orders under some regularity condi-
tions.This is shown in the next result.
Theorem 6. Let F and G be in the Frechet class F(F1, F2). Assume that,for every x,the
conditional distributions and FLx and FRx [9.C.8] are strictly increasing and continuous on
their supports.Then

F ≤slodr G⇒ F ≤LTD G and F ≤suodr G⇒ F ≤RTI G.

In light of Theorem 6 it is of interest to note that the [weak] orthant ratio orders ≤lodr and
≤uoir do not imply the orders ≤LTD and ≤RTI respectively.Counterexamples can be found
in the literature.
An order that is of the same type as the LTD and RTI orders is the one that we study next.
For any random vector (X1, X2) with distribution function F ∈ F(F1, F2) let Fx1 denote the
conditional distribution of X2 given that X1 = x1. Lehmann (1966) defined F [or X1 and X2]
to be positive regression dependent [PRD]if X2 is stochastically increasing in X1 ,that is,if
for all x1 ≤ x′1 and x2

Fx1(x2) ≥ Fx′1(x2),

or,equivalently,if for all x1 ≤ x′1 and u ∈ [0, 1]

F−1
x1

(u) ≥ F−1
x′1

(u).

Note that when F−1
x1

(u) is continuous in u for all x1 then the above inequality can be written
as

Fx′1(F−1
x1

(u)) ≤ u for all x1 ≤ x′1 and u ∈ [0, 1].
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This notion leads to the following definition.
Definition 1 Let (X1, X2) be a bivariate random vector with distribution function F ∈
F(F1, F2) and let (Y1, Y2) be a bivariate random vector with distribution function G ∈
F(F1, F2). Suppose that for any x1 ≤ x′1 we have

F−1
x1

(u) ≤ F−1
x′1

(v)⇒ G−1
x1

(u) ≤ G−1
x′1

(v) for all u, v ∈ [0, 1].

Then we say that (X1, X2) is smaller than (Y1, Y2) in the PRD order [denoted by] (X1, X2) ≤PRD
(Y1, Y2) or F ≤PRD G.

Note that the above statement can be written as

Gx′1(G−1
x1

(u)) ≤ Fx′1(F−1
x1

(u)) for all x1 ≤ x′1 and u ∈ [0, 1].

It can be shown that if Fx1(x2) andGx1(x2) are continuous in x2 for all x1 then (X1, X2) ≤PRD
(Y1, Y2) if,and only if,for any x1 ≤ x′1, and for any x2 and x′2

Fx1(x2) ≥ Gx1(x′2)⇒ Fx′1(x2) ≥ Gx′1(x′2).

Note that the above relation can be written as

G−1
x1

(Fx1(x2)) ≤ G−1
x′1

(Fx′1(x2)) for all x1 ≤ x′1 and x2,

that is, G−1
x1

(Fx1(x2)) is increasing in x1 for all x2.
In the continuous case,it is immediate from the above relations that F is PRD if,and only if,
F I ≤PRD F, where F I is defined as independence case, but this is true also when F is not
continuous.
The next result shows the relationship between the PRD,LTD,and RTI orders. we do not
give the proof of it here.
Theorem 7. Let (X1, X2) and (Y1, Y2) be two random vectors with absolutely continuous
distribution functions F,G ∈ F(F1, F2). Then

(X1, X2) ≤PRD (Y1, Y2)⇒ (X1, X2) ≤LTD (Y1, Y2)

and
(X1, X2) ≤PRD (Y1, Y2)⇒ (X1, X2) ≤RTI (Y1, Y2)

The PRD order is not symmetric in the sense that (X1, X2) ≤PRD (Y1, Y2) does not necessarily
imply that (X2, X1) ≤PRD (Y2, Y1). However,it satisfies the following closure under monotone
transformations property.
Theorem 8. Let (X1, X2) and (Y1, Y2) be two random vectors. If (X1, X2) ≤PRD (Y1, Y2)
then (φ(X1), ϕ(X2)) ≤PRD (φ(Y1), ϕ(Y2)) for all increasing functions φ and ϕ.
Example 2.Let U and V be any independent random variables,each having a continuous
distribution.Define

X = U, Yρ = ρU + (1− ρ2)1/2V, for all − 1 ≤ ρ ≤ 1.
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Then (X,Yρ1) ≤PRD (X,Yρ2) whenever ρ1 ≤ ρ2. A bivariate normal distribution is a partic-
ular case of this example when U and V are normally distributed.
Example 3.Let U and V be any independent random variables,each having a continuous
distribution.Define

X = U, Yα = αU + V,−∞ ≤ α ≤ ∞.

Then (X,Yα1) ≤PRD (X,Yα2) whenever α1 ≤ α2.

Example 4.Let U and V be any independent random variables,each having a continuous
distribution,such that U is distributed on (0, 1),while V is nonnegative.Define

X = U, Yα = (1 + αU)V, α ≥ −1

Then (X,Yα1) ≤PRD (X,Yα2) whenever α1 ≤ α2.

1.10 PLRD order (Kimeldorf and Sampson (1987))

Let the random variables X and Y have the joint distribution F . for any intervals I and J of
the real line, let us denote I ≤ J if x ∈ I and y ∈ J imply that x ≤ y. For any two intervals
I and J of the real line denote µ(I, J) = P [X ∈ I, Y ∈ J ]. Block, Savits and Shaked (1981)
essentially defined µ to be positive likelihood ration dependent if

µ(I1, J1)µ(I2, J2) ≥ µ(I1, J2)µ(I2, J1), whenever I1 ≤ I2, J1 ≤ J2.

In fact Block, Savits and Shaked (1981) called µ totally positive of order 2 (TP2) if the above
inequality holds. When F is a distribution and f is a density function it is equivalent to the
condition that f is TP2, that is for all x1 ≤ x2 and y1 ≤ y2,

f(x1, y1)f(x2, y2) ≥ f(x1, y2)f(x2, y1).

This is the same as the condition for the positive dependence notion that Lehmann (1966)
called PLRD.This notion leads naturally to the order that is described bellow. Let (X1, X2) be
a bivariate random vector with distribution function F , and let (Y1, Y2) be another bivariate
random vector with distribution function G. Suppose that for all I1 ≤ I2, J1 ≤ J2

F (I1, J1)F (I2, J2)G(I1, J2)G(I2, J1) ≤ F (I1, J2)F (I2, J1)G(I1, J1)G(I2, J2)

Then we say that (X1, X2) is smaller that (Y1, Y2) in the PLRD order denoted by

(X1, X2) ≤PLRD (Y1, Y2), or F ≤PLRD G.

Since only random vectors with the same univariate margins can be compared in the PLRD
order, we will implicity assume this is equivalent to

f(x1, y1)f(x2, y2)g(x1, y2)g(x2, y1) ≤ f(x1, y2)f(x2, y1)g(x1, y1)g(x2, y2)
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and this equivalent to
f(x1, y1)f(x2, y2)
f(x1, y2)f(x2, y1)

≤ g(x1, y1)g(x2, y2)
g(x1, y2)g(x2, y1)

for all x1 ≤ x2, y1 ≤ y2. If ∂2

∂x∂yf and ∂2

∂x∂yg then it is equivalent to

f24g − g24f ≥ 0,

where 4f = f ∂2

∂x∂yf −
∂f
∂x

∂f
∂y and 4g = g ∂2

∂x∂yg −
∂g
∂x

∂g
∂y

Remark 1 F is PLRD if and only if F I ≤PLRD F.

Theorem 1 Let (X1, X2) and (Y1, Y2) be two random vectors with distributions F,G.Then

F ≤PLRD G⇒ F ≤PQD G.

Problem(Shaked and Shantikumar, 2007). we do not know whether F ≤PLRD G⇒ F ≤PRD
G.

The folowing closure properties of the PLRD order are easy to prove.
Theorem 2 i) Let (X1, X2) and (Y1, Y2) be two random vectors such that (X1, X2) ≤PLRD
(Y1, Y2). Then (ϕ(X1), ψ(X2)) ≤PLRD (ϕ(Y1), ψ(Y2)) for all increasing functions ϕ and ψ.
ii)-Let {(X(n)

1 , X
(n)
2 )} and {(Y (n)

1 , Y
(n)
2 )} be two sequences of random vectors such that

(X(n)
1 , X

(n)
2 ) →st (X1, X2) and (Y (n)

1 , Y
(n)
2 ) →st (Y1, Y2) as n → ∞. If (X(n)

1 , X
(n)
2 ) ≤PLRD

(Y (n)
1 , Y

(n)
2 ) for all n ≥ 1 then (X1, X2) ≤PLRD (Y1, Y2).

Remark 2 For every distribution F we have

FL ≤PLRD F ≤PLRD FU .

Theorem 3Let (X1, X2) and (Y1, Y2) be two random vectors such that (X1, X2) ≤PLRD
(Y1, Y2) and (X1, X2) ≥PLRD (Y1, Y2). Then (X1, X2) =st (Y1, Y2)
Example 1Let F and G be two continuous univariate distribution functions and for −1 ≤
θ ≤ 1,

Fθ(x, y) = F (x)g(y)[1− θ(1− F̄ (x))(1− Ḡ(y))].

Then Fθ1 ≤PLRD Fθ2 whenever θ1 ≤ θ2.
Example 2 Let φ and ψ be two Laplace transforms of positive random variables and let
the random vectors (X1, X2) and (Y1, Y2) be two random vectors with df’s F and G as the
following

F (x, y) = ϕ(ϕ−1(x) + ϕ−1(y))

and
G(x, y) = ψ(ψ−1(x) + ψ−1(y))

Then (X1, X2) ≤PLRD (Y1, Y2) if ϕ−1ψ has a completely monotone derivative.
Example 3 Let (X1, X2) and (Y1, Y2) be bivariate normal random vectors with the same
marginals, and with correlation coefficients ρX and ρY , respectively. If ρX ≤ ρY then
(X1, X2) ≤PLRD (Y1, Y2).
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1.11 Association orders

Let (X1, X2) be a bivariate random vector with distribution function F ∈M(F1, F2), and let
(Y1, Y2) be another bivariate vector with distribution function G ∈M(F1, F2). Suppose that

(Y1, Y2) =st (K(X1, X2), L(X1, X2)), (4.5.1),

for some increasing functions K and L which satisfy

K(x1, y1) < K(x2, y2), L(x1, y1) > L(x2, y2)⇒ x1 < x2, y1 > y2. (4.5.2)

Then we say that (X1, X2) is smaller that (Y1, Y2) in the association order (denoted by
(X1, X2) ≤assoc (Y1, Y2) or F ≤assoc G). Since only random vectors with the same univariate
marginals are compared in the association order, we will implicitly assume this fact through-
out this section. The restriction (4.5.2) on the function K and L is for the purpose of making
the association order applicable in situations which are not symmetric in the X1 and X2

variables.[In case (4.5.2) is dropped, (X1, X2) ≥assoc (X2, X1) ≥assoc (X1, X2).] If K and L

are partially differentiable increasing functions, then (4.5.2) is equivalent to

∂

∂x
K(x, y)

∂

∂y
L(x, y) ≥ ∂

∂y
K(x, y)

∂

∂x
L(x, y) for allx, y.

From the fact that increasing functions of independent random variables are associated, it
follows that if F I ≤assoc F, then F is the distribution function of associated random variables.
Theorem 1 Let (X1, X2) and (Y1, Y2) be to random vectors. If (X1, X2) ≤assoc (Y1, Y2) ,
then (ϕ(X1), ψ(X2)) ≤assoc (ϕ(Y1), ψ(Y2)) for all strictly increasing function ϕ and ψ.
The relationship between the association and the PQD and PRD(SI) orders is described in
the next results.
Theorem 2 Let (X1, X2) and (Y1, Y2) be two random vectors with distribution functions
F,G ∈ F(F∞,F∈). Then

(X1, X2) ≤assoc (Y1, Y2)⇒ (X1, X2) ≤PQD (Y1, Y2)

Theorem 3 Let (X1, X2) and (Y1, Y2) be two random vectors with distribution functions
F,G ∈ F(F1, F2) such that FX2|X1

(x2|x1) and GY2|Y1
(x2|x1) are continuous in x2 for all x1.

Then
(X1, X2) ≤PRD (Y1, Y2)⇒ (X1, X2) ≤assoc (Y1, Y2)

Example 1 Let U and V be any independent random variables. Define

Xα = (1− α)U + αV, Yα = αU + (1− α)V, for α ∈ [0,
1
2
.

Then (Xα1 , Yα1) ≤assoc (Xα2 , Yα2) whenever α1 ≤ α2.

Example 2 Let (X1, X2) and (Y1, Y2) have bivariate normal distributions with correlation
coefficients ρ1 and ρ2 respectively.Then

(X1, X2) ≤assoc (Y1, Y2)⇔ −1 ≤ ρ1 ≤ ρ2 ≤ 1.
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1.11.1 CFG order

Caperaa, Fougeres and Genest (1997) introduced an order that is related to the association
order. In order to define it we need first to introduce some notation. Let (X1, X2) be a
random vector with continuous distribution F ∈ F(F1, F2). Define

VF = F (X1, X2), and KF (t) = P [VF ≤ t], t ∈ [0, 1].

For example:
i KFU (t) = t, t ∈ [0, 1] where FU = max{F1, F2}.
ii KFL(t) = 1, t ∈ [0, 1], where FL = min{F1 + F2 − 1, 0.}
iii If X1 and X2 are independent, with distribution function F I ∈ F(F∞,F∈), then KF I (t) =
t− t log(t), t ∈ [0, 1].
For Part iii for all t ∈ [0, 1] we have

KF I (t) = P [F1(X1)F2(X2) ≤ t]

= P [− log(F1(X1))− log(F2(X2)) ≥ − log(t)]

= P [Γ(2, 1) ≥ − log(t)] = t− t log(t).

Definition 2 Let (X1, X2) and (Y1, Y2) be two random vectors with distribution functions
F,G ∈ F(F1, F2). Suppose that

KF (t) ≥ KG(t), for all t ∈ [0, 1].

Then say that (X1, X2) is smaller than (Y1, Y2) in the Caperaa-Fougeres-Genest order and
denoted by (X1, X2) ≤CFG (Y1, Y2) or F ≤CFG G.
Theorem 4(CFG, 1997) For every continuous distribution function F ∈ F(F1, F2) we have

FL ≤CFG F ≤CFG FU .

and under some regularity conditions we have

(X1, X2) ≤assoc (Y1, Y2)⇒ (X1, X2) ≤CFG (Y1, Y2)

Corollary 1 i- (CFG, 1997) The order CFG dose not imply order PQD.
ii-(Nelsen, et.al.,2001) The order PQD dose not imply order CFG

1.11.2 Weak association order

Let X = (X1, X2, ..., Xn) and Y = (Y1, Y2, ..., Yn) be two random vectors that have the same
univariate marginals, and that satisfy

Cov(h1(Xi1 , ..., Xik), h2(Xj1 , ..., Xjn−k)) ≤ Cov(h1(Yi1 , ..., Yik), h2(Yj1 , ..., Yjn−k))
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for all choices of disjoint subsets {i1, i2, ..., ik} and {j1, j2, ..., jn−k} of {1, 2, 3, ..., n}, and for
all increasing functions h1 and h2 for which the above covariances are defined. Then X is
said to be smaller than Y in the weak association order and denoted by X ≤wassoc Y.
Some closure properties of the weak association order are described in the next Theorem.
Theorem 5 Let (X1, X2, ..., Xn) and (Y1, Y2, ..., Yn) be two n-dimensional random vectors.
i- If (X1, X2, ..., Xn) ≤wassoc (Y1, Y2, ..., Yn), then

(g1(X1), g2(X2), ..., gn(Xn)) ≤wassoc (g1(Y1), g2(Y2), ..., gn(Yn))

whenever gi, i = 1, 2, ..., n are all increasing real functions.
ii-If (X1, X2, ..., Xn) ≤wassoc (Y1, Y2, ..., Yn), the XI ≤wassoc YI for each I ⊆ {1, 2, 3, ..., n}.
That is, the weak association order is closed under marginalization.
An important useful property of the weak association order is the following.
Theorem 6 Let (X1, X2, ..., Xn) and (Y1, Y2, ..., Yn) be two n-dimensional random vectors
with the same univariate marginals. Then

X ≤wassoc Y ⇒ X ≤sm Y.

Remark Note that if X = (X1, X2, ..., Xn) is a vector of weakly associated random variables
and if Y = (Y1, Y2, ..., Yn) is a vector of independent random variables such that, Xi =st

Yi, i = 1, 2, ..., n, then X ≥wassoc Y. Similarly if X is a vector of NA random variables and
if Y is a vector of independent random variables such that Xi =st Yi, i = 1, 2, ..., n, then
X ≤wassoc Y.

1.12 PDD order

Let the random variables X1 and X2 have the symmetric joint distribution F . Shaked (1979)
defines F (or X1 and X2) to be positive definite dependent (PDD) if F is a positive definite
kernel on S × S where S is the support of X1 and therefore, by symmetry, S is also the
support of X2. Shaked (1979) has shown that X1 and X2 are PDD if and only if for every
real function φ

Cov(φ(X1), φ(X2)) ≥ 0,

provided the covriance is well defined. This notion naturally leads to the order that is defined
below.
Let (X1, X2) be a bivariate random vectors with distribution functions F ∈ F (∫)(F̂ ), where
F (∫)(F̂ ) is the class of all the bivariate symmetric distributions with univariate marginals F̂ .
Let (Y1, Y2) be another bivariate random vectors with distribution functions G ∈ F (∫)(F̂ ).
Suppose that for every real function φ,

Cov(φ(X1), φ(X2)) ≤ Cov(φ(Y1), φ(Y2))
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provided that covariances are well defined. Then we say that (X1, X2) is smaller than (Y1, Y2)
in the PDD order (denoted by (X1, X2) ≤PDD (Y1, Y2) or F ≤PDD G.) Since only symmetric
random vectors with the same univariate marginals are compared in the PDD order, we will
implicitly assume this fact throughout this section.
Since Eφ(X1) = Eφ(X2) = Eφ(Y1) = Eφ(Y2) for every real function φ, it follows that
(X1, X2) ≤PDD (Y1, Y2) if and only if for every real function φ

Eφ(X1)φ(X2) ≤ Eφ(Y1)φ(Y2),

provided the expectations exist. Thus if (X1, X2) ≤PDD (Y1, Y2), then

P [X1 ∈ A,X2 ∈ A] ≤ P [Y1 ∈ A, Y2 ∈ A]

for all Borel-measurable sets A ∈ R.
Another characterization of the PDD order is given in the next theorem.
Theorem 1 Let F and G be two symmetric bivariate distributions in F (∫)(F̂ ). Then F ≤PDD
G if and only if G(x, y)− F (x, y) is a positive definite kernel.
Corollary It is easily seen that F is PDD if and only if F I ≤PDD F.

A powerful closure property of the PDD order is described in the next Theorem.
Theorem 2 Suppose that the random vectors (X1, X2), (Y1, Y2), (U1, U2) and (V1, V2) satisfy

(X1, X2) ≤PDD (Y1, Y2) and (U1, U2) ≤PDD (V1, V2),

and suppose that (X1, X2) and (U1, U2) are independent, and also that (Y1, Y2) and (V1, V2)
are independent. Then for every increasing function φ

(φ(X1, U1), φ(X2, U2)) ≤PDD (φ(Y1, V1), φ(Y2, V2)).

Corollary The PDD order closed under convolutions, that is

(X1 + U1, X2 + U2) ≤PDD (Y1 + V1, Y2 + V2).

Moreover, we can check that the following closure properties.
Theorem 2i Let {(X(j)

1 , X
(j)
2 ), j ≥ 1} and {(Y (j)

1 , Y
(j)
2 ), j ≥ 1} be two sequences of random

vectors such that (X(j)
1 , X

(j)
2 →st (X1, X2) and (Y (j)

1 , Y
(j)
2 ) →st (Y1, Y2) as j → ∞. If for all

j ≥ 1, (X(j)
1 , X

(j)
2 ) ≤PDD (Y (j)

1 , Y
(j)
2 ), then

(X1, X2 ≤PDD (Y1, Y2)

ii Let (X1, X2), (Y1, Y2), and Θ be random vectors such that for all θ in the support of Θ,

(X1, X2)|Θ = θ ≤PDD (Y1, Y2)|Θ = θ

then (X1, X2 ≤PDD (Y1, Y2). That is, the order of PDD is closed under mixtures.
Example 1 Let (X1, X2) and (Y1, Y2) have exchangeable bivariate normal distributions with



34

common marginals and correlation coefficients ρ1 and ρ2 respectively. If 0 ≤ ρ1 ≤ ρ2 ≤ 1
then

(X1, X2 ≤PDD (Y1, Y2).

Remark If (X1, X2) and (Y1, Y2) have distributions F and G which are not symmetric,
but still have the same marginals (that X1, X2, Y1 and Y2 are all identically distributed ),
then the PDD order can still be defined on the symmetrizations F̃ (x, y) = F9x,y)+F (y,x)

2 and
G̃(x, y) = G(x,y)+G(y,x)

2 of F and G.
An n-variate extension of the PDD order for the case when n ≥ 2 is suggested by (1).
Explicity, let X = (X1, X2, ..., Xn) and Y = (Y1, Y2, ..., Yn) have distribution functions with
common marginals. Then we can say that X less positively dependent than Y if for every
nonnegative real function φ,

E
n∏
i=1

φ(Xi) ≤ E
n∏
i=1

Yi. (2)

Note that for this definition it is not required that X and Y have exchangeable distribution
functions, it is only required that X and Y have the same common marginals.
One reason for the usefulness of inequality (2) is that it implies that

P [X1 ∈ A,X2 ∈ A, ...,Xn ∈ A] ≤ P [Y1 ∈ A, Y2 ∈ A, ..., Yn ∈ A]


