

Simultaneous specification of several properties

We postulated that if

$$
\hat{A} \Psi=s \Psi
$$

then a measurement of the physical property A is certain to yield the results
if:

$$
\hat{A} \Psi=s \Psi \quad \text { and } \quad \hat{B} \Psi=t \Psi
$$

then we can simultaneously assign definite values to the physical properties A and B

$$
\text { When } \quad \hat{A} \Psi=s \Psi \quad \text { and } \quad \hat{B} \Psi=t \Psi \text { ? }
$$

Simultaneous specification of several properties

Theorems:

A necessary condition for the existence of a complete set of simultaneous eigenfunctions of two operators is that the operators commute with each other.
If A and B are two commuting operators that correspond to physical quantities, then there exists a complete set of functions that are eigenfunctions of both A and B

Simultaneous specification of several properties

Some important commutator identities
$[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}$
$[\hat{A}, \hat{B}]=-[\hat{B}, \hat{A}]$
$\left[\hat{A}, \hat{A}^{n}\right]=0, \quad n=1,2,3, \ldots$
$[k \hat{A}, \hat{B}]=[\hat{A}, k \hat{B}]=k[\hat{A}, \hat{B}]$
$[\hat{A}, \hat{B}+\hat{C}]=[\hat{A}, \hat{B}]+[\hat{A}, \hat{C}], \quad[\hat{A}+\hat{B}, \hat{C}]=[\hat{A}, \hat{C}]+[\hat{B}, \hat{C}]$
$[\hat{A}, \hat{B} \hat{C}]=[\hat{A}, \hat{B}] \hat{C}+\hat{B}[\hat{A}, \hat{C}], \quad[\hat{A} \hat{B}, \hat{C}]=[\hat{A}, \hat{C}] \hat{B}+\hat{A}[\hat{B}, \hat{C}]$

Simultaneous specification of several properties

Example:

Starting from $[\mathrm{d} / \mathrm{d} x, x]=1$, use the commutator identities to find (a) $\left[x, p_{x}\right]$; (b) $\left[x, p_{x}^{2}\right]$; (c) $[x, H]$ for a one-particle, threedimensional system
a)

$$
\begin{aligned}
& {\left[\hat{x}, \hat{p}_{x}\right]=\left[x, \frac{\hbar}{i} \frac{\partial}{\partial x}\right]=\frac{\hbar}{i}\left[x, \frac{\partial}{\partial x}\right]=-\frac{\hbar}{i}\left[\frac{\partial}{\partial x}, x\right]=-\frac{\hbar}{i}} \\
& {\left[\hat{x}, \hat{p}_{x}\right]=i \hbar}
\end{aligned}
$$

b)

$$
\left[\hat{x}, \hat{p}_{x}^{2}\right]=\left[\hat{x}, \hat{p}_{x}\right] \hat{p}_{x}+\hat{p}_{x}\left[\hat{x}, \hat{p}_{x}\right]=i \hbar \cdot \frac{\hbar}{i} \frac{\partial}{\partial x}+\frac{\hbar}{i} \frac{\partial}{\partial x} \cdot i \hbar
$$

a)

$$
\left[\hat{x}, \hat{p}_{x}^{2}\right]=2 \hbar^{2} \frac{\partial}{\partial x}
$$

Simultaneous specification of several properties

c) $[\hat{x}, \hat{H}]=[\hat{x}, \hat{T}+\hat{V}]=[\hat{x}, \hat{T}]+[\hat{x}, \hat{V}(x, y, z)]=[\hat{x}, \hat{T}]$

$$
\begin{aligned}
& =\left[\hat{x},(1 / 2 m)\left(\hat{p}_{x}^{2}+\hat{p}_{y}^{2}+\hat{p}_{z}^{2}\right)\right] \\
& =(1 / 2 m)\left[\hat{x}, \hat{p}_{x}^{2}\right]+(1 / 2 m)\left[\hat{x}, \hat{p}_{y}^{2}\right]+(1 / 2 m)\left[\hat{x}, \hat{p}_{z}^{2}\right] \\
& =\frac{1}{2 m} \cdot 2 \hbar^{2} \frac{\partial}{\partial x}+0+0 \\
{[\hat{x}, \hat{H}] } & =\frac{\hbar^{2}}{m} \frac{\partial}{\partial x}=\frac{i \hbar}{m} \hat{p}_{x}
\end{aligned}
$$

Simultaneous specification of several properties

since $\quad\left[\hat{x}, \hat{p}_{x}\right] \neq 0$
We can not expected the state function to be simultaneously an eigenfunction of \hat{x} and \hat{p}_{x}
$\mid \hat{x}, \hat{H}]_{\neq 0} \longrightarrow \quad$?

$$
\hat{A} \Psi \neq c t e \Psi
$$

Simultaneous specification of several properties
$(\Delta A)^{2} \equiv \sigma_{A}^{2} \equiv\left\langle(A-\langle A\rangle)^{2}\right\rangle=\int \Psi^{*}(\hat{A}-\langle A\rangle)^{2} \Psi d \tau$ $(\Delta A)^{2}=\left\langle A^{2}\right\rangle-\langle A\rangle^{2}$

Standard deviation $\sigma_{A} \equiv \Delta \mathrm{~A}$

$$
\Delta A \Delta B \geq \frac{1}{2}\left|\int \Psi^{*}[\hat{A}, \hat{B}] \Psi d \tau\right|
$$

$$
\Delta x \Delta p_{x} \geq \frac{1}{2}\left|\int \Psi^{*}\left[\hat{x}, \hat{p}_{x}\right] \Psi d \tau\right|=\frac{1}{2}\left|\int \Psi^{*} i \hbar \Psi d \tau\right|=\frac{1}{2} \hbar|i|\left|\int \Psi^{*} \Psi d \tau\right|
$$

$$
\Delta x \Delta p_{x} \geq \frac{1}{2} \hbar \quad \text { Heisenberg uncertainty principle }
$$

example

For the ground state of the particle in a three-dimensional box, use the results
$\langle x\rangle=a / 2, \quad\left\langle x^{2}\right\rangle=a^{2}\left(1 / 3-1 / 2 \pi^{2}\right), \quad\left\langle p_{x}\right\rangle=0,\left\langle p_{x}^{2}\right\rangle=h^{2} / 4 a^{2}$
to check that the uncertainty principle is obeyed.

$$
\begin{aligned}
(\Delta x)^{2} & =\left\langle x^{2}\right\rangle-\langle x\rangle^{2}=a^{2}\left(1 / 3-1 / 2 \pi^{2}\right)-a^{2} / 4=a^{2}\left(\pi^{2}-6\right) /(12) \pi^{2} \\
\Delta x & =a\left(\pi^{2}-6\right)^{1 / 2} / 12^{1 / 2} \pi \\
\left(\Delta p_{x}\right)^{2} & =\left\langle p_{x}^{2}\right\rangle-\left\langle p_{x}\right\rangle^{2}=h^{2} / 4 a^{2}, \quad \Delta p_{x}=h / 2 a \\
\Delta x \Delta p_{x} & =\frac{h}{2 \pi}\left(\frac{\pi^{2}-6}{12}\right)^{1 / 2}=0.568 \hbar>\frac{1}{2} \hbar
\end{aligned}
$$

Simultaneous specification of

 several properties$$
\begin{gathered}
\Delta A \Delta B \geq \frac{1}{2}\left|\int \Psi^{*}[\hat{A}, \hat{B}] \Psi d \tau\right| \\
\downarrow \quad i \hbar \partial / \partial t \quad \text { Energy operator } \\
\Delta E \Delta t \geq \frac{1}{2} \hbar \\
{[\hat{A}, \hat{B}]=0 \quad[\hat{A}, \hat{C}]=0}
\end{gathered}
$$

Is not enough to ensure that there exist simultaneous eigenfunctions

$$
[\hat{A}, \hat{B}]=0 \quad[\hat{A}, \hat{C}]=0 \quad[\hat{B}, \hat{C}]=0
$$

Is required

vectors

Scalars: physical properties that are specified by their magnitude (mass, length, energy)

Vectors: physical properties that require specification of both magnitude and direction (force, velocity, momentum)

vectors

The product of a scalar (c) and a vector \mathbf{A} cA

Is defined as a vector of length $|c|$ times the length of \boldsymbol{A} with the same direction of \boldsymbol{A} if c is positive, or the opposite direction to \boldsymbol{A} if c is negative.

vectors

$\mathbf{A}+\mathbf{B}=A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}+B_{x} \mathbf{i}+B_{y} \mathbf{j}+B_{z} \mathbf{k}$
$\mathbf{A}+\mathbf{B}=\left(A_{x}+B_{x}\right) \mathbf{i}+\left(A_{y}+B_{y}\right) \mathbf{j}+\left(A_{z}+B_{z}\right) \mathbf{k}$
$c \mathbf{A}=c A_{x} \mathbf{i}+c A_{y} \mathbf{j}+c A_{z} \mathbf{k}$
The magnitude of a vector $\boldsymbol{A} \quad A=|\boldsymbol{A}|$

vectors

Dot product or scalar product A.B:

$$
\begin{aligned}
& \mathbf{A} \cdot \mathbf{B}=|\mathbf{A}||\mathbf{B}| \cos \theta=\mathbf{B} \cdot \mathbf{A} \\
& (\mathbf{A}+\mathbf{B}) \cdot \mathbf{C}=\mathbf{A} \cdot \mathbf{C}+\mathbf{B} \cdot \mathbf{C}
\end{aligned}
$$

$\mathbf{i} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{k} \cdot \mathbf{k}=\cos 0=1, \quad \mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{i}=\cos (\pi / 2)=0$
$\mathbf{A} \cdot \mathbf{B}=\left(A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}\right) \cdot\left(B_{x} \mathbf{i}+B_{y} \mathbf{j}+B_{z} \mathbf{k}\right)$
$\mathbf{A} \cdot \mathbf{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$

$$
\begin{gathered}
\mathbf{A} \cdot \mathbf{A}=|\mathbf{A}|^{2} \\
|\mathbf{A}|=\left(A_{x}^{2}+A_{y}^{2}+A_{z}^{2}\right)^{1 / 2}
\end{gathered}
$$

vectors

Cross product or vector product $\mathbf{A} \times \mathbf{B}$
$|\mathbf{A} \times \mathbf{B}|=|\mathbf{A}||\mathbf{B}| \sin \theta$
$\mathbf{B} \times \mathbf{A}=-\mathbf{A} \times \mathbf{B}$

$$
\mathbf{A} \times(\mathbf{B}+\mathbf{C})=\mathbf{A} \times \mathbf{B}+\mathbf{A} \times \mathbf{C}
$$

$\mathbf{i} \times \mathbf{j}=\mathbf{k}, \mathbf{j} \times \mathbf{i}=-\mathbf{k}, \mathbf{j} \times \mathbf{k}=\mathbf{i}, \mathbf{k} \times \mathbf{j}=-\mathbf{i}, \quad \mathbf{k} \times \mathbf{i}=\mathbf{j}, \quad \mathbf{i} \times \mathbf{k}=-\mathbf{j}$

vectors

$$
\mathbf{i} \times \mathbf{i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=\sin 0=0
$$

$\mathbf{A} \times \mathbf{B}=\left(A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}\right) \times\left(B_{x} \mathbf{i}+B_{y} \mathbf{j}+B_{z} \mathbf{k}\right)$
$\mathbf{A} \times \mathbf{B}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \mathbf{i}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \mathbf{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \mathbf{k}$
$\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right|=\mathbf{i}\left|\begin{array}{cc}A_{y} & A_{z} \\ B_{y} & B_{z}\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}A_{x} & A_{z} \\ B_{x} & B_{z}\end{array}\right|+\mathbf{k}\left|\begin{array}{ll}A_{x} & A_{y} \\ B_{x} & B_{y}\end{array}\right|$

vectors

$$
\left.\begin{array}{l}
\boldsymbol{\nabla} \equiv \mathbf{i} \frac{\partial}{\partial x}+\mathbf{j} \frac{\partial}{\partial y}+\mathbf{k} \frac{\partial}{\partial z} \\
\hat{p}_{x}=\frac{\hbar}{i} \frac{\partial}{\partial x}, \quad \hat{p}_{y}=\frac{\hbar}{i} \frac{\partial}{\partial y}, \quad \hat{p}_{z}=\frac{\hbar}{i} \frac{\partial}{\partial z}
\end{array}\right\} \hat{\mathbf{p}}=-i \hbar \boldsymbol{\nabla} .
$$

$\operatorname{grad} g(x, y, z) \equiv \boldsymbol{\nabla} g(x, y, z) \equiv \mathbf{i} \frac{\partial g}{\partial x}+\mathbf{j} \frac{\partial g}{\partial y}+\mathbf{k} \frac{\partial g}{\partial z}$

$$
\mathbf{F}=-\nabla V(x, y, z)=-\mathbf{i} \frac{\partial V}{\partial x}-\mathbf{j} \frac{\partial V}{\partial y}-\mathbf{k} \frac{\partial V}{\partial z}
$$

$$
\begin{gathered}
A_{x}=A_{x}(t), A_{y}=A_{y}(t) \text { and } A_{z}=A_{z}(t) \\
\frac{d \mathbf{A}}{d t}=\mathbf{i} \frac{d A_{x}}{d t}+\mathbf{j} \frac{d A_{y}}{d t}+\mathbf{k} \frac{d A_{z}}{d t}
\end{gathered}
$$

Vectors in n-dimentional space

A vector A is an n-dimentional real vector space (called hyperspace); is specified with n numbers

Components of $\mathbf{B} \quad B_{1}, B_{2}, \cdots, B_{n}$

$$
\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)
$$

$$
q_{1}=x_{1}, q_{2}=y_{1}, q_{3}=z_{1}, q_{4}=x_{2}, q_{5}=y_{2}, q_{6}=z_{2}
$$

$\psi(\mathbf{q})$

$\int|\psi(\mathbf{q})|^{2} d \mathbf{q}$

Vectors in n-dimentional space

$$
\begin{gathered}
\mathbf{B}=\mathbf{C} \\
B_{1}=C_{1}, B_{2}=C_{2}, \cdots, B_{n}=C_{n}
\end{gathered}
$$

The sum of two n-dimentional vector $B+D$:

$$
\left(B_{1}+D_{1}, B_{2}+D_{2}, \cdots, B_{n}+D_{n}\right)
$$

k B

$$
\left(k B_{1}, k B_{2}, \cdots, k B_{n}\right)
$$

Vectors in n-dimentional space

In three-dimentional space:
$\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)$
In n-dimentional space:
$\mathbf{e}_{1} \equiv(1,0,0, \cdots, 0), \mathbf{e}_{2} \equiv(0,1,0, \cdots, 0), \cdots, \mathbf{e}_{n} \equiv(0,0,0, \cdots, 1) ;$

$$
\mathbf{B}=B_{1} \mathbf{e}_{1}+B_{2} \mathbf{e}_{2}+\cdots+B_{n} \mathbf{e}_{n}
$$

A basis for the n-dimentional real space Orthogonal and normalized
$\mathrm{B} \cdot \mathbf{e}_{i} \equiv$ the component of B in the direction of basis vector e_{i}

Vectors in n-dimentional space

A three-dimensional vector can be specified with:
a) Three components or b) its length and its direction

The angles the vector makes with the positive halves of x, y, and z axes \equiv direction angles (are between 0 and 180 degrees)

There are two direction angles.
In three-dimensional space: the length and two direction angles
In n-dimensional space: the length and $n-1$ direction angles

Angular momentum of a one-particle

 system
In classical mechanics:

a particle of mass m moving according to the laws of classical mechanics

$$
\mathbf{r}=\mathbf{i} x+\mathbf{j} y+\mathbf{k} z
$$

r is the position vector

$$
\begin{gathered}
\mathbf{v} \equiv \frac{d \mathbf{r}}{d t}=\mathbf{i} \frac{d x}{d t}+\mathbf{j} \frac{d y}{d t}+\mathbf{k} \frac{d z}{d t} \\
v_{x}=d x / d t, \quad v_{u}=d y / d t, \quad v_{z}=d z / d t
\end{gathered}
$$

The particle's linear momentum P

$$
\mathbf{p} \equiv m \mathbf{v}
$$

$$
p_{x}=m v_{x}, \quad p_{y}=m v_{y}, \quad p_{z}=m v_{z}
$$

Angular momentum of a one-particle

 systemThe particle's angular momentum L

$$
\mathbf{L} \equiv \mathbf{r} \times \mathbf{p}
$$

$$
\mathbf{L}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
x & y & z \\
p_{x} & p_{y} & p_{z}
\end{array}\right|
$$

$$
L_{x}=y p_{z}-z p_{y}, \quad L_{y}=z p_{x}-x p_{z}, \quad L_{z}=x p_{y}-y p_{x}
$$

$$
L^{2}=\mathbf{L} \cdot \mathbf{L}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}
$$

Angular momentum of a one-particle system

$$
\mathbf{L} \equiv \mathbf{r} \times \mathbf{p}
$$

Angular momentum of a one-particle system

In quantum mechanics:

In quantum mechanics, there are two angular momenta:

1) orbital angular momentum
2) spin angular momentum
orbital angular momentum result from motion of a particle through the space and is the analogue of classical-mechanical quantity.
spin angular momentum is an intrinsic property of many microscopic

> particles and has no classical-mechanical analogue.

The quantum-mechanical operators for the components of the orbital angular momentum are obtained by replacing p_{x}, p_{y}, p_{z} in the classical expressions by their corresponding quantum operators

$$
\begin{gathered}
\hat{L}_{x}=y \hat{p}_{z}-z \hat{p}_{y}=\frac{\hbar}{\mathrm{i}}\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right) \\
\hat{L}_{y}=z \hat{p}_{x}-x \hat{p}_{z}=\frac{\hbar}{\mathrm{i}}\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right) \\
\hat{L}_{z}=x \hat{p}_{y}-y \hat{p}_{x}=\frac{\hbar}{\mathrm{i}}\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) \\
\hat{y} \hat{p}_{z}=\hat{p}_{z} \hat{y}, \text { etc. }
\end{gathered}
$$

$$
\begin{aligned}
& \hat{\mathbf{L}}=\mathbf{i} \hat{L}_{x}+\mathbf{j} \hat{L}_{y}+\mathbf{k} \hat{L}_{z} \quad \text { operator for } \mathbf{L} \\
& \hat{L}^{2}=\hat{\mathbf{L}} \cdot \hat{\mathbf{L}}=\hat{L}_{x}^{2}+\hat{L}_{y}^{2}+\hat{L}_{z}^{2} \quad \text { operator for } \mathbf{L}^{2}
\end{aligned}
$$

Angular momentum of a one-particle system

Commutation relations

The commutator $\left[\hat{L}_{x}, \hat{L}_{y}\right.$]

$$
\begin{aligned}
{\left[\hat{L}_{x}, \hat{L}_{y}\right] } & =\left[y \hat{p}_{z}-z \hat{p}_{y}, z \hat{p}_{x}-x \hat{p}_{z}\right] \\
& =\left[y \hat{p}_{z}, z \hat{p}_{x}\right]+\left[z \hat{p}_{y}, x \hat{p}_{z}\right]-[\underbrace{y \hat{p}_{z}, x \hat{p}_{z}}_{0}]-\underbrace{\left[z \hat{z}_{y}, z \hat{p}_{x}\right.}_{0}]
\end{aligned}
$$

$\left[\hat{L}_{x}, \hat{L}_{y}\right]=y \hat{p}_{x} \hat{p}_{z} z-y \hat{p}_{x} z \hat{p}_{z}+x \hat{p}_{y} z \hat{p}_{z}-x \hat{p}_{y} \hat{p}_{z} z$

Angular momentum of a one-particle system

$$
\begin{gathered}
\hat{L}_{y} f=-i \hbar\left(z \frac{\partial f}{\partial x}-x \frac{\partial f}{\partial z}\right) \\
\hat{L}_{x} \hat{L}_{y} f=-\hbar^{2}\left(y \frac{\partial f}{\partial x}+y z \frac{\partial^{2} f}{\partial z \partial x}-y x \frac{\partial^{2} f}{\partial z^{2}}-z^{2} \frac{\partial^{2} f}{\partial y \partial x}+z x \frac{\partial^{2} f}{\partial y \partial z}\right) \\
\hat{L}_{x} f=-i \hbar\left(y \frac{\partial f}{\partial z}-z \frac{\partial f}{\partial y}\right) \\
\hat{L}_{y} \hat{L}_{x} f=-\hbar^{2}\left(z y \frac{\partial^{2} f}{\partial x \partial z}-z^{2} \frac{\partial^{2} f}{\partial x \partial y}-x y \frac{\partial^{2} f}{\partial z^{2}}+x \frac{\partial f}{\partial y}+x z \frac{\partial^{2} f}{\partial z \partial y}\right) \\
\hat{L}_{x} \hat{L}_{y} f-\hat{L}_{y} \hat{L}_{x} f=-\hbar^{2}\left(y \frac{\partial f}{\partial x}-x \frac{\partial f}{\partial y}\right) \\
{\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar \hat{L}_{z}}
\end{gathered}
$$

Angular momentum of a one-particle system

$$
\left[\hat{L}_{x}, \hat{L}_{y}\right]=\mathrm{i} \hbar \hat{L}_{z} \quad\left[\hat{L}_{y}, \hat{L}_{z}\right]=\mathrm{i} \hbar \hat{L}_{x} \quad\left[\hat{L}_{z}, \hat{L}_{x}\right]=\mathrm{i} \hbar \hat{L}_{y}
$$

$$
\hat{\mathbf{L}} \times \hat{\mathbf{L}}=\mathrm{i} \hbar \hat{\mathbf{L}}
$$

$$
\begin{aligned}
& {\left[\hat{L}^{2}, \hat{L}_{x}\right] }=\left[\hat{L}_{x}^{2}+\hat{L}_{y}^{2}+\hat{L}_{z}^{2}, \hat{L}_{x}\right] \\
&=\left[\hat{L}_{x}^{2}, \hat{L}_{x}\right]+\left[\hat{L}_{y}^{2}, \hat{L}_{x}\right]+\left[\hat{L}_{z}^{2}, \hat{L}_{x}\right] \\
&=\left[\hat{L}_{y}^{2}, \hat{L}_{x}\right]+\left[\hat{L}_{z}^{2}, \hat{L}_{x}\right] \\
&=\left[\hat{L}_{y}, \hat{L}_{x}\right] \hat{L}_{y}+\hat{L}_{y}\left[\hat{L}_{y}, \hat{L}_{x}\right]+\left[\hat{L}_{z}, \hat{L}_{x}\right] \hat{L}_{z}+\hat{L}_{z}\left[\hat{L}_{z}, \hat{L}_{x}\right] \\
&=-i \hbar \hat{L}_{z} \hat{L}_{y}-i \hbar \hat{L}_{y} \hat{L}_{z}+i \hbar \hat{L}_{y} \hat{L}_{z}+i \hbar \hat{L}_{z} \hat{L}_{y} \\
& {\left[\hat{L}^{2}, \hat{L}_{x}\right]=0 } \\
&
\end{aligned}
$$

Angular momentum of a one-particle system

$$
\begin{aligned}
& x=r \sin \theta \cos \varphi \\
& y=r \sin \theta \sin \varphi \\
& z=r \cos \theta \\
& r=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2} \\
& \theta=\cos ^{-1}\left(z /\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}\right) \\
& \varphi=\tan ^{-1}(y / x)
\end{aligned}
$$

Spherical polar coordinate system.

Angular momentum of a one-particle system

$$
\begin{aligned}
& \hat{L}_{x}=i \hbar\left(\sin \phi \frac{\partial}{\partial \theta}+\cot \theta \cos \phi \frac{\partial}{\partial \phi}\right) \\
& \hat{L}_{y}=-i \hbar\left(\cos \phi \frac{\partial}{\partial \theta}-\cot \theta \sin \phi \frac{\partial}{\partial \phi}\right) \\
& \hat{L}_{z}=-i \hbar \frac{\partial}{\partial \phi} \\
& \hat{L}^{2}=-\hbar^{2}\left(\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right)
\end{aligned}
$$

$$
\left.\begin{array}{l}
\hat{L}_{z}=-i \hbar \frac{\partial}{\partial \phi} \\
\hat{L}^{2}=-\hbar^{2}\left(\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right)
\end{array}\right\}
$$

One-particle orbital-angular-momentum eigenfunctions and eigenvalues

The common eigenfunctions of \hat{L}^{2} and \hat{L}_{z}

$$
\begin{gathered}
\text { Variables } \equiv \theta \text { and } \Phi \\
\downarrow \\
Y=Y(\theta, \phi)
\end{gathered}
$$

$$
\begin{aligned}
& \text { We must } \\
& \text { solve: }
\end{aligned}\left\{\begin{array}{l}
\hat{L}_{z} Y(\theta, \phi)=b Y(\theta, \phi) \\
\hat{L}^{2} Y(\theta, \phi)=c Y(\theta, \phi)
\end{array}\right.
$$

One-particle orbital-angular-momentum eigenfunctions and eigenvalues

$$
\begin{aligned}
& -i \hbar \frac{\partial}{\partial \phi} Y(\theta, \phi)=b Y(\theta, \phi) \\
& -i \hbar \frac{\partial}{\partial \phi}[S(\theta) T(\phi)]=b S(\theta) T(\phi) \\
& -i \hbar S(\theta) \frac{d T(\phi)}{d \phi}=b S(\theta) T(\phi)
\end{aligned}
$$

$$
\frac{d T(\phi)}{T(\phi)}=\frac{i b}{\hbar} d \phi
$$

$$
T(\phi)=A e^{i b \phi / \hbar}
$$

One-particle orbital-angular-momentum eigenfunctions and eigenvalues

For T to be single-valued: $\quad T(\phi+2 \pi)=T(\phi)$

$$
T(\phi)=A e^{i b \phi / \hbar}
$$

$$
A e^{i b \phi / \hbar} e^{i b 2 \pi / \hbar}=A e^{i b \phi / \hbar}
$$

$$
e^{i b 2 \pi / \hbar}=1
$$

$e^{i \alpha}=\cos \alpha+i \sin \alpha=1$

$$
\begin{gathered}
\alpha=2 \pi m \\
m=0, \pm 1, \pm 2, \pm \cdots
\end{gathered}
$$

One-particle orbital-angular-momentum eigenfunctions and eigenvalues

$$
\begin{gathered}
T(\phi)=A e^{i b \phi / \hbar} \\
\downarrow \quad b=m \hbar \\
T(\phi)=A e^{i m \phi}, \quad m=0, \pm 1, \pm 2, \ldots
\end{gathered}
$$

Normalizing: $\quad F=f(r, \theta, \Phi)$

$$
0 \leq r \leq \infty, \quad 0 \leq \theta \leq \pi, \quad 0 \leq \phi \leq 2 \pi
$$

r to $r+d r, \theta$ to $\theta+d \theta$, and ϕ to $\phi+d \phi$
Normalization condition

$$
\int_{0}^{\infty}\left[\int_{0}^{\pi}\left[\int_{0}^{2 \pi}\left|F^{2}(r, \theta, \phi)\right| d \phi\right] \sin \theta d \theta\right] r^{2} d r=1
$$

$$
F(r, \theta, \phi)=R(r) S(\theta) T(\phi)
$$

$$
\int_{0}^{\infty}\left|R^{2}(r)\right| r^{2} d r \int_{0}^{\pi}\left|S^{2}(\theta)\right| \sin \theta d \theta \int_{0}^{2 \pi}\left|T^{2}(\phi)\right| d \phi=1
$$

It is convenient to normalize each factor

One-particle orbital-angular-momentum eigenfunctions and eigenvalues

$$
\begin{gathered}
\int_{0}^{2 \pi}\left(A e^{i m \phi}\right)^{*} A e^{i m \phi} d \phi=1=|A|^{2} \int_{0}^{2 \pi} d \phi \\
|A|=(2 \pi)^{-1 / 2} \\
T(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i m \phi}, \quad m=0, \pm 1, \pm 2, \pm \ldots
\end{gathered}
$$

One-particle orbital-angular-momentum eigenfunctions and eigenvalues

$$
\begin{gathered}
\hat{L}^{2} Y=c Y \\
-\hbar^{2}\left(\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right)\left(S(\theta) \frac{1}{\sqrt{2 \pi}} e^{i m \phi}\right)=c S(\theta) \frac{1}{\sqrt{2 \pi}} e^{i m \phi}
\end{gathered}
$$

$$
\frac{d^{2} S}{d \theta^{2}}+\cot \theta \frac{d S}{d \theta}-\frac{m^{2}}{\sin ^{2} \theta} S=-\frac{c}{\hbar^{2}} S
$$

$$
w=\cos \theta
$$

$$
S(\theta)=G(w)
$$

$$
\frac{d S}{d \theta}=\frac{d G}{d w} \frac{d w}{d \theta}=-\sin \theta \frac{d G}{d w}=-\left(1-w^{2}\right)^{1 / 2} \frac{d G}{d w}
$$

One-particle orbital-angular-momentum eigenfunctions and eigenvalues

$$
\begin{gathered}
d^{2} S / d \theta^{2}=? \\
\frac{d}{d \theta}=-\left(1-w^{2}\right)^{1 / 2} \frac{d}{d w} \\
\frac{d^{2}}{d \theta^{2}}=\left(1-w^{2}\right)^{1 / 2} \frac{d}{d w}\left(1-w^{2}\right)^{1 / 2} \frac{d}{d w} \\
\frac{d^{2}}{d \theta^{2}}=\left(1-w^{2}\right) \frac{d^{2}}{d w^{2}}+\left(1-w^{2}\right)^{1 / 2}\left(\frac{1}{2}\right)\left(1-w^{2}\right)^{-1 / 2}(-2 w) \frac{d}{d w} \\
\frac{d^{2} S}{d \theta^{2}}=\left(1-w^{2}\right) \frac{d^{2} G}{d w^{2}}-w \frac{d G}{d w} \\
\cot \theta=\cos \theta / \sin \theta=w /\left(1-w^{2}\right)^{1 / 2}
\end{gathered}
$$

One-particle orbital-angular-momentum eigenfunctions and eigenvalues

$$
\begin{gathered}
\frac{d^{2} S}{d \theta^{2}}+\cot \theta \frac{d S}{d \theta}-\frac{m^{2}}{\sin ^{2} \theta} S=-\frac{c}{\hbar^{2}} S \\
\downarrow \\
\left(1-w^{2}\right) \frac{d^{2} G}{d w^{2}}-2 w \frac{d G}{d w}+\left[\frac{c}{\hbar^{2}}-\frac{m^{2}}{1-w^{2}}\right] G(w)=0 \\
-1 \leq w \leq 1
\end{gathered}
$$

To get a two term recursion relation $G^{\prime}, G^{\prime \prime}$

$$
G(w)=\left(1-w^{2}\right)^{|m| / 2} H(w) \quad \quad \quad \text { Divide by } \quad\left(1-w^{2}\right)^{|m| / 2}
$$

$$
\left(1-w^{2}\right) H^{\prime \prime}-2(|m|+1) w H^{\prime}+\left[c \hbar^{-2}-|m|(|m|+1)\right] H=0
$$

One-particle orbital-angular-momentum eigenfunctions and eigenvalues

$$
\begin{aligned}
& H(w)=\sum_{j=0}^{\infty} a_{j} w^{j} \\
& H^{\prime}(w)=\sum_{j=0}^{\infty} j a_{j} w^{j-1}
\end{aligned}
$$

$$
H^{\prime \prime}(w)=\sum_{j=0}^{\infty} j(j-1) a_{j} w^{j-2}=\sum_{j=0}^{\infty}(j+2)(j+1) a_{j+2} w^{j}
$$

$$
\sum_{j=0}^{\infty}\left[(j+2)(j+1) a_{j+2}+\left(-j^{2}-j-2|m| j+\frac{c}{\hbar^{2}}-|m|^{2}-|m|\right) a_{j}\right] w^{j}=0
$$

One-particle orbital-angular-momentum eigenfunctions and eigenvalues

$$
\begin{array}{ccc}
w=\cos \theta & S(\theta)=G(w) & G(w)=\left(1-w^{2}\right)^{|m| / 2} H(w) \\
l \equiv k+|m| & H(w)=\sum_{j=0}^{\infty} a_{j} w^{j} &
\end{array}
$$

$$
\begin{array}{r}
\begin{array}{l}
\text { Whether } l-|m| \\
\text { is even or odd }
\end{array} S_{l, m}(\theta)=\sin { }^{|m|} \theta \sum_{\substack{j=1,3, \ldots \\
j=0,2, \ldots}}^{|-|m|} a_{j} \cos ^{j} \theta \\
a_{j+2}=\frac{[(j+|m|)(j+|m|+1)-l(l+1)}{(j+1)(j+2)} a_{j} \\
\end{array}
$$

Find $Y_{l}^{m}(\theta, \phi)$ and the \hat{L}^{2} and \hat{L}_{z} eigenvalues for (a) $l=0$; (b) $l=1$.
a)

$$
\begin{gathered}
S_{0,0}(\theta)=a_{0} \\
\int_{0}^{\pi}\left|a_{0}^{2}\right| \sin \theta d \theta=1=2\left|a_{0}^{2}\right| \\
\left|a_{0}\right|=2^{-1 / 2}
\end{gathered}
$$

$$
Y_{0}^{0}(\theta, \phi)=\frac{1}{\sqrt{4 \pi}} \quad \begin{aligned}
& \text { No angular dependence } \\
& \text { Spherically symmetric }
\end{aligned}
$$

$$
I=0, m=0
$$

\qquad

$$
c=0, b=0
$$

One-particle orbital-angular-momentum eigenfunctions and eigenvalues
b) $\quad I=1, m=-1,0,1$
$S_{1, \pm 1}(\theta)=a_{0}!\sin \theta$
$1=\left|a_{0}^{2}\right| \int_{0}^{\infty} \sin ^{2} \theta \sin \theta d \theta=\left|a_{0}^{2}\right| \int_{-1}^{1}\left(1-w^{2}\right) d w \quad w=\cos \theta$. $\left|a_{0}\right|=\sqrt{3} / 2$
$S_{1, \pm 1}=\left(3^{1 / 2} / 2\right) \sin \theta$

$$
Y_{1}^{1}=(3 / 8 \pi)^{1 / 2} \sin \theta e^{i \phi}, \quad Y_{1}^{-1}=(3 / 8 \pi)^{1 / 2} \sin \theta e^{-i \phi}
$$

$I=1, m=-1,0,1 \quad\left\{\begin{array}{l}C=\hbar^{2} \\ B=-\hbar, 0, \hbar\end{array}\right.$

One-particle orbital-angular-momentum

 eigenfunctions and eigenvalues$$
S_{l, m}(\theta)=\sin ^{|m|} \theta \sum_{\substack{j=1,3, \ldots \\ j=0,2, \ldots}}^{l-|m|} a_{j} \cos ^{j} \theta
$$

Associated Legendre functions multiplied by a normalization constant

Associated Legendre functions
$P_{l}^{|m|}(w) \equiv \frac{1}{2^{l} l!}\left(1-w^{2}\right)^{|m| / 2} \frac{d^{l+|m|}}{d w^{l+|m|}}\left(w^{2}-1\right)^{l}, \quad l=0,1,2, \ldots$

$$
P_{0}^{0}(w)=1 \quad P_{2}^{0}(w)=\frac{1}{2}\left(3 w^{2}-1\right)
$$

$$
\begin{array}{ll}
P_{1}^{0}(w)=w & P_{2}^{1}(w)=3 w\left(1-w^{2}\right)^{1 / 2} \\
P_{1}^{1}(w)=\left(1-w^{2}\right)^{1 / 2} & P_{2}^{2}(w)=3-3 w^{2}
\end{array}
$$

One-particle orbital-angular-momentum eigenfunctions and eigenvalues

It can be shown:

$$
S_{l, m}(\theta)=\left[\frac{2 l+1}{2} \frac{(l-|m|)!}{(l+|m|)!}\right]^{1 / 2} P_{l}^{|m|}(\cos \theta)
$$

Spherical harmonics:

$$
Y_{l}^{m}(\theta, \phi)=\left[\frac{2 l+1}{4 \pi} \frac{(l-|m|)!}{(l+|m|)!}\right]^{1 / 2} P_{l}^{|m|}(\cos \theta) e^{i m \phi}
$$

In summary:

One-particle orbital-angular-momentum eigenfunctions and eigenvalues

TABLE 5.1	$S_{l, m}(\theta)$
$l=0:$	$S_{0,0}=\frac{1}{2} \sqrt{2}$
$l=1:$	$S_{1,0}=\frac{1}{2} \sqrt{6} \cos \theta$
	$S_{1, \pm 1}=\frac{1}{2} \sqrt{3} \sin \theta$
$l=2:$	$S_{2,0}=\frac{1}{4} \sqrt{10}\left(3 \cos ^{2} \theta-1\right)$
	$S_{2, \pm 1}=\frac{1}{2} \sqrt{15} \sin \theta \cos \theta$
	$S_{2, \pm 2}=\frac{1}{4} \sqrt{15} \sin ^{2} \theta$
$l=3:$	$S_{3,0}=\frac{3}{4} \sqrt{14}\left(\frac{5}{3} \cos ^{3} \theta-\cos \theta\right)$
	$S_{3, \pm 1}=\frac{1}{8} \sqrt{42} \sin \theta\left(5 \cos { }^{2} \theta-1\right)$
	$S_{3, \pm 2}=\frac{1}{4} \sqrt{105} \sin ^{2} \theta \cos \theta$
	$S_{3, \pm 3}=\frac{1}{8} \sqrt{70} \sin ^{3} \theta$

One-particle orbital-angular-momentum eigenfunctions and eigenvalues

$$
\begin{gathered}
\text { Except for } 1=0 \\
l \geqslant|m| \longrightarrow \begin{array}{c}
\downarrow \\
\text { The magnitude of } L
\end{array}[(l+1)]^{1 / 2} \hbar \leq|m| \hbar \\
\text { The magnitude of } L z \\
\Delta L_{x} \Delta L_{y} \geqslant \frac{1}{2}\left|\int \Psi^{*}\left[\hat{L}_{x}, \hat{L}_{y}\right] \Psi d \tau\right|=\frac{\hbar}{2}\left|\int \Psi^{*} \hat{L}_{z} \Psi d \tau\right|
\end{gathered}
$$

One-particle orbital-angular-momentum eigenfunctions and eigenvalues

Degeneracy:

For each value of L^{2} there are $2 L+1$ eigenfunctions $Y_{1}{ }^{m}$, corresponding to the $2 L+1$ values of m

One-particle orbital-angular-momentum eigenfunctions and eigenvalues

Spatial quantization

First, we see the semiclassical description

angular momentum cannot lie on the
z-axis. Why?
$\left|m_{1}\right| \leq l$ is condition of m_{1} and
magnitude of I is given by $\sqrt{l(l+1)}$
Therefore, if the case of $\mathrm{m}_{1}=1$
(extreme case) $\sqrt{m_{l}\left(m_{l}+1\right)}>m_{l}$ \rightarrow z-component cannot be same as the magnitude of angular momentum.

Angular momentum lie on the \mathbf{z}-axis : x, y component = 0
\rightarrow know 3 component simultaneously But it cannot be possible because commutator is not zero!

The ladder operator method for angular momentum

It is possible to find the eigenvalues of L^{2} and L_{z} using only operator commutation relations

Any kind of angular momentum: M
Linear operators

$$
\hat{\bar{M}}_{x}, \hat{M}_{y}, \hat{M}_{z}
$$

All we know about them:
$\left[\hat{M}_{x}, \hat{M}_{y}\right]=i \hbar \hat{M}_{z}, \quad\left[\hat{M}_{y}, \hat{M}_{z}\right]=i \hbar \hat{M}_{x} \quad\left[\hat{M}_{z}, \hat{M}_{x}\right]=i \hbar \hat{M}_{y}$

We define:

$$
\hat{M}^{2}=\hat{M}_{x}^{2}+\hat{M}_{y}^{2}+\hat{M}_{z}^{2}
$$

Our problem is to find the eigenvalues of \hat{M}^{2} and \hat{M}_{z}

The ladder operator method for angular momentum

We can evaluate: $\quad\left[\hat{M}^{2}, \hat{M}_{x}\right]=\left[\hat{M}^{2}, \hat{M}_{y}\right]=\left[\hat{M}^{2}, \hat{M}_{z}\right]=0$
We define:

?
$\left.\begin{array}{ll}\text { Raising operator } & \hat{M}_{+} \equiv \hat{M}_{x}+i \hat{M}_{y} \\ \text { lowering operator } & \hat{M}_{-} \equiv \hat{M}_{x}-i \hat{M}_{y}\end{array}\right]$ Ladder operators

The properties of ladder operators:

$$
\begin{aligned}
\hat{M}_{+} \hat{M}_{-} & =\left(\hat{M}_{x}+i \hat{M}_{y}\right)\left(\hat{M}_{x}-i \hat{M}_{y}\right) \\
& =\hat{M}_{x}\left(\hat{M}_{x}-i \hat{M}_{y}\right)+i \hat{M}_{y}\left(\hat{M}_{x}-i \hat{M}_{y}\right) \\
& =\hat{M}_{x}^{2}-i \hat{M}_{x} \hat{M}_{y}+i \hat{M}_{y} \hat{M}_{x}+\hat{M}_{y}^{2} \\
& =\hat{M}^{2}-\hat{M}_{z}^{2}+i\left[\hat{M}_{y}, \hat{M}_{x}\right]
\end{aligned}
$$

The ladder operator method for angular momentum

$$
\begin{aligned}
& \hat{M}_{+} \hat{M}_{-}=\hat{M}^{2}-\hat{M}_{z}^{2}+\hbar \hat{M}_{z} \\
& \hat{M}_{-} \hat{M}_{+}=\hat{M}^{2}-\hat{M}_{z}^{2}-\hbar \hat{M}_{z}
\end{aligned}
$$

$$
\begin{aligned}
{\left[\hat{M}_{+}, \hat{M}_{z}\right]=} & {\left[\hat{M}_{x}+i \hat{M}_{y}, \hat{M}_{z}\right] } \\
= & {\left[\hat{M}_{x}, \hat{M}_{z}\right]+i\left[\hat{M}_{y}, \hat{M}_{z}\right]=-i \hbar \hat{M}_{y}-\hbar \hat{M}_{x} } \\
& {\left[\hat{M}_{+}, \hat{M}_{z}\right]=-\hbar \hat{M}_{+} }
\end{aligned}
$$

$$
\hat{M}_{+} \hat{M}_{z}=\hat{M}_{z} \hat{M}_{+}-\hbar \hat{M}_{+}
$$

$$
\hat{M}_{-} \hat{M}_{z}=\hat{M}_{z} \hat{M}_{-}+\hbar \hat{M}_{-}
$$

The ladder operator method for angular momentum

$$
\begin{aligned}
& \hat{M}^{2} Y=c Y \quad Y: \text { Common eigenfunctions of } M^{2} \text { and } M_{z} \\
& \hat{M}_{z} Y=b Y
\end{aligned}
$$

b:

$$
\begin{aligned}
& \hat{M}_{+} \hat{M}_{z} Y=\hat{M}_{+} b Y \\
& \downarrow \quad \hat{M}_{+} \hat{M}_{z}=\hat{M}_{z} \hat{M}_{+}-\hbar \hat{M}_{+} \\
& \left(\hat{M}_{z} \hat{M}_{+}-\hbar \hat{M}_{+}\right) Y=b \hat{M}_{+} Y \\
& \hat{M}_{z}\left(\hat{M}_{+} Y\right)=(b+\hbar)\left(\hat{M}_{+} Y\right) \\
& \hat{M}_{z}\left(\hat{M}_{+}^{2} Y\right)=(b+2 \hbar)\left(\hat{M}_{+}^{2} Y\right)
\end{aligned}
$$

$\hat{M}_{z}\left(\hat{M}_{+}^{k} Y\right)=(b+k \hbar)\left(\hat{M}_{+}^{k} Y\right) \quad k=0,1,2, \ldots$

The ladder operator method for angular momentum

If we operat with $M_{\text {: }}$:

$$
\begin{aligned}
& \hat{M}_{z}\left(\hat{M}_{-} Y\right)=(b-\hbar)\left(\hat{M}_{-} Y\right) \\
& \hat{M}_{z}\left(\hat{M}_{-}^{k} Y\right)=(b-k \hbar)\left(\hat{M}_{-}^{k} Y\right)
\end{aligned}
$$

With raising and lowering operators we generate a ladder of eigenvalues $\cdots \quad b-2 \hbar, \quad b-\hbar, \quad b, \quad b+\hbar, \quad b+2 \hbar, \quad \cdots$

Eigenfunctions and
$\hat{M}_{z} \hat{M}_{ \pm}^{k} Y=b \pm k \hbar \hat{M}_{ \pm}^{k} Y$
eigenvalues of M^{2}

$$
\text { and } M_{z} \hat{M}^{2} \hat{M}_{ \pm}^{k} Y=c \hat{M}_{ \pm}^{k} Y, \quad k=0,1,2, \ldots
$$

We first show:

$$
\left[\hat{M}^{2}, \hat{M}_{ \pm}\right]=\left[\hat{M}^{2}, \hat{M}_{x} \pm i \hat{M}_{y}\right]=\left[\hat{M}^{2}, \hat{M}_{x}\right] \pm i\left[\hat{M}^{2}, \hat{M}_{y}\right]=0 \pm 0=0
$$

and
$\left[\hat{M}^{2}, \hat{M}_{ \pm}^{2}\right]=\left[\hat{M}^{2}, \hat{M}_{ \pm}\right] \hat{M}_{ \pm}+\hat{M}_{ \pm}\left[\hat{M}^{2}, \hat{M}_{ \pm}\right]=0+0=0$
Thus:

$$
\left[\hat{M}^{2}, \hat{M}_{ \pm}^{k}\right]=0 \quad \text { or } \quad \hat{M}^{2} \hat{M}_{ \pm}^{k}=\hat{M}_{ \pm}^{k} \hat{M}^{2}, \quad k=0,1,2, \ldots
$$

The ladder operator method for angular momentum

$$
\begin{aligned}
\hat{M}^{2} Y & =c Y \\
\hat{M}_{ \pm}^{k} \hat{M}^{2} Y & =\hat{M}_{ \pm}^{k} c Y \\
& \downarrow \quad \hat{M}^{2} \hat{M}_{ \pm}^{k}=\hat{M}_{ \pm}^{k} \hat{M}^{2} \\
\hat{M}^{2}\left(\hat{M}_{ \pm}^{k} Y\right) & =c\left(\hat{M}_{ \pm}^{k} Y\right)
\end{aligned}
$$

The set of M_{z} eigenvalues must be bounded:

$$
\begin{gathered}
\hat{M}_{z} Y=b Y \\
\hat{M}_{z} Y_{k}=b_{k} Y_{k} \\
\swarrow \\
Y_{k}=\hat{M}_{ \pm}^{k} Y \quad b_{k}=b \pm k \hbar
\end{gathered}
$$

The ladder operator method

 for angular momentum$$
\begin{aligned}
\hat{M}_{z} Y_{k}=b_{k} Y_{k} \longrightarrow \hat{M}_{z}^{2} Y_{k} & =b_{k} \hat{M}_{z} Y_{k} \\
\hat{M}_{z}^{2} Y_{k} & =b_{k}^{2} Y_{k}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\hat{M}^{2}\left(\hat{M}_{ \pm}^{k} Y\right)=c\left(\hat{M}_{ \pm}^{k} Y\right) \\
\hat{M}_{z}^{2} Y_{k}=b_{k}^{2} Y_{k}
\end{array}\right] \quad \hat{M}^{2} Y_{k}-\hat{M}_{z}^{2} Y_{k}=c Y_{k}-b_{k}^{2} Y_{k} .
$$

$$
\left(\hat{M}_{x}^{2}+\hat{M}_{y}^{2}\right) Y_{k}=\left(c-b_{k}^{2}\right) Y_{k}
$$

$$
\begin{array}{r}
\hat{M}_{x}^{2}+\hat{M}_{y}^{2} \quad \begin{array}{r}
\text { Corresponds to a nonnegative } \\
\text { physical quantity }
\end{array}
\end{array}
$$

$$
c-b_{k}^{2} \geqslant 0 \text { and } c^{1 / 2} \geqslant\left|b_{k}\right|
$$

$$
c^{1 / 2} \geqslant b_{k} \geqslant-c^{1 / 2}, \quad k=0, \pm 1, \pm 2, \ldots
$$

The ladder operator method for angular momentum

Let $b_{\max }$ and $b_{\text {min }}$ denotes the maximum and minimum values od b_{k} corresponding to $Y_{\text {max }}$ and $Y_{\text {min }}$

$$
\begin{aligned}
\hat{M}_{z} Y_{\max } & =b_{\max } Y_{\max } \\
\hat{M}_{z} Y_{\min } & =b_{\min } Y_{\min } \\
\hat{M}_{+} \hat{M}_{z} Y_{\max } & =b_{\max } \hat{M}_{+} Y_{\max } \\
\hat{M}_{z}\left(\hat{M}_{+} Y_{\max }\right) & =\left(b_{\max }+\hbar\right)\left(\hat{M}_{+} Y_{\max }\right)
\end{aligned}
$$

$$
\hat{M}_{+} Y_{\max }=0
$$

$0=\hat{M}_{-} \hat{M}_{+} Y_{\max }=\left(\hat{M}^{2}-\hat{M}_{z}^{2}-\hbar \hat{M}_{z}\right) Y_{\text {max }}=\left(c-b_{\text {max }}^{2}-\hbar b_{\max }\right) Y_{\text {max }}$

$$
\begin{gathered}
c-b_{\max }^{2}-\hbar b_{\max }=0 \\
c=b_{\max }^{2}+\hbar b_{\max }
\end{gathered}
$$

The ladder operator method for angular momentum

$$
\begin{gathered}
b_{\min }=\underbrace{-b_{\max } \quad b_{\max }-}_{b_{\max }=\frac{1}{2} n \hbar}-b_{\min }=n \hbar \\
\quad n=0,1,2, \ldots \\
b_{\max }=j \hbar, \quad j=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots \\
b_{\min }=-b_{\max } \mid \\
b_{\min }=-j \hbar
\end{gathered}
$$

The ladder operator method for angular momentum

$$
\begin{gathered}
b=-j \hbar,(-j+1) \hbar,(-j+2) \hbar, \ldots,(j-2) \hbar,(j-1) \hbar, j \hbar \\
c=b_{\max }^{2}+\hbar b_{\max } \\
\downarrow \quad b_{\max }=j \hbar \\
c=j(j+1) \hbar^{2}, \quad j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots
\end{gathered}
$$

