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Abstract

Models for determining the compressive strength of concrete columns confined by FRP have been presented in previous
studies. In this study, a large set of experimental data regarding circular columns confined with different types of FRP has
been collected. In order to increase the accuracy in the existing models, three modified models for predicting the
compressive strength of circular columns confined with FRP has been proposed by using the collected data. The FRP
strain efficiency factor in the proposed models is considered as: (i) a function of the strain ratio, (ii) a function of the
confinement stiffness ratio, and (iii) a function of the combination of these ratios. Studying the analytical results using the
proposed factors revealed that models wherein the FRP strain efficiency factor is a function of the strain ratio or the

combination of the confinement stiffness ratio and strain ratio give results closer to the experimental results.
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Introduction

Confinement is an effective method for increasing the
compressive strength of concrete columns. Concrete
and steel jackets, still in common use today, were
widely used in the past to reinforce concrete columns.
Although these methods increase the structure’s load
bearing capacity, concrete jackets increase column sec-
tion dimensions significantly and steel jackets perform
weakly against adverse environmental conditions.
Hence, older methods are to be replaced by innovative
retrofitting systems which are economical and easy
to implement.'

The idea of using FRP to reinforce the existing RC
columns against seismic loads was first proposed in the
mid-80s.> The 1990 (California) and 1995 (Kobe,
Japan) earthquakes were important and effective fac-
tors for an extensive investigation regarding the appli-
cation of FRP for the retrofitting of concrete and
masonry structures in seismic zones.>

The first experimental study on concrete specimens
confined with three types of FRP under axial compres-
sive loads has been carried out by Nanni and
Bradford.* They showed that the two mechanical prop-
erties of concrete, i.e. compressive strength and

ductility, would increase by confining the specimens
using FRP sheets.

Experimental studies that have examined the behav-
ior of FRP-confined columns are many and models
that have used these experimental results to estimate
the concrete compressive strength are numerous.
Fardis and Khalili® were the first to propose one of
such models. Mander et al.® presented a model for esti-
mating the compressive strength and axial strain of
FRP-confined concrete. The result of their research
was latter used by ACI 440.2R-02 Code.” To estimate
the compressive strength of FRP-confined columns,
many models have been proposed wherein the actual
hoop rupture strain of the FRP wrap is not considered
and their developments are based on the ultimate FRP
strain reported by the manufacturer or on the Coupon
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test. Lam and Teng® have considered a constant FRP
strain efficiency factor (defined as the ratio of actual
hoop rupture strain to ultimate tensile strain) for each
FRP type. Sadeghian and Fam’ have considered the
maximum confinement stress in the “confinement stiff-
ness ratio” as well as in “strain ratio” factors to take
into account the actual rupture strain and have pro-
posed some models to estimate the compressive
strength of concrete cylinders confined with FRP by
analyzing 518 specimens. Moodi et al.'®!' proposed a
model for estimating compressive strength of rectangu-
lar and square columns confined by FRP sheet. In their
study, the effective strain coefficient of FRP was con-
sidered as function of shape section.

In this study, a large set of experimental data has
been collected for circular columns confined with dif-
ferent types of FRP. Since modeling with larger statis-
tical populations will lead to more reliable results, the
statistical population used in this study is larger than
those used in previous studies. FRP strain efficiency
factor was considered as a factor of “strain ratio”,
“effective stiffness ratio”, or their combination and
three models were presented to estimate the compres-
sive strength of circular, FRP-confined, concrete col-
umns. Analyses of the results of 732 specimens show
that the proposed models estimate the strength values
more accurately.

Confinement mechanism

When concrete undergoes axial compression, it dilates
laterally (volumetric expansion or dilation). This dila-
tion is controlled by FRP jackets tensioned in loop
directions. Figure 1 shows the confinement effects in
the FRP-confined concrete. Neglecting tangential
stresses in the longitudinal direction of the column
specimen and considering the equilibrium of the
stresses applied on the FRP, the actual maximum con-
fining pressure (f;,) can be found as follows

2t _ 2Eppen ruply
D D

f/.,a = (1)

where D is the specimen diameter, Ej, is the elastic
modulus of FRP material, ¢ is the thickness of FRP
wrap, and ¢, ,,, is the actual FRP rupture strain in loop
directions defined as follows

Ehup = kagjfrp (2)

where ¢, is the ultimate tensile strain of FRP materials
and k, is the strain efficiency factor. In most models
presented for estimating the compressive strength of
FRP-confined columns, actual FRP rupture strain

‘ FRP wrap
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Figure I. Confinement mechanism in concrete.’

has not been considered meaning that k, equals 1 in
these models, but in some past studies,®”!? the effect of
this rupture strain has been considered. Lam and Tang®
have considered a constant value for the strain factor
for each types of FRP; for AFRP, CFRP, GFRP, and
HM-CFRP, this factor is 0.851, 0.586, 0.624, and
0.788, respectively. Lim and Ozbakkaloglu'? have pre-
sented a relationship for this factor in the form of the
product of the following three factors:

1. Strain localization factor that considers the effect of
non-uniform strain distribution in FRP.

2. Local (in-situ) factor that considers the effect of the
difference between maximum strain measured on the
column and that found from Coupon (flat ten-
sion) test.

3. FRP-to-fiber strain ratio.

They proposed equation (3) for strain efficiency
factor as follows'?

ke =09 —23f x 107° — 0.75E, x 10°  (3)

where /. is the strength of unconfined concrete.

Sadeghian and Fam® proposed equation (4) as fol-
lows for FRP confinement stress considering the actual
FRP rupture strain

Jia = pepif, “4)

where p, and p; are the strain and effective stiffness
ratio factors, respectively, defined as follows

_ 2Eﬁ‘p lj

Pi = 7 (5)
(D
Ehru
p, = (6)
86‘0
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where ¢, is the strain related to f, in the uncon-
fined concrete.

The FRP strain efficiency factor in this study has
been considered as: (1) ratio of the ultimate FRP tensile
strain to the strain related to f. and (2) ratio of the
effective stiffness which is defined as the ratio of FRP
elasticity modulus to the compressive strength of
the unconfined concrete. More information will be
provided in Section of compressive strength of confined
concrete.

(continued)

CFRP, GFRP

CFRP, GFRP
CFRP

FRP type
CFRP
CFRP
CFRP
CFRP
CFRP
CFRP
CFRP
AFRP
CFRP
CFRP

Unconfined
concrete
strength
range (MPa)
11.1-20.8

35.7-385
373

32.3-348
34.3-385
38.94I.1

36.2
39.2
32.2-43.7

41.1-53.8

12.8
12.1
384

Experimental database

Tests performed on the FRP-confined concrete are
numerous. In this study, a statistical population of
662 FRP-confined circular concrete specimens,
extracted from various studies, has been used for
modeling. The statistical population used in this
study is more complete than those used in earlier
researches and details of the specimens are given in
Table 1. They have diameters of 47-406 mm (average
155mm) and unconfined compressive strengths of
2.6-55.2MPa (average 35MPa). FRP types used in
these database include CFRP, AFRP, GFRP, and
HM-CFRP with moduli of elasticity ranging from
4.9 to 640 GPa (average 170 GPa) and ultimate tensile
strength of 75-4810 MPa (average 2712 MPa). All FRP
jackets used in these data are single direction (hoop
direction). These experimental data will be used for
formulation purposes.

Diameter

150
150

(mm)
200
150
200
52
00
52

Total
number
of database

Karabinis and Rousakis>*
Karam and Tabbra®
Karantzikis et al.>®
Demers and Neale®
Elsanadedy et al®*

Karbhari and Gao®’
Erdil et al.®®

Kono et al.*®
Lam and Teng59

Reference
Lam et al.®°
Lee et al.®'
Dai et al.®?
Evans et al.®®

Genetic algorithm

Optimization of structures has always been a noticeable
developing area of research in the field of engineering
optimization and has made highly progress in the
last decade.”®"’

The natural selection and evaluation process was
first observed and documented by Charles Darwin.
The fittest’s survival philosophy makes it easier to
reach the globally optimal solution. The methodology
is implemented numerically and developed for optimi-
zation problems, where the mathematical use of
GAs simulates natural evaluation and adaptation to
environmental variation. The process is initiated by
randomly or heuristically selecting a number of candi-
date design variables to create an initial population,
which is then encouraged to evolve over generations
to produce new designs that are better or fitter. It is
necessary to device a genetic coding system for repre-
sentation of design variable, which can be considered
to be a direct analogy of DNA structure of
chromosomes.

The design variables are coded by a bit string. With
this binary representation, the design variables can be

CFRP, GFRP
GFRP, HM-CFRP

CFRP, GFRP
CFRP

FRP type
AFRP, GFRP
GFRP

CFRP

CFRP

GFRP

CFRP

CFRP

Unconfined

concrete

strength
range (MPa)

32.4-36.2
25.9-49.5
25.0-52.0

35.6-36.3
24.2

39.0-50.5

42
21.7-26.5

34.4
28

325
20.1

Diameter

(mm)

number
of database

Total

. Summary of FRP-confined square and rectangular concrete specimens for modeling procedure.
7
2
6
2
2
I
4

Nanni and Bradford*

Ahmad et al."?
Au and Buykozturk|7

Benzaid et al.'®
Carnpione et al?
Carey and Harries®*

Bisby et al.?'

Berthet et al.'’
Bisby et al.2°
Bullo?

Table |
Reference
Aire et al.'*
Akogbe et al."
Al-Salloum'®
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coded only as integers. So it is usually necessary to
introduce a linear scaling conversion system to appro-
priately obtain the required range of parameter values.
For example, a design having two continuous variables
p, and f, each is coded as a fixed length 10 bit string
like ,=1001000011, $,=1101010110. Values of these
parameters are selected at random. A 10 bit string is
employed with regard to the precision with which the
variables should be represented. Total design is repre-
sented by a 20 bit string created simply by concatenat-
ing B, with f5,.

By doing so, it is possible to create a founding pop-
ulation with members each represented by a 20 bit
string. The next stage of the procedure, following the
specification of the initial design population, is that of
reproduction, which incorporates the concept of natu-
ral selection. The fitness of different members of the
population must be evaluated before mating to pro-
duce the next generation. The fitness F is computed
from the objective function of the chosen problem
accordingly.

The selection of mating pairs for reproduction is a
crucial step in GA. There are two methods of mating
pool selection: fitness proportional or roulette wheel
(RW) and tournament selection (7S). The Ilatter
method is proved to provide good selective pressure
by holding a tournament competition among N = 2
individuals. The best individual (winner) from this
tournament is one with highest fitness and the winner
is then inserted into the mating pool. The tournament
competition continues until the mating pool is filled to
generate new offspring. The tournament winners’
mating pool has a single average fitness.

In biological reproduction, the child’s chromosomal
pattern is derived from the two parents’ chromosomal
strings and thus the child inherits both characteristics.
In GA, it is the crossover process that ensures the
transfer of design information from generation to
generation, essentially by a simple swapping of one
(single-point) or two sections (two-point) of bit string
representation of two parent designs to obtain two off-
spring design solutions.

The positioning and extent of the crossover time is
randomly selected and may differ in each generation
for each mating couple. Following the crossover, the
natural evolution of the mutation concept is introduced
into GA by occasionally switching the bit value at a
randomly selected location of the generated strings.
This action is important as it protects against prema-
ture design convergence to an optimal solution. The
procedure is repeated until according to the objective
function the new generation ceases to improve. When
this happens, the youngest generation’s most fitting
individual is an optimal design solution. Figure 2
shows sketch of the GA used in this work.”®

Generate
initial random
encoded

I population

Decode &
Evaluate the
fitness of
each
individual

v

Select best
ranked
individuals to
reproduce

\ 4
Breed new
generation

via crossover
and mutation

Figure 2. Sketch of the GA.”®

In this study, GA is used for optimizing target func-
tion defined in the following sections. For all cases,
initial population and iteration are considered 10,000
and 100, respectively.

Compressive strength of
confined concrete
Compressive strength of FRP-confined concrete can be

estimated by various models some of which are provid-
ed in Table 2. As shown, effects of actual FRP rupture
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Table 2. Some of the available models for the compressive strength prediction of FRP-confined circular concrete columns.

Paper Model Descript
0.9

Wu and Wei'® fl.=f (0.75 + 27(?) ) fi = 2ot

Pham and Hadi'®' fl. =0.7f + 1.8f + 575+ 13 fi = Hmt

Ozbakkaloglu and Lim'®*

fl, = (1 +0.0058)f! + ki(fio i)

k
fi = ki (0.43 +0.009 f—j) Eeo
c
2E;t;
ki = P’y > fc/l,es
_ 2Eipennupt

fi.a

o 2t ®
Fahmy and Wu'®? fl.=f +kifi o :D4.5ﬂ‘a—0.3 o < 4oMPa
{kl =3.75f, % f/ > 40MPa
= f! —
Teng et al.'® {E{ B %(l +3.5(p — 0.01)p, 5: i%.%ll o = (22")2’ p, =
Youssef et al.”* flo=f(+ 2.25(%)%) fi = Yt
Kumutha et al.'® fl.=f +0.93f fi = Hnt
Guralnick and Gunawan'? fl. =f(0.616+ % + |.57\/%7+W) fiq = Lttt
Lam and Teng'"’ flee=F(1433 :27‘1) fia= %
fur = (1 +0.25(2)°) ’;_‘ftj'i;

Oliveira et al.'%®

frew = £1(0.35 + 3.79(f2)°7)

fl.o = max{ foa = f/(0.94 + 0.59(1)°7) D

. k, = 0.861 — 2.51  10-3f

fe —0.606 * 107°Ep,, +2.7 % 10°F,

strain has not been considered in models proposed by
Wu and Wei,'?’ Pham and Hadi,'" Fahmy and Wu, !9
Youssef et al.,”* and Kumutha et al.'®®

In this research, the equation of the compressive
strength of the FRP-confined concrete with circular
section has been considered as follows

Joe =fotofia )

wherein the actual confinement stress caused by the
FRP wrap (f;,) has been considered based on equation
(1). Considering the strength of the unconfined con-
crete, the value of o is found as follows

_fo fl <35MPa
“‘{az /!> 35MPa ®

Based on the average unconfined compressive
strength of the specimens in Table 1, 35MPa has
been selected. In this study, the strain efficiency
factor k, has been considered as two separate functions
(or their combination) which create three separate

models for estimating the compressive strength of the
FRP-confined concrete. These two functions are the
strain ratio (p.) and effective stiffness ratio (p,) defined
as follows

Epp

k ﬂ
&p

p, =1 (10)
Eco

Next, models presented for estimating the compres-
sive strength of the FRP-confined concrete are dis-
cussed wherein the FRP strain efficiency factor is
considered in three different forms.

Model I: FRP strain efficiency factor as a function
of ffective stiffness

In this case, the FRP strain efficiency factor is consid-
ered as a function of the stiffness ratio

k. =f(p,) = i +71p;" (11)
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Values of o; and o, in equation (8) and f;, y;, and /;
in equation (11) have been so calculated, using the opti-
mization GA, that the difference between the compres-
sion strength estimated by the analytical model
(equation (7)) and that obtained in the test will be the
lowest. Accordingly, o, o>, f;, 7;, and 4; can be so
calculated, using the GA, that the value of Z, calculat-
ed by equation (12), reaches its minimum. Therefore, in
the optimization algorithm, equation (12) was consid-
ered as the optimal function as follows

Z=1-R+e¢

2

(12)

(f(/'(-)exp - (fclc)pre
Z (f(/'(-)exp

In equation (12), R* is the correlation coefficient and
¢,,: 18 the total error. In equation (13) exp and pre
suffixes represent the experimental results and those
estimated through the model in equation (7),
respectively.

Considering a range 0 to 6 for «; and o, and —3 to 3
for 1, y1 and 4, values of oy, oy, By, 71 and 4; were
estimated to be 5.2812, 4.4537, 0.4748, —1.9181, and
—0.8035, respectively, through optimizing Z (equation
(12)) for the test results presented in Table 1. Based on
the above procedure, a value of Z=0.5694 was calcu-
lated for the optimal function. According to the
obtained results, an increase in the effective stiffness
ratio increases the strain efficiency factor, meaning
that the latter is directly related to the former.
Considering the strain efficiency factor as a function
of the effective stiffness ratio (equation (11)), the per-
centage of increase in the compressive strength caused
by FRP for a concrete specimen with an unconfined
compressive strength less than 35 MPa will be about
19% higher than that the same specimen with an
unconfined compressive strength greater than 35 MPa.

(13)

Crot =

Model II: FRP strain efficiency factor as a function
of strain ratio

As in previous case, the strain efficiency factor is con-
sidered as a function of strain ratio
ke = flpk) = Ba + 720, (14)

In this study, the strain related to f in an unconfined
concrete is calculated as follows”

bco = — (15)

E, = 4700/f. (16)

For this model too, as mentioned in previous sec-
tion, values of «; and «, in equation (8) and f», y,, and
A, are calculated using the optimization GA. Values of
o, o, Pa, 72, and A, were calculated to be 3.8522,
3.5525, 0.8992, —0.0594, and 0.7936, respectively
through optimizing test specimens in Table 1 with an
initial population of 10,000 after 100 iterations and
considering a range 0 to 6 for o; and o, and —3 to 3
for f», y», and 4,. The value of the optimal function
calculated using equation (12) for 662 specimens used
in optimization is equal to 0.5019. An increase in the
strain ratio increases the strain efficiency factor; there-
fore, the two are directly related. In this case, the per-
centage of increase in the confined compressive
strength for the concrete with an unconfined strength
less than 35 MPa is 8% higher than that greater than
35MPa (11% less than model I). A comparison of the
optimal functions in models I and II showed that the
effect of strain ratio in the model II that estimates
the compressive strength of FRP-confined columns is
greater and reduces the optimal function by about 13%
compared to model I.

Model llI: FRP strain efficiency factor as a
combinatory function of strain ratio (pe) and
effective stiffness ratio (pk)

Finally, the FRP strain efficiency factor is considered
as a combinatory function of the strain ratio and effec-
tive stiffness ratio as follows
ke = flpi) = B+ v3pp + 33p% + O3p"pp  (17)
For this model, values of «; and o, in equation (8)
and f3, 73, 43, 93, @3, O3, n3, and &3 are calculated
using the optimization GA as mentioned in previous
sections. Values of oy, o, fi3, 73, 43, 93, @3, 03, 113, and &;
were estimated to be 3.499, 3.0481, 0.2071, 1.4729,
—0.0815, —0.0305, 1.0841, 0.0045, 20, and —7.1945,
respectively through optimizing test specimens in
Table 1 with an initial population of 10,000 after 100
iterations and considering a range 0 to 6 for o; and a5,
and —20 to 20 for ﬂ3, V3, )u3, 53, @3, 03, ns, and 63.
The value of the optimal function calculated using
equation (12) for 662 specimens used in optimization
is equal to 0.4885 and results show that when the com-
bination of the two ratios is used, the optimal function
reduces by 17 and 3% compared to models I and II,
respectively.



Moodi et al.

1021

Evaluation of proposed models

To evaluate the proposed models, some additional
experimental data have been used from other studies
and presented in Table 3. As seen, the total number of
specimens used in this table is 70.

Based on equation (12), the total error, ¢,,,, for each
model has been calculated and presented in Table 4.
For a better comparison, the model performance is
evaluated through such statistical indices as: (1) mean
square error, (2) average absolute error, and (3) stan-
dard deviation determined by equations (18) to (20),
respectively. These indexes, calculated for both the
modeling specimens in Table 1, and the evaluating
specimens in Table 3, are outlined in Table 4.

As shown, considering the statistical results, the pro-
posed models have less error compared to other
models. Models I, I, and III have averagely reduced
the total error for all the specimens in Tables 1 and 3 by
21.9, 24.1 and 21.6%, respectively, compared to the
models proposed by Wu and Wei,'” Pham and
Hadi,'”' Ozbakkaloglu and Lim,'”* Fahmy and
W, !0 Teng et al.,' Youssef et al.,”* Kumutha

% and Lam

et al,'” Guralnick and Gunawan,'
and Teng.'"”’

Figure 3(a) to (m) shows the performance of the
models proposed by Wu and Wei,'® Pham and
Hadi,'”! Ozbakkaloglu and Lim,'® Fahmy and
Wu, ! Teng et al,'® Youssef et al.,”* Kumutha
et al.,'”® Guralnick and Gunawan,'” and Lam and
Teng,'”” and proposed models I, II, and III for all
the specimens in Tables 1 and 3 (732 specimens). As
shown, the proposed models estimate the compressive
strength of the FRP-confined, circular section concrete
specimens better.

For more comparisons, the values of optimal func-
tions, that involve the effects of the total error and
correlation coefficient, are provided in Table 5 for all
the models studied in this research (732 specimens).
And to check the effects of the proposed models, per-
cent reductions created by all three models compared
to other mentioned models are given in Table 5.

In Table 5, a negative/positive sign indicates a
decrease/an increase in the value of the optimal func-
tion compared to other mentioned models. Results in
Table 5 show that models IT and III perform better, but

Table 3. Details of the FRP-confined circular concrete specimens for evaluating procedure.

Total number Diameter Unconfined concrete

Reference of database (mm) strength range (MPa) FRP type
Abdollahi et al.'®® 5 150 14.8-41.7 GFRP
Almusallam''° 4 150 47.7-50.8 GFRP
Howie and Karbhari''' 12 152 38.6 GFRP
ki et al.''? 12 150 6.2 CFRP
Issa and Karam'"? 9 150 30.5 CFRP
Lin and Chen''* 10 120 32.7 GFRP, HM-CFRP
Lin and Liao'"® 6 100 23.9 CFRP
Miyauchi et al.''® 6 100150 23.6-26.3 CFRP
Vincent and Ozbakkaloglu''” 6 152 49.4 AFRP
Table 4. Statistical indicators for FRP-confined circular concrete specimens.

Specimens of Table | Specimens of Table 3
Theoretical models

MSE AAE SD Cror MSE AAE SD Cror
Wu and Wei'® 8.06 17.15 28.26 17.37 1.66 10.17 12.99 9.35
Pham and Hadi'®' 5.58 16.9 23.67 17.14 2.29 11.96 15.16 11.84
Ozbakkaloglu and Lim'%* 6.52 17.43 25.66 17.62 221 11.62 15.03 11.86
Fahmy and Wu'®? 461 17.27 21.08 19.44 3.17 15.45 15.76 16.77
Teng et al.'® 6.98 18.92 24.54 19.87 247 13.03 10.79 12.8
Youssef et al.”* 12.94 19.47 35.81 203 5.76 18.79 24.15 19.8
Kumutha et al.'® 10.17 28.27 18.05 31.49 12.65 32.59 15.12 34.61
Guralnick and Gunawan'? 6 17.7 23.75 17.18 2.79 12.26 16.89 11.68
Lam and Teng'%’ 6.31 17.35 25.18 18.6 1.83 11.61 12.26 11.53
Oliveira et al.'®® 8.71 17.79 28.72 17.85 2.05 11.02 14.2 10.39
Model | 7.89 16.01 28.14 16.2 1.79 11.27 13.52 11.33
Model I 6.36 15.48 25.27 15.8 247 125 14.66 12.38
Model Il 5.8 I5.5 24.15 15.72 5.19 16.73 21.28 16.71
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Figure 3. Continued
Table 5. Comparison of optimal function for models.
Percent increase/ Percent increase/ Percent increase/
Theoretical model yA decrease model | decrease model Il decrease model Il
Wu and Wei'® 0.51 6.2l —5.24 —5.43
Pham and Hadi'®' 0.54 1.93 —10.03 —10.24
Ozbakkaloglu and Lim'®* 0.56 —201 —14.46 —14.67
Fahmy and Wu'®? 0.55 —0.63 —12.92 —13.13
Teng et al.'® 0.55 —0.74 —13.04 —13.25
Youssef et al.”* 0.68 —23.94 —39.07 —-39.33
Kumutha et al.'% 0.73 ~32.52 —48.70 —48.98
Guralnick and Gunawan ' 0.50 8.80 —2.33 —2.52
Lam and Teng'"” 0.54 0.50 —11.64 —11.84

Oliveira et al.'®® 0.50 9.76 —1.26 —1.44
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it should be noted that their accuracies do not differ
much. According to this table, models I, 11, and III
averagely reduce the value of the optimum function
by 3.2, 15.9, and 16.1%, respectively, compared to
other models mentioned in this study.

Conclusions

In this study, three models have been proposed for esti-
mating the compressive strength of FRP-confined, cir-
cular-section columns. The strain efficiency factor of
FRP in these models has been considered as: (i) a func-
tion of the strain ratio, (ii) a function of the effective
stiffness ratio, and (iii) a function of the combination of
these ratios. Results from this research are shown
as follows:

1. Compared to the effective stiffness ratio, the
effect of the strain ratio for estimating the
compressive strength of confined circular columns
is greater.

2. Models proposed in this research estimate the com-
pressive strength of circular columns confined with
different types of FRP better; the three proposed
models averagely reduce the total error by 21.9,
24.1, and 21.6% and values of the optimal function
by 3.2, 15.9, and 16.1% compared to the models
mentioned in this study.

3. There is not much difference between the value of
the optimal function (which is a combination of
total error and correlation coefficient) of the model
wherein the FRP strain efficiency factor is a function
of the strain ratio and that of the one wherein FRP
strain efficiency factor is a function of the combina-
tion of the strain ratio and the effective stiffness
ratio. Therefore, considering the convenience of
the model wherein the FRP strain efficiency factor
is a function of the strain ratio, it can be selected as
the optimal model.
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