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We establish several operator extensions of the Chebyshev inequality. The main 
version deals with the Hadamard product of Hilbert space operators. More precisely, 
we prove that if A is a C∗-algebra, T is a compact Hausdorff space equipped with a 
Radon measure μ, α : T → [0, +∞) is a measurable function and (At)t∈T , (Bt)t∈T

are suitable continuous fields of operators in A having the synchronous Hadamard 
property, then

∫
T

α(s)dμ(s)
∫
T

α(t)(At ◦Bt)dμ(t) ≥
(∫

T

α(t)Atdμ(t)
)
◦
(∫

T

α(s)Bsdμ(s)
)
.

We apply states on C∗-algebras to obtain some versions related to synchronous 
functions. We also present some Chebyshev type inequalities involving the singular 
values of positive n × n matrices. Several applications are given as well.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Let B(H ) denote the C∗-algebra of all bounded linear operators on a complex Hilbert space H together 
with the operator norm ‖ · ‖. Let I stand for the identity operator. In the case when dim H = n, we identify 
B(H ) with the matrix algebra Mn of all n × n matrices with entries in the complex field C. An operator 
A ∈ B(H ) is called positive (positive semidefinite for a matrix A) if 〈Ax, x〉 ≥ 0 for all x ∈ H and then 
we write A ≥ 0. By a strictly positive operator (positive definite for a matrix) A, denoted by A > 0, we 
mean a positive invertible operator. For self-adjoint operators A, B ∈ B(H ), we say B ≥ A (B > A, resp.) 
if B −A ≥ 0 (B −A > 0, resp.). For A ∈ Mn, the singular values of A, denoted by s1(A), s2(A), · · · , sn(A), 
are the eigenvalues of the positive matrix |A| = (A∗A) 1

2 enumerated as s1(A) ≥ · · · ≥ sn(A) with their 
multiplicities counted.
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The Gelfand map f(t) �→ f(A) is an isometric ∗-isomorphism between the C∗-algebra C(sp(A)) of 
continuous functions on the spectrum sp(A) of a self-adjoint operator A and the C∗-algebra generated by I
and A. If f, g ∈ C(sp(A)), then f(t) ≥ g(t) (t ∈ sp(A)) implies that f(A) ≥ g(A). Let f be a continuous real 
valued function on an interval J . The function f is called operator monotone (operator decreasing, resp.) 
if A ≤ B implies f(A) ≤ f(B) (f(B) ≤ f(A), resp.) for all A, B ∈ BJ

h(H ), where BJ
h(H ) is the set of all 

self-adjoint operators in B(H ), whose spectra are contained in J ; cf. [10].
Given an orthonormal basis {ej} of a Hilbert space H , the Hadamard product A ◦ B of two operators 

A, B ∈ B(H ) is defined by 〈A ◦ Bei, ej〉 = 〈Aei, ej〉〈Bei, ej〉. Clearly A ◦ B = B ◦ A. It is known that the 
Hadamard product can be presented by filtering the tensor product A ⊗B through a positive linear map. 
In fact,

A ◦B = U∗(A⊗B)U, (1.1)

where U : H → H ⊗ H is the isometry defined by Uej = ej ⊗ ej ; see [6]. It follows from (1.1) that if 
A ≥ 0 and B ≥ 0, then

A ◦B ≥ 0. (1.2)

For matrices, one easily observes [14] that the Hadamard product of A = (aij) and B = (bij) is A ◦ B =
(aijbij), a principal submatrix of the tensor product A ⊗ B = (aijB)1≤i,j≤n. From now on when we deal 
with the Hadamard product of operators, we explicitly assume that an orthonormal basis is fixed.

The axiomatic theory of operator means has been developed by Kubo and Ando [8]. An operator mean 
is a binary operation σ defined on the set of strictly positive operators, if the following conditions hold:

(i) A ≤ C, B ≤ D imply A σ B ≤ C σ D;
(ii) An ↓ A, Bn ↓ B imply An σ Bn ↓ A σ B, where An ↓ A means that A1 ≥ A2 ≥ · · · and An → A as 

n → ∞ in the strong operator topology;
(iii) T ∗(A σ B)T ≤ (T ∗AT ) σ (T ∗BT ) (T ∈ B(H ));
(iv) I σ I = I.

There exists an affine order isomorphism between the class of operator means and the class of positive 
operator monotone functions f defined on (0, ∞) with f(1) = 1 via f(t)I = I σ (tI) (t > 0). In addition, 
A σ B = A

1
2 f(A−1

2 BA
−1
2 )A 1

2 for all strictly positive operators A, B. The operator monotone function f is 
called the representing function of σ. Using a limit argument by Aε = A + εI, one can extend the definition 
of A σ B to positive operators. The operator means corresponding to the operator monotone functions 
f�μ(t) = tμ and f!(t) = 2t

1+t on [0, ∞) are the operator weighted geometric mean A �μB = A
1
2 (A−1

2 BA
−1
2 )μA 1

2

and the operator harmonic mean A ! B = 2(A−1 + B−1)−1, respectively.
Let us consider the real sequences a = (a1, · · · , an), b = (b1, · · · , bn) and a non-negative sequence w =

(w1, · · · , wn). Then the weighed Chebyshev function is defined by

T (w; a, b) :=
n∑

j=1
wj

n∑
j=1

wjajbj −
n∑

j=1
wjaj

n∑
j=1

wjbj .

In 1882, Chebyshev [3] proved that if a and b are monotone in the same sense, then T (w; a, b) ≥ 0. Some inte-
gral generalizations of this inequality were given by Barza, Persson and Soria [1]. The Chebyshev inequality 
is a complement of the Grüss inequality; see [11] and the references therein.

A related notion is synchronicity. Two continuous functions f, g : J → R are called synchronous on an 
interval J , if
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(
f(t) − f(s)

)(
g(t) − g(s)

)
≥ 0

for all s, t ∈ J . It is obvious that, if f , g are monotonic and have the same monotonicity, then they are 
synchronic. Dragomir [4] generalized the Chebyshev inequality for convex functions on a real normed space 
and applied his results to show that if p1, · · · , pn is a sequence of nonnegative numbers with 

∑n
j=1 pj = 1

and two sequences (v1, · · · , vn) and (u1, · · · , un) in a real inner product space are synchronous, namely, 
〈vk − vj , uk − uj〉 ≥ 0 for all j, k = 1, · · · , n, then 

∑n
k=1 pk〈vk, uk〉 ≥ 〈

∑n
k=1 pkvk, 

∑n
k=1 pkuk〉. He also 

presented some Chebyshev inequalities for self-adjoint operators acting on a Hilbert space in [5].
In this paper we provide several operator extensions of the Chebyshev inequality. In the second section, 

we present our main results dealing with the Hadamard product of Hilbert space operators and weighted 
operator geometric means. The key notion is the so-called synchronous Hadamard property. More Chebyshev 
type inequalities regarding operator means are presented in Section 3. In Section 4, we apply states on 
C∗-algebras to obtain some versions related to synchronous functions. We present some Chebyshev type 
inequalities involving the singular values of positive n × n matrices in the last section.

2. Chebyshev inequality dealing with Hadamard product

This section is devoted to presentation of some operator Chebyshev inequalities dealing with the 
Hadamard product. The key notion is the so-called synchronous Hadamard property.

Let A be a C∗-algebra of operators acting on a Hilbert space and let T be a compact Hausdorff space 
equipped with a Radon measure μ. A field (At)t∈T of operators in A is called a continuous field of operators 
if the function t �→ At is norm continuous on T and the function t �→ ‖At‖ is integrable. Then one can form 
the Bochner integral 

∫
T
Atdμ(t), which is the unique element in A such that

ϕ

(∫
T

Atdμ(t)
)

=
∫
T

ϕ(At)dμ(t)

for every linear functional ϕ in the norm dual A ∗ of A . By [13, p. 78], since t �→ At is a continuous function 
from T to A , for every operator At ∈ A we can consider an element of the form

Iλ(At) =
n∑

k=1

At(sk)μ(Ek),

where the Ek’s form a partition of T into disjoint Borel subsets, and

sk ∈ Ek ⊆
{
t ∈ T :

∥∥At −At(sk)
∥∥ ≤ ε

}
(1 ≤ k ≤ n),

with λ = {E1, · · · , En, ε}. Then (Iλ(At))λ∈Λ is a uniformly convergent net to 
∫
T
Atdμ(t). Let C(T, A ) denote 

the set of continuous functions on T with values in A . It is easy to see that the set C(T, A ) is a C∗-algebra 
under the pointwise operations and the norm ‖(At)‖ = supt∈T ‖At‖; cf. [7]. Now since tensor product of 
two operators is norm continuous, for any operator B ∈ A we have

∫
T

(At ⊗B)dμ(t) =
(∫

T

Atdμ(t)
)
⊗B.

Also, for any operator C ∈ A

∫ (
C∗AtC

)
dμ(t) = C∗

(∫
Atdμ(t)

)
C.
T T
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Therefore
∫
T

(At ◦B)dμ(t) =
∫
T

V ∗(At ⊗B)V dμ(t) = V ∗
∫
T

(At ⊗B)dμ(t)V

= V ∗
(∫

T

Atdμ(t) ⊗B

)
V =

∫
T

Atdμ(t) ◦B (At, B ∈ A ). (2.1)

Let us give our key definition.

Definition 2.1. Two fields (At)t∈T and (Bt)t∈T are said to have the synchronous Hadamard property if

(At −As) ◦ (Bt −Bs) ≥ 0

for all s, t ∈ T .

The first result reads as follows.

Theorem 2.2. Let A be a C∗-algebra, T be a compact Hausdorff space equipped with a Radon measure μ, let 
(At)t∈T and (Bt)t∈T be fields in C(T, A ) with the synchronous Hadamard property and let α : T → [0, +∞)
be a measurable function. Then

∫
T

α(s)dμ(s)
∫
T

α(t)(At ◦Bt)dμ(t) ≥
(∫

T

α(t)Atdμ(t)
)
◦
(∫

T

α(s)Bsdμ(s)
)
. (2.2)

Proof. We have

∫
T

α(s)dμ(s)
∫
T

α(t)(At ◦Bt)dμ(t) −
(∫

T

α(t)Atdμ(t)
)
◦
(∫

T

α(s)Bsdμ(s)
)

=
∫
T

∫
T

α(s)α(t)(At ◦Bt)dμ(t)dμ(s) −
∫
T

(∫
T

α(t)Atdμ(t)
)
◦ α(s)Bsdμ(s)

(
by (2.1)

)

=
∫
T

∫
T

α(s)α(t)(At ◦Bt)dμ(t)dμ(s) −
∫
T

∫
T

α(t)α(s)(At ◦Bs)dμ(t)dμ(s)
(
by (2.1)

)

=
∫
T

∫
T

(
α(s)α(t)(At ◦Bt) − α(t)α(s)(At ◦Bs)

)
dμ(t)dμ(s)

= 1
2

∫
T

∫
T

[
α(s)α(t)(At ◦Bt) − α(t)α(s)(At ◦Bs) − α(s)α(t)(As ◦Bt) + α(t)α(s)(As ◦Bs)

]
dμ(t)dμ(s)

= 1
2

∫
T

∫
T

[
α(s)α(t)(At −As) ◦ (Bt −Bs)

]
dμ(t)dμ(s)

≥ 0
(
since the fields (At) and (Bt) have the synchronous Hadamard property

)
. �

In the discrete case T = {1, · · · , n}, set α(i) = ωi ≥ 0 (1 ≤ i ≤ n). Then Theorem 2.2 forces the following 
result.
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Corollary 2.3. (See [9, Theorem 2.1].) Let A1 ≥ · · · ≥ An, B1 ≥ · · · ≥ Bn be self-adjoint operators and 
ω1, · · · , ωn be positive numbers. Then

n∑
j=1

ωj

n∑
j=1

ωj(Aj ◦Bj) ≥
(

n∑
j=1

ωjAj

)
◦
(

n∑
j=1

ωjBj

)
.

3. More Chebyshev type inequalities regarding operator means

Recall that a continuous function f : J → R is super-multiplicative if f(xy) ≥ f(x)f(y), for all x, y ∈ J . 
In the next result we need the notion of increasing field. Let T be a compact Hausdorff space as well as 
a totally ordered set under an order �. We say (At) is an increasing (decreasing, resp.) field, whenever 
t � s implies that At ≤ As (At ≥ As, resp.). In this section we frequently employ some known relationships 
between the Hadamard product and operator means; cf. [12, Chapter 6].

Theorem 3.1. Let A be a C∗-algebra, T be a compact Hausdorff space equipped with a Radon measure μ being 
also a totally ordered set, let (At)t∈T , (Bt)t∈T , (Ct)t∈T , (Dt)t∈T be positive increasing fields in C(T, A ), 
let α : T → [0, +∞) be a measurable function and σ be an operator mean with the super-multiplicative 
representing function. Then

∫
T

α(s)dμ(s)
∫
T

α(t)
(
(At ◦Bt) σ (Ct ◦Dt)

)
dμ(t) ≥

(∫
T

α(t)(At σ Ct)dμ(t)
)
◦
(∫

T

α(s)(Bs σ Ds)dμ(s)
)
.

Proof. Let s, t ∈ T . Without loss of generality assume that s � t. Then by the property (i) of the operator 
mean we have 0 ≤ (At σ Bt) − (As σ Bs). Then

∫
T

α(s)dμ(s)
∫
T

(
α(t)(At ◦Bt) σ (Ct ◦Dt)

)
dμ(t) −

(∫
T

α(t)(At σ Ct)dμ(t)
)
◦
(∫

T

α(s)(Bs σ Ds)dμ(s)
)

=
∫
T

∫
T

α(s)α(t)
(
(At ◦Bt) σ (Ct ◦Dt)

)
dμ(t)dμ(s)

−
∫
T

∫
T

α(t)α(s)
(
(At σ Ct) ◦ (Bs σ Ds)

)
dμ(t)dμ(s)

(
by (2.1)

)

≥
∫
T

∫
T

α(s)α(t)
(
(At σ Ct) ◦ (Bt σ Dt)

)
dμ(t)dμ(s)

−
∫
T

∫
T

α(t)α(s)
(
(At σ Ct) ◦ (Bs σ Ds)

)
dμ(t)dμ(s)

(
by [12, Theorem 6.7]

)

= 1
2

∫
T

∫
T

α(s)α(t)
[(

(At σ Ct) ◦ (Bt σ Dt)
)
−

(
(At σ Ct) ◦ (Bs σ Ds)

)

+
(
(As σ Cs) ◦ (Bs σ Ds)

)
−
(
(As σ Cs) ◦ (Bt σ Dt)

)]
dμ(t)dμ(s)

= 1
2

∫
T

∫
T

α(s)α(t)
[
(At σ Ct) − (As σ Cs)

]
◦
[
(Bt σ Dt) − (Bs σ Ds)

]
dμ(t)dμ(s)

≥ 0
(
by (1.2)

)
. �

A discrete version of the theorem above is the following result obtained by taking T = {1, · · · , n}.
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Corollary 3.2. Let Ai+1 ≥ Ai ≥ 0, Bi+1 ≥ Bi ≥ 0, Ci+1 ≥ Ci ≥ 0, Di+1 ≥ Di ≥ 0 (1 ≤ i ≤ n −1), ω1, · · · , ωn

be positive numbers and σ be an operator mean with the super-multiplicative representing function. Then

n∑
j=1

ωj

n∑
j=1

ωj

[
(Aj ◦Bj) σ (Cj ◦Dj)

]
≥

(
n∑

j=1
ωj(Aj σ Cj)

)
◦
(

n∑
j=1

ωj(Bj σ Dj)
)
.

Theorem 3.3. Let A be a C∗-algebra, T be a compact Hausdorff space equipped with a Radon measure μ being 
also a totally ordered set, let (At)t∈T , (Bt)t∈T be positive increasing fields in C(T, A ) and let α : T → [0, +∞)
be a measurable function. Then

∫
T

α(s)dμ(s)
∫
T

α(t)(At ◦Bt)dμ(t) ≥
(∫

T

α(t)(At �μ Bt)dμ(t)
)
◦
(∫

T

α(s)(As �1−μ Bs)dμ(s)
)

for all μ ∈ [0, 1].

Proof. Let s, t ∈ T . Without loss of generality assume that s � t. Then by the property (i) of the operator 
mean, we have 0 ≤ (At �μ Bt) − (As �μ Bs) and 0 ≤ (At �1−μ Bt) − (As �1−μ Bs). Then

∫
T

α(s)dμ(s)
∫
T

α(t)(At ◦Bt)dμ(t) −
(∫

T

α(t)(At �μ Bt)dμ(t)
)
◦
(∫

T

α(s)(As �1−μ Bs)dμ(s)
)

=
∫
T

∫
T

α(s)α(t)(At ◦Bt)dμ(t)dμ(s) −
∫
T

∫
T

α(t)α(s)
(
(At �μ Bt) ◦ (As �1−μ Bs)

)
dμ(t)dμ(s)

(
by (2.1)

)

≥
∫
T

∫
T

α(s)α(t)
(
(At �μ Bt) ◦ (At �1−μ Bt)

)
dμ(t)dμ(s)

−
∫
T

∫
T

α(t)α(s)
(
(At �μ Bt) ◦ (As �1−μ Bs)

)
dμ(t)dμ(s)

(
by [12, Theorem 6.6]

)

= 1
2

∫
T

∫
T

[
α(s)α(t)

(
(At �μ Bt) ◦ (At �1−μ Bt)

)
− α(t)α(s)

(
(At �μ Bt) ◦ (As �1−μ Bs)

)

+ α(t)α(s)
(
(As �μ Bs) ◦ (As �1−μ Bs)

)
− α(s)α(t)

(
(As �μ Bs) ◦ (At �1−μ Bt)

)]
dμ(t)dμ(s)

= 1
2

∫
T

∫
T

α(s)α(t)
[
(At �μ Bt) − (As �μ Bs)

]
◦
[
(At �1−μ Bt) − (As �1−μ Bs)

]
dμ(t)dμ(s)

≥ 0
(
by (1.2)

)
. �

In the discrete case T = {1, · · · , n}, setting α(i) = ωi ≥ 0 (1 ≤ i ≤ n) in Theorem 3.3 we reach the next 
assertion.

Corollary 3.4. Let An ≥ · · · ≥ A1 ≥ 0, Bn ≥ · · · ≥ B1 ≥ 0 and ω1, · · · , ωn be positive numbers. Then

n∑
j=1

ωj

n∑
j=1

ωj(Aj ◦Bj) ≥
(

n∑
j=1

ωj(Aj �μ Bj)
)

◦
(

n∑
j=1

ωj(Aj �1−μ Bj)
)

for all μ ∈ [0, 1].
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Proposition 3.5. Let f : [0, ∞) → R be a super-multiplicative and operator monotone function, A1 ≥ · · · ≥
An ≥ 0, B1 ≥ · · · ≥ Bn ≥ 0 and ω1, · · · , ωn be positive numbers. Then

n∑
j=1

ωj

n∑
j=1

ωjf(Aj ◦Bj) ≥
(

n∑
j=1

ωjf(Aj)
)

◦
(

n∑
j=1

ωjf(Bj)
)
.

Proof.

n∑
j=1

ωj

n∑
j=1

ωjf(Aj ◦Bj) −
(

n∑
j=1

ωjf(Aj)
)

◦
(

n∑
j=1

ωjf(Bj)
)

≥
n∑

j=1
ωj

n∑
j=1

ωj

(
f(Aj) ◦ f(Bj)

)
−

(
n∑

j=1
ωjf(Aj)

)
◦
(

n∑
j=1

ωjf(Bj)
) (

by [12, Theorem 6.3]
)

=
n∑

i,j=1

[
ωiωj

(
f(Aj) ◦ f(Bj)

)
− ωiωj

(
f(Ai) ◦ f(Bj)

)]

= 1
2

n∑
i,j=1

ωiωj

[(
f(Aj) ◦ f(Bj)

)
−

(
f(Ai) ◦ f(Bj)

)
+

(
f(Ai) ◦ f(Bi)

)
−
(
f(Aj) ◦ f(Bi)

)]

= 1
2

n∑
i,j=1

ωiωj

[(
f(Aj) − f(Ai)

)
◦
(
f(Bj) − f(Bi)

)]
≥ 0 (by the operator monotonicity of f). �

Example 3.6. Let A1 ≥ · · · ≥ An ≥ 0, B1 ≥ · · · ≥ Bn ≥ 0 and ω1, · · · , ωn be positive numbers. Then

n∑
j=1

ωj

n∑
j=1

ωj(Aj ◦Bj)p ≥
(

n∑
j=1

ωjA
p
j

)
◦
(

n∑
j=1

ωjB
p
j

)

for each p ∈ [0, 1].

In the finite dimensional case we get the following.

Proposition 3.7. Let A1 ≥ · · · ≥ Ak ≥ 0, B1 ≥ · · · ≥ Bk ≥ 0 be n × n matrices and ω1, · · · , ωk be positive 
numbers. Then(

k∑
j=1

ωj

)n

det
(

k∑
j=1

ωj(Aj ◦Bj)
)

≥
(

k∑
j=1

ωn
j det(Aj)

)(
k∑

j=1
ωn
j det(Bj)

)
.

Proof.(
k∑

j=1
ωj

)n

det
(

k∑
j=1

ωj(Aj ◦Bj)
)

= det
(

k∑
j=1

ωj

k∑
j=1

ωj(Aj ◦Bj)
)

≥ det
((

k∑
j=1

ωjAj

)
◦
(

k∑
j=1

ωjBj

)) (
by Corollary 2.3

)

≥ det
(

k∑
j=1

ωjAj

)
det

(
k∑

j=1
ωjBj

) (
by [16, Theorem 7.27]

)

≥
(

k∑
ωn
j det(Aj)

)(
k∑

ωn
j det(Bj)

) (
by [16, Theorem 7.7]

)
. �
j=1 j=1
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Proposition 3.8. Let A1 ≥ · · · ≥ Ak > 0, Bk ≥ · · · ≥ B1 ≥ 0 be n × n matrices and ω1, · · · , ωk be positive 
numbers. Then (

k∑
j=1

ωj

)(
k∑

j=1
ωj tr

(
A−1

j Bj

))
≥

(
k∑

j=1
ωj tr(Aj)−1

)(
k∑

j=1
ωj tr(Bj)

)
.

Proof.(
k∑

j=1
ωj

)(
k∑

j=1
ωj tr

(
A−1

j Bj

))
≥

(
k∑

j=1
ωj

)(
k∑

j=1
ωj tr(Aj)−1 tr(Bj)

) (
by [16, p. 224]

)

≥
(

k∑
j=1

ωj tr(Aj)−1

)(
k∑

j=1
ωj tr(Bj)

)
(by the Chebyshev inequality).

�
4. Chebyshev inequality for synchronous functions involving states

In this section, we apply the continuous functional calculus to synchronous functions and present some 
Chebyshev type inequalities involving states on C∗-algebras. Our main result of this section reads as follows.

Theorem 4.1. Let A be a unital C∗-algebra, τ1, τ2 be states on A and f, g : J → R be synchronous functions. 
Then

τ1
(
f(A)g(A)

)
+ τ2

(
f(B)g(B)

)
≥ τ1

(
f(A)

)
τ2
(
g(B)

)
+ τ2

(
f(B)

)
τ1
(
g(A)

)
(4.1)

for all A, B ∈ BJ
h(H ).

Proof. For the synchronous functions f , g and for each s, t ∈ J

f(t)g(t) + f(s)g(s) − f(t)g(s) − f(s)g(t) ≥ 0.

Fix s ∈ J . By the functional calculus for the operator A we have

f(A)g(A) + f(s)g(s) − f(A)g(s) − f(s)g(A) ≥ 0,

whence

τ1
(
f(A)g(A)

)
+ f(s)g(s) − τ1

(
f(A)

)
g(s) − f(s)τ1

(
g(A)

)
≥ 0.

Now for the operator B

τ1
(
f(A)g(A)

)
+ f(B)g(B) − τ1

(
f(A)

)
g(B) − f(B)τ1

(
g(A)

)
≥ 0.

For the state τ2 we have

τ1
(
f(A)g(A)

)
+ τ2

(
f(B)g(B)

)
≥ τ1

(
f(A)

)
τ2
(
g(B)

)
+ τ2

(
f(B)

)
τ1
(
g(A)

)
. �

Example 4.2.

(i) Let τ be a state on B(H ) and p, q > 0. Since f(t) = tp and g(t) = tq are synchronous

τ
(
Ap+q

)
+ τ

(
Bp+q

)
≥ τ

(
Ap

)
τ
(
Bq

)
+ τ

(
Bp

)
τ
(
Aq

)
(A,B ≥ 0).
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In a similar fashion, for self-adjoint operators A, B ∈ B(H ),

τ
(
eαA+βA

)
+ τ

(
eαB+βB

)
≥ τ

(
eαA

)
τ
(
eβB

)
+ τ

(
eβB

)
τ
(
eαA

)
(α, β ≥ 0).

(ii) Let A, B be positive matrices, C be a positive definite matrix with tr(C) = α and p, q ≥ 0. Utilizing 
τ(A) = 1

α tr(A ◦ C) in (i) we have

tr
(
Ap+q ◦ C + Bp+q ◦ C

)
≥ 1

α

(
tr
(
Ap ◦ C

)
tr
(
Bq ◦ C

)
+ tr

(
Aq ◦ C

)
tr
(
Bp ◦ C

))
.

(iii) Let f, g : J → R be synchronous functions. Then for n × n matrices A, B with spectra in J

tr
(
f(A)g(A) + f(B)g(B)

)
≥ 1

n

(
tr
(
f(A)

)
tr
(
g(B)

)
+ tr

(
g(A)

)
tr
(
f(B)

))
.

Using Theorem 4.1 we obtain the next two corollaries.

Corollary 4.3. Let A be a unital C∗-algebra, τ be a state on A and f, g : J → R be synchronous functions. 
Then

τ
(
f(A)g(A)

)
≥ τ

(
f(A)

)
τ
(
g(A)

)
for all operator A ∈ BJ

h(H ).

Proof. Put B = A in inequality (4.1) to get the result. �
Corollary 4.4. (See [5, Theorem 1].) Let f, g : J → R be synchronous functions. Then

〈
f(A)g(A)x, x

〉
+

〈
f(B)f(B)y, y

〉
≥

〈
f(A)x, x

〉〈
g(B)y, y

〉
+

〈
f(B)y, y

〉〈
g(A)x, x

〉
for all operators A, B ∈ BJ

h(H ) and all unit vectors x, y ∈ H .

Proof. Apply Theorem 4.1 to the states τ1, τ2 defined by τ1(A) = 〈Ax, x〉, τ2(A) = 〈Ay, y〉 (A ∈ B(H )) for 
fixed unit vectors x, y ∈ H . �

Using the same strategy as in the proof of [15, Lemma 2.1] we get the next theorem.

Theorem 4.5. Let τ be a state on a unital C∗-algebra A and f : J → [0, +∞), g : J → R be continuous 
functions such that f is decreasing and g is operator decreasing on a compact interval J . Then

τ
(
f(A)g(A)

)
≥ τ

(
f(B)

)
τ
(
g(A)

)
for all A, B ∈ BJ

h(H ) with A ≤ B.

Proof. Put α = infx∈J g(x) and β = supx∈J g(x). Then α ≤ g(x) ≤ β (x ∈ J). So αI ≥ g(B) ≥ βI, whence 
α ≥ τ(g(B)) ≥ β. Therefore, there exists a number t0 ∈ J such that τ(g(B)) = g(t0).

Then if x ∈ J , x ≥ t0, then g(x) ≤ τ(g(B)), f(x) ≤ f(t0), and if x ∈ J , x ≤ t0, then g(x) ≥ τ(g(B)), 
f(x) ≥ f(t0). Hence

(
f(x) − f(t0)

)(
g(x) − τ

(
g(B)

))
≥ 0
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for all x ∈ J . Thus

f(x)
(
g(x) − τ

(
g(B)

))
≥ f(t0)

(
g(x) − τ

(
g(B)

))
for all x ∈ J . Hence

f(A)
(
g(A) − τ

(
g(B)

))
≥ f(t0)

(
g(A) − τ

(
g(B)

))
.

Now

τ
(
f(A)g(A)

)
− τ

(
g(B)

)
τ
(
f(A)

)
= τ

(
f(A)

(
g(A) − τ

(
g(B)

)))
≥ τ

(
f(t0)

(
g(A) − τ

(
g(B)

)))
= f(t0)

(
τ
(
g(A)

)
− τ

(
g(B)

))
≥ 0 (since g is operator decreasing). �

Remark 4.6. The assumption A ≤ B is necessary in Theorem 4.5, since if τ(A) = 1
2 tr(A) on M2, f(t) =

g(t) = 1
t , A =

( 2 0
0 3

)
and B =

( 1 0
0 1

)
, then we observe that A � B and τ(A−2) = 13

72 < 5
12 = τ(A−1)τ(B−1).

Corollary 4.7. Suppose that f : J → [0, +∞) and g : J → R are continuous functions such that f is 
decreasing and g is operator decreasing. Then

〈
f(A)g(A)x, x

〉
−
〈
f(B)x, x

〉〈
g(A)x, x

〉
≥ 0

for all operators A, B ∈ BJ
h(H ) such that A ≤ B and for all unit vectors x ∈ H .

Proof. Apply Theorem 4.5 to the state τ defined by τ(A) = 〈Ax, x〉 (A ∈ B(H )) for a fixed unit vector 
x ∈ H. �

Using the same strategy as in the proof of Theorem 4.1 we get the next result.

Theorem 4.8. Let A be a unital C∗-algebra, τ1, τ2 be states on A and f, g : R → R be synchronous functions. 
Then

τ2
(
f(A)g(A)

)
+ f

(
τ1(B)

)
g
(
τ1(B)

)
≥ f

(
τ1(A)

)
τ2
(
g(B)

)
+ τ1

(
f(B)

)
g
(
τ2(A)

)
(4.2)

for all self-adjoint operators A, B.

We now immediately get the next corollaries.

Corollary 4.9. Let f, g : J → R be synchronous functions. Then
〈
f(A)g(A)x, x

〉
+ f

(
〈By, y〉

)
g
(
〈By, y〉

)
≥ f

(
〈Ax, x〉

)〈
g(B)y, y

〉
+

〈
f(B)y, y

〉
g
(
〈Ax, x〉

)
for all operators A, B ∈ BJ

h(H ) and all unit vectors x, y ∈ H .

Corollary 4.10. (See [5, Theorem 2].) Let f, g : J → R are synchronous functions. Then
〈
f(A)g(A)x, x

〉
− f

(
〈Ax, x〉

)
g
(
〈Ax, x〉

)
≥

[〈
f(A)x, x

〉
− f

(
〈Ax, x〉

)][
g
(
〈Ax, x〉

)
−

〈
g(A)x, x

〉]
for all operator A ∈ BJ

h(H ) and any unit vector x ∈ H .
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Corollary 4.11. Let A be a unital C∗-algebra, τ be a state on A and f, g : R → R be synchronous functions. 
Then

τ
(
f(B)g(B)

)
− τ

(
f(B)

)
τ
(
g(B)

)
≥

(
τ
(
f(B)

)
− f

(
τ(A)

))(
g
(
τ(A)

)
− τ

(
g(B)

))
for all self-adjoint operators A, B.

Proof. By using inequality (4.2) we get

τ
(
f(B)g(B)

)
− τ

(
f(B)

)
τ
(
g(B)

)
≥ f

(
τ(A)

)
τ
(
g(B)

)
+ τ

(
f(B)

)
g
(
τ(A)

)
− f

(
τ(A)

)
g
(
τ(A)

)
− τ

(
f(B)

)
τ
(
g(B)

)
=

(
τ
(
f(B)

)
− f

(
τ(A)

))(
g
(
τ(A)

)
− τ

(
g(B)

))
. �

By using Corollary 4.11 and the Davis–Choi–Jensen inequality [12] we obtain the next result.

Corollary 4.12. Let A be a unital C∗-algebra, τ be a state on A and f, g : R → R be synchronous such that 
one of them is convex while the other is concave on R. Then

τ
(
f(A)g(A)

)
− τ

(
f(A)

)
τ
(
g(A)

)
≥

(
τ
(
f(A)

)
− f

(
τ(A)

))(
g
(
τ(A)

)
− τ

(
g(A)

))
≥ 0

for all self-adjoint operator A.

In the next proposition we establish a version of the Aczél–Chebyshev type inequality.

Proposition 4.13. Let A be a unital C∗-algebra, τ be a state on A and f , g be continuous functions such 
that 0 ≤ f(x) ≤ α and 0 ≤ g(x) ≤ β for some non-negative real numbers α, β. Then

(
αβ − τ

(
f(B)g(B)

))
≥

(
α− τ

(
f(B)

))(
β − τ

(
g(A)

))
(4.3)

for all positive operators A, B ∈ A .

Proof. If α = 0 or β = 0, inequality (4.3) is trivial. Now assume that α > 0 and β > 0. Then (4.3) is 
equivalent to the inequality

(
1 − τ

(
f(B)g(B)

))
≥

(
1 − τ

(
f(B)

))(
1 − τ

(
g(A)

))
,

with 0 ≤ f(x) ≤ 1 and 0 ≤ g(x) ≤ 1. Then we have

(
1 − τ

(
f(B)g(B)

))
≥

(
1 − τ

(
f(B)

))
≥

(
1 − τ

(
f(B)

))(
1 − τ

(
g(A)

))
≥ 0. �

5. Chebyshev type inequalities involving singular values

In this section we deal with some singular value versions of the Chebyshev inequality for positive n × n

matrices. We need the following known result.

Lemma 5.1. (See [2, Corollary III.2.2].) Let A, B be n × n Hermitian matrices. Then

λ↓
j (A + B) ≥ λ↓

n(A) + λ↓
j (B) (1 ≤ j ≤ n).
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Theorem 5.2. Let f, g : [0, +∞) → [0, +∞) be synchronous functions. Then

sj
(
f(A)g(A)

)
+ sj

(
f(B)g(B)

)
≥ sn

(
f(A)

)
sn

(
g(B)

)
+ 1

2
(
sj
(
g(A)

)
sj
(
f(B)

)
+ sj

(
g(B)

)
sj
(
f(A)

))
for all positive matrices A, B ∈ Mn and all j = 1, 2, · · · , n.

Proof. For synchronous functions f , g we have

f(t)g(t) + f(s)g(s) ≥ f(t)g(s) + f(s)g(t) (s, t ≥ 0).

If we fix s ∈ [0, +∞), then

f(A)g(A) + f(s)g(s)I ≥ f(A)g(s) + f(s)g(A).

Hence

sj
(
f(A)g(A)

)
+ f(s)g(s) = sj

(
f(A)g(A) + f(s)g(s)

)
≥ sj

(
f(A)g(s) + f(s)g(A)

)
≥ sn

(
f(A)g(s)

)
+ sj

(
f(s)g(A)

) (
by Lemma 5.1

)
= sn

(
f(A)

)
g(s) + f(s)sj

(
g(A)

)
(1 ≤ j ≤ n).

Using functional calculus for B we get

sj
(
f(A)g(A)

)
+ f(B)g(B) ≥ sn

(
f(A)

)
g(B) + sj

(
g(A)

)
f(B) (1 ≤ j ≤ n).

Thus

sj
(
f(A)g(A)

)
+ sj

(
f(B)g(B)

)
≥ sj

(
sn

(
f(A)

)
g(B) + sj

(
g(A)

)
f(B)

)
≥ sn

(
sn

(
f(A)g(B)

))
+ sj

(
sj
(
g(A)

)
f(B)

) (
by Lemma 5.1

)
= sn

(
f(A)

)
sn

(
g(B)

)
+ sj

(
g(A)

)
sj
(
f(B)

)
(1 ≤ j ≤ n). (5.1)

In inequality (5.1), if we interchange the roles of A and B, then we get

sj
(
f(B)g(B)

)
+ sj

(
f(A)g(A)

)
≥ sn

(
f(B)

)
sn

(
g(A)

)
+ sj

(
g(B)

)
sj
(
f(A)

)
(1 ≤ j ≤ n). (5.2)

By (5.1) and (5.2)

sj
(
f(A)g(A)

)
+ sj

(
f(B)g(B)

)
≥ sn

(
f(A)

)
sn

(
g(B)

)
+ 1

2
(
sj
(
g(A)

)
sj
(
f(B)

)
+ sj

(
g(B)

)
sj
(
f(A)

))
for all 1 ≤ j ≤ n. �

In the following example we show that the constant 1
2 is the best possible one.

Example 5.3. For arbitrary synchronous functions f, g : [0, +∞) → [0, +∞), let us put A = B = In×n. Then 
sj(f(A)g(B)) = sj(f(B)g(B)) = f(1)g(1) and sj(f(B)g(A)) = sj(g(B)f(A)) = f(1)g(1) (1 ≤ j ≤ n). Thus

sj
(
f(A)g(A)

)
+ sj

(
f(B)g(B)

)
= sn

(
f(A)

)
sn

(
g(B)

)
+ 1

2
(
sj
(
g(A)

)
sj
(
f(B)

)
+ sj

(
g(B)

)
sj
(
f(A)

))
for all j = 1, 2, · · · , n.



M.S. Moslehian, M. Bakherad / J. Math. Anal. Appl. 420 (2014) 737–749 749
Author's Personal Copy
Using the same strategy as in the proof of Theorem 5.2 we get the next result.

Theorem 5.4. Let f, g : [0, +∞) → [0, +∞) be synchronous functions. Then

f
(
sj(A)

)
g
(
sj(A)

)
+ sj

(
f(B)g(B)

)
≥ f

(
sj(A)

)
sn

(
g(B)

)
+ sj

(
f(B)

)
g
(
sj(A)

)
for all positive matrices A, B ∈ Mn and for all j = 1, 2, · · · , n.

Example 5.5. Let A, B be positive n × n matrices and p, q > 0. Then

sj(A)psj(A)q + sj
(
Bp+q

)
≥ sj(A)psn

(
Bq

)
+ sj

(
Bp

)
sj(A)q (1 ≤ j ≤ n).
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