

MODELING AND
SIMULATION

FUNDAMENTALS
Theoretical Underpinnings

and Practical Domains

Edited by

John A. Sokolowski
Catherine M. Banks

The Virginia Modeling Analysis and Simulation Center
Old Dominion University

Suffolk, VA

A JOHN WILEY & SONS, INC. PUBLICATION

MODELING AND
SIMULATION

FUNDAMENTALS

MODELING AND
SIMULATION

FUNDAMENTALS
Theoretical Underpinnings

and Practical Domains

Edited by

John A. Sokolowski
Catherine M. Banks

The Virginia Modeling Analysis and Simulation Center
Old Dominion University

Suffolk, VA

A JOHN WILEY & SONS, INC. PUBLICATION

Cover graphic: Whitney A. Sokolowski

Copyright © 2010 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web
at www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6088, or online at http://www.wiley.com/go/ permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations of warranties with respect to the
accuracy or completeness of the contents of this book and specifi cally disclaim any implied
warranties of merchantability or fi tness for a particular purpose. No warranty may be created
or extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional
where appropriate. Neither the publisher nor author shall be liable for any loss of profi t or any
other commercial damages, including but not limited to special, incidental, consequential, or
other damages.

For general information on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762-2974, outside the
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic formats. For more information about Wiley products,
visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data

Modeling and simulation fundamentals : theoretical underpinnings and practical domains /
[edited by] John A. Sokolowski, Catherine M. Banks.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-470-48674-0 (cloth)
 1. Mathematical models. 2. Mathematical optimization. 3. Simulation methods.
I. Sokolowski, John A., 1953– II. Banks, Catherine M., 1960–
 QA401.M53945 2010
 511'.8–dc22

2009035905

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

This book is dedicated to

my mom, in her memory
–John A. Sokolowski

my father, who is always in my thoughts
–Catherine M. Banks

vii

CONTENTS

Preface xi

Contributors xiii

1 Introduction to Modeling and Simulation 1
Catherine M. Banks

M&S / 2
M&S Characteristics and Descriptors / 12
M&S Categories / 19
Conclusion / 22
References / 24

2 Statistical Concepts for Discrete Event Simulation 25
Roland R. Mielke

Probability / 26
Simulation Basics / 35
Input Data Modeling / 39
Output Data Analysis / 48
Conclusion / 56
References / 56

3 Discrete-Event Simulation 57
Rafael Diaz and Joshua G. Behr

Queuing System Model Components / 60
Simulation Methodology / 62
DES Example / 65
Hand Simulation—Spreadsheet Implementation / 67
Arena Simulation / 87
Conclusion / 97
References / 98

viii CONTENTS

4 Modeling Continuous Systems 99
Wesley N. Colley

System Class / 100
Modeling and Simulation (M&S) Strategy / 101
Modeling Approach / 102
Model Examples / 104
Simulating Continuous Systems / 110
Simulation Implementation / 118
Conclusion / 128
References / 129

5 Monte Carlo Simulation 131
John A. Sokolowski

The Monte Carlo Method / 132
Sensitivity Analysis / 142
Conclusion / 145
References / 145

6 Systems Modeling: Analysis and Operations Research 147
Frederic D. McKenzie

System Model Types / 147
Modeling Methodologies and Tools / 148
Analysis of Modeling and Simulation (M&S) / 165
OR Methods / 174
Conclusion / 179
References / 179
Further Readings / 180

7 Visualization 181
Yuzhong Shen

Computer Graphics Fundamentals / 182
Visualization Software and Tools / 208
Case Studies / 217
Conclusion / 223
References / 224

8 M&S Methodologies: A Systems Approach
to the Social Sciences 227
Barry G. Silverman, Gnana K. Bharathy, Benjamin Nye, G. Jiyun Kim,
Mark Roddy, and Mjumbe Poe

Simulating State and Substate Actors with CountrySim:
Synthesizing Theories Across the Social Sciences / 229

CONTENTS ix

The CountrySim Application and Sociocultural
Game Results / 255

Conclusions and the Way Forward / 265
References / 268

9 Modeling Human Behavior 271
Yiannis Papelis and Poornima Madhavan

Behavioral Modeling at the Physical Level / 273
Behavioral Modeling at the Tactical and Strategic Level / 274
Techniques for Human Behavior Modeling / 277
Human Factors / 305
Human–Computer Interaction / 308
Conclusion / 320
References / 321

10 Verifi cation, Validation, and Accreditation 325
Mikel D. Petty

Motivation / 326
Background Defi nitions / 326
VV&A Defi nitions / 330
V&V as Comparisons / 332
Performing VV&A / 333
V&V Methods / 340
VV&A Case Studies / 354
Conclusion / 365
Acknowledgments / 368
References / 368

11 An Introduction to Distributed Simulation 373
Gabriel A. Wainer and Khaldoon Al-Zoubi

Trends and Challenges of Distributed Simulation / 374
A Brief History of Distributed Simulation / 375
Synchronization Algorithms for Parallel and Distributed

Simulation / 377
Distributed Simulation Middleware / 383
Conclusion / 397
References / 398

12 Interoperability and Composability 403
Andreas Tolk

Defi ning Interoperability and Composability / 405
Current Interoperability Standard Solutions / 412

x CONTENTS

Engineering Methods Supporting Interoperation
and Composition / 428

Conclusion / 430
References / 431
Further Readings / 433

Index 435

xi

PREFACE

 Modeling and simulation (M & S) has evolved from tool to discipline in less
than two decades. With the technology boom of the 1990s came the ability to
use models and simulations in nearly every aspect of life. What was once a
tool for training the military (war - gaming) is now a capability to better under-
stand human behavior, enterprise systems, disease proliferation, and so much
more. To equip developers of M & S, the theoretical underpinnings must be
understood. To prepare users of M & S, practical domains must be explored.
The impetus for this book is to provide students of M & S with a study of the
discipline a survey at a high - level overview.

 The purpose of the text is to provide a study that includes defi nitions, para-
digms, applications, and subdisciplines as a way of orienting students to M & S
as a discipline and to its body of knowledge. The text will provide general
conceptual framework for further MSIM studies.

 To students who will be reading this text, we offer an incisive analysis of
the key concepts, body of knowledge, and application of M & S. This text is
designed for graduate students with engineering, mathematical, and/or com-
puter science undergraduate training for they must have profi ciency with
mathematical representations and computer programs.

 The text is divided into 12 chapters that build from topic to topic to provide
the foundation/theoretical underpinnings to M & S and then progress to applica-
tions/practical domains. Chapter 1 , “ Introduction to Modeling and Simulation, ”
provides a brief history, terminology, and applications and domains of M & S.
Chapter 2 , “ Statistical Concepts for Discrete Event Simulation, ” provides the
mathematical background. Chapters 3 to 5 develop a three - part series of M & S
paradigms, starting with Chapter 3 , “ Discrete - Event Simulation, ” Chapter 4 ,
 “ Modeling Continuous Systems, ” and Chapter 5 , “ Monte Carlo Simulation. ”
Chapters 6 and 7 develop two areas necessary for model development.
Chapter 6 , “ Systems Modeling: Analysis and Operations Research, ” reviews
model types and research methods, and Chapter 7 , “ Visualization, ” brings into
the discussion the importance of graphics.

 The next four chapters cover sophisticated methodologies, verifi cation
and validation, and advanced simulation techniques: Chapter 8 , “ M & S
Methodologies: A Systems Approach to the Social Sciences, ” Chapter 9 ,

xii PREFACE

 “ Modeling Human Behavior, ” Chapter 10 , “ Verifi cation, Validation, and
Accreditation, ” and Chapter 11 , “ An Introduction to Distributed Simulation. ”
The concluding chapter, “ Interoperability and Composability, ” introduces
the importance of interoperability for engaging M & S within a number of
domains.

 While fi gures in the book are not printed in color, some chapters have
fi gures that are described using color. The color representations of these
fi gures may be downloaded from the following site: ftp://ftp.wiley.com/public/
sci_tech_med/modeling_simulation .

 J ohn A. S okolowski
 C atherine M. B anks

xiii

CONTRIBUTORS

Catherine M. Banks, PhD, Virginia Modeling, Analysis, and Simulation
Center, Old Dominion University, 1030 University Boulevard, Suffolk, VA
23435; Email: cmbanks@odu.edu

Joshua G. Behr, PhD, Department of Political Science and Geography, Old
Dominion University, 5115 Hampton Boulevard, Norfolk, VA 23529;
Email: jbehr@odu.edu

Wesley N. Colley, PhD, Senior Research Scientist, Center for Modeling,
Simulation, and Analysis, University of Alabama, 301 Sparkman Drive,
VBRH D - 15, Huntsville, AL 35899; Email: colleyw@uah.edu

Rafael Diaz, PhD, Virginia Modeling, Analysis, and Simulation Center, Old
Dominion University, 1030 University Boulevard, Suffolk, VA 23435;
Email: rdiaz@odu.edu

Poornima Madhavan, PhD, Department of Psychology, Old Dominion
University, 5115 Hampton Boulevard, Norfolk, VA 23529; Email:
 pmadhava@odu.edu

Frederic D. McKenzie, PhD, Department of Electrical and Computer
Engineering, Old Dominion University, 5115 Hampton Boulevard, Norfolk,
VA 23529; Email: rdmckenz@odu.edu

Roland R. Mielke, PhD, Department of Electrical and Computer Engineering,
Old Dominion University, 5115 Hampton Boulevard, Norfolk, VA 23529;
Email: rmielke@odu.edu

Yiannis Papelis, PhD, Virginia Modeling, Analysis, and Simulation Center,
Old Dominion University, 1030 University Boulevard, Suffolk, VA 23435;
Email: ypapelis@odu.edu

Mikel D. Petty, PhD, Director, Center for Modeling, Simulation, and
Analysis, University of Alabama, 301 Sparkman Drive, VBRH D - 14,
Huntsville, AL 35899; Email: pettym@email.uah.edu

xiv CONTRIBUTORS

Yuzhong Shen, PhD, Department of Electrical and Computer Engineering,
Old Dominion University, 5115 Hampton Boulevard, Norfolk, VA 23529;
Email: yshen@odu.edu

Barry G. Silverman, PhD, Department of Systems Engineering, University of
Pennsylvania, Philadelphia, PA 19104; Email: barryg@seas.upenn.edu

John A. Sokolowski, PhD, Virginia Modeling, Analysis, and Simulation
Center, Old Dominion University, 1030 University Boulevard, Suffolk,
VA 23435; Email: jsokolow@odu.edu

Andreas Tolk, PhD, Department of Engineering Management and Systems
Engineering, Old Dominion University, 5115 Hampton Boulevard, Norfolk,
VA 23529; Email: atolk@odu.edu

Gabriel A. Wainer, PhD, Department of Systems and Computer Engineering,
Carleton University, 1125 Colonel By Drive, 3216 V - Sim, Ottawa, ON, K1S
5B6, Canada; Email: gwainer@sce.carleton.ca

Gnana K. Bharathy, Postdoctoral candidate, University of Pennsylvania,
Philadelphia, PA 19104

G. Jiyun Kim, Postdoctoral candidate, University of Pennsylvania, Phila-
delphia, PA 19104

Mjumbe Poe, Research staff, University of Pennsylvania, Philadelphia, PA
19104

Mark Roddy, Research staff, University of Pennsylvania, Philadelphia, PA
19104

Khaldoon Al - Zoubi, Graduate Student, Carleton University, Ottawa, ON,
K1S 5B6

Benjamin Nye, Graduate Student, University of Pennsylvania, Philadelphia,
PA 19104

1

Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains,
Edited by John A. Sokolowski and Catherine M. Banks
Copyright © 2010 John Wiley & Sons, Inc.

1
INTRODUCTION
 TO MODELING

 AND SIMULATION

Catherine M. Banks

 Modeling and simulation (M & S) is becoming an academic program of choice
for science and engineering students in campuses across the country. As a
discipline, it has its own body of knowledge, theory, and research methodology.
Some in the M & S community consider it to be an infrastructure discipline
necessary to support integration of the partial knowledge of other disciplines
needed in applications. Its robust theory is based on dynamic systems, com-
puter science, and an ontology of the domain. Theory and ontology character-
ize M & S as distinct in relation to other disciplines; these serve as necessary
components of a body of knowledge needed to practice M & S professionally
in any of its aspects.

 At the core of the discipline of M & S is the fundamental notion that models
are approximations of the real world . This is the fi rst step in M & S, creating a
model approximating an event or a system. In turn, the model can then be
modifi ed in which simulation allows for the repeated observation of the model.
After one or many simulations of the model, analysis takes place to draw
conclusions, verify and validate the research, and make recommendations
based on various simulations of the model. As a way of representing data,
visualization serves to interface with the model. Thus, M & S is a problem - based
discipline that allows for repeated testing of a hypothesis. Signifi cantly, M & S

2 INTRODUCTION TO MODELING AND SIMULATION

expands the capacity to analyze and communicate new research or fi ndings.
This makes M & S unique to other methods of research and development.

 Accordingly, the intent of this text is to introduce students to the funda-
mentals, the theoretical underpinnings, and practical domains of M & S as a
discipline. An understanding and application of these skills will prepare M & S
professionals to engage this critical technology.

M&S

 The foundation of an M & S program of study is its curriculum built upon four
precepts — modeling, simulation, visualization, and analysis. The discussion
below is a detailed examination of these precepts as well as other terms inte-
gral to M & S. * A good place to start is to defi ne some principal concepts like
system, model, simulation, and M & S.

Defi nition of Basic Terms and Concepts

 Because system can mean different things across the disciplines, an agreed
upon defi nition of system was developed by the International Council of
Systems Engineering (INCOSE). INCOSE suggests that a system is a con-
struct or collection of different elements that together produces results not
obtainable by the elements alone. * * The elements can include people, hard-
ware, software, facilities, policies, documents — all things required to produce
system - level qualities, properties, characteristics, functions, behavior, and per-
formance. Importantly, the value of the system as a whole is the relationship
among the parts. A system may be physical , something that already exists, or
notional , a plan or concept for something physical that does not exist.

 In M & S, the term system refers to the subject of model development; that
is, it is the subject or thing that will be investigated or studied using M & S.
When investigating a system, a quantitative assessment is of interest to the
modeler — observing how the system performs with various inputs and in dif-
ferent environments. Of importance is a quantitative evaluation of the perfor-
mance of the system with respect to some specifi c criteria or performance
measure. There are two types of systems: (1) discrete , in which the state vari-
ables (variables that completely describe a system at any given moment in
time) change instantaneously at separate points in time, and (2) continuous ,

 * Portions of this chapter are based on Banks CM. What is modeling and simulation? In Principles
of Modeling and Simulation: A Multidisciplinary Approach . Sokolowski JA, Banks CM (Eds.).
Hoboken, NJ: John Wiley & Sons; 2009; VMASC short course notes prepared by Mikel D. Petty;
and course notes prepared by Roland R. Mielke, Old Dominion University.
 * * Additional information and defi nitions of system can be found at the INCOSE online glossary
at http://www.incose.org/mediarelations/glossaryofseterms.aspx .

M&S 3

where the state variables change continuously with respect to time. There are
a number of ways to study a system:

 (1) the actual system versus a model of the system
 (2) a physical versus mathematical representation
 (3) analytic solution versus simulation solution (which exercises the simu-

lation for inputs to observe how they affect the output measures of
performance) [1] .

 In the study of systems, the modeler focuses on three primary concerns:
(1) the quantitative analysis of the systems; (2) the techniques for system
design, control, or use; and (3) the measurement or evaluation of the system
performance.

 The second concept, model , is a physical, mathematical, or otherwise logical
representation of a system, entity, phenomenon, or process. Simply, models
serve as representations of events and/or things that are real (such as a historic
case study) or contrived (a use case). They can be representations of actual
systems. This is because systems can be diffi cult or impossible to investigate.

 As introduced above, a system might be large and complex, or it might be
dangerous to impose conditions for which to study the system. Systems that
are expensive or essential cannot be taken out of service; systems that are
notional do not have the physical components to conduct experiments. Thus,
models are developed to serve as a stand - in for systems. As a substitute, the
model is what will be investigated with the goal of learning more about the
system.

 To produce a model, one abstracts from reality a description of the system.
However, it is important to note that a model is not meant to represent all
aspects of the system being studied. That would be too timely, expensive, and
complex — perhaps impossible. Instead, the model should be developed as
simply as possible, representing only the system aspects that affect system
performance being investigated in the model. Thus, the model can depict the
system at some point of abstraction or at multiple levels of the abstraction
with the goal of representing the system in a reliable fashion. Often, it is
challenging for the modeler to decide which aspects of a system need to be
included in the model.

 A model can be physical , such as a scale model of an airplane to study
aerodynamic behavior. A physical model, such as the scale model of an air-
plane, can be used to study the aerodynamic behavior of the airplane through
wind - tunnel tests. At times, a model consists of a set of mathematical equations
or logic statements that describes the behavior of the system. These are
notional models. Simple equations often result in analytic solutions or an
analytic representation of the desired system performance characteristic under
study.

 Conversely, in many cases, the mathematical model is suffi ciently complex
that the only way to solve the equations is numerically. This process is referred

4 INTRODUCTION TO MODELING AND SIMULATION

to as computer simulation . Essentially, a system is modeled using mathematical
equations; then, these equations are solved numerically using a digital com-
puter to indicate likely system behavior. There are distinct differences between
the numerical and the analytic way of solving a problem: Analytic solutions
are precise mathematical proofs, and as such, they cannot be conducted for all
classes of models. The alternative is to solve numerically with the understand-
ing that an amount of error may be present in the numerical solution.

 Below is an example of developing a model from a mathematical equation.
The goal of the model is to represent the vertical height of an object moving
in one dimension under the infl uence of gravity (Fig. 1.1).

 The model takes the form of an equation relating the object height h to
the time in motion t , the object initial height s , and the object initial velocity
 v , or:

 h at vt s= + +1
2

2 ,

where

 h = height (feet),
 t = time in motion (seconds),
 v = initial velocity (feet per second, + is up),
 s = initial height (feet),
 a = acceleration (feet per second per second).

 This model represents a fi rst - order approximation to the height of the
object. Conversely, the model fails, however, to represent the mass of the
object, the effects of air resistance, and the location of the object.

 Defi ning the third concept, simulation , is not as clear - cut as defi ning the
model. Defi nitions of simulation vary:

 Figure 1.1 Model example.

M&S 5

 (1) a method for implementing a model over time
 (2) a technique for testing, analysis, or training in which real - world systems

are used, or where real - world and conceptual systems are reproduced
by a model

 (3) an unobtrusive scientifi c method of inquiry involving experiments
with a model, rather than with the portion of reality that the model
represents

 (4) a methodology for extracting information from a model by observing
the behavior of the model as it is executed

 (5) a nontechnical term meaning not real, imitation

 In sum, simulation is an applied methodology that can describe the behav-
ior of that system using either a mathematical model or a symbolic model [2] .
It can be the imitation of the operation of a real - world process or system over
a period of time [3] .

 Recall, engaging a real system is not always possible because (1) it might
not be accessible, (2) it might be dangerous to engage the system, (3) it might
be unacceptable to engage the system, or (4) the system might simply not exist.
To counter these constraints, a computer will imitate operations of these
various real - world facilities or processes. Thus, a simulation may be used when
the real system cannot be engaged.

 Simulation, simulation model, or software model is also used to refer to the
software implementation of a model. The mathematical model of the Model
Example 1 introduced above may be represented in a software model. The
example below is a C program that calculates the height of an object moving
under gravity:

Simulation Example 1

/* Height of an object moving under gravity. */
/* Initial height v and velocity s constants. */
main()
{

float h, v = 100.0, s = 1000.0;
int t;
for (t = 0, h = s; h >= 0.0; t++)
{

h = (-16.0 * t * t) + (v * t) + s;
printf(“Height at time %d = %f\n ”, t, h);

}
}

 This is a software implementation of the model. In an actual application, s
and v would be identifi ed as input variables rather than constants. The result
of simulating this model, executing the software program on a computer, is a
series of values for h at specifi ed times t .

6 INTRODUCTION TO MODELING AND SIMULATION

 Below is another output of the same model showing the results of simulat-
ing or executing the model of an object moving under the infl uence of gravity.
The simulation is conducted for an initial height of s = 1000 ft, and an initial
velocity of v = 100 ft/s. Note from the example that the positive reference for
velocity is up, an acceleration of − 32 ft/s/s. The results of the simulation are
presented in tabular and graphic forms (Fig. 1.2):

 Simulation Example 2

Model:

Data: ft s ft ft s

h at vt sv at v

v s a

= + + = +

= = = −

1
2

2
0

0 100 1000 32, , 22.

 There are several terms associated with the execution of a simulation. The
term run and/or trial is used to refer to a single execution of a simulation, as
shown above. They may also refer to a series of related runs of a simulation
as part of an analysis or experimentation process. The term exercise is used to
refer to a series of related runs of the simulation as part of a training process.
Thus, trial and exercise are similar in meaning but imply different uses of the
simulation runs. Lastly, simulation also allows for virtual reality research
whereby the analyst is immersed within the simulated world through the use
of devices such as head - mounted display, data gloves, freedom sensors, and
forced - feedback elements [2] .

 The fourth concept is M & S . M & S refers to the overall process of developing
a model and then simulating that model to gather data concerning performance
of a system. M & S uses models and simulations to develop data as a basis
for making managerial, technical, and training decisions. For large, complex
systems that have measures of uncertainty or variability, M & S might be the
only feasible method of analysis of the system. M & S depends on computa-
tional science for the simulation of complex, large - scale phenomena. (Compu-
tational science is also needed to facilitate the fourth M & S precept, visualization,
which serves to enhance the modeler ’ s ability to understand or interpret that
information. Visualization will be discussed in more detail below.)

 In review, M & S begins with (1) developing computer simulation or a design
based on a model of an actual or theoretical physical system, then (2) execut-
ing that model on a digital computer, and (3) analyzing the output. Models

t
0
1
2
3
4
5
6
7

v
100
68
36
4

–28
–60
–92

–124

h
1000

Height of falling object

1200
1000
800
600
400
200

0
0 2 4

Time

HeightH
e
ig

h
t

6 8

1052
972
860
719
540
332
92

 Figure 1.2 Tabular and graphic simulation.

M&S 7

and the ability to act out with models is a credible way of understanding the
complexity and particulars of a real entity or system [2] .

 M & S Development Process Cycle

 The process of M & S passes through four phases of a cyclic movement: model,
code, execute, and analyze. Each phase depends on a different set of support-
ing technologies:

 (1) model phase = modeling technologies
 (2) code phase = development technologies
 (3) execute phase = computational technologies
 (4) analyze phase = data/information technologies

 Figure 1.3 illustrates these phases and their related technologies [4] . The
fi gure also depicts two processes: (1) the phases used in the development and
testing of computer models and simulations and 2) the phases involved in
applying M & S to the investigation of a real - world system.

 Modeling Technologies The construction of a model for a system requires
data, knowledge, and insight about the sysyem. Different types of systems are
modeled using different constructs or paradigms. The modeler must be profi -
cient in his or her understanding of these different system classes and select
the best modeling paradigm to capture or represent the system he or she is to
model. As noted previoulsy, modeling involves mathematics and logic to
describe expected behavior; as such, only those system behaviors siginifi cant
to the study or research question need be represented in the model.

 Development Technologies The development of a simulation is a software
design project. Computer code must be written to algorithmically represent

Modeling technologies

Theories, information, algorithms, and

processes that support model development

• Model types

• Modeling paradigms

Development technologies

Techniques, tools, and software for design

and implementation of simulations

• Software engineering

• Project management

Data/information technologies

Processes and tools for data capture,

storage, transformation, and analysis

• Statistics

• VV&A

Computation technologies

Computers and systems

to host simulations

Results

Insight Simulation

Analyze Execute

ImplementModel

Model

• Computer architectures

• Systems configurations

 Figure 1.3 M & S cycle and relevant technologies (adapted from Starr and Orlov [4]) .

8 INTRODUCTION TO MODELING AND SIMULATION

the mathematical statements and logical constructs of the model. This phase
of the M & S cycle uses principles and tools of software engineering.

Computational Technologies The simulation is next executed to produce
performance data for the system. For simple simulations, this might mean
implementing the simulation code on a personal computer. For complex simu-
lations, the simulation code might be implemented in a distributed, multipro-
cessor or multicomputer environment where the different processing units are
interconnected over a high - speed computer network. Such an implementation
often requires specialized knowledge of computer architectures, computer
networks, and distributed computing methodologies.

Data/Informational Technologies During this phase of the M & S process,
analysis of the simulation output data is conducted to produce the desired
performance information that was the original focus of the M & S study. If the
model contains variability and uncertainty, then techniques from probability
and statistics will likely be required for the analysis. If the focus of the study
is to optimize performance, then appropriate optimization techniques must be
applied to analyze the simulation results.

 The desired M & S process will undoubtedly take a number of iterations of
the M & S cycle. The fi rst iteration often provides information for modifying
the model. It is a good practice to repeat the cycle as often as needed until the
simulation team is satisfi ed that the results from the M & S study are close
enough to the performance of the system being studied.

 Figure 1.4 provides a more detailed view of the M & S cycle with the addition
of details such as verifi cation, validation, and accreditation (VV & A) activities,
which serve to ensure a more correct and representative model of the system
 [5] . (The dashed connectors show how the process advances from one phase
to the next. The solid connectors show the VV & A activities that must be inte-
grated with the development activities.)

Verifi cation Verifi cation ensures that M & S development is conducted cor-
rectly, while validation ensures that the model represents the real system and
that the model is truly representative of that system. (Chapter 10 will provide
a thorough discussion on the subject of VV & A.) This diagram illustrates how
VV & A activities are not conducted as a phase of the M & S process, but as
activities integrated throughout the M & S process.

 To engage the entire M & S process, a number of related concepts and dis-
ciplines must be incorporated into the cycle.

Related Disciplines

 There are fi ve key concepts and/or disciplines related to the M & S process:
probability and statistics, analysis and operations research, computer visualiza-
tion, human factors, and project management. Each will be briefl y discussed.

M&S 9

 Probability and Statistics Nearly all systems in the real - world display
varying degrees of uncertainty. For instance, there is uncertainty in the move-
ment of cars at a stop light:

 (1) How long before the fi rst car acknowledges the light change to green?
 (2) How fast does that car take off?
 (3) At what time does the second car start moving?

Formulated problem

VV&T

Communicated

problem

Formulated

problem

Proposed solution

technique

(simulation)

System and

objectives

definition

Conceptual

model

Communicative

model (s)

Programmed

model

Simulation

results

Integrated

decision support

Experimental

model

System and objectives

definition VV&T

Communicative

model VV&T

Experimental

model VV&T

Experiment

design VV&T

Design of experiments

Programmed

model VV&T

Data

VV&T

Model formulation

P
e
s
e
n
ta

ti
o
n
 o

f

s
im

u
la

ti
o
n
 r

e
s
u
lt
s

P
re

s
e
n
ta

ti
o
n
 V

V
&

T

Model

qualification

Model

representation

Programming

Feasibility assessment

of simulation

Investigation of

solution techniques

Decision

makers

Acceptability of

simulation results
System

investigation

Problem

formulation

R
e
d
e
fin

iti
on

E
xp

e
rim

entation

 Figure 1.4 Detailed M & S life cycle (adapted from Balci [5]). VV & T, verifi cation, validation, and
testing.

10 INTRODUCTION TO MODELING AND SIMULATION

 (4) What is the spatial interval between cars?
 (5) What happens if one of the cars in the chain stalls?

 In modeling a situation such as traffi c movement at a stop light, one cannot
ignore or attempt to average the uncertainty of response/movement because
the model would then lack validity. Inclusion of uncertainty and variability
requires that system parameters be represented as random variables or random
process .

 Working with random variables requires the use of concepts and theories
from probability and statistics , a branch of mathematics. Probability and sta-
tistics are used with great frequency in M & S to generate random variates to
model system random input variables that represent uncertainty and variabil-
ity, and to anaylze the output from stochastic models or systems.

 Stochastic models contain parameters that are described by random vari-
ables; thus, simulation of stochastic models results in outputs that are also
random variables. Probability and statistics are key to analysis of these types
of systems. Chapters 2 and 5 will provide further discussion of this signifi cant
branch of mathematics.

Analysis and Operations Research The conduct of a simulation study
results in the generation of system performance data, most often in large
quantities. These data are stored in a computer system as large arrays of
numbers. The process of converting the data into meaningful information that
describes the behavior of the system is called analysis . There are numerous
techniques and approaches to conducting analysis. The development and use
of these techniques and approaches are a function of the branch of mathemat-
ics and systems engineering called operations research .

 M & S - based analysis has a simulation output that typically represents a
dynamic response of the modeled system for a given set of conditions and
inputs. Analysis is performed to transform these data when seeking answers
to questions that motivated the simulation study. The simulation study can
include a number of functions:

 (1) design of experiments — the design of a set of simulation experiments
suitable for addressing a specifi c system performance question;

 (2) performance evaluation — the evaluation of system performance, mea-
surement of how it approaches a desired performance level;

 (3) sensitivity analysis — system sensitivity to a set of input parameters;
 (4) system comparison — comparison of two or more system alternatives to

derive best system performance with given conditions;
 (5) constrained optimization — determination of optimum parameters to

derive system performance objective.

 Recall, analysis is one of the four precepts of M & S (along with modeling,
simulation, and visualization). Simply, analysis takes place to draw conclusions,
verify and validate the research, and make recommendations based on various
simulations of the model. Chapter 4 delves further on the topics of queuing

M&S 11

theory - based models, simulation methodology, and spreadsheet simulation —
 all functions of analysis.

Computer Visualization Visualization is the ability to represent data as a
way to interface with the model. (It is also one of the four precepts of M & S.)
The systems that are investigated using M & S are large and complex; too often
tables of data and graphs are cumbersome and do not serve to clearly under-
stand the behavior of systems. Visualization is used to represent the data.

 Computer graphics and computer visualization are used to construct two -
 dimensional and three - dimensional models of the system being modeled. This
allows for the visual plotting and display of system time response functions to
visualize complex data sets and to animate visual representations of systems
to understand its dynamic behavior more adequately. M & S professionals who
are able to engage visualization fully are able to provide an overview of inter-
active, real - time, three - dimensional computer graphics and visual simulations
using high - level development tools. These tools facilitate virtual reality
research, whereby the analyst is immersed within the simulated world through
the use of devices such as head - mounted display, data gloves, freedom sensors,
and forced - feedback elements [2] . Computer animations are offshoots of com-
putational science that allow for additional variations in modeling. * Chapter
 7 will provide an in - depth discussion of visualization.

Human Factors Most simulations are developed to interface with a human
user. These simulations place humans as system components within the model.
To do this effi ciently and effectively, the simulation designer must have a basic
understanding of human cognition and perception. With this knowledge, the
simulation designer can then create the human – computer interface to account
for the strengths and weaknesses of the human user. These areas of study are
called human factors and human– computer ı nterfacing . The modeling of human
factors is called human behavior modeling . This type of modeling focuses
primarily on the computational process of human decision making. All three
areas of study are typically subareas of psychology, although disciplines within
the social sciences (such as history, geography, religious studies, political
science) also make signifi cant contributions to human behavior modeling. * *
Chapter 9 addresses human factors in M & S.

Project Management The application of the M & S process to solve real -
 world problems is a daunting task, and, if not managed properly, it can become

 * Computer animation is emphasized within computer graphics, and it allows the modeler to create
a more cohesive model by basing the animation on more complex model types. With the increased
use of system modeling, there has been an increased use of computer animation, also called physi-
cally based modeling [4] .
 * * For more information on human behavior modeling and case studies using systems dynamics,
game theory, social network modeling, and ABM to represent human behavior, see Sokolowski
JA, Banks CM. (Eds.). Principles of Modeling and Simulation: A Multidisciplinary Approach .
New York: John Wiley & Sons; 2009; and Sokolowski JA, Banks CM. Modeling and Simulation
for Analyzing Global Events . New York: John Wiley & Sons; 2009.

12 INTRODUCTION TO MODELING AND SIMULATION

a problem in itself. For instance, there might be thousands of people and
months of effort invested in a project requiring effective and effi cient manage-
ment tools to facilitate smooth outlay. When computer simulation is the only
method available to investigate such large - scale projects, the M & S process
becomes a large technical project requiring oversight and management. Thus,
the M & S professional must be acquainted with project management, a subarea
of engineering management.

 With this introduction of M & S fundamentals, what is meant by M & S and
the related areas of study that are important to the M & S process, one can
progress to a more detailed discussion of M & S characteristics, paradigms, att-
tributes, and applications.

M&S CHARACTERISTICS AND DESCRIPTORS

 Understanding what is meant by M & S and how, as a process, it can serve a
broad venue of research and development is one ’ s initial entry into the M & S
community. As M & S professionals, one must progress to understanding and
engaging various simulation paradigms and modeling methods. The informa-
tion below will introduce some of these characteristics and descriptors.

Simulation Paradigms

 There are different simulation paradigms that are prominent in the M & S
process. First, there is the Monte Carlo simulation (also called the Monte Carlo
method), which randomly samples values from each input variable distribution
and uses that sample to calculate the model ’ s output. This process of random
sampling is repeated until there is a sense of how the output varies given the
random input values. Monte Carlo simulation models system behavior using
probabilities. Second is continuous simulation whereby the system variables
are continuous functions of time . Time is the independent variable and the
system variables evolve as time progresses. Continuous simulations systems
make use of differential equations in developing the model. The third simula-
tion paradigm is discrete - event simulation in which the system variables are
discrete functions in time . These discrete functions in time result in system
variables that change only at distinct instants of time. The changes are associ-
ated with an occurence of a system event. Discrete - event simulations advance
time from one event to the next event. This simulation paradigm adheres to
queuing theory models. Continuous and discrete - event simulations are dynamic
systems with variables changing over time. All three of these simulation para-
digms are discussed individually in Chapters 2 – 4 .

M&S Attributes

 There are three primary descriptors applied to a model or simulation that serve
as attributes or defi ning properties/characteristics of the model or simulation.
These are fi delity, resolution, and scale.

M&S CHARACTERISTICS AND DESCRIPTORS 13

Fidelity is a term used to describe how the model or the simulation closely
matches reality. The model or simulation that closely matches or behaves
like the real system it is representing has a high fi delity. Attaining high fi delity
is not easy because models can never capture every aspect of a system. Models
are built to characterize only the aspects of a system that are to be investigated.
A great degree of effort is made to achieve high fi delity. A low fi delity is
tolerated with regard to the components of the system that are not important
to the invesigation. Similarly, different applications might call for different
levels of fi delity. The simulation of the system for thesis research and develop-
ment may require higher levels of fi delity than a model that is to be used for
training.

 Often, the term fi delity is used incorrectly with validity to express the accu-
racy of the representation. Only validity conveys three constructs of accuracy
of the model:

 (1) reality — how the model closely matches reality
 (2) representation — some aspects are represented, some are not
 (3) requirements — different levels of fi delity required for different

applications.

Resolution (also known as granularity) is the degree of detail with which
the real world is simulated. The more detail included in the simulation, the
higher the resolution. A simple illustration would be the simulation of an
orange tree. A simulation that represents an entire grove would prove to have
a much lower resolution of the trees than a simulation of a single tree.
Simulations can go from low to high resolution. Return to the example of the
tree: The model can begin with a representation of the entire forest, then a
model of an individual tree, then a model of that individual tree ’ s fruit, with
a separate model of each piece of fruit in varying stages of maturity.

Scale is the size of the overall scenario or event the simulation represents;
this is also known as level. Logically, the larger the system or scenario, the
larger the scale of the simulation. Take for example a clothing factory. The
simulation of a single sewing machine on the factory fl oor would consist of a
few simulation components, and it would require the representation of only a
few square feet of the entire factory. Conversely, a simulation of the entire
factory would require representations of all machines, perhaps hundreds of
simulation components, spread out over several hundred thousand square feet
of factory space. Obviously, the simulation of the single sewing machine would
have a much smaller scale than the simulation of the entire factory.

 With an understanding of fi delity, resolution, and scale as individual attri-
butes of M & S comes the ability to join these attributes to one another. The
ability to relate fi delity and resolution, or fi delity and scale, or resolution and
scale provides insight to the different types of simulations being used today.
Table 1.1 is a comparison of fi delity and resolution premised on the common

14 INTRODUCTION TO MODELING AND SIMULATION

assumption that increasing resolution increases fi delity. This premise is not
absolute because it is possible to increase the resolution of the simulation
without increasing the fi delity of the simulation. Note the four combinations
of fi delity – resolution.

 The assumption held regarding fi delity and scale is that increasing scale
results in decreasing fi delity. This assumption is unsound. As scale increases, it
is likely that there will be an increase in the number of simulated entities.
However, what if there is an aggregation of closely related entities as a single
simulation entity? If the research question of the system sought to address
behavior of related groups, then the increasing scale might have no effect on
the fi delity of the simulation. Note the four combinations of fi delity – scale in
Table 1.2 .

 The fi nal comparison is that of resolution and scale . In general terms, more
resolution leads to less scale and vice versa. Increasing scale results in decreas-
ing resolution. This is due to the fact that the computing system hosting the
simulation has a fi nite limit on the computing capability, especially since each
simulation entity requires a specifi c amount of computational power for a
given level of resolution. As scale increases, the number of entities increases,
and these entities require additional computational capability. If the compu-
tational capability is at its limit, then increases in scale can only take place if
the resolution of the simulation is lowered. As a result, high resolution, high -
 scale simulations are constrained by computing requirements. Note the four
combinations of resolution – scale in Table 1.3 .

 Once a model has been developed with the correct simulation paradigm
engaged and a full appreciation of fi delity, resolution, and scale as attributes

Table 1.2 Comparing fi delity and scale

 Scale

 Fidelity

 Low High

 High Board game – – Battleground Massive multiplayer online
games – – World of Warcraft

 Low Personal computer combat
simulator – – Doom

 First - person shooter – – Halo

Table 1.1 Comparing fi delity and resolution

 Resolution

 Fidelity

 Low High

 Low Board game – – chess Agent - based simulation – – Swarm
 High Personal computer fl ight

simulator – – Microsoft
Flight Simulator

 Platform - level training
simulation – – airline fl ight
simulator

M&S CHARACTERISTICS AND DESCRIPTORS 15

of the simulation acknowledged, the modeler must then consider, is the model
correct and usable ? This is done through the process of verifi cation and valida-
tion (V & V).

VV&A Process

 No discussion of M & S characteristics and descriptors would be complete
without addressing the importance of the VV & A process. VV & A is the process
of determining if the model and/or simulation is correct and usable for the
purpose of which it has been designed. Simply, one might ask, was the model
built correctly and was it the correct model ? It is also the process of developing
and delimiting confi dence that a model can be used for a specifi c purpose. The
fi rst phase, verifi cation , is the process of determining if a model accurately
represents the conceptual description and specifi cations of the model.
Verifi cation requires a check on the coding by determining if the simulation
is coded correctly. Asking, does the simulation code correctly implement the
model is the way verifi cation tests the software quality. A number of software
engineering tests and techniques that are part of the verifi cation process will
be introduced in Chapter 10 .

 The process of determining the degree to which a model is an accurate
representation of the real - world system from the perspective of the model ’ s
intended use is validation . Validity answers the question, is the right thing coded
or how well does the model match reality in the context of purpose of the model ?
Validity speaks to modeling quality. In essence, validity is a measure of model
fi delity in a specifi c application of the model. Validation methods or techniques
exist to verify and validate a model and its simulation. These techniques go
from informal to inspection - like to formal with the use of logic to prove cor-
rectness. Table 1.4 is a small representation of some of these techniques [5] .

 The third aspect of VV & A is the process of accreditation as the offi cial
certifi cation by a responsible authority that a model is acceptable for a specifi c
use [6] . The authority is an agency or person responsible for the results of using
the model. As such, the authority should be separate from the developer of
the model or simulation. This is not a general - purpose approval as each model
is accredited for a specifi c purpose or use.

Table 1.3 Comparing resolution and scale

 Resolution

 Scale

 Low High

 Low Not interesting Operational - level training
simulation – – WarSim

 High Urban warfare personal
computer game – – Shrapnel:
Urban Warfare 2025

 Not practical

16 INTRODUCTION TO MODELING AND SIMULATION

Model Types

 The fi nal subtopic under M & S characteristics and descriptors is model types .
The following modeling types are common in M & S, and this listing will serve
to defi ne these modeling methods succinctly. Discussion of many of the model
types will be developed in greater detail in the following chapters.

Physics-Based Modeling Physics - based modeling is solidly grounded in
mathematics. A physics - based model is a mathematical model where the
model equations are derived from basic physical principles. Model Example
1 is a physics - based model. Unique to physics - based models is the fact that
the physics equations are models themselves in that many physics - based
models are not truly things — they are intangibles; hence, they are representa-
tions of phenomena. Another example is Newton ’ s law of gravity, which
describes the gravitational attraction between bodies with mass. His idea was
fi rst published in 1687; in contemporary text it reads:

 Every point mass attracts every other point mass by a force pointing along
the line intersecting both points. The force is directly proportional to the
product of the two masses and inversely proportional to the square of the
distance between the point masses:

Table 1.4 Verifi cation and validation techniques

 Informal Static Dynamic Formal

 Audit Cause – effect
graphing

 Acceptance
testing

 Induction

 Desk checking Control
analysis

 Alpha testing Inductive
assertions

 Documentation
checking

 Data
analysis

 Assertion
checking

 Inference

 Face validation Fault/failure
analysis

 Beta testing Logical
deduction

 Inspections Interface
analysis

 Bottom - up
testing

 Lambda calculus

 Reviews Semantic
analysis

 Comparison
testing

 Predicate
calculus

 Turing test Structural
analysis

 Statistical
techniques

 Predicate
transformation

 Walkthroughs Symbolic
analysis

 Structural
testing

 Proof of
correctness

 Syntax
analysis

 Submodel/
module testing

 Traceability
assessment

 Visualization/
animation

M&S CHARACTERISTICS AND DESCRIPTORS 17

F G

m m
r

= 1 2
2

,

where

 F is the magnitude of the gravitational force between the two point masses
 G is the gravitational constant
 m 1 is the mass of the fi rst point mass
 m 2 is the mass of the second point mass
 r is the distance between the two point masses.

 Physics - based models are based on fi rst principles (as such, they may be
referred to as fi rst principle models). These principles, however, do not guar-
antee fi delity as this type of model may not represent all aspects of a system,
or it might be based on assumptions that constrain the use of the model so
that it is suitable only under certain conditions. There may be assumptions
and omissions that affect the fi delity. Going back to Model Example 1, the
height of the building is recognized but not the air resistance — and the model
assumes the location will be near the surface of the Earth.

 Physics - based models may also suffer invalid composition . This occurs when
many simulations combine multiple physics - based models. Combining multiple
models usually takes place with the development of a large - scale model; in
essence, larger - scale models are the combination of smaller - scale models.
When this combination takes place, changes to one or many of the models ’
components result. When this occurs, there might be invalid composition.

 Finite Element Modeling (FEM) FEM is the method used for modeling
large or complicated objects by decomposing these elements into a set of small
elements and then modeling the small elements. This type of modeling is
widely used for engineering simulation, particularly mechanical and aerospace
engineering. These subdisciplines conduct research that requires structural
analysis or fl uid dynamics problems. FEM facilitates the decomposition of a
large object into a set of smaller objects labeled elements .

 These individual elements and the neighbor relationships that occur with
elements in proximity are represented by a mesh of nodes. The state of the
nodes is modeled using physics - based equations that take into account the
current state of the node, the previous state, the state of the nearest neighbor-
ing node, and any knowledge of interactions between the neighbors. These
computations of the state of the nodes are iterated over simulation time.

 Data - Based Modeling Data - based modeling results from models based on
data describing represented aspects of the subject of the model. Model devel-
opment begins with advanced research or data collection, which is used
in simulations. Data sources for this type of modeling can include actual

18 INTRODUCTION TO MODELING AND SIMULATION

fi eld experience via the real - world or real system, operational testing and
evaluation of a real system, other simulations of the system, and qualitative
and quantitative research, as well as best guesses from subject matter experts.
The model is developed with the view that the system is exercised under
varying conditions with varying inputs. As the outputs unfold, their results are
recorded and tabulated so as to review appropriate responses whenever
similar conditions and inputs are present in the model.

 Data - based modeling is often used when the real system cannot be engaged
or when the subject of the model is notional. When the physics of the model
subject is not understood or computations costs are high, data - based modeling
can substitute. This modeling relies on data availability — it functions at its best
when the data are accurate and reliable.

Agent-Based Modeling (ABM) ABM is an important modeling paradigm
for investigating many types of human and social phenomena [7] . The impor-
tant idea here is that of a computer being able to create a complex system on
its own by following a set of rules or directions and not having the complex
system defi ned beforehand by a human. ABMs consist of agents that are
defi ned as autonomous software entities that interact with their environment or
other agents to achieve some goal or accomplish some task . This defi nition has
several important elements to recognize. Probably the most important of these
elements is the concept of autonomy . This characteristic is what sets agents
apart from other object - oriented constructs in computer science. Agents act
in their own self - interest independent of the control of other agents in the
system. That is not to say that they are not infl uenced by other agents. They
do not take direction from other agents. Because of this autonomy, each agent
decides for itself what it will do, when it will do it, and how it will be done.
These decisions are based on behaviors incorporated into the agent by its
designer.

 An agent ’ s environment and the existence of other agents in that environ-
ment also play a key role on how an agent may behave. An agent is embodied
with the ability to sense its environment, which includes everything it is aware
of external to itself except other agents. As it senses this environment, it may
respond to changes in it or it may just observe the changes waiting for a specifi c
event to take place. It is also aware of the other agents. It may monitor what
they are doing and may communicate with them to request they accomplish
some task or it may respond to a request it has received. This closely represents
how a human interacts with its surroundings and the other persons in it.

 Finally, an agent acts to achieve some goal or accomplish some task. A task
may be to retrieve a piece of data from a specifi c source or move to a certain
location in virtual space. Task accomplishment is generally reactive in nature
and does not require some complex set of reasoning to carry out. The use of
artifi cial intelligence techniques can be incorporated into the model to modify
the behavior of agents and rules of interaction among them. As such, ABMs
vary widely in implementation and level of sophistication. (For a detailed
discussion, see Sokolowski and Banks [8] .)

M&S CATEGORIES 19

Aggregate Modeling This modeling method facilitates a number of smaller
objects and actions represented in a combined, or aggregated, manner.
Aggregate models are used most commonly when the focus of the M & S study
is on aggregate performance. The model can also scale and number repre-
sented entities that are large and can compromise the time required to conduct
a simulation. These models are most often used in constructive models; they
are not physics - based models.

Hybrid Modeling Hybrid modeling entails combining more than one mod-
eling paradigm. This type of modeling is becoming a common practice among
model developers. Hybrid modeling makes use of several modeling methods;
however, they are disadvantaged in that composing several different types of
models correctly is a diffi cult process.

 There are numerous other model types. Some of these include Markov
chains, fi nite - state automata, particle systems, queuing models, bond graphs,
and Petri nets. The challenge for the modeler is to choose the best modeling
paradigm that represents the designated system and answer specifi c research
questions or training needs.

M&S CATEGORIES

 Categorizing models and simulations into different groupings or assemblages
is a useful exercise in that it facilitates a clearer understanding of what makes
some models and simulations similar and some different. This grouping or
partitioning of models and simulations is grounded on shared, common char-
acteristics. Categorizing models and simulations establishes what can be con-
sidered coordinates of M & S space . Where a model or simulation is placed in
this space identifi es its individual properties. There are four category dimen-
sions: type, application, randomness, and domain.

Type

 M & S is classed into three types: live, virtual, and constructive. These types
vary in operator and environment. For example, the model and simulation can
include real people doing real things, or real people operating in unreal or
simulated environments, and real people making inputs into simulations that
execute those inputs by simulated people.

 A live simulation involves real people operating real systems. This simula-
tion strives to be as close as possible to real use, and it often involves real
equipment or systems. The military train using live simulation when they
conduct war games that place real soldiers and real platforms in an engage-
ment situation in which actual weapon fi rings or impacts have been replaced
with instrumentation. The purpose of live simulation training is to provide a
meaningful and useful experience for the trainee.

 A virtual simulation is different from live simulation in that it involves
real people operating in simulated systems. These systems are recreated with

20 INTRODUCTION TO MODELING AND SIMULATION

simulators, and they are designed to immerse the user in a realistic environ-
ment. A good example of virtual simulation training is the cockpit simulator
used to train aircraft pilots. This simulator uses a physical representation of
the actual cockpit with computer models to generate fl ight dynamics, out - of -
 window visuals, and various environmental/atmospheric changes to which the
pilot must respond. This type of training is designed to provide useful piloting
experience without leaving the ground.

 The third type of M & S is constructive simulation . This simulation involves
real people making inputs into a simulation that carry out those inputs
by simulated people operating in simulated systems. As real people provide
directives or inputs, activity begins within the simulation. There are no
virtual environments or simulators, and the systems are operated by nonpar-
ticipants. The expected result of constructive simulation is that it will
provide a useful result. The military has made use of constructive simulation
via the modular semiautomated forces (ModSAF). ModSAF is a constructive
combat model designed to train doctrine and rules of engagement. Table 1.5
delineates the types of simulation and the nature of the participants and
systems.

 In sum, the three categories are distingushed by the nature of the partici-
pants and the systems. One of the challenges for modelers, in both engineering
and sciences, is to combine the live, virtual, and constructive simulations into
a single training environment. That environment is well constructed when the
participants are unable to indentify if they are contending with real, virtual,
or constructive threats.

Applications

 The purposes for developing models and simulations vary. These purposes, also
called applications , include training, analysis, experimentation, engineering,
and acquisition. As discussed above, training is key to model development and
simulation categorization. Relative to applications, the intent of training is to
produce learning in the user (or participant). The training environment or the
training activity must be realistic to the point that it produces effective, useful
skills and/or knowledge. Training in a simulated environment or a simulation
is safe, reliable, and less costly. Because this environment is reproducible, it
can outlast a live - training environment. One drawback to training is that it can
also produce negative learning or habits. Care must be taken so that the expe-
riences in which the participant is learning are present in the real environment,

Table 1.5 M&S types

 Category Participants Systems

 Live Real Real
 Virtual Real Simulated
 Constructive Simulated Simulated

M&S CATEGORIES 21

and any scenarios or situations in which the learned responses are not present
in the real environment should be removed.

Analysis as an application is the process of conducting a detailed study of
a system to prepare for the design, testing, performance, evaluation, and/or
prediction of behavior in different environments. The system can be real or
notional. Simulation is often used for analysis; however, these simulations
require a higher degree of fi delity than would simulations developed for train-
ing. There must also be a carefully crafted experimental design in that trials
planned in advance will cover many cases and a suffi cient number of trials are
conducted to achieve statistical signifi cance.

 A third application or purpose for using M & S is experimentation . The intent
of experimentation is used to explore design or solution spaces; it also serves
to gain insight into an incompletely understood situation [9] . Experimentaion
is likened to analysis; however, it lacks some of the structure and control found
in analysis. Simply, experimentation allows for the what - if questions; it explores
possibilities and varying outcomes. Experimentation is an iterative process of
collecting, developing, and exploring concepts to identify and recommend
value - added solutions for change.

 In conjunction with M & S, engineering applications are used to design
systems. These designs can be tested or changed in the simulation. Validity is
the desired end with an engineering application. Engineering applications
begin at the undergraduate level where students are taught the development
of a model and ways to execute — simulate — the model. Simulation tools used
in this application include fi nite element M & S tools, MATLAB (for modeling
continuous systems), and ARENA (for modeling discrete - event systems).

 The acquisition application entails the process of specifying, designing,
developing, and implementing new systems. The process includes the entire
life cycle of a system from concept to disposal. The intent of this application
is to use the simulation to evaluate cost - effectiveness and correctness before
committing funds for an acquisition.

Randomness

 The concept of randomness is simple: Does an M & S process include uncer-
tainty and variability? Randomness is comprised of two types of simulations:
deterministic and stochastic. Deterministic simulation takes place when a given
set of inputs produce a determined, unique set of outputs. Thus, these simula-
tions include no uncertainty and no variability. Physics - based simulations and
engineering simulations can be deterministic simulations. For both determin-
istic and stochastic simulations, output is determined by input. Conversely,
stochastic simulation accepts random variables as inputs, which logically lead
to random outputs. This type of simulation is more diffi cult to represent and
analyze because appropriate statistical techniques must be used. Thus, these
simulations do include uncertainty and variability. Stochastic simulations are
common in models for discrete - event systems.

22 INTRODUCTION TO MODELING AND SIMULATION

Domains

 The domain of an M & S process refers to the subject area of the process. There
are numerous domains, and as M & S becomes fl uent in the user community,
more domains will be engaged. Of course, the military has been using M & S
for many years and so military simulation as a domain has a long association
with research, development, and the education components of M & S. Within
the past decade, a number of other domains have made inroads in the M & S
community: transportation, decision support, training and education (aka
game - based learning), medical simulation, homeland security simulation,
M & S for the social sciences, and virtual environments.

 M & S as a discipline is expanding the body of knowledge in an effort
to explain the theory and ontology of M & S. This will no doubt spawn profes-
sionals who will develop models that can faciliate investigation in the various
domains. As research and development continue, the user community
(non - M & S academics or professionals) will be able to make use of M & S as a
tool for representing their fi ndings, predicting outcomes, and proffering
solutions.

CONCLUSION

 This chapter introduced three fundamental precepts of M & S: the basic notion
that models are approximations for the real world; a well - developed model
can then be followed by simulation , which allows for the repeated observation
of the model; and that analysis facilitates drawing conclusions, V & V, and rec-
ommendations based on various iterations/simulations of the model. These
three principles coupled with visualization , the ability to represent data as a
way to interface with the model, make M & S a problem - based discipline that
allows for repeated testing of a hypothesis.

 Those who chose to engage M & S are aware of its useful attributes:

 (1) It allows for precise abstraction of reality.
 (2) It hosts a methodology to master complexity.
 (3) It requires techniques and tools.
 (4) It is validated by solid mathematical foundations.

 These attributes lend themselves to better research and analyses. Note the
advantages to using M & S as determined by the Institute of Industrial Engineers
(IIE) [10] . In 1998, IIE published the following list:

 (1) The ability to choose correctly by testing every aspect of a proposed
change without committing additional resources

 (2) Compress and expand time to allow the user to speed up or slow down
behavior or phenomena to facilitate in - depth research

CONCLUSION 23

 (3) Understand why by reconstructing the scenario and examining the
scenario closely by controlling the system

 (4) Explore possibilities in the context of policies, operating procedures,
and methods without disrupting the actual or real system

 (5) Diagnose problems by understanding the interaction among variables
that make up complex systems

 (6) Identify constraints by reviewing delays on process, information, and
materials to ascertain whether or not the constraint is the effect or
cause

 (7) Develop understanding by observing how a system operates rather
than predictions about how it will operate

 (8) Visualize the plan with the use of animation to observe the system or
organization actually operating

 (9) Build consensus for an objective opinion because M & S can avoid
inferences

 (10) Prepare for change by answering the “ what if ” in the design or modi-
fi cation of the system

 (11) Invest wisely because a simulated study costs much less than the cost
of changing or modifying a system

 (12) Better training can be done less expensively and with less disruption
than on - the - job training

 (13) Specify requirements for a system design that can be modifi ed to reach
the desired goal. *

 The chapter also introduced related disciplines and concepts such as prob-
ability and statistics, analysis and operations research, computer visualization,
human factors, and project management — all integral to the M & S process. The
discussion on modeling paradigms and types introduced three simulations:
Monte Carlo, continuous, and discrete event. A review of attributes, fi delity,
resolution, and scale, as well as their distribution emphasized the importance
of understanding the intent of the model so that the modeler can give atten-
tion to the appropriate attribute. The importance of V & V in model creation
must be stressed for any model (and modeler) to retain credibility.

 Understanding the various model types, physics - based, fi nite element,
data - based, agent - based, and so on, is important for all students of M & S.
Whether the simulation is live, virtual, or constructive; whether it is used
for training, analysis, experimentation, acquisition, or engineering; and whether

 * The IIE also made a noticeably shorter list of the disadvantages: special training needed for
building models; diffi culty in interpreting results when the observation may be the result of system
interrelationships or randomness; cost in money and time due to the fact that simulation modeling
and analysis can be time consuming and expensive; and inappropriate use of M & S when an ana-
lytic solution is best.

24 INTRODUCTION TO MODELING AND SIMULATION

is it deterministic or stochastic, the M & S professional must understand all
of these concepts and capabilities and how they come into play in model
development. Lastly, the chapter listed some of the domains in which M & S is
leading in research and development: military, homeland security, medical,
transportation, education and training, decision support, M & S for the social
sciences, and virtual environments.

REFERENCES

 [1] Law AM , Kelton WD . Simulation, Modeling, and Analysis . 4th ed. New York :
 McGraw - Hill ; 2006 .

 [2] Fishwick PA . Simulation Model Design and Execution: Building Digital Worlds .
 Upper Saddle River, NJ : Prentice Hall ; 1995 .

 [3] Banks J (Ed.). Handbook of Simulation: Principles, Methodology, Advances,
Applications, and Practice . New York : John Wiley & Sons ; 1998 .

 [4] Starr SH , Orlov RD . Simulation Technology 2007 (SIMTECH 2007) . Phalanx ,
September 1999, pp. 26 – 35 .

 [5] Balci O. Verifi cation, validation, and testing . In Handbook of Simulation:
Principles, Advances, Applications, and Practice . Banks J (Ed.). New York : John
Wiley & Sons ; 1998 , pp. 335 – 393 .

 [6] Department of Defense . Instruction 5000.61 , M & S VV & A, 1996 .
 [7] Sokolowski JA , Banks CM . Modeling and Simulation for Analyzing Global

Events . Hoboken, NJ : John Wiley Publishers ; 2009 .
 [8] Sokolowski JA , Banks CM . Agent - based modeling and social networks . In

Modeling and Simulation for Analyzing Global Events . Sokolowski JA , Banks
 CM (Eds.). Hoboken, NJ : John Wiley & Sons ; 2009 , pp. 63 – 79 .

 [9] Ceranowicz A , Torpey M , Helfi nstine B , Bakeman D , McCarthy J , Messerschmidt
 L , McGarry S , Moore S. J9901: Federation development for joint experimenta-
tion . Proceedings of the Fall 1999 Simulation Interoperability Workshop, Paper
99F - SIW - 120 , 1999 .

 [10] Colwell RR. Complexity and connectivity: A new cartography for science and
engineering . Remarks from the American Geophysical Union ’ s fall meeting.
San Francisco, CA , 1999 .

25

Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains,
Edited by John A. Sokolowski and Catherine M. Banks
Copyright © 2010 John Wiley & Sons, Inc.

2
STATISTICAL CONCEPTS

FOR DISCRETE
EVENT SIMULATION

Roland R. Mielke

 One of the most important characteristics of discrete event simulation is the
apparent ease with which uncertainty and variability can be included. Virtually
all systems contain some uncertainty or variability, that is, randomness. In
many systems, it is absolutely essential to include this randomness as part of
the system model if reasonable fi delity is to be achieved. The price that is paid
for including randomness in system models and simulations is that analysis
becomes somewhat more diffi cult. Fundamental concepts from probability
and statistics must be used, both to characterize the randomness that is
included as part of the model and to understand the data result of simulating
the model. The focus of this chapter is to introduce several statistical concepts
necessary for developing and using discrete event simulation.

 This chapter has two main objectives. The fi rst objective is to investigate
some of the statistical methods associated with including randomness as part
of a system model. Sources of randomness must be represented analytically,
and then this representation must be used to generate the streams of random
variates required to drive a simulation. These methods are collectively referred
to as input data modeling. The second objective is to investigate some of the
methods associated with processing the simulation output to assess system
performance. For a model that includes randomness, each simulation run pro-
duces just one sample value of a performance measure from a population of

26 STATISTICAL CONCEPTS FOR DISCRETE EVENT SIMULATION

all possible performance measure values. A number of sample values must be
generated and then used to estimate the population performance parameter
of interest. These methods are collectively referred to as output data analysis.
It is clear that the modeling and simulation (M & S) professional must have an
understanding of input data modeling and output data analysis to conduct
discrete event simulation experiments.

 The intent of this chapter is to present an overview of the methods and
issues associated with input data modeling and output data analysis. Additional
reading and study will be necessary to become knowledgeable and profi cient
in the exercise of these methods. However, there is suffi cient depth in the
presentation to allow the reader to undertake input data modeling and output
data analysis for simple situations that occur quite frequently in practice.

 The chapter is organized in four main sections. First, important concepts
from the probability theory are reviewed. Properties of sets and functions are
stated and used to defi ne a probability space. Then, the notion of a random
variable defi ned on the probability space is presented. Random variables and
probability spaces are the underlying foundation for representing randomness.
Second, several basic simulation techniques are introduced. Common theoreti-
cal statistical distributions, often used in M & S to characterize randomness, are
identifi ed. Then, algorithmic procedures for generating random samples from
these distributions are explained. Third, the input data modeling problem is
addressed. Methods for representing sample data using empirical distributions
and theoretical distributions are explained. Some of the more diffi cult input
data modeling issues are identifi ed. And fourth, the output data analysis
problem is investigated. The confi dence interval estimate of the mean is intro-
duced as an important technique for interpreting simulation output data. Some
of the more complex output data analysis problems are described. The chapter
ends with a brief conclusion and references.

PROBABILITY

 The purpose of this section is to provide a brief overview of selected concepts
from the probability theory. As will be observed as this chapter develops, prob-
ability is a fundamental building block of statistics. Statistics in turn is the
source of several very powerful techniques used to represent randomness, to
generate the random variate streams that drive a stochastic simulation, and to
interpret the output data obtained from conducting a stochastic simulation
experiment. Probability then is the foundation upon which this chapter is
developed.

Sets and Functions

 Throughout this chapter, the concepts of set and function will be used to
defi ne other important quantities. Thus, this section begins with a brief review

PROBABILITY 27

of these constructs. A more detailed presentation of these topics is found in
Hein [1] .

 A set is a collection of objects. The objects are called elements of the set and
may be anything. If S is a set and x is an element of S , then we write x ∈ S .
The set consisting of elements x , y , and z is denoted as S = { x , y , z }. There is
no particular signifi cance given to the order or arrangement of the elements
of a set. Thus, the set S can also be expressed as S = { z , x , y }. There are no
repeated occurrences of an element in the defi nition of a set; an object is either
an element of a set or it is not. A set having no elements is called the null set
and is denoted by Φ .

 Several important set characteristics are defi ned in the following
statements:

 (1) A set is said to be countable if the elements of the set can be put in a
one - to - one correspondence with the positive integers.

 (2) A set is called fi nite if it is empty or if it has elements that can be
counted with the counting process terminating. A set that is not fi nite
is called infi nite .

 (3) If every element of set A is also an element of set B , then A is said to
be contained in B and A is called a subset of B denoted A ⊆ B .

 (4) Two sets are said to be disjoint if they have no common elements.
 (5) The largest or all - encompassing set of elements under discussion in a

given situation is called the universal set denoted Ω .
 (6) Two sets A and B are said to be equal , denoted A = B , if set A and set

B contain exactly the same elements.

 Finally, we will defi ne the set operations of union, intersection, difference,
and complement. Each of these operations combines sets to form new sets:

 (1) The union of two sets A and B , denoted A�B , is the set consisting of
all elements that are contained either in set A or in set B .

 (2) The intersection of two sets A and B , denoted A� B , is the set consisting
of all elements that are contained in both set A and set B .

 (3) The difference of two sets A and B , denoted A – B , is the set consisting
of the elements contained in set A that are not contained in set B . It
should be observed that, in general, A − B ≠ B − A .

 (4) Let Ω be the universal set and let A be a subset of the universal set.
The complement of set A , denoted A

_
 , is the set Ω − A .

 Consider the following example to illustrate some of these defi nitions
concerning sets. A universal set is given as Ω = {2, 4, 6, 8, 10, 12} and two
subsets are defi ned as A = {2, 4, 10} and B = {4, 6, 8, 10}. Then, A�B = {2, 4, 6,
8, 10}, A� B = {4, 10}, A – B = {2}, B – A = {6, 8}, and A

_
 = {6, 8, 12}.

28 STATISTICAL CONCEPTS FOR DISCRETE EVENT SIMULATION

 Having fi rst defi ned sets, we are now able to defi ne functions. A function is
a mathematical construct consisting of three components: (1) a set of elements
called the domain set X , (2) a set of elements called the codomain set Y , and
(3) a rule of correspondence f that associates each element of the domain set
with exactly one element of the codomain set. For x ∈ X and y ∈ Y , a function
is denoted by f : X → Y or f (x) = y . Two functions are equal if they have the same
domain set, the same codomain set, and the same rule of correspondence. A
change in any component of a function results in the defi nition of a different
function.

 Several very important properties of functions are defi ned in the following
statements:

 (1) The range of a function f is the set of elements in the codomain Y that
are associated with some element of the domain X under the rule of
correspondence f .

 (2) If the codomain of a function and the range of the function are equal,
then the function is said to onto .

 (3) If each element of the domain X maps to a unique element of the
codomain Y , then the function is said to be one - to - one .

 (4) A function f has an inverse , denoted f − 1 , if and only if f is one - to - one
and onto.

 (5) For function f : X → Y one - to - one and onto, the inverse is a function
 f − 1 : Y → X such that f − 1 [f (x)] = x for all x ∈ X .

 An example is presented to illustrate several of the defi nitions concerning
functions. Let R denote the set of real numbers and defi ne a function having
domain X = R , codomain Y = R , and rule of correspondence y = f (x) = mx + b ,
where m and b are real - valued constants. This function is shown graphically
in Figure 2.1 . It is clear that the function represents the graph of a straight
line in the x – y plane; the line has slope m and y - axis intercept b . For m ≠ 0,
the function is one - to - one and onto. In this case, the inverse function exists
and is given as x f y m y b m= () = () − ()−1 1 . For m = 0, the function becomes
 y = f (x) = b . Now, all points in the domain map to a single point in the codo-
main. Thus, the range of the function is the set { b } so the function is neither
one - to - one nor onto, and no inverse function exists.

 Probability Space

 Next, we defi ne a mathematical construct called probability space. Problems
in probability are often formulated or stated in the form of a random experi-
ment. A random experiment is a well - defi ned experiment in which the experi-
mental outcome cannot be predicted before conducting the experiment. The
use of the word random in random experiment does not mean that the condi-

PROBABILITY 29

tions of the experiment are loosely or incompletely defi ned, but rather that
the outcome is not known beforehand. All probability problems expressed as
a random experiment have an underlying probability space. It is usually ben-
efi cial to identify this probability space explicitly even though it is rarely
requested as part of a problem solution. The probability space construct is
essential to developing a conceptual understanding of problems involving
probability [2] .

 The probability space concept is developed through the following set of
defi nitions. These defi nitions are followed by two examples, a discrete example
and a continuous example, that illustrate the construction of a probability
space:

 (1) The probability space for a random experiment is a mathematical con-
struct consisting of three components: the sample space S , the sigma
algebra of events A , and the probability measure P .

 (2) The sample space S is a set consisting of the possible outcomes for a
random experiment.

 (3) An event E is a subset of the sample space from a random experiment.
 (4) A sigma algebra of events A is a set of events from a random experi-

ment that satisfi es the following properties: (1) if E ∈ A , then E
_
 ∈ A ;

(2) if E 1 ∈ A and E 2 ∈ A , then E 1 � E 2 ∈ A ; (3) if E 1 ∈ A and E 2 ∈ A ,
then E 1 � E 2 ∈ A ; and (4) S ∈ A .

 (4) A probability measure P is a function having domain A , codomain
[0, 1] ⊂ R , and rule of correspondence P such that the following
properties hold: (1) P (E) ≥ 0 for all E ∈ A ; (2) P (S) = 1; and (3)
 P (E 1 � E 2) = P (E 1) + P (E 2) when E 1 � E 2 = Φ .

 As a fi rst example, consider the discrete random experiment consisting of
rolling a three - sided die (like an ordinary six - sided die but having only three
sides). The example is said to be discrete because the sample space and the
event space are defi ned using discrete sets. The sides of the die are labeled B ,

y = f (x)

x

m
b

 Figure 2.1 Graph of function y = mx + b .

30 STATISTICAL CONCEPTS FOR DISCRETE EVENT SIMULATION

 C , and D . When the die is rolled many times, it is found that side B shows
one - sixth of the time, side C shows one - third of the time, and side D shows
one - half of the time. It is desired to construct a probability space for this
random experiment. From the statement defi ning the random experiment, it
is clear that the experiment has three possible outcomes: side B showing; side
 C showing; or side D showing. Thus, the sample space S is defi ned as S =
{ B , C , D }. Next, we construct the sigma algebra of events A . Set A contains
the events corresponding to the individual random experiment outcomes,
events { B }, { C }, and { D }. Using the rules for a sigma algebra, the complement
of each of these singleton sets, { C , D }, { B , D }, and { B , C }, must be elements
in A . Then, the union, intersection and complement of each pair of these sets
must be added to A . It quickly becomes apparent that the sigma algebra of
events includes all possible subsets of S , including S itself and the null set Φ .
For this example, A = { Φ , { B }, { C }, { D }, { B , C }, { B , D }, { C , D }, S }. In general,
if a discrete sample space S contains k outcomes, the associated sigma algebra
of events A will contain 2 k events. Finally, the probability measure component
of the probability space is constructed. Most often, the interpretation of prob-
ability as indicating the relative frequency of occurrence of the experiment
outcomes suggests the probability values for the singleton event sets. Here, it
is desirable to assign P ({ B }) = 1

6
, P ({ C }) = 1

3 , and P ({ D }) = 1
2 . The rules of

probability measure then indicate how to assign probability values to the other
events in set A . In this example, the probability measure is defi ned by enu-
merating the probability value assigned to each event. The probability measure
is given in Table 2.1 .

 As a second example, consider the continuous random experiment of spin-
ning the pointer on a wheel of chance. This example is said to be continuous
because the sample space and the event space are defi ned using continuous
variables. In this experiment, the perimeter of the wheel of chance is marked
in degrees and an experimental outcome is indicated by the arc of rotation
of the pointer from the zero degrees mark to the stopping point θ ; that is, the
set (0, θ] where 0 < θ ≤ 360. The sample space S for this experiment is S = (0,
360]. An event corresponding to a possible outcome will have the form (0, θ].

 Table 2.1 Probability measure for discrete example

 Event Probability

 Φ 0
 { B } 1/6
 { C } 1/3
 { D } 1/2
 { B, C } 1/2
 { B, D } 2/3
 { C, D } 5/6
 S 1

PROBABILITY 31

When all possible unions, intersections, and complements of these events are
considered, the result is an event having the form of a union of disjoint sets of
the form E = (θ1 , θ2], where 0 ≤ θ1 ≤ θ2 ≤ 360. Thus, the sigma algebra of events
A consists of the null set Φ , the sample space S , and an infi nite number of
unions of disjoint sets of the form of set E . The probability measure for this
experiment, assuming a fair wheel of chance, is given as P (E) = (θ2 − θ1)/360 for
each event E ∈ A .

 The purpose of defi ning the sigma algebra of events A and associating
probabilities with events in A now becomes clear. The events corresponding
to experimental outcomes form only a subset of all events that one might wish
to associate with a probability measure. By enumerating the sigma algebra of
events, all possible events are identifi ed. By associating probability values with
events, rather than outcomes, we are ensuring that a probability value is
assigned to every possible event.

 Sometimes it is possible that two events may not be mutually exclusive
because the events contain common elements from the sample space. For two
such events B and C , the common elements form the event B�C and the
probability for this event, P (B�C), is called the joint probability . In this case,
knowledge that event C occurred can alter the probability that event B also
occurred. The conditional probability of event B given event C is defi ned as
P (B | C) = P (B�C)/ P (C) for P (C) ≠ 0. Events B and C are said to be indepen-
dent if P (B�C) = P (B) P (C). If events B and C are independent, then
P (B | C) = P (B) and P (C | B) = P (C). In this case, knowledge of the occurrence
of one of the two events conveys no knowledge concerning the occurrence of
the other event. Independence will be an important prerequisite to several
statistical analysis procedures to be considered later in this chapter.

Random Variables

 Outcomes are elements of the sample space that represent the result of con-
ducting a random experiment. Outcomes can be complex objects that may be
diffi cult or inconvenient to use directly. Often, it is desirable to associate a
number with an outcome and then to work with that number rather than the
outcome. In this section, we defi ne a random variable as a means of associating
real numbers with experimental outcomes. The concepts of cumulative distri-
bution functions and probability density functions are also introduced.

 Let P = (S , A , P) be a probability space with sample space S , sigma algebra
of events A , and probability measure P . A random variable X defi ned on this
probability space is a function with domain set S , codomain set R , and rule of
correspondence X : S→R such that the set { X ≤ x } = { s | s∈S and X (s) ≤ x } is an
event in A for all x in R . Thus, the random variable X is simply a function that
assigns to each experimental outcome s ∈ S a real number X (s). However, not
just any function will qualify as a random variable. To qualify, the set of out-
comes s that satisfy X (s) ≤ x must be an event in the sigma algebra of events
for all values of x ∈ R .

32 STATISTICAL CONCEPTS FOR DISCRETE EVENT SIMULATION

 Associated with a random variable X is a function called the cumulative
probability distribution function , denoted F (x). The name of this function is
often abbreviated and called the cumulative distribution function or even just
the distribution function. The distribution function is a function having domain
 R , codomain [0, 1] ⊂ R , and rule of correspondence F : R → [0, 1] such that
 F (x) = P ({ X (s) ≤ x }). It has already been noted that the set { X (s) ≤ x } is an
event in A for all x ∈ R . Since each event in A is assigned a probability via
the defi nition of probability measure, this defi nition of distribution function is
consistent and has meaning within the context of the underlying probability
space.

 Distribution functions have a number of properties that occur as the result
of the distribution function being a probability. These properties are presented
in the following statements:

 (1) F (− ∞) = 0 and F (+ ∞) = 1.
 (2) 0 ≤ F (x) ≤ 1 for all x ∈ R .
 (3) F (x) is a nondecreasing function of x ; that is, F (x 1) ≤ F (x 2) for x 1 < x 2 .
 (4) F (x) is continuous from the right; that is, F (x +) = F (x).
 (5) P ({ x 1 < X ≤ x 2 }) = F (x 2) − F (x 1).

 Another function associated with a random variable is the probability
density function p (x). This function is often called the density function. The
density function is a function having domain R , codomain R , and rule of cor-
respondence p : R → R such that p (x) = dF (x)/ dx . When F (x) is discontinuous,
as occurs with discrete random variables, it is necessary to call upon the
impulse function from the theory of generalized functions to facilitate the
calculation of the derivative operation [2] .

 Density functions also have several important properties that are presented
in the following statements:

 (1) p (x) ≥ 0 for all x ∈ R .

 (2) The total area under the p (x) curve is one; that is, p x dx() =
−∞

∞

∫ 1.

 (3) The distribution function is related to the density function via

integration; that is, F x p d
x

() = ()
−∞∫ σ σ .

 (4) P x X x p x dx
x

x

1 2
1

2
< ≤{ }() = ()∫ .

 To illustrate the concepts of this section, random variables are defi ned on
the probability spaces defi ned in the previous section. Then, distribution and
density functions are constructed for these random variables. Consider fi rst
the probability space for the three - sided die. The following function, shown in
tabular form in Table 2.2 , is used to defi ne a random variable X .

PROBABILITY 33

 Then, the events corresponding to the different ranges of random variable
values are computed:

 (1) { X (s) < 1} = Φ
 (2) { X (s) < 2} = Φ � { B } = { B }
 (3) { X (s) < 3} = Φ � { B } � { C } � { B , C } = { B , C }
 (4) { X (s) < ∞ } = Φ � { B } � { C } � { D } = S

 The resulting plot of the cumulative distribution function F (x) for this
example is shown in Figure 2.2 . The density function p (x), obtained by dif-
ferentiating F (x), is shown in Figure 2.3 . Expressions for the distribution func-
tion and the density function can be written as follows:

 F x P x u x xk k
k

() = () −()
=

∑
1

3

,

p x P x x xk k

k

() = () −()
=

∑ δ
1

3

.

 Table 2.2 Random variable defi nition for example

 Outcome s k Random Variable Value X (s k) = x k

 B 1
 C 2
 D 3

F(x)

x
1 2 3

1

1/2
1/6

 Figure 2.2 Cumulative distribution function for the three - sided die example.

p(x)

x
1 2 3

1/6
1/3
1/2

 Figure 2.3 Density function for the three - sided die example.

34 STATISTICAL CONCEPTS FOR DISCRETE EVENT SIMULATION

 The notation u (x) represents the unit step function defi ned as

u x

x

x
() =

>
<

⎧
⎨
⎩

1 0

0 0,

and δ (x) represents the unit impulse function.
 Now consider the example of spinning the pointer on a wheel of chance.

An outcome for this random experiment is the arc of rotation from zero to
the point at which the pointer comes to rest, that is, the rotation interval
(0, θ] with 0 < θ ≤ 360. The probability assigned to the event corresponding
to this outcome is P ((0, θ]) = θ /360. We now defi ne a random variable X by
superimposing a standard clock face on the wheel of chance. This is equivalent
to defi ning the random variable as X (θ) = θ /30. Then,

F x P X x P x P x

x() = () ≤() = ≤⎛
⎝

⎞
⎠ = ≤() =θ θ θ

30
30

12

 for 0 < x ≤ 12. The cumulative distribution function is shown graphically in
Figure 2.4 . The density function p (x) is obtained from the distribution function
as p (x) = dF (x)/ dx .

 The density function is shown in Figure 2.5 . The distribution function and
the density function are piecewise continuous functions because the underly-
ing probability space is continuous.

F(x)

x

1

120

0

 Figure 2.4 Cumulative distribution function for the wheel of chance example.

p(x)

x
0 12

0

1/12

 Figure 2.5 Density function for the wheel of chance example.

SIMULATION BASICS 35

 SIMULATION BASICS

 Now that we have completed a brief review of probability, it is time to inves-
tigate how concepts from probability and statistics are utilized in M & S. One
of the most important characteristics of discrete event simulation is the ability
to include uncertainty and variability that occurs naturally in many systems.
For example, in queuing system models there is often uncertainty concerning
the time of arrival of entities entering the system. Additionally, there is often
variability in the times required to provide service as an entity passes through
the system. This randomness is modeled by drawing random variates from
distribution functions that are representative of the entity interarrival times
and service times. In this section, we fi rst review some of the theoretical dis-
tributions that are used commonly in M & S. Then, we investigate methods for
generating samples from these distributions for use as the random variates
needed to drive our simulations.

 Common Theoretical Distribution Functions

 There are numerous theoretical distributions that are often used to model
uncertainty and variability in M & S. In this section, only four of these distribu-
tion functions are reviewed. The reader is encouraged to consult the references
at the end of this chapter, especially Law [3] , for information on additional
distribution functions. Theoretical distributions are often referred to as para-
metric distributions because each distribution has one or more associated
parameters. The parameters are normally selected to control the physical
characteristics of the distribution, such as distribution location, scale, and
shape. Specifi cation of the name and parameters of a theoretical distribution
is suffi cient to defi ne the distribution.

 The uniform distribution , denoted UNIFORM (a , b), is often used when
a random variable having equally likely values over a fi nite range is needed.
This distribution has two parameters: “ a ” specifi es the minimum value of the
random variable and “ b ” specifi es the maximum value of the random variable,
where a , b ∈ R and − ∞ < a < b < ∞ . The probability density function for this
distribution is

p x b a
a x b

() = −
⎛
⎝

⎞
⎠ ≤ ≤⎧

⎨
⎪

⎩⎪

1

0 otherwise.

 The density function for the uniform distribution is shown in Figure 2.6 .
 The triangular distribution , denoted TRIANGULAR (a , m , b), is used

in situations in which the exact form of the distribution is not known, but
approximate values are known for the minimum, maximum, and most likely
values. This distribution has three parameters: “ a ” specifi es the minimum
value of the distribution, “ b ” specifi es the maximum value of the distribution,

36 STATISTICAL CONCEPTS FOR DISCRETE EVENT SIMULATION

and “ m ” specifi es the mode or most likely value of the distribution, where a ,
 m , b ∈ R and − ∞ < a < m < b < ∞ . The probability density function for this
distribution is

p x

b a m a
x a a x m

b a b m
b x m x b

() =
−() −()

−() ≤ ≤

−() −()
−() ≤ ≤

2

2

0 otherwise.

⎧⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 The probability density function for the triangular distribution is shown in
Figure 2.7 .

 The exponential distribution , denoted EXPONENTIAL (m), is often used
to model interarrival times for entities arriving at a system. This distribution
has a single parameter “ m ” that specifi es the mean of the distribution, where
 m ∈ R and 0 < m < ∞ . The probability density function for this distribution is

p x m
e xx m

() =
>⎧

⎨
⎪

⎩⎪

−1
0

0 otherwise.

 The probability density function for the exponential distribution is shown
in Figure 2.8 .

 The normal distribution , denoted NORMAL (m , σ), is often used to rep-
resent variability of quantities about some average value. By the central limit
theorem, this distribution also represents the distribution of a random variable
formed as the sum of a large number of other random variables, even when

p(x)

x
a m b

2/(b – a)

 Figure 2.7 Triangular probability density function.

p(x)

x
a b

1/(b – a)

 Figure 2.6 Uniform probability density function.

SIMULATION BASICS 37

the other random variables are not normally distributed. The normal distribu-
tion has two parameters: “ m ” specifi es the mean of the distribution, and “ σ ”
specifi es the standard deviation of the distribution, where m , σ ∈ R , − ∞ < m < ∞ ,
and 0 < σ < ∞ . The probability density function for this distribution is

p x e xx m() = ⎛

⎝
⎞
⎠ − ∞ ≤ ≤ ∞− −()1

2

2 22

πσ
σ .

 The probability density function for the normal distribution is shown in
Figure 2.9 .

 Generation of Random Variates

 When developing a model, it is often possible to characterize a particular
source of uncertainty or variability as being represented by a random variable
having a theoretical distribution function. For example, the random times
between entity arrivals at a queuing system are often modeled by selecting
independent samples from a random variable having an exponential distribu-
tion. The random service times required to process entities as they pass through
the server in a queuing system are often modeled by selecting independent
samples from a random variable having a triangular distribution. The indepen-
dent samples selected from a random variable having a theoretical distribution
are called random variates . The capability to quickly and effi ciently generate
random variates is clearly an essential requirement for all discrete event simu-
lation software systems.

p(x)

x

1/m

 Figure 2.8 Exponential probability density function.

p(x)

x
m

 Figure 2.9 Normal probability density function.

38 STATISTICAL CONCEPTS FOR DISCRETE EVENT SIMULATION

 The generation of random variates is usually implemented as a two - step
process. In the fi rst step, a random number is generated. In the second step,
the random number is transformed to a random variate. This process of gen-
erating random variates is described in this section. The reader is referred to
Law and Leemis for more detailed presentations [3,4] .

 A random number is defi ned as a sample selected randomly from the
uniform distribution UNIFORM (0, 1). Thus, a random number is a real
number between zero and one; at each random number draw, each real number
in the range [0, 1] has an equally likely chance of being selected.

 In simulation, it is necessary to generate random numbers on a computer
using a recursive algorithm. Thus, the very best that can be done is to simulate
or approximate the generation of random numbers. Historically, the most
common algorithms used to simulate random number generation are called
 linear congruential generators (LCG). Using an LCG, a sequence of integers
 Z 1 , Z 2 , Z 3 , … is generated by the recursive formula

 Z aZ c mk k= +() ()−1 mod .

 In this formula, the constant “ a ” is called the multiplier, the constant “ c ”
is called the increment, and the constant “ m ” is called the modulus; a , c , and
 m must be nonnegative integers. Generation of an integer sequence is initiated
by specifying a starting integer Z - value, Z 0 , called the seed . Each successive
integer Z k is obtained from the previous value by dividing the quantity
(aZ k − 1 + c) by m and retaining the integer remainder. It can be shown that the
resulting values Z k are limited to the range 0 ≤ Z k ≤ m − 1 and are uniformly
distributed. The output of the LCG, U k , is obtained by dividing each integer
 Z k by m .

 For given values of a , c , and m , the value of Z k depends only on Z k − 1 ; in
addition, the algorithm is capable of producing at most m distinct integers.
Thus, each seed Z 0 will produce a sequence of p distinct integers, p ≤ m , and
then the sequence will begin to repeat. Generators with p = m are called full -
 cycle or full - period generators. Thus, the useful output of an LCG is a sequence
of p ≤ m distinct rational numbers U 1 , U 2 , … , U p uniformly distributed over
(0, 1). While these numbers approximate samples from UNIFORM (0, 1), it
is clear that they are not random at all. For this reason, the LCG output values
are usually called pseudorandom numbers . To be useful in simulation, the
constants in the LCG and the initial seed must be selected to produce a very
long cycle length. It is important to note that the LCG algorithm is elegantly
simple and very effi cient when implemented in computer code. In addition,
the LCG output stream is reproducible. This is often important when repeating
an experiment or for debugging a simulation implementation.

 As an example, the discrete event simulation tool ProModel uses an LCG
with a = 630,360,016; c = 0; and m = 2 31 − 1 [5] . It is capable of producing a
cycle length of more than 2.1 billion pseudorandom numbers. The LCG output
is divided into 100 unique random number streams each of length greater than
21 million numbers.

INPUT DATA MODELING 39

 The objective of this section is to generate random variates, that is, samples
from random variables having distributions other than UNIFORM (0, 1).
Conceptually, the most basic method for generating a random variate from a
random number is to utilize the inverse transform theorem . This theorem states
that if X is a random variable with continuous cumulative distribution function
 F (x), then the random variable Y = F (X) has distribution UNIFORM (0, 1).
This theorem is proved in Goldsman [6] . Let X be a random variable with
distribution function F (x) and suppose we wish to generate random variates
from this distribution. If U is the random variable with density function
UNIFORM (0, 1), then by the inverse transform theorem, we know that
 F (X) = U . Therefore, if the function F (·) has an inverse, then X = F − 1 (U). For
most theoretical distributions of interest, the function F (·) is strictly monotone
increasing. This property is suffi cient to guarantee the existence of F − 1 (·). For
obvious reasons, this method of generating random variates is called the
inverse transform method.

 As an example, suppose we desire to generate random variates from
the distribution EXPONENTIAL (2). The cumulative distribution function
for the random variable X having density function EXPONENTIAL (2)
is F (x) = 1 − e − 2 x . Setting F (X) = U = 1 − e − 2 X and solving for X , we obtain
 X F U U= () = () −()−1 1

2 1ln . This equation transforms each random number U
into a random variate X from the distribution EXPONENTIAL (2).

 The inverse transform method can also be applied to discrete distributions,
but a pseudoinverse must be utilized because the cumulative distribution func-
tion inverse does not exist in this case. Conceptually, the inverse transform
method seems easy to apply; however, in practice, it may be diffi cult or impos-
sible to calculate the required inverse function in closed form. For this reason,
there are a number of additional methods that are also used to convert random
numbers to random variates [4] . Virtually all commercial discrete event simula-
tion tools have automated the process of generating random numbers and
random variates. The user simply specifi es a distribution, and possibly a desired
random number stream, and the simulation does the rest.

 INPUT DATA MODELING

 In this section, we address one of the two main objectives of this chapter, input
data modeling . As described in the previous chapter, the development of a
system model has two distinct but closely related components. The fi rst com-
ponent is often referred to as structural modeling. In this component, the
entities, locations, resources, and processes that describe the structure and
operation of the system are defi ned. The result is a mathematical or logical
representation, such as a queuing system model, that describes how the system
behaves when executed. The second component is often referred to as
data modeling. In this component, descriptive data required to execute the

40 STATISTICAL CONCEPTS FOR DISCRETE EVENT SIMULATION

structural model are developed. These data include entity interarrival times,
process service times, resource schedules and failure rates, entity travel times,
and all of the other system data needed to describe the operation of the system
quantitatively. The data model is used to generate the many random variate
streams that must be supplied during the simulation of the system model.

 Our focus in this section is on the second model component, development
of the data model. In many M & S projects, input data modeling is the most
diffi cult, time - consuming, and expensive part of the overall project activity.

 We will introduce the topic of input data modeling by considering the most
simple model development situation. First, we assume that real examples of
the modeled system exist and are accessible. Thus, it is possible to monitor
these systems to make measurements of each required data component.
Abstractly, our data gathering for each data component results in the collec-
tion of a sample from an underlying data component population represented
by a population probability distribution. Second, we assume that our data
samples are independent and identically distributed (IID). Independent means
that there is no relationship or infl uence between successive samples and
identically distributed means that each sample comes from the same underly-
ing distribution. Finally, we assume that the underlying distribution is simple
(unimodal) and stationary (not time varying). More complex situations are
described at the end of this section and will be the focus of study in several
future M & S courses that you will likely take.

 Once a set of samples representing a system data input has been acquired,
there are three choices for generating the random variate stream required for
simulation. First, the sample values can be used directly to form the random
variate stream. Second, the set of samples can be used to generate an empirical
distribution and the empirical distribution in turn can be used to generate the
random variate stream. Third, a theoretic distribution function that fi ts the set
of samples can be identifi ed, and this theoretical distribution can be used to
generate the random variate stream. These three approaches are described in
this section.

Direct Use of Sample Data

 When sample data are to be used directly, the sample values are stored in a
data fi le. Each time a random variate is needed during simulation execution, the
next sample value is read from this data fi le. This approach has the obvious
advantage of generating only legal and realistic random variates. This is guaran-
teed because each sample value was observed in the operation of the actual
system. However, this approach also has several substantial disadvantages.
First, in a limited set of sample values, legal and realistic values that occur infre-
quently may not be present. In this case, these values will not be present in
the random variate stream, and their absence in the simulation may change
computed system performance. Second, making repeated calls to data memory
to retrieve stored sample values is computationally very slow. Thus, this
approach results in substantially greater computational times for simulation

INPUT DATA MODELING 41

execution. Third, and most signifi cant, each simulation execution may require
a large number of random variate draws. As will be shown in the next section, it
is necessary to conduct repeated simulation executions to obtain suffi cient data
to statistically estimate desired system performance measures. Thus, it is
common for a simulation study to require extremely large numbers of sample
values. In practice, it is almost never possible to gather enough sample values to
provide the number of random variates needed to conduct a simulation study.

 Therefore, while at fi rst glance direct use of sample data appears to be a
good approach to generating random variate streams for simulation, it is used
only infrequently because of practical limitations.

 Use of Empirical Distributions

 An empirical distribution is a nonparametric distribution constructed to exactly
represent the available set of sample values. The use of an empirical distribu-
tion has the advantage of facilitating the generation a random variate stream
of unlimited length. The empirical distribution can be used to transform a
stream of random numbers of arbitrary length to the desired random variate
stream. In addition, each random variate will be a legal and realistic value.
However, as with the direct use of sample data, this approach cannot generate
outlying values that may actually occur but are only infrequently observed.
The empirical distribution is generally used when a good fi t to the sample data
using a theoretical distribution cannot be found.

 Somewhat different construction approaches are required for discrete
empirical distributions and continuous empirical distributions. The construc-
tion process for a discrete empirical distribution is similar to the construction
for any discrete distribution, except that the process is conducted with sample
values rather than with all population values. Let Y = (y 1 , y 2 , … , y m) be the
discrete data sample. In general, Y is not a set because some of the sample
values may be repeated. Let X = { x 1 , x 2 , … , x n } be the set of distinct values in
 Y . Typically, the number of sample values m should be selected so that the
number of distinct sample values n is much smaller than m . Defi ne p (x k) as
the number of appearances of x k in the data sample Y divided by the total
number of sample values; that is, p (x k) is the fraction of sample values having
the value x k . Then the empirical density function is defi ned as

p x p x x xk k

k

n

() = () −()
=

∑ δ
1

,

where δ (·) is the unit impulse function. The empirical distribution function is
defi ned as

F x p x u x xk k

k

n

() = () −()
=

∑
1

,

where u (·) is the unit step function.

42 STATISTICAL CONCEPTS FOR DISCRETE EVENT SIMULATION

 The construction process for a continuous empirical distribution differs
from the construction process for a discrete empirical distribution in two ways.
First, a data histogram must be constructed by grouping the sample values by
size into equal width bins. This is done in order to utilize the relative frequency
defi nition of probability. Second, linear interpolation is normally used to
smooth the cumulative distribution function. This construction process is fi rst
explained and then illustrated by example in the following.

 Let Y = { y 1 , y 2 , … , y m } be the real - valued data sample. Choose real numbers
 “ a ” and “ b ” to be upper and lower bounds, respectively, for the elements of Y .
That is, a and b are selected so that a ≤ y k < b for all k . The semi - open interval
[a , b) is then divided into n equal width intervals [a q , b q) where a q = a + (q − 1) h ,
 b q = a + (q) h , and h b a n= −() . Finally, let p q denote the number of data
samples in Y that are also contained in the q th data bin [a q , b q) divided by
the total number of sample values m . Then, the data histogram for data sample
 Y is defi ned as a bar plot of p q versus q for q = 1, 2, … , n . The continuous
empirical distribution function for data sample Y is constructed from the data
histogram for Y . The empirical distribution function F (x) is assigned value
zero for x < a and value one for x ≥ b . Over the interval [a , b), F (x) is defi ned
by the piecewise continuous union of n straight - line segments. The q th line
segment, corresponding to the q th data bin [a q , b q) of the histogram, has end
points (a q , p q − 1) and (b q , p q). This empirical distribution function is shown in
Figure 2.10 .

 Since this empirical distribution consists of the piecewise continuous union
of straight - line segments and each line segment is monotonic increasing, an
inverse for F (x) can be calculated over domain set (0, 1). Thus, this empirical
distribution can be used to transform a random number stream into a random
variate stream representative of the sample data.

 An example is presented to illustrate the development of a continuous
empirical distribution function. As part of the development of a continuous -
 time, discrete event model of some manufacturing system, it is necessary to

1b

· · ·

· · ·

na

F(x)

x

aa1 = qa

1qp −

qb

qp
1np −

bbn =

1p

1

 Figure 2.10 Construction of the continuous empirical distribution function.

INPUT DATA MODELING 43

model the service time for a value - added process. The service times are
thought to be stationary, independent, and identically distributed. A set of 30
sample points for this service time is gathered and used to develop a continu-
ous empirical distribution. The smallest sample value is 3.30 and the largest
sample value is 7.72. For convenience, a = 3.00 and b = 8.00 are selected as
the lower bound and upper bound, respectively. The interval [3.00, 8.00) is
divided into fi ve subintervals or bins that collectively cover the range of
sample times: [3.00, 4.00), [4.00, 5.00), [5.00, 6.00), [6.00, 7.00), and [7.00, 8.00).
The sample values are listed in Table 2.3 . This table also identifi es the bin to
which each sample value is assigned. The relative frequency of occurrence for
each bin is computed as p1 = 0.0667, p2 = 0.4000, p3 = 0.3333, p4 = 0.1333, and

Table 2.3 Listing of sample values and distribution
into bins

 Sample Number Sample Value Bin Number

 1 6.25 4
 2 5.58 3
 3 4.65 2
 4 4.94 2
 5 7.72 5
 6 6.49 4
 7 5.11 3
 8 3.30 1
 9 5.54 3
 10 5.39 3
 11 6.19 4
 12 4.29 2
 13 5.97 3
 14 4.03 2
 15 5.26 3
 16 5.40 3
 17 4.88 2
 18 4.15 2
 19 6.18 4
 20 4.43 2
 21 4.84 2
 22 4.76 2
 23 4.54 2
 24 5.34 3
 25 5.43 3
 26 5.82 3
 27 4.86 2
 28 3.79 1
 29 4.78 2
 30 7.06 5

44 STATISTICAL CONCEPTS FOR DISCRETE EVENT SIMULATION

3 4 5 6 7 8

1
0.9333

0.8000

0.4667

0.0667

F(x)

x

 Figure 2.12 Continuous empirical distribution function for the example.

 p 5 = 0.0667. These values are used to construct the histogram for the sample
service times; this histogram is shown in Figure 2.11 .

 The fi nal continuous empirical distribution function is shown in Figure 2.12 .
The inverse for this distribution function, when driven by a stream of random
numbers, generates the random variate stream of service times required to
simulate the manufacturing system.

 Use of Theoretical Distributions

 A theoretical distribution is a distribution function that is defi ned mathemati-
cally in terms of distribution parameters. Parameters are often related to the
position, scale, or shape of the theoretical distribution. The exponential dis-
tribution, the normal distribution, and the triangular distribution are examples
of theoretical distributions having one, two, and three parameters, respectively.
Generally, if a histogram of the sample data has a single mode and there are
no large gaps lacking sample points, then it is likely that one or more theoreti-
cal distributions can be fi t to the sample data.

 The use of theoretical distributions to represent simulation input data
has several advantages compared with the use of empirical distributions or

p(B
k
)

Bk
B1 B2 B3 B4 B5

0.067

0.400
0.333

0.133

 Figure 2.11 Histogram of sample service times for the example.

INPUT DATA MODELING 45

direct use of sample data. First, the theoretical distribution tends to smooth
irregularities resulting from using a limited number of sample values. The
theoretical distribution will generate values outside the range of observed
values, often capturing values that might actually occur but that were missed
in the sampling process because they occur only infrequently. Second, as we
have already observed, the use of a theoretical distribution to generate random
variate streams is computational effi cient. This approach results in the smallest
computational overhead during runtime of the three input data modeling
approaches. The major disadvantage of using a theoretical distribution is the
computational effort required to fi t a distribution to sample data and, for some
sample data sets, the diffi culty in fi nding a good fi t.

 The process of fi tting a theoretical distribution to sample data normally
consists of three steps. In step one, a histogram for the sample data is con-
structed. The overall shape of the histogram is compared with probability
density functions from theoretical distributions. The purpose of this step is to
identify several candidate theoretical distributions for further processing.
Sometimes comparing summary statistics for the sample data to the same
statistics for the candidate theoretical distributions is helpful. It is important
to include all likely theoretical distribution candidates at this step; those that
do not fi t well will be identifi ed and eliminated in step three.

 The second step is to determine the theoretical distribution parameters to
obtain the best fi t of the theoretical distribution to the sample data. This should
be done for each candidate theoretical distribution identifi ed in step one.
There are two approaches that are often used in this step: the maximum likeli-
hood estimation method and the method of moments . The maximum likelihood
method identifi es the theoretical distribution parameters that make the result-
ing distribution the most likely to have produced the sample data. The method
of moments equates the fi rst q population moments with the fi rst q sample
moments, where q is equal to the number of theoretical distribution param-
eters. Both approaches use concepts from statistics that are beyond those
presented in this chapter [7] . These concepts are normally investigated in fi rst -
 level graduate courses in statistics. Fortunately, many of the commercially
available discrete event simulation software environments have built in tools
to automate this step. In Arena, this step is done in the Input Analyzer, while
in ProModel this step is done in Stat::Fit [5,8] . For each candidate theoretical
distribution, the result of this step is a set of distribution parameters that make
the distribution fi t the sample data as closely as possible.

 The third and fi nal step is to determine the best theoretical distribution,
from among the candidate distributions, to represent the sample data. This
step often relies on the use of statistical goodness - of - fi t tests to help identify
the best theoretical distribution. Two goodness - of - fi t tests are commonly used
for this purpose: the chi - square test and the Kolmogorov – Smirnov (K - S) test
 [3] . The chi - square test statistic is a measure of the squared distance between
the sample data histogram and the fi tted theoretical probability density func-
tion. The K - S test statistic is a measure of the largest vertical distance between

46 STATISTICAL CONCEPTS FOR DISCRETE EVENT SIMULATION

an empirical distribution and the fi tted theoretical cumulative distribution
function. Both of these tests are statistical hypothesis tests. Rather than report
the test statistics, it is common to report the test results as a p - value. The
 p - value is a measure of the probability that another data sample will compare
the same as the present data sample given that the theoretical distribution fi t
is appropriate. A small p - value indicates that another data sample probably
would not compare the same and the fi t should be rejected. A high p - value
indicates that another data sample probably would compare the same and the
fi t should not be rejected. When comparing candidate theoretical distributions
for goodness - of - fi t, the distribution with the highest p - values is likely to
provide the best fi t. These goodness - of - fi t tests are automated in many discrete
event simulation tools. Generally, a p - value greater than 0.05 is considered
acceptable, while a p - value less than 0.05 indicates a poor fi t.

 To illustrate this process, we use the Arena Input Analyzer to fi t a theoreti-
cal distribution to the data sample presented in Table 2.3 [8] . The histogram
for this data sample is shown in Figure 2.11 . Viewing the histogram, it appears
that both the triangular distribution and the normal distribution might be
viable candidates for a fi t. The result of fi tting a triangular distribution to the
data sample is shown in Figure 2.13 . The report that accompanies this fi gure
indicates that the best fi t for a triangular distribution is TRIANGULAR (3.00,
4.70, 8.00). For this distribution, the chi - square test yields a p - value of 0.427,
while the K - S test yields a p - value of greater than 0.15. The goodness - of - fi t
tests indicate that the triangular distribution remains a strong candidate for
representing the data sample.

 The result of fi tting a normal distribution to the data sample is shown in
Figure 2.14 . The report indicates that the best fi t for a normal distribution is
NORMAL (5.23, 0.947). For this distribution, the chi - square test yields a p -
 value of less than 0.005, while the K - S test yields a p - value of greater than
0.15. The low p - value from the chi - square test indicates that the normal dis-
tribution is not a good candidate to fi t the data sample.

 In practice, a number of other continuous theoretical distributions could be
considered candidates for fi tting the data sample. These theoretical distribu-

 Figure 2.13 Triangular distribution fi tted to the data sample.

INPUT DATA MODELING 47

tions include the beta distribution, the Erlang distribution, the gamma distri-
bution, the lognormal distribution, and the Weibull distribution. Each of these
distributions was also fi tted to the data sample. Each produced a K - S test
 p - value of greater than 0.15 but a chi - square test p - value of less than 0.005.
Therefore, based on the results of our tests, we would likely choose the trian-
gular distribution to model our data sample.

 Other Input Data Modeling Situations

 In this section, we have investigated only the simple cases of modeling input
data. However, for many simulation projects, the task of developing good input
data models can be considerably more complex. The diagram shown in Figure
 2.15 categorizes some of these more complex situations.

 For some simulation projects, it is either very diffi cult or even impossible
to collect sample data. This occurs when simulating a new system design before
an actual prototype system is developed. In other situations, sample data can
be obtained, but the data have more complex statistical properties. Sample
data sometimes appear to exhibit multimodal behavior; that is, the data histo-
gram displays several peaks separated by intervals containing few sample
values. Sample data are sometimes time varying. For example, the interarrival
times for customers at a fast - food restaurant likely vary with time of day
and day of the week. Sometimes different random parameters in a system
are correlated. Entities that require larger service times in one manufacturing
area may also require larger service times in other manufacturing areas. These
complex input data modeling situations occur frequently in practice and
an M & S professional must learn approaches and techniques for dealing
with these cases. Fortunately, we will not attempt to address these issues
in this chapter. Rather, these are some of the many topics that will be treated
in later courses in probability and statistics and courses in discrete event
simulation.

 Figure 2.14 Normal distribution fi tted to the data sample.

48 STATISTICAL CONCEPTS FOR DISCRETE EVENT SIMULATION

 OUTPUT DATA ANALYSIS

 In this section, we address the second of the two main objectives of this
chapter: output data analysis. Output data analysis is the process of analyzing
simulation output data to produce useful information concerning system per-
formance. First, a simple queuing system example is presented and used to
illustrate why output data analysis is necessary. Then, the confi dence interval
estimate of the mean is described. This statistical technique is used to estimate
the population mean for a performance measure from a set of sample values
from that population. The confi dence interval estimate yields information
about both the accuracy and the correctness of the estimate. Finally, some of
the more complex output data analysis situations are identifi ed, and approaches
for addressing these situations are briefl y discussed.

 A Motivational Example

 We begin by describing a simulation experiment performed on an M/M/1
queuing system Z . Let Z consist of a fi rst - in, fi rst - out (FIFO) queue having
infi nite capacity followed by a server having a single resource. The interarrival
times for entities arriving at Z are assumed to be IID; that is, each interarrival
time is independent of all other interarrival times, and all interarrival times
are obtained by selecting sample values from the same distribution. The inter-

System

data

Simple

data

Complex

data

Use sample

data

Empirical

distribution

Theoretical

distribution

No data

available

Multimodal

data

Correlated

data

Nonstationary

data

 Figure 2.15 Categorization of input data modeling situations.

OUTPUT DATA ANALYSIS 49

arrival times are exponentially distributed with an average interarrival time
of 1 time unit. The entity service times at the server are also IID and are
exponentially distributed with an average service time of 0.8 time units. The
system starts empty and idle, the fi rst entity arrives at t = 0, and the system
processes entities for 50 time units. The system performance measure of inter-
est is the average entity wait time in queue. For each simulation run of 50 time
units, the wait time of each entity that enters and then leaves the queue is
measured. These wait times are averaged to produce an average wait time for
that simulation run. The complete experiment consists of making n simulation
runs. After each simulation run, the system is reinitialized, and another simu-
lation run is started using new independent sets of random variate draws for
interarrival times and service times.

 The experiment is conducted for n = 5. Each experimental run produces a
new and different average wait time. These average wait times vary in size
from a low of 0.49 time units to a high of 2.95 time units; the average of these
fi ve average wait times is 1.60 time units. The results from each of the fi ve
individual runs are shown in Table 2.4 .

 When the experiment is repeated with n = 100, a new set of 100 different
average wait times is obtained. In this case, the average wait times range in
size from a low of 0.20 time units to a high of 6.72 time units; the average of
the 100 average wait times is 1.98 time units.

 This simple example raises several very signifi cant issues. First, each time a
simulation run is conducted, a different average wait time is generated. Thus,
it is not clear which result, if any, is the average wait time that is sought. Second,
when a number of simulation runs are conducted and the wait times resulting
from each run are averaged, the average of the average wait times appears to
be a function of the number of simulation runs conducted. It is not apparent
how many simulation runs should be conducted or how increasing the number
of simulation runs enhances the experimental result. Third, there is no indica-
tion of the accuracy or the correctness of the result obtained from the simula-
tion experiment. What is needed is a way to estimate the average wait time
that conveys some measure of both the accuracy and the correctness of the
result.

 Generalizing from the results of this simple simulation experiment, the
presence of uncertainty (random interarrival times) and variability (random
service times) in the system Z results in a system output (average wait time)
that is also random. If it was feasible to conduct all possible simulation experi-
ments, the resulting output set would include the entire population of all

Table 2.4 Results of experimental runs for Z with n = 5

 Run

 One Two Three Four Five

 Delay 1.83 2.95 0.49 1.16 1.56

50 STATISTICAL CONCEPTS FOR DISCRETE EVENT SIMULATION

possible system outputs. It is convenient to think of this population as being
a random variable having some underlying distribution that governs the
behavior of the population. Our objective is to determine the population
mean, denoted as μ . In almost all cases, the best that can be done using simu-
lation is to generate only a relatively few samples of the many possible outputs
that are present in the output population. It is then necessary to use statistical
analysis to estimate a population parameter by performing calculations on
samples from that population.

 It should be clear from this discussion that a single simulation run normally
results in the generation of a single sample from the output population. It is
never advisable to reach a conclusion about system performance, that is, the
output population, using a single sample from that population. At best, the
sample is just one of many possible values that could have occurred. At worst,
the sample may be an outlier, an output value that occurs with very low prob-
ability, and has little to do with the desired population parameter.

 Confi dence Interval Estimate of the Mean

 Statistical estimation is the process of estimating a population parameter based
on knowledge of a sample statistic. The sample statistic used in estimating a
population parameter is called an estimator. Perhaps the most popular form
of an estimator is the confi dence interval estimate . The focus of this section is
the confi dence interval estimate of the mean for some population.

 A typical graphic display of a confi dence interval is shown in Figure 2.16 .
The confi dence interval estimate of the mean is computed using n samples
obtained randomly from the underlying population and is used to estimate the
population mean. The “ min ” and “ max ” values indicate the minimum and the
maximum sample values, respectively, while “ mean ” indicates the average of
all sample values. The confi dence interval is centered about the sample mean
and extends a distance equal to the half width on both sides of the mean. The
procedure for calculating the confi dence interval specifi es how to compute the
sample mean and the confi dence interval half width.

 Precision refers to the accuracy of an estimate. In a confi dence interval, the
precision of the estimate is indicated by the width of the confi dence interval.
The smaller the confi dence interval, the higher is the precision of the estimate.

Min Max

Mean
Half width

Confidence interval

 Figure 2.16 Graphic display of confi dence interval.

OUTPUT DATA ANALYSIS 51

 Reliability refers to the probability that the estimate is correct. Reliability
depends on the choice of a parameter α used in the calculation of the half
width. Thus, the confi dence interval estimate includes information concerning
both the precision and the reliability of the estimate. These are essential pieces
of information when deciding the signifi cance to attribute to the estimate.
Unfortunately, precision and reliability are competing quantities; one may be
traded for the other in any estimate. To demonstrate this, consider two esti-
mates of the mean height of all males in the U.S. population. The confi dence
interval estimate 5 ′ 9 ″ ± 0.01 ″ is very precise but not very reliable. On the other
hand, the confi dence interval estimate 5 ′ 9 ″ ± 1.00 ′ is not very precise but is
highly reliable. The objective is to obtain an estimate having acceptable reli-
ability and precision.

 Additional descriptors used to characterize estimators are the terms unbi-
ased, consistent, and effi cient. An estimator is said to be unbiased if the
expected value of the estimator is equal to the parameter being estimated. An
estimator is said to be consistent if the precision and reliability of the estimator
improve as the sample size is increased. Finally, an estimator is said to be more
 effi cient than another if for the same sample size it produces greater precision
and reliability. Thus, it is advantageous to utilize an estimator that is known to
be unbiased, consistent, and effi cient.

 Let { X 1 , X 2 , … , X N } be IID random variables (observations) obtained from
a population having mean μ and variance σ 2 . The sample mean , defi ned as

X n

X

n
kk

n

() = =∑ 1 ,

(2.1)

 is an unbiased estimator for μ . Similarly, the sample variance , defi ned as

S n

X X n

n
kk

n

2

2

1

1
() =

− ()⎡⎣ ⎤⎦
−

=∑
,

 (2.2)

 is an unbiased estimator for σ 2 . Assuming the samples X k are samples from a
normal distribution, then the random variable defi ned as

t
X n

S n
n

=
() −⎡⎣ ⎤⎦

()
μ

2

 (2.3)

 has a Student t distribution with degrees of freedom df = n – 1. The proba-
bility density function for the Student t random variable is shown in Figure
 2.17 . The value t t= − −1 2α is selected so P t t−∞ < ≤ −{ } =−1 2 2α α ; similarly,

52 STATISTICAL CONCEPTS FOR DISCRETE EVENT SIMULATION

since the Student t density function is symmetric about the t = 0 point,
 P t t+ < < ∞{ } =−1 2 2α α . Since the total area under a probability density func-
tion is one, it follows that

 P t t t− ≤ ≤ +{ } = −− −1 2 1 2 1α α α. (2.4)

 Substituting for t in Equation (2.4) using Equation (2.3) , and then rearrang-
ing the inequality to indicate a bound for the population mean μ results in

P X n t

S n
n

X n t
S n

n
() − () ≤ ≤ () + ()⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= −− −1 2

2

1 2

2

1α αμ α.

 (2.5)

 Equation (2.5) indicates that the confi dence interval estimate for the pop-
ulation mean μ is centered about the sample mean X

_
 (n) and has a

half width of t S n n1 2
2

− ()α . The reliability associated with the confi dence
interval is 1 − α . The meaning of the reliability of the confi dence interval is as
follows: If this simulation experiment is conducted repeatedly and each experi-
ment is used to form a confi dence interval estimate for μ , then exactly
(1 − α)100% of the confi dence intervals will contain μ .

 As an example, consider the fi ve sample points listed in Table 2.4 that rep-
resent the average wait time for entities passing through a simple M/M/1
queuing system over a time interval of T = 50 time units. These data points
are listed again for convenience:

 X X X X X1 2 3 4 5 1 83 2 95 0 49 1 16 1 56, , , , . , . , . , . , . .{ } = { }

p(t)

t
/21t a− /21 a−− t+

2
Area

a=
2

Area
a=

Area = 1– a

0

 Figure 2.17 Student t probability density function.

OUTPUT DATA ANALYSIS 53

 A 90 percent confi dence interval is calculated for these sample points. First,
the sample mean X

_
 is computed using Equation (2.1) :

 X = + + + +{ } =1 83 2 95 0 49 1 16 1 56 5 1 60.

 Next, the sample variance S 2 is computed using Equation (2.2) :

S2 2 2 2 21 83 1 60 2 95 1 60 0 49 1 60 1 16 1 60

1

= −() + −() + −() + −(){ +.

.556 1 60 4 0 832−() } =. . .

 The values of the Student t parameter tn− −1 1 2, α are usually tabulated.
For this example, the degrees of freedom df = n – 1 = 4 and the quantity
 1 2 0 95− =α . , so t 4, 0.95 is read from a table as 2.13 [3] . Thus, the 90 per-
cent confi dence interval estimate for the average wait time is given as
 X t S± = ± = []4 0 95

2 5 1 60 0 87 0 73 2 47, , . . This confi dence interval is shown
graphically in Figure 2.18 .

 Controlling the reliability of a confi dence interval estimate is accomplished
through the choice of the parameter α . If in the previous example it is desired
to calculate a 95 percent confi dence interval estimate, the only adjustment
required is to change the value of α from 0.1 to 0.05. This in turn changes
the Student t parameter; the calculation now requires t tn− − = =1 1 2 4 0 975 2 78, , . .α .
The 95 percent confi dence interval estimate, based on the same fi ve sample
values, is 1.60 ± 1.13. As expected, increasing the reliability for the same set
of sample values results in a decrease of the estimate precision, that is, an
increase in the width of the confi dence interval. This occurs because reliability
and precision are competing factors and one can be traded for the other.
However, for a given reliability, the precision of a confi dence interval estimate
can be improved by increasing the number of sample values. Suppose it is
desired to improve the precision of the confi dence interval estimate by a
factor of k . Comparing the ratio of confi dence interval estimates for different
numbers of samples shows that the improvement in precision is approximately
proportional to k 2 . Thus, if the precision is to be increased by a factor of

1.60

2.470.73

0.49 2.95

 Figure 2.18 Ninety percent confi dence interval for the M/M/1 queuing system example.

54 STATISTICAL CONCEPTS FOR DISCRETE EVENT SIMULATION

two, it is necessary to increase the number of sample values by (2) 2 = 4.
Repeating the experiment with the M/M/1 queuing system, this time with 20
repetitions, results in a 95 percent confi dence interval estimate of average wait
time of 1.93 ± 0.44.

 The confi dence interval estimate of the mean provides an approach to
obtain meaningful results from discrete event simulation experiments contain-
ing random quantities. The confi dence interval provides insight to both
the reliability and the precision of the measurement. The reliability of the
confi dence interval estimate is controlled by choice of the parameter α ,
while the precision is controlled through the number of sample values used
in the computation.

More Complex Output Data Analysis Situations

 So far in this section, we have discussed one of the most important output data
analysis problems of discrete event simulation. We have investigated the cal-
culation of a confi dence interval estimate of the mean for some system per-
formance measure. The calculation was made using sample data obtained by
conducting multiple simulation runs of the system model. While this is cer-
tainly the most common output data analysis problem, it is not the only output
data analysis problem. In the remainder of this section, some of the other more
complex output data analysis situations are described. Students of M & S will
meet many of these situations, along with appropriate statistical methods for
addressing the situations, in future studies. The purpose here is to simply iden-
tify that there are other output data analysis problems that occur in discrete
event simulation.

 Discrete event simulations are often categorized as being terminating
simulations or nonterminating simulations. A terminating simulation is a
simulation for which there is an event that naturally defi nes the end of a simu-
lation run. The simple queuing system simulation described at the beginning
of this section is an example of a terminating simulation. The terminating
event for that simulation is the event of the simulation time variable reaching
the value T = 50 time units. Output analysis of a terminating simulation is
usually straightforward because there is no ambiguity about when or how to
measure the desired output quantity. A nonterminating simulation is a simula-
tion for which there is no natural terminating event. This situation often occurs
when it is desired to investigate the long - term or steady - state behavior of
a system. Nonterminating simulations present several new problems not
encountered in terminating simulations. First, the analyst must determine
when the output actually reaches steady state. A graphic procedure known as
Welch ’ s procedure is one method that has been developed for this purpose
 [3] . The time interval that occurs from simulation start to achieving steady
state is called the warm - up period. To accurately measure steady - state perfor-
mance, a nonterminating simulation is started at simulation time zero, but
performance data are not collected until after the warm - up period has elapsed.

OUTPUT DATA ANALYSIS 55

This process of deleting performance data collected during warm - up is called
the replication/deletion procedure [3] . Welch ’ s procedure and the replication/
deletion procedure represent additional overhead in conducting output data
analysis for a nonterminating simulation. Fortunately, the output analysis
components of most discrete event simulation tools provide support for these
two procedures.

 In some system studies, information beyond just average system perfor-
mance is required. Statistical descriptors of performance typically fall into
three categories: (1) descriptors that help locate the center of a distribution,
such as the mean; (2) descriptors that measure the spread of a distribution,
such as the variance; and (3) descriptors that indicate relative standing within
a population, such as the probability of occurrence or quartile location.
Statistical procedures, similar to the confi dence interval estimate of mean, exist
for estimating population variance, probability of occurrence, and quartile
location [4] .

 Simulation is often used to identify the better of two alternatives or the
best of several alternatives. In such studies, the alternatives are simulated to
determine estimated performance, and then the different estimated perfor-
mances are compared. Since performance is described with samples from a
distribution, comparison of performance is not as simple as comparing two
numbers. Very sophisticated statistical procedures exist for comparing two
systems and for comparing multiple systems [3] .

 The precision of performance estimates is related to the sample variance
of the simulation output data. Sample variance is generally reduced by increas-
ing the sample size. However, in many situations, practical considerations place
limits on the number of simulation runs, and thus the sample size, that can be
obtained. A number of techniques, called variance reduction techniques, have
been developed to help reduce sample variance without increasing sample size
 [3] . These variance reduction techniques are especially useful when comparing
system alternatives and when conducting nonterminating simulations having
long warm - up times.

 Finally, simulation is often used to optimize system performance. In these
studies, system performance is determined by a set of system parameters. For
a particular choice of parameters, system performance is estimated using simu-
lation. An iterative process is defi ned that selects a new set of parameters,
estimates system performance for these parameters, and then compares the
performance with these parameters to that achieved with the previous set of
parameters. It is especially important to orchestrate an effi cient search process
in the parameter space so that an acceptable solution is found with as little
simulating as possible. Many commercial discrete event simulation tools have
separate components for conducting simulation - based optimization. Arena
uses a component called OptQuest, ProModel uses a component called
SimRunner, and AutoMod uses a component called AutoStat [5,8,9] . Each of
these optimization components uses a different approach for conducting the
optimization search.

56 STATISTICAL CONCEPTS FOR DISCRETE EVENT SIMULATION

CONCLUSION

 In this chapter, we have been introduced to some of the statistical concepts
required to conduct a discrete event simulation experiment. Our focus has
been on two important components of discrete event simulation: input data
modeling and output data analysis. Input data modeling is the process of
selecting an appropriate distribution to represent each random input quantity,
and then generating random variates from these distributions as required
during simulation runtime. Output data analysis consists of recognizing that
each simulation run produces one sample value from a performance measure
population. Repeated simulation runs must be conducted to estimate the
desired population statistic. Confi dence interval estimates are often used
because they provide information about the reliability and precision of the
performance statistic measurement.

 The study of statistical techniques for discrete event simulation is a very
rich and exciting area. While a large and impressive body of knowledge in this
area has been developed, there remain many important unanswered questions
and research challenges for students of M & S.

REFERENCES

 [1] Hein JL . Discrete Structures, Logic, and Computability . 2nd ed . Sudbury, MA :
 Jones and Bartlett ; 2002 .

 [2] Peebles PZ . Probability, Random Variables, and Random Signal Principles . New
York : McGraw - Hill ; 1980 .

 [3] Law AM . Simulation Modeling and Analysis . 4th ed . New York : McGraw - Hill ;
 2007 .

 [4] Leemis LM , Park SK . Discrete Event Simulation: A First Course . Upper Saddle
River, NJ : Pearson Prentice Hall ; 2006 .

 [5] Harrell C , Ghosh BK , Bowden RO . Simulation Using ProModel . 2nd ed . New
York : McGraw - Hill ; 2004 .

 [6] Goldsman D . Introduction to simulation . In Proceedings of the Winter Simulation
Conference. Henderson S , et al. (Eds.), 2007 , pp. 26 – 37 .

 [7] Mendenhall W , Sincich T . Statistics for Engineering and the Sciences . 4th ed .
 Upper Saddle River, NJ : Prentice Hall ; 1995 .

 [8] Kelton WD , Sadowski RP , Swets NB . Simulation with Arena . 5th ed . New York :
 McGraw - Hill ; 2010 .

 [9] Banks J , Carson JS , Nelson BL , Nicol DM . Discrete- Event Simulation Systems .
 4th ed . Upper Saddle River, NJ : Prentice Hall ; 2005 .

57

Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains,
Edited by John A. Sokolowski and Catherine M. Banks
Copyright © 2010 John Wiley & Sons, Inc.

3

DISCRETE-EVENT
SIMULATION

Rafael Diaz and Joshua G. Behr

 A queue is a line of either people or objects waiting for service or handling.
Queuing is a generic term used to refer to the process of people or objects
forming a line in preparation to receive service or handling. Queues and
queuing are an integral part of the ordered, normal environment that defi nes
our modern world. Part of our social, cultural, and civil norms is defi ned by
the unwritten rules that guide where and how we queue. In fact, our familiarity
and frequent application of these unwritten rules in our daily lives has allowed
them to become almost natural. For example, we form lines and wait to be
serviced by the next available customer representative at the bank, to use a
restroom during intermission, and for the traffi c light to return to green. The
rules that govern queuing are more formalized in controlled environments
such as manufacturing, warehousing, and distribution. In a production setting,
for example, semifi nished products are queued awaiting to receive the next
treatment in an assembly line, followed by packaging and shipping to either
a fi nal destination or a distribution center. At a congested distribution center,
trucks form queues awaiting loading.

 As you can see, queues and queuing are quite common, and since the terms,
by defi nition, entail “ waiting, ” the evaluation of a queuing system ’ s perfor-
mance, often a point of interest for consumers and operations managers alike,

58 DISCRETE-EVENT SIMULATION

may be measured by some form of “ wait time. ” When evaluating the perfor-
mance of a real - world queuing system, there are a number of measures one
may consider: the average and maximum wait times, the average and maximum
number of persons or objects in a queue, service utilization time, total time
(entry to exit) in the system, and so forth. From the perspective of the con-
sumer, when seeking a service, if the wait time is too lengthy, then the evalu-
ation of the business tends to be rather poor. From the operations side, it is
quite helpful to understand what confi guration of a queuing system ’ s compo-
nents, vis - à - vis the number of scheduled servers and number of customer lines,
will yield wait times that are consistent with the organization’s business model.
For example, given the pace and arrival times of patients within an emergency
department, what deployments of registration representatives and medical
staff will yield an acceptable wait time for patient treatment? Or, in a produc-
tion environment with fi nite space, given the nature and quantity of orders
placed by retail stores, what is the number of assembly queues that will yield
a given turnaround time between order and delivery?

 One approach to answering these questions requires the following: fi rst, the
modeling of the environment where queuing takes place; second, a process
where the model is executed or simulated to allow it to play out over time,
revealing the dynamic behavior of the system; and third, evaluation where
performance measures resulting from the modeling and simulation process are
analyzed, potential adjustments made to the model, and the simulation poten-
tially run again.

 Modeling simply means making a logical representation, usually a simpli-
fi ed one, of the real - world queuing environment or system. When modeling
the queuing system, not all the information detailing the environment is
included; some component parts of a system are more important than others
relative to the measured performance of the system. Thus, the model is not
an identical replication of a real - world system; rather, it is a plausible repre-
sentation of the parts of a system that matter the most to the overall perfor-
mance of that system. If the real - world system evidences a single queue line
and four service stations (essential components relative to the performance of
the system), then the initial model ought to replicate this arrangement. On the
other hand, representing the colors on a facility ’ s walls ought not to be con-
sidered for model inclusion since its relation to a system ’ s performance is
likely tenuous.

 The building of a valid model requires awareness not only on the number
of queues and servers present in the real - world system, but also on the foun-
dational information about patterns of behavior for entities and servers. These
behaviors can be derived from our understanding of historical data such as
those associated with past performance measures of the system as well as
historical data that describe, as distributions, the past behavior of entities
(e.g., probabilistic or deterministic arrival times) and servers (e.g., probabilis-
tic or deterministic service times) within the system. This information informs
the modeler in the building of the model. When historical data are not avail-

DISCRETE-EVENT SIMULATION 59

able, the researcher has the options of either engaging the real - world system
expressly to gather these foundational data or relying on subject matter experts
to express the behavior of entities and servers.

 The arrival and service times within a real - world system may be stochastic.
The articulation of mathematical equations, complemented by probability
theory, has been used as a close approximation for the real - world behaviors
of entities and servers within queuing systems. Thus, probabilistic distributions
under proper assumptions may be employed to represent the stochastic behav-
ior of entities within the system.

 Simulation is the execution of the model and is commonly a two - phase
process. The fi rst phase entails initializing the simulation, generating either
random or deterministic numbers that describe the behavior of entities and
servers, entering of an entity into the system, updating the state data and
statistical accumulators, repeating the two preceding operations for a prede-
termined number of time steps, and terminating the simulation. In most
cases, a time step is occasioned by an event such as the entry into, or departure
from, the system by an entity. While the real - world queuing system within
an emergency department, for example, may experience thousands of time
steps associated with the arrival and departure of patients unfolding over
a period of many days, a digital computer can execute these time - stepped
events in a matter of seconds. The arrival times of entities entered at each
step as well as the service times can be derived from probability distribu-
tions, which, in turn, have been informed by our knowledge of the arrival
and service patterns evidenced in the historical data. The state variables
are updated and the statistical accumulators expanded at each time step.
Termination occurs after numerous iterations through this process loop and
the summation of accumulated time steps reaches a predetermined threshold
or termination criteria. Final performance measures are then summarized for
this initial simulation run.

 The second phase of the simulation process, if necessary, entails the replica-
tion of the fi rst phase. Since the arrival and service utilization times for a
particular simulation run are potentially derived from a set of random numbers
unique to that run, the resultant queue sizes and wait times are also unique
to that run. Thus, the performance measures yielded from each replication
will differ because of the generation and input into the simulation of unique
random numbers. The number of simulation replications depends upon the
sample mean and the sample standard deviation. Since each replication is
independent and identically distributed (IID), one can build a confi dence
interval for measuring the expected performance of the system. Thus, through
a process of evaluation, the investigator learns how the model behaves
under prescribed conditions. The utility of modeling and simulation is found
in the derived inferences; the investigator has learned about the model ’ s
performance under various sets of given conditions, and, since the model is
a representation of a real - world queuing system, inferences may be made
about the behavior of the real - world system. Simply, the investigator upon

60 DISCRETE-EVENT SIMULATION

completion asserts that he or she is able to predict, within a certain degree of
confi dence, how the system will perform when confronted with those simu-
lated conditions.

 In this chapter, we discuss the construction and performance of a queuing
system model. We illustrate a simulation methodology by describing a general
discrete - event simulation (DES) framework and further illustrate the mechan-
ics of the simulation. Next, we introduce the main components and aspects of
Arena® simulation software, and, fi nally, a simple simulation model is devel-
oped and executed using this simulation software.

QUEUING SYSTEM MODEL COMPONENTS

 A queuing system model can be defi ned as a representation that captures and
quantifi es the phenomenon of waiting in lines. The three basic elements within
a queuing system are entities, servers, and queues. Entities can represent either
customers or objects, servers can represent persons or production stations that
treat or interact with the entity, and queues are the holding or waiting position
of entities. The queue size may be assumed to be either fi nite or infi nite. For
example, the physical confi nes of a buffer area (i.e., queue) between two
workstations along a production line may behave as a cap on the potential
number of entities waiting for service; since historically we have knowledge
that the maximal number of entities has fi lled on occasion this queuing area,
we say the queue size is fi nite. In contrast, a call center may have the capacity
to queue, or place on hold, up to 1000 incoming calls unable to be serviced by
the three service representatives; since there is no history of the call center
approaching its holding queue capacity, for all intents and purposes this queue
can be assumed to be infi nite.

 The arrival process is characterized by the interarrival time, or the interval
of time between successive customers or objects entering the system in prepa-
ration to receive service. As mentioned before, the interarrival time may be
described in terms of probabilistic behavior. Often, an assumption is made
that the arrival time is a random variable that is IID, meaning that the arrival
times of the entities are independent, or autonomous, of each other and that
the probability distribution is identical, or alike, for all entities. Upon arrival,
an entity enters into the system at which point the entity proceeds directly
either to a server to receive service or to a queue if it is the case that all servers
are busy. Any particular server may be either busy, as is the case when servic-
ing an entity, or idle, as is the case when there are no entities in queue. If more
than one server is modeled, then the design of the service may involve series,
parallel, or networked servers. Similar to interarrival time, the service time
may also be expressed in terms of probabilistic behavior. The customer may
also engage in strategic behavior known as jockeying or balking; assuming
there is more than one queue, a customer may choose to remove himself or
herself from one queue and enter another queue.

QUEUING SYSTEM MODEL COMPONENTS 61

 A relevant component of the queuing system is the queue discipline that
rules the model. Queue discipline is the order that either customers or objects
are selected from a queue to advance to receive service. Two common disci-
plines are fi rst come, fi rst served (FCFS) and shortest process time (SPT), but
the researcher may also customize a heuristic that prioritizes the customer or
object according to unique conditions. For example, within an emergency
department, customers arriving with predetermined conditions such as chest
pain or head injury are advanced to the front of the queue. Or, within a pro-
cessing and distribution center, customer orders tagged for expedited service
may be directed to the front of the packaging and shipping queue.

 We have introduced above several “ components ” that defi ne a queuing
system model. A queuing system is characterized by the specifi cation of a
combination of these components. For example, the M/M/1 queuing model is
characterized by a Markovian arrival process in which entities arrive indepen-
dently and distributed identically from an exponential distribution (fi rst M);
a Markovian service time (second M), again from an exponential distribution;
and fi nally with one single server (the third component, 1). The M/M/1 queuing
model, like other queuing models, uses mathematical expressions to describe
performance. Because certain assumptions are employed when deriving these
expressions, it may be said that the model has been constrained.

State Variables, Events, and Attributes

State variables are those measures that characterize a system at a particular
moment or state. Thus, the state of the queue at time t (i.e., Q (t)) may be
characterized by the number of entities in the queue, while the state of the
server at time t (i.e., Q (t)) may be characterized as either busy or idle. Events
are the arrival to, or departure from, the system by entities or objects. The
termination, or end, of the simulation is also a form of an event, sometimes
referred to as a pseudoevent since it is not marked by either the arrival or the
departure of an entity.

 Entities and servers are described by attributes. Attributes are components
of the system state. A server can have an attribute that describes its state as
either busy or idle. In addition, when the server is busy, an attribute may
describe the type of activity the server is performing. Entities can have an
attribute that indicates its amount of time required to service as well as an
attribute that describes the type of service sought. An example is a service
center that fi elds customers ’ calls about a particular product. The types
of service sought by a calling customer may include the attributes “ product
complaint, ” “ product praise, ” and “ product technical question. ” The attri-
butes associated with a server (assuming the server is engaged) may be “ pro-
fi cient ” and “ slow. ” A newly hired service representative who is still early
in the learning curve may be slow at managing a product complaint but pro-
fi cient at registering a product praise. If there is more than one customer who
would like to register a product complaint, then these customers have a shared

62 DISCRETE-EVENT SIMULATION

attribute and may be grouped into a set. Likewise, if there are several servers
that share the attribute “ profi cient, ” then these servers may also be grouped
into a set.

SIMULATION METHODOLOGY

 In most cases, systems can be classifi ed into two types: discrete and continuous.
The system is called discrete when the state variables are updated instanta-
neously at specifi ed times (e.g., t1 , t2 , t3 …). For example, envision a lunch
queue and server utilization at a local fast - food restaurant throughout the
peak midday business hours. One could rigidly take a snapshot of the state of
customers precisely every 60 seconds and update the state variables to capture
the progression of the lunch rush. However, a more meaningful approach, and
the one advanced here, is the taking of a snapshot each time a new customer
either arrives or departs the restaurant. With each snapshot, or event, the
number and position of customers in the restaurant adjusts relative to the
previous snapshot; new customers have entered the system and joined one of
the several queues, previously queued customers have stepped up to the
counter and are now being served, others have jockeyed from one queue to
another, and still yet others — hopefully satisfi ed and well fed — have departed
the system. Continuous systems, on the other hand, denote the situation where
the state variables change continuously with the progression of time. For
example, the state variable “ volume ” exhibits continuous change over time as
a tank is fi lled with fl uid.

 The modeling and simulation approach considered in this chapter is the
DES model. DES models a system as it evolves over time by a representation
in which the state variables change instantaneously at separate, countable
points in time [1] . As enumerated on the event list, the advancement, or
action, from one event to the next is sequential, but does not necessarily occur
at a precise interval [2] . These instantaneous actions are associated with
updates to the state of the system. Each event produces a large amount of
data that characterizes the entire system at that particular moment. Analysis
of these data can be cumbersome and, thus, digital computers may be neces-
sary to perform more comprehensive DESs.

Time-Advance Mechanism

 There are two well - known approaches for advancing the simulation clock:
fi xed - increment advance and next - event time advance. The fi xed - increment
advance, uncommon in simulation software, initializes at time zero and then
advances at fi xed time increments. In the fi xed - increment advance approach,
events such as an entity ’ s arrival to, or departure from, the system, as generated
by the probability distribution and recorded in the event list, may fall between
successive moments that demarcate the time interval. Thus, there is disjunc-

SIMULATION METHODOLOGY 63

ture, or asynchronicity, between the moment of the interval and the moment
of the event. The updating of the state variables takes place not with the occur-
rence of an event, but with the passing of a time increment moment. In the
fi xed - increment approach, for the purpose of recording data and updating state
variables, the event is artifi cially forced in sync with the interval. Another char-
acteristic of the fi xed - increment advance is that the size of the time increment
is subjective. The choice of increment has implications for the performance
measures of the system. There are caveats both for an interval that is relatively
large and for an interval that is relatively small. Any number of arrival or
departure events may occur within a particular interval if the interval is rela-
tively large. By syncing these events with the singular most proximate future
interval moment, this approach treats the time differences among the various
events as nonconsequential, even when the differences may have very real
meaning. On the other hand, a time interval that is relatively small may
advance many times without the occurrence of a single event. Thus, settling on
an appropriate time interval that balances these two competing potentialities —
 too many events occurring within a single interval and no events occurring
within an extended series of intervals — is as much art as science.

 In contrast, the versatile next - event time - advance approach, employed
within most simulation software, initializes the simulation clock at zero, pro-
gresses to the most proximate, forthcoming event as tendered by the event
list, and then updates the state variables. Once this is complete, the simulation
clock is again progressed to the moment of the next most forthcoming event,
and the state of the system is again revised. While there is much variability in
the timing of events, the updating of the state variables is in sync with the
occurrence of events. Thus, the performance measures that are yielded from
the state variables avoid some of the potential distortion found in the fi xed -
 increment advance. Since all state changes take place exclusively at event
times, the next - event time - advance approach omits periods of inactivity.
Figure 3.1 illustrates a hypothetical situation in which a series of events,
denoted by E 0 , E 1 … , is in sync with the arrivals and departures of entities.
The state variables are updated at each time t . Notice that t 1 , t 2 … represents
the arrival and departure times while and I 1 , I 2 … corresponds to the interar-
rival intervals.

E0 E1 E2 E3 E4 E5 E6 E7 E8

t1 t2 t3 t4 t5 t6 t7 t8

I1 I2 I3 I4 I5 I6 I7 I8

 Figure 3.1 Time advance mechanisms.

64 DISCRETE-EVENT SIMULATION

Main Components

 The following provides an enumeration of some common terminology associ-
ated with DES:

 (1) System State. A characterization of the state of the system at a par-
ticular moment; expressed as state variables.

 (2) Simulation Clock. A tool that provides the elapsed real - world time.
 (3) Next - Event List. An ordered list of times that each event will take

place.
 (4) Statistical Counter or Accumulator. A tool that both records and

expresses a system ’ s evolving performance; it accumulates informa-
tion as the simulation unfolds.

 (5) Initialization Subprogram. A protocol utilized in the initialization of
the simulation, usually setting the start time to zero.

 (6) Timing Subprogram. A protocol that, drawing from a next - event list,
sets the next event and progresses the simulation clock to the moment
when an event is to happen.

 (7) Event Subprogram. A protocol that launches a routine that updates
the state of the system with the occurrence of each event.

 (8) Library Subprogram. A protocol used to produce random observa-
tions drawn generally from predetermined probability distributions.

 (9) Report Generator. A tool that calculates and reports statistics that
describe the performance of the system.

 (10) Main Program. A routine that coordinates the concert of subordinate
routines, executing these in the correct sequence. It initializes the
timing subprogram that determines the subsequent event, passes
control to the related event subprogram, and updates the system state.
This routine verifi es for termination and triggers the report generator
once the simulation ends.

Simulation Flowchart

 Figure 3.2 presents the workings of a general DES model. At time zero, the
main program invokes the initialization subprogram, which sets the simulation
clock to zero and initializes the system state, the statistical counter, and the
event list. Next, the main program brings into play the timing subprogram.
The timing subprogram verifi es the forthcoming event and progresses the
simulation clock. After this, the main program invokes the event and calls
upon the event subprogram. This subprogram may interact with the library
subprogram, often responsible for generating random variates. Next, the
system state is reviewed and statistical counters compile system performance.
Information about the occurrence of future events is collected and added to
an event list. This cycle is followed by a review of the condition that terminates

DES EXAMPLE 65

the simulation. The catalyst for termination may be any number of conditions
including the meeting of a threshold number of entities serviced or passage of
time. The iterative, closed process repeats until the termination condition is
satisfi ed, whence the report generator is activated. Thus, using data stored by
the statistical counters, estimates of measures of performance are calculated.

 DES EXAMPLE

 Problem Description

 DES models involve queuing systems in which entities arrive, are processed,
and then leave. A single - server queuing system illustrates a simple, yet repre-
sentative, model in which the general principles of DES can be demonstrated.
In this section, we render the logic and mechanics of this basic model
understandable.

 The queuing system we consider is a one - teller banking facility where cus-
tomers arrive, are processed by the single teller, and then leave. Figure 3.3

Main program

Initialization

subprogram

Initial
True

True

True

False

False

False

Timing

subprogram

Event

subprogram

Library

subprogram

Stop

Report

generator

Library

 Figure 3.2 Simulation fl owchart.

66 DISCRETE-EVENT SIMULATION

illustrates this scheme. If a customer arrives and fi nds the teller idle, then
servicing at the teller starts immediately; otherwise, the customer waits in
queue according to the FCFS discipline. The interarrival times are random
and IID. The service times associated with the arriving customers are also IID
random variables and are independent of the interarrival times. The simula-
tion will analyze 20 min of business time at the bank immediately following
the opening at 9:00 a.m.

 Upon simulation initialization at time zero, the queue is empty (no custom-
ers are present) and the teller is idle. Although the arrival of the fi rst customer
could occur after time zero, in this scenario, a single customer arrives and
enters the bank upon opening. During the 20 - min simulation period, custom-
ers will arrive, be either serviced or queued and serviced, and depart. While
we will be collecting a range of measures of performance for analysis, the fol-
lowing is a selection of four common measures of performance that require
explication.

 Average delay in queue refers to the time in queue that customers wait for
service excluding the time spent being served. The formula provides the
average delay in a queuing system in which N customers leave the queue
during the 20 - min replication and D is the waiting time in queue of the i th
customer:

Average waiting time = =∑ D

N
i

N

1 .

 Time - average number of customers waiting in the queue refers to the
weighted average of the possible queue lengths without including anyone
being served by the teller. This is weighted by the proportion of time during
the replication that the queue was at such lengths. It indicates the average
queue length. If Q (t) is the number of customers in the queue at any moment
 t , then the time - average queue length is represented by the area under the
curve Q (t). This is divided by the length of the replication t = 20 min. Formally
stated,

Time-average number of customers waiting in the queue =

()∫ Q t dt

t

t

0 .

Customer

arrival
Queue Server

Customer

departure

 Figure 3.3 A single - server queuing system.

HAND SIMULATION—SPREADSHEET IMPLEMENTATION 67

 Maximum fl ow time and average fl ow time through the system refers to
customers that have fi nished being processed by the teller and have left the
system. Also known as cycle time, this is the time that passes between a cus-
tomer ’ s arrival and his or her departure. Simply, it is the addition of the cus-
tomer ’ s waiting time in queue and service time at the teller.

 Resource utilization refers to the amount of time that the teller is busy
when simulating the operation. Thus, at time t , the utilization function can be
defi ned as

B t() = ⎧

⎨
⎩

1

0

busy

idle.

 The area under B (t) divided by the length of the run t represents the
resource utilization. Formally stated,

Utilization =

()∫ B t dt

t

t

0 .

 HAND SIMULATION — SPREADSHEET IMPLEMENTATION

 In this section, we execute the above described simulation through a series of
logically sequenced tables. Recall, fi rst, the parameters of the system we are
modeling: (1) one - teller and single - queue banking facility, (2) FCFS discipline,
(3) interarrival and service times are random and IID, and (4) simulation time
represents 20 min of business at the bank. Recall, second, that our modeling
potentially relies on foundational information about the real - world system.
The choice of foundational information refl ects the object of interest, or goal,
of our modeling and simulation efforts: an understanding of the treatment of
bank customers by the system. In this case, we have collected representative
data from the processing of customers by the system. These data express the
arrival time, interarrival time, and service time, and are presented in Table 3.1 .
We are interested in the system ’ s performance within a very specifi c, defi ned

 Table 3.1 Arrival time, interarrival time, and service time

 Customer
Number

 Arrival
Time Interarrival

 Service
Times

 1 0.00 2.81 0.58
 2 2.81 1.19 1.69
 3 4.00 2.35 4.01
 4 6.35 1.59 2.13
 5 7.94 2.71 3.81
 6 8.87 0.93 6.08

68 DISCRETE-EVENT SIMULATION

time window. The simulation begins at time moment zero when the fi rst cus-
tomer, or entity, is scheduled to arrive; the collection of simulated output data
begins precisely at this moment. As you can see, customer 1 is expected to enter
the bank at time zero and require 0.58 units of service time (measured in
minutes) from the single teller. The distance in time between the arrival of the
fi rst customer and the arrival of the second customer is captured in the interar-
rival time statistic. In this case, the entry of entity 1 is followed 2.81 min later
by the entry of entity 2 which, in turn, is followed 1.19 min later by the entry of
entity 3, and so forth. As you can see, there is a fair amount of variation in the
service times among the six modeled customers.

 Next, we present 13 additional tables; each table represents a discrete step,
or event, in the simulation process; each table is accompanied by a narrative
explaining change in the fi gures from one table to the next. Remember that
each event within the simulation is characterized by the updating, or expan-
sion, of the statistical accumulators; the change in fi gures from one table to
the next refl ects snapshots of the evolving fl ow of customers through the
system. Each “ snapshot ” is triggered by an event: initialization, arrival, depar-
ture, or end.

 The resultant spreadsheets from the simulation are shown in Tables 3.2
through 3.14 . Each table is subdivided into fi ve areas including a description
of the current event, state variables, entity attributes, statistical accumulators,
and the next - event list. Below is a brief description of each of these parts:

 (1) Current Event. This section provides the number of the event that has
just occurred, the timing and type of event, and the entity that triggered
the event.

 (2) State Variables. This section addresses the number of entities in queue
at the moment of the event (represented by Q (t)) and the status of the
servers at the moment of the event (represented by B (t)).

 (3) Entity Attributes. This section lists the main attributes of arrival time
at queue, arrival time at server, and departure time.

 (4) Statistical Accumulators. As the simulation advances, the statistical
accumulators track the main measures of performance up to the
moment of the most recent event. The following nine stats are accu-
mulated: (1) number processed by queue (this is a running total of all
entities who have passed through the queue, independent of whether
or not they waited in queue, and began service); (2) maximum number
of entities queued at any single moment (i.e., max Q (t)); (3) sum of all
delay times for those entities that have been processed through the
queue; (4) maximum delay time of those entities that have been pro-
cessed through the queue; (5) the area under the Q (t) curve denoted
by ∫Q (t) (with the execution of an event, this is the total amount of time
spent in queue thus far by both those entities that have advanced to
service and those entities that have not yet been advanced out of the
queue); (6) number served (this is a running total of those entities that

HAND SIMULATION—SPREADSHEET IMPLEMENTATION 69

have completed service); (7) area under B (t) curve denoted by ∫ B (t)
(with the execution of an event, this is the total amount of time spent
in service thus far by both those entities that have departed the system
and those entities that have not yet fi nished being served); (8) sum of
fl ow time of those entities that have departed the system; and (9)
maximum fl ow time from those entities that have departed the system.

 (5) Next - Event List. Also called the event calendar, this provides a list of
imminent events with the top record being the most proximate event.

 Finally, presented below are the trends for two state variables, Q (t) and
 B (t), respectively, representing the number of customers in queue and the
state of teller utilization over a series of moments. As illustrated in Figure 3.4 ,
the simulation takes place within a 20 - min real - world time window (horizontal
axis) and tracks the number of customers in queue (vertical axis). Since several
customers may enter the bank as early as moment zero (the beginning of the
simulation), potentially a queue may form immediately. However, in the
current scenario, it is not until 4.00 min following the start of the simulation
that an entering customer fi nds the teller occupied with a previous customer
and, hence, is positioned in queue. In addition, there are just two time inter-
vals, beginning with 7.94 and 8.87, when we witness two customers in queue.
As illustrated in Figure 3.5 , over the period of the 20 - min simulation (hori-
zontal axis), the single teller is in continuous service with the exception of the
time interval beginning at moment 0.58.

 The general approach is to accumulate data and document the state of both
entities and servers as the simulation progresses. The progress of a simulation
is bookended by the initialization of the simulation (time 0.00) and the termi-
nation of the simulation (stop event at time 20.00). Between these is a series
of events beginning with entry into the system by the fi rst entity at time zero,
and continuing with subsequent arrivals or departures of entities. With the
advent of each event, the state variables and the accumulated stats need to be
updated. Thus, Table 3.2 offers the template for the sequential collection and

0.58

0

1

2

3

2.81 4.00 4.50 6.35 7.94 8.51

Time (Minutes)

N
u
m

b
e
r

o
f
C

u
s
to

m
e
rs

 i
n
 Q

u
e
u
e

8.87 10.64 14.45 20.00

 Figure 3.4 Time - average delay in queue of customers waiting in queue.

70 DISCRETE-EVENT SIMULATION

presentation of information associated with each event. In the upper - right
corner, we fi nd the event number and event type (neither the event number
nor the event type is yet specifi ed); each event is given a number correspond-
ing to its chronological order (event number) and described as either arrival
or departure (event type). The state variables, by default initially set at zero,
show that there are no customers in the queue (i.e., Q (t) = 0) and the teller is
idle (B (t) = 0). Near the bottom is what is generally referred to as the event
calendar or next - event list. The next - event list section is itself a form of a queue
that starts at the top with the next, most proximate pending event to be exe-
cuted in the simulation. By logical extension, an entity no longer appears on
the next - event list with the execution of the event, whether it be an entity ’ s
arrival or departure. With the passing of each event, the entity attributes
section is updated to refl ect those entities that have already either entered or
exited the system (notice that the section contains six rows corresponding to
the six entities we proffered in Table 3.1 above). The statistical accumulators
are designed to accumulate stats with the progression of each event; all are
set at zero refl ecting the absence of collected data thus far. With this brief
exposition now complete, we are ready to turn attention toward the hand
calculation of the simulation.

 Event 1: Arrival of Entity 1. Time = 0.00 . Table 3.3 indicates the occurrence
of the fi rst event, the entry of entity 1 into the system. This is expressed by
the event number and event type showing “ 1 ” and “ arrival, ” respectively. The
state variables, representing the current status of the queue and the teller at
the moment of arrival of entity 1, have been advanced to refl ect the entry of
the fi rst customer into the bank. Upon entry, customer 1 fi nds no other cus-
tomers in the system and the teller waiting to provide service, so the customer
passes through the queue and goes directly to the teller for service. Thus, the
queue remains empty (i.e., Q (t) = 0), the teller ’ s status changes from idle to
busy (i.e., B (t) = 1), and the number processed by queue changes to 1. With
the exceptions of the time - persistent stats integral Q (t) and integral B (t), the
stats within the statistical accumulators are updated when an entity is either
fi nished waiting in queue or fi nished being served; completion of waiting or

0.58

0

1

2

2.81 4.00 4.50 6.35 7.94 8.51 8.87 10.64 14.45 20.00

Time (Minutes)

S
e

rv
e

rs

 Figure 3.5 Utilization.

T
ab

le
 3

.2

H
an

d
 s

im
u

la
ti

o
n

 s
p

re
ad

sh
ee

t
te

m
p

la
te

 a
n

d
 i

n
it

ia
liz

at
io

n

C
ur

re
nt

 E
ve

nt

 E
ve

nt
 N

um
be

r
 =

 T

im
e

 =

 0.
00

 E

nt
it

y
 =

 E

ve
nt

 T
yp

e
 =

St
at

e
V

ar
ia

bl
es

Q

 (t
)

 =

 0
B

 (t
)

 =

 0

E

nt
it

y
A

tt
ri

bu
te

s

E
nt

ity

 A
rr

iv
al

 T
im

e
at

 Q
ue

ue
A

rr
iv

al
 T

im
e

at
 S

er
ve

r
D

ep
ar

tu
re

 T
im

e

 1

 2

 3

 4

 5

 6

St
at

is
ti

ca
l A

cc
um

ul
at

or
s

 #

Se
rv

ed
 =

 0

 #
P

ro
ce

ss
ed

 in
 q

ue
ue

 =

 0
 Su

m
 o

f
de

la
ys

 =

 0

 M

ax
 d

el
ay

 =

 0
 Su

m
 o

f
fl o

w
 t

im
es

 =

 0
 M

ax
 fl

ow
 t

im
e

 =

 0
 In

te
gr

al
 Q

 (t
)

 =

 0
 M

ax
 Q

 (t
)

 =

 0
 In

te
gr

al
 B

 (t
)

 =

 0

N
ex

t -
 E

ve
nt

 L
is

t
(E

ve
nt

 C
al

en
da

r)

N
um

be
r

 T

im
e

E
nt

ity
E

ve
nt

 T
yp

e

 1

 2

 3

71

T
ab

le
 3

.3

E
ve

n
t

1

C
ur

re
nt

 E
ve

nt

 E
ve

nt
 N

um
be

r
 =

 1

 T

im
e

 =

 0.
00

 E

nt
it

y
 =

 1

 E
ve

nt
 T

yp
e

 =

 A
rr

iv
al

St
at

e
V

ar
ia

bl
es

Q

 (t
)

 =

 0
B

 (t
)

 =

 1

E

nt
it

y
A

tt
ri

bu
te

s

E
nt

ity

 A
rr

iv
al

 T
im

e
at

 Q
ue

ue
A

rr
iv

al
 T

im
e

at
 S

er
ve

r
D

ep
ar

tu
re

 T
im

e

 1
 0.

00

 0.
00

 2

 3

 4

 5

 6

St
at

is
ti

ca
l A

cc
um

ul
at

or
s

 #

Se
rv

ed
 =

 0

 #
P

ro
ce

ss
ed

 in
 q

ue
ue

 =

 1
 Su

m
 o

f
de

la
ys

 =

 0

 M

ax
 d

el
ay

 =

 0
 Su

m
 o

f
fl o

w
 t

im
es

 =

 0
 M

ax
 fl

ow
 t

im
e

 =

 0
 In

te
gr

al
 Q

 (t
)

 =

 0
 M

ax
 Q

 (t
)

 =

 0
 In

te
gr

al
 B

 (t
)

 =

 0

N
ex

t -
 E

ve
nt

 L
is

t
(E

ve
nt

 C
al

en
da

r)

N
um

be
r

 T

im
e

E
nt

ity
E

ve
nt

 T
yp

e

 1
 0.

58

 1

 D

ep
ar

tu
re

 2

 2.
81

 2

 A
rr

iv
al

 3

 20
.0

0

 –

 St

op

72

HAND SIMULATION—SPREADSHEET IMPLEMENTATION 73

being served is indicated by the advancement of the entity to the next stage
(either entering into service after waiting or departing the system after being
served). That is, for example, the # served will remain at zero until the occur-
rence of the event that signifi es the completion of the interaction between the
teller and the customer, the sum of fl ow times will remain at zero until a cus-
tomer completes his or her banking transaction and departs the system, and
the sum of delays will remain at zero until a customer is advanced beyond the
queue. Notice that, according to the next - event list, the next scheduled event
at time 0.58 will be the departure of entity 1 from the system and, following
that, entity 2, representing the second customer, is poised to arrive at 2.81 min.

Event 2: Departure of Entity 1. Time = 0.58 . This event indicates the comple-
tion of service for customer 1 and departure from the system (Table 3.4). The
event clock records the departure event at time 0.58 since entity 1 entered the
system at time 0.00, proceeded directly to the teller, and received 0.58 min of
service. There are no other customers in the bank at this moment and, thus,
the teller is idled and the state of the queue remains at zero. The statistical
accumulators have been updated to refl ect the departure: number served = 1,
sum of fl ow times, refl ecting the time from entry to departure, as well as max
fl ow time, is set to 0.58, and the integral ∫B (t), refl ecting the time - persistent
measure is also set at 0.58 since 1 × (0.58 – 0) = 0.58. Given that the single
customer did not enter a queue and did not experience delay, the max delay,
sum of delays, integral ∫Q (t) will be 0 × (0.58 – 0) = 0, and max Q (t) all remain
at zero. The next event, shown within the next - event list, will be the arrival of
entity 2 at time 2.81 (Table 3.5).

Event 3: Arrival of Entity 2. Time = 2.81 . This event denotes the arrival of
entity 2 to the system. Similar to the experience of customer 1, customer 2
arrives to fi nd the bank empty of other customers and the teller in an idle state
and, thus, customer 2 immediately passes through the queue and begins the
service interaction expected to take 1.69 min. We can look ahead and expect
the future departure of entity 2 at time 4.50 because we know both the arrival
time and the service time (2.81 + 1.69 = 4.50). Notice that stats within the
statistical accumulators remain unchanged; the absence of other customers in
the bank at the time of arrival of customer 2 translates into no queuing or
service activities in need of updating. The next - event list has been advanced
to show the proximate arrival of entity 3.

Event 4: Arrival of Entity 3. Time = 4.00 . This table presents event 4, the
arrival of customer 3 at time 4.00 (Table 3.6). We know from the above
that the teller will be occupied with customer 2 until time 4.50. Therefore,
the newly arrived customer 3 will have to wait, in queue, for the availability
of the teller. Notice that the max Q (t) has now been updated to “ 1, ” repre-
senting the fact that a single customer is now queuing and since no customer
time has been spent waiting in queue up to this moment, the integral
∫Q (t) = 0 × (4.00 – 2.81) = 0. Although customer 2 has not completed his or
her transaction with the teller, up to this moment some time indeed has been
spent with the teller; the integral ∫B (t) is advanced to 0.58 + 1 × (4.00 – 2.81)
= 1.77 min capturing at this moment the fact that the teller, while still in the

T
ab

le
 3

.4

E
ve

n
t

2

C
ur

re
nt

 E
ve

nt

 E
ve

nt
 N

um
be

r
 =

 2

 T

im
e

 =

 0.
58

 E

nt
it

y
 =

 1

 E
ve

nt
 T

yp
e

 =

 D
ep

ar
tu

re

St
at

e
V

ar
ia

bl
es

Q

 (t
)

 =

 0
B

 (t
)

 =

 0

E

nt
it

y
A

tt
ri

bu
te

s

E
nt

ity

 A
rr

iv
al

 T
im

e
at

 Q
ue

ue
A

rr
iv

al
 T

im
e

at
 S

er
ve

r
D

ep
ar

tu
re

 T
im

e

 1
 0.

00

 0.
00

 0.

58

 2

 3

 4

 5

 6

St

at
is

ti
ca

l A
cc

um
ul

at
or

s

 #
Se

rv
ed

 =

 1
 #

P
ro

ce
ss

ed
 in

 q
ue

ue
 =

 1

 Su
m

 o
f

de
la

ys
 =

 0

 M
ax

 d
el

ay
 =

 0

 Su
m

 o
f

fl o
w

 t
im

es
 =

 0.

58

 M
ax

 fl
ow

 t
im

e
 =

 0.

58

 In
te

gr
al

 Q
 (t

)
 =

 0

 M
ax

 Q
 (t

)
 =

 0

 In
te

gr
al

 B
 (t

)
 =

 0.

58

N
ex

t -
 E

ve
nt

 L
is

t

N
um

be
r

 T

im
e

E
nt

ity
E

ve
nt

 T
yp

e

 1
 2.

81

 2

 A

rr
iv

al

 2
 4.

00

 3

 A

rr
iv

al

 3
 20

.0
0

 –

 St
op

 4

74

T
ab

le
 3

.5

E
ve

n
t

3

C
ur

re
nt

 E
ve

nt

 E
ve

nt
 N

um
be

r
 =

 3

 T

im
e

 =

 2.
81

 E

nt
it

y
 =

 2

 E
ve

nt
 T

yp
e

 =

 A
rr

iv
al

St
at

e
V

ar
ia

bl
es

Q

 (t
)

 =

 0
B

 (t
)

 =

 1

E

nt
it

y
A

tt
ri

bu
te

s

E
nt

ity

 A
rr

iv
al

 T
im

e
at

 Q
ue

ue
A

rr
iv

al
 T

im
e

at
 S

er
ve

r
D

ep
ar

tu
re

 T
im

e

 1
 0.

00

 0.
00

 0.

58

 2
 2.

81

 2.
81

 3

 4

 5

 6

St

at
is

ti
ca

l A
cc

um
ul

at
or

s

 #
Se

rv
ed

 =

 1
 #

P
ro

ce
ss

ed
 in

 q
ue

ue
 =

 2

 Su
m

 o
f

de
la

ys
 =

 0

 M
ax

 d
el

ay
 =

 0

 Su
m

 o
f

fl o
w

 t
im

es
 =

 0.

58

 M
ax

 fl
ow

 t
im

e
 =

 0.

58

 In
te

gr
al

 Q
 (t

)
 =

 0

 M
ax

 Q
 (t

)
 =

 0

 In
te

gr
al

 B
 (t

)
 =

 0.

58

N
ex

t -
 E

ve
nt

 L
is

t

N
um

be
r

 T

im
e

E
nt

ity
E

ve
nt

 T
yp

e

 1
 4.

00

 3

 A

rr
iv

al

 2
 4.

50

 2

 D

ep
ar

tu
re

 3

 20
.0

0

 –

 St

op

 4

75

T
ab

le
 3

.6

E
ve

n
t

4

C
ur

re
nt

 E
ve

nt

 E
ve

nt
 N

um
be

r
 =

 4

 T

im
e

 =

 4.
00

 E

nt
it

y
 =

 3

 E
ve

nt
 T

yp
e

 =

 A
rr

iv
al

St
at

e
V

ar
ia

bl
es

Q

 (t
)

 =

 1
B

 (t
)

 =

 1

E

nt
it

y
A

tt
ri

bu
te

s

E
nt

ity

 A
rr

iv
al

 T
im

e
at

 Q
ue

ue
A

rr
iv

al
 T

im
e

at
 S

er
ve

r
D

ep
ar

tu
re

 T
im

e

 1
 0.

00

 0.
00

 0.

58

 2
 2.

81

 2.
81

 3

 4.
00

 4

 5

 6

St
at

is
ti

ca
l A

cc
um

ul
at

or
s

 #

Se
rv

ed
 =

 1

 #
P

ro
ce

ss
ed

 in
 q

ue
ue

 =

 2
 Su

m
 o

f
de

la
ys

 =

 0

 M

ax
 d

el
ay

 =

 0
 Su

m
 o

f
fl o

w
 t

im
es

 =

 0.
58

 M

ax
 fl

ow
 t

im
e

 =

 0.
58

 In

te
gr

al
 Q

 (t
)

 =

 0
 M

ax
 Q

 (t
)

 =

 1
 In

te
gr

al
 B

 (t
)

 =

 1.
77

N
ex

t -
 E

ve
nt

 L
is

t

N
um

be
r

 T

im
e

E
nt

ity
E

ve
nt

 t
yp

e

 1
 4.

50

 2

 D

ep
ar

tu
re

 2

 6.
35

 4

 A
rr

iv
al

 3

 20
.0

0

 –

 St

op

 4

76

HAND SIMULATION—SPREADSHEET IMPLEMENTATION 77

process of servicing entity 2, has nonetheless devoted some service time to
customer 2. We expect, looking at the next - event list, that the departure of
entity 2 will be the next event.

Event 5: Departure of Entity 2. Time = 4.50 . At this moment, customer 2
has completed his or her transaction with the teller and departed the system
and customer 3 has been advanced from the queue to the teller window (Table
 3.7). Both the # served and the # processed by queue have increased by 1. It
stands to reason that the statistical accumulators referencing both wait and
service times will also show change. The sum of delays and max delay have
now been changed from zero to 0.50 (4.50 – 4.00 = 0.50) just as the integral
Q (t) has been changed from zero to 0.50 (∫Q (t) will be 1 × (4.50 – 4.00) = 0.50).
Previously, with the departure of customer 1, the max fl ow time was 0.58, but
has now been updated to refl ect the lengthier fl ow time of customer 2, which
is 4.50 – 2.81 = 1.69 min. Notice also that the sum of fl ow times has been
updated to 2.27 (0.58 + 1.69 = 2.27). The integral ∫B (t) will have the same
value, but as a product of 1.77 + 1 × (4.50 – 4.00) = 2.27. The next - event list
informs us that entity 4 is expected to arrive at 6.35.

Event 6: Arrival of Entity 4. Time = 6.35 . This illustrates event 6, the arrival
of the fourth customer at 6.35 (Table 3.8). Customer 4 arrives to fi nd no other
queued customers and the teller occupied with customer 3 and, thus, customer
4 enters into the queue; the state variables Q (t) and B (t) both register “ 1. ”
Since no others were in queue at the moment of this event, the integral Q (t)
remains at 0.50 by ∫Q (t) = 0.50 + 0 × (6.35 – 4.50) = 0.50. Customer 3 is in
service at the time of this event (i.e., has not completed his or her transaction
with the teller) so the integral ∫B (t) changes from 2.27 to 4.12 min by ∫B (t) =
2.27 + 1 × (6.35 – 4.50) = 4.12. We can see that the next - event list specifi es the
arrival of entity 5 at 7.94.

Event 7: Arrival of Entity 5. Time = 7.94 . This event presents the arrival of
customer 5, who fi nds the teller busy with customer 3 and customer 4 waiting
in queue (Table 3.9). Since entity 5 joins the queue, the state variable Q (t)
changes from “ 1 ” to “ 2. ” The continued service of entity 3 means that the
integral ∫B (t) is increased from 4.12 to 4.12 + 1 × (7.94 – 6.35) = 5.71, and the
continued delay of entity 3 means that the integral ∫Q (t) is increased from 0.50
to 0.50 + 1 × (7.94 – 6.35) = 2.09. The next event is expected to be the departure
of entity 3 at time 8.51.

Event 8: Departure of Entity 3. Time = 8.51 . Table 3.10 provides the updates
associated with event 8, the departure of customer 3. With the departure of
entity 3, we follow the FCFS queue discipline and advance customer 4 to the
teller service station while customer 5 remains in queue. As occasioned by any
departure, the stats symbolizing queue, service, and fl ow times are updated.
The length of fl ow time for entity 2 has now been trumped by the length of fl ow
time for entity 3 and, thus, the max fl ow time adjusts to 4.51 (i.e., 1.69 vs. 4.51)
and the sum of fl ow times jumps to 6.78 (2.27 + 4.51 = 6.78). With the advance-
ment of entity 4 from queue to service, the max delay, experienced by customer
4, is now registered at 2.16 min (8.51 – 6.35 = 2.16) rather than the earlier delay
of 0.50 min experienced by customer 3. Thus, the sum of delays increases to 2.66

T
ab

le
 3

.7

E
ve

n
t

5

C
ur

re
nt

 E
ve

nt

 E
ve

nt
 N

um
be

r
 =

 5

 T

im
e

 =

 4.
50

 E

nt
it

y
 =

 2

 E
ve

nt
 T

yp
e

 =

 D
ep

ar
tu

re

St
at

e
V

ar
ia

bl
es

Q

 (t
)

 =

 0
B

 (t
)

 =

 1

E

nt
it

y
A

tt
ri

bu
te

s

E
nt

ity

 A
rr

iv
al

 T
im

e
at

 Q
ue

ue
A

rr
iv

al
 T

im
e

at
 S

er
ve

r
D

ep
ar

tu
re

 T
im

e

 1
 0.

00

 0.
00

 2.

81

 2
 2.

81

 2.
81

 4.

50

 3
 4.

00

 4.
50

 4

 5

 6

St
at

is
ti

ca
l A

cc
um

ul
at

or
s

 #

Se
rv

ed
 =

 2

 #
P

ro
ce

ss
ed

 in
 q

ue
ue

 =

 3
 Su

m
 o

f
de

la
ys

 =

 0.
50

 M

ax
 d

el
ay

 =

 0.
50

 Su

m
 o

f
fl o

w
 t

im
es

 =

 2.
27

 M

ax
 fl

ow
 t

im
e

 =

 1.
69

 In

te
gr

al
 Q

 (t
)

 =

 0.
50

 M

ax
 Q

 (t
)

 =

 1
 In

te
gr

al
 B

 (t
)

 =

 2.
27

N
ex

t -
 E

ve
nt

 L
is

t

N
um

be
r

 T

im
e

E
nt

ity
E

ve
nt

 T
yp

e

 1
 6.

35

 4

 A

rr
iv

al

 2
 7.

94

 5

 A

rr
iv

al

 3
 20

.0
0

 –

 St
op

 4

78

T
ab

le
 3

.8

E
ve

n
t

6

C
ur

re
nt

 E
ve

nt

 E
ve

nt
 N

um
be

r
 =

 6

 T

im
e

 =

 6.
35

 E

nt
it

y
 =

 4

 E
ve

nt
 T

yp
e

 =

 A
rr

iv
al

St
at

e
V

ar
ia

bl
es

Q

 (t
)

 =

 1
B

 (t
)

 =

 1

E

nt
it

y
A

tt
ri

bu
te

s

E
nt

ity

 A
rr

iv
al

 T
im

e
at

 Q
ue

ue
A

rr
iv

al
 T

im
e

at
 S

er
ve

r
D

ep
ar

tu
re

 T
im

e

 1
 0.

00

 0.
00

 2.

81

 2
 2.

81

 2.
81

 4.

50

 3
 4.

00

 4.
50

 4

 6.
35

 5

 6

St

at
is

ti
ca

l A
cc

um
ul

at
or

s

 #
Se

rv
ed

 =

 2
 #

P
ro

ce
ss

ed
 in

 q
ue

ue
 =

 3

 Su
m

 o
f

de
la

ys
 =

 0.

50

 M
ax

 d
el

ay
 =

 0.

50

 Su
m

 o
f

fl o
w

 t
im

es
=

 2.

27

 M
ax

 fl
ow

 t
im

e
 =

 1.

69

 In
te

gr
al

 Q
 (t

)
 =

 0.

50

 M
ax

 Q
 (t

)
 =

 1

 In
te

gr
al

 B
 (t

)
 =

 4.

12

N
ex

t -
 E

ve
nt

 L
is

t

N
um

be
r

 T

im
e

E
nt

ity
E

ve
nt

 T
yp

e

 1
 7.

94

 5

 A

rr
iv

al

 2
 8.

51

 3

 D

ep
ar

tu
re

 3

 20
.0

0

 –

 St

op

 4

79

T
ab

le
 3

.9

E
ve

n
t

7

C
ur

re
nt

 E
ve

nt

 E
ve

nt
 N

um
be

r
 =

 7

 T

im
e

 =

 7.
94

 E

nt
it

y
 =

 5

 E
ve

nt
 T

yp
e

 =

 A
rr

iv
al

St
at

e
V

ar
ia

bl
es

Q

 (t
)

 =

 2
B

 (t
)

 =

 1

E

nt
it

y
A

tt
ri

bu
te

s

E
nt

ity

 A
rr

iv
al

 T
im

e
at

 Q
ue

ue
A

rr
iv

al
 T

im
e

at
 S

er
ve

r
D

ep
ar

tu
re

 T
im

e

 1
 0.

00

 0.
00

 2.

81

 2
 2.

81

 2.
81

 4.

50

 3
 4.

00

 4.
50

 4

 6.
35

 5

 7.
94

 6

St
at

is
ti

ca
l A

cc
um

ul
at

or
s

 #

Se
rv

ed
 =

 2

 #
P

ro
ce

ss
ed

 in
 q

ue
ue

 =

 3
 Su

m
 o

f
de

la
ys

 =

 0.
50

 M

ax
 d

el
ay

 =

 0.
50

 Su

m
 o

f
fl o

w
 t

im
es

 =

 2.
27

 M

ax
 fl

ow
 t

im
e

 =

 1.
69

 In

te
gr

al
 Q

 (t
)

 =

 2.
09

 M

ax
 Q

 (t
)

 =

 2
 In

te
gr

al
 B

 (t
)

 =

 5.
71

N
ex

t -
 E

ve
nt

 L
is

t

N
um

be
r

 T

im
e

E
nt

ity
E

ve
nt

 T
yp

e

 1
 8.

51

 3

 D

ep
ar

tu
re

 2

 8.
87

 6

 A
rr

iv
al

 3

 20
.0

0

 –

 St

op

 4

80

T
ab

le
 3

.1
0

E
ve

n
t

8

C
ur

re
nt

 E
ve

nt

 E
ve

nt
 N

um
be

r
 =

 8

 T

im
e

 =

 8.
51

 E

nt
it

y
 =

 3

 E
ve

nt
 T

yp
e

 =

 D
ep

ar
tu

re

St
at

e
V

ar
ia

bl
es

Q

 (t
)

 =

 1
B

 (t
)

 =

 1

E

nt
it

y
A

tt
ri

bu
te

s

E
nt

ity

 A
rr

iv
al

 T
im

e
at

 Q
ue

ue
A

rr
iv

al
 T

im
e

at
 S

er
ve

r
D

ep
ar

tu
re

 T
im

e

 1
 0.

00

 0.
00

 2.

81

 2
 2.

81

 2.
81

 4.

50

 3
 4.

00

 4.
50

 8.

51

 4
 6.

35

 8.
51

 5

 7.
94

 6

St
at

is
ti

ca
l A

cc
um

ul
at

or
s

 #

Se
rv

ed
 =

 3

 #
P

ro
ce

ss
ed

 in
 q

ue
ue

 =

 4
 Su

m
 o

f
de

la
ys

 =

 2.
66

 M

ax
 d

el
ay

 =

 2.
16

 Su

m
 o

f
fl o

w
 t

im
es

 =

 6.
78

 M

ax
 fl

ow
 t

im
e

 =

 4.
51

 In

te
gr

al
 Q

 (t
)

 =

 3.
23

 M

ax
 Q

 (t
)

 =

 2
 In

te
gr

al
 B

 (t
)

 =

 6.
28

N
ex

t -
 E

ve
nt

 L
is

t

N
um

be
r

 T

im
e

E
nt

ity
E

ve
nt

 T
yp

e

 1
 8.

87

 6

 A

rr
iv

al

 2
 10

.6
4

 4

 D

ep
ar

tu
re

 3

 20
.0

0

 –

 St

op

 4

81

82 DISCRETE-EVENT SIMULATION

(0.50 + 2.16 = 2.66) and the integral ∫Q (t) changes to 2.09 + 2 × (8.51 – 7.94) =
3.23, while the integral ∫B (t) changes to 5.71 + 1 × (8.51 – 7.94) = 6.28. The next -
 event list informs us that entity 6 is expected to arrive at 8.87.

Event 9: Arrival of Entity 6. Time = 8.87 . This table (Table 3.11) illustrates
the arrival of the sixth customer, who immediately stands in queue behind
customer 5. As would be expected, without a departure, the only stats within
the statistical accumulators to change are the time - resistant averages for
waiting and service. Thus, the integral ∫Q (t) changes to 3.59 and the integral
∫B (t) changes to 6.64. Among the state variables, the teller remains busy (i.e.,
B (t) = 1) and the queue increases by one (i.e., Q (t) = 2). The next expected
event, according to the next - event list, is the departure of entity 4 at 10.64.

Event 10: Departure of Entity 4. Time = 10.64 . This event shows the depar-
ture of customer 4, the advancement of customer 5 to the teller, and the
continued waiting for service by customer 6 (Table 3.12). The max delay,
experienced by entity 5, is recorded at 10.64 – 7.94 = 2.70. The sum of delays
will be (2.66 + 2.70) = 5.36. The integral ∫Q (t) is increased to 3.59 + 2 ×
(10.64 – 8.87) = 7.13, while integral ∫B (t) = 6.64 + 1 × (10.64 – 8.87) = 8.41. The
max fl ow time remains the same, but the sum of fl ow times elevates to
6.78 + 4.29 = 11.07. The departure of entity 5 is the next most proximate event.

Event 11: Departure of Entity 5. Time = 14.45 . Table 3.13 shows the updat-
ing of fi gures for event 11 denoted by the departure of customer 5. With
this departure, the queue empties as customer 6 is advanced to the teller and
the state variable Q (t) is reduced to zero. The max delay is increased to
14.45 – 8.87 = 5.58 as entity 6, relative to the others to date, has now experi-
enced the longest delay. Thus, the sum of the delays will be (5.36 + 5.58) = 10.94.
The integral ∫Q (t) is advanced to 7.13 + 1 × (14.45 – 10.64) = 10.94. While the
max fl ow time remains unchanged, the integral ∫B (t) increases to 8.41 + 1 ×
(14.45 – 10.64) = 12.22 and the sum of fl ow times increases to 11.07 + 6.51 = 17.58.
The next event is the termination of the simulation.

Event 12: Stop. Time = 20 . Customer 6 is being serviced by the teller (i.e.,
(B (t) = 1) and no other customers are in the bank (Table 3.14). Customer 6
began interacting with the teller at 14.45, and the expected service time is
6.08 min. This knowledge informs us that entity 6 will exit the system at
(14.45 + 6.08) = 20.53. Since the simulation is initialized to terminate at 20.00,
the departure event will not take place within the simulation window. However,
the time - persistent statistics are updated through the end of the simulation at
20.00 min. Thus, since no customer are in queue, ∫Q (t) will remain the same
(10.94), while ∫B (t) is increased to 12.22 + 1 × (20.00 – 14.45) = 17.77.

System Performance Summary. The fi nal values of the output performance
measures include:

 (1) number of customer served = 5
 (2) maximum delay experienced = 5.58
 (3) maximum fl ow time = 6.51
 (4) maximum number of customers in queue = 2

T
ab

le
 3

.1
1

E
ve

n
t

9

C
ur

re
nt

 E
ve

nt

 E
ve

nt
 N

um
be

r
 =

 9

 T

im
e

 =

 8.
87

 E

nt
it

y
 =

 6

 E
ve

nt
 T

yp
e

 =

 A
rr

iv
al

St
at

e
V

ar
ia

bl
es

Q

 (t
)

 =

 2
B

 (t
)

 =

 1

E

nt
it

y
A

tt
ri

bu
te

s

E
nt

ity

 A
rr

iv
al

 T
im

e
at

 Q
ue

ue
A

rr
iv

al
 T

im
e

at
 S

er
ve

r
D

ep
ar

tu
re

 T
im

e

 1
 0.

00

 0.
00

 2.

81

 2
 2.

81

 2.
81

 4.

50

 3
 4.

00

 4.
50

 8.

51

 4
 6.

35

 8.
51

 5

 7.
94

 6

 8.
87

St

at
is

ti
ca

l A
cc

um
ul

at
or

s

 #
Se

rv
ed

 =

 3
 #

P
ro

ce
ss

ed
 in

 q
ue

ue
 =

 4

 Su
m

 o
f

de
la

ys
 =

 2.

66

 M
ax

 d
el

ay
 =

 2.

16

 Su
m

 o
f

fl o
w

 t
im

es
 =

 6.

78

 M
ax

 fl
ow

 t
im

e
 =

 4.

51

 In
te

gr
al

 Q
 (t

)
 =

 3.

59

 M
ax

 Q
 (t

)
 =

 2

 In
te

gr
al

 B
 (t

)
 =

 6.

64

N
ex

t -
 E

ve
nt

 L
is

t

N
um

be
r

 T

im
e

E
nt

ity
E

ve
nt

 T
yp

e

 1
 10

.6
4

 4

 D

ep
ar

tu
re

 2

 14
.4

5

 5

 D
ep

ar
tu

re

 3
 20

.0
0

 –

 St
op

 4

83

T
ab

le
 3

.1
2

E
ve

n
t

10

C
ur

re
nt

 E
ve

nt

 E
ve

nt
 N

um
be

r
 =

 10

 T

im
e

 =

 10
.6

4
 E

nt
it

y
 =

 4

 E
ve

nt
 T

yp
e

 =

 D
ep

ar
tu

re

St
at

e
V

ar
ia

bl
es

Q

 (t
)

 =

 1
B

 (t
)

 =

 1

E

nt
it

y
A

tt
ri

bu
te

s

E
nt

ity

 A
rr

iv
al

 T
im

e
at

 Q
ue

ue
A

rr
iv

al
 T

im
e

at
 S

er
ve

r
D

ep
ar

tu
re

 T
im

e

 1
 0.

00

 0.
00

 2.

81

 2
 2.

81

 2.
81

 4.

50

 3
 4.

00

 4.
50

 8.

51

 4
 6.

35

 8.
51

 10

.6
4

 5
 7.

94

 10
.6

4

 6

 8.
87

St

at
is

ti
ca

l A
cc

um
ul

at
or

s

 #
Se

rv
ed

 =

 4
 #

P
ro

ce
ss

ed
 in

 q
ue

ue
 =

 5

 Su
m

 o
f

de
la

ys
 =

 5.

36

 M
ax

 d
el

ay
 =

 2.

70

 Su
m

 o
f

fl o
w

 t
im

es
 =

 11

.0
7

 M
ax

 fl
ow

 t
im

e
 =

 4.

51

 In
te

gr
al

 Q
 (t

)
 =

 7.

13

 M
ax

 Q
 (t

)
 =

 2

 In
te

gr
al

 B
 (t

)
 =

 8.

41

N
ex

t -
 E

ve
nt

 L
is

t

N
um

be
r

 T

im
e

E
nt

ity
E

ve
nt

 T
yp

e

 1
 14

.4
5

 5

 D

ep
ar

tu
re

 2

 20
.0

0

 –

 St

op

 3
 20

.5
3

 6

 D

ep
ar

tu
re

 4

84

T
ab

le
 3

.1
3

E
ve

n
t

11

C
ur

re
nt

 E
ve

nt

 E
ve

nt
 N

um
be

r
 =

 11

 T

im
e

 =

 14
.4

5
 E

nt
it

y
 =

 5

 E
ve

nt
 T

yp
e

 =

 D
ep

ar
tu

re

St
at

e
V

ar
ia

bl
es

Q

 (t
)

 =

 0
B

 (t
)

 =

 1

E

nt
it

y
A

tt
ri

bu
te

s

E
nt

ity

 A
rr

iv
al

 T
im

e
at

 Q
ue

ue
A

rr
iv

al
 T

im
e

at
 S

er
ve

r
D

ep
ar

tu
re

 T
im

e

 1
 0.

00

 0.
00

 2.

81

 2
 2.

81

 2.
81

 4.

50

 3
 4.

00

 4.
50

 8.

51

 4
 6.

35

 8.
51

 10

.6
4

 5
 7.

94

 10
.6

4

 14

.4
5

 6
 8.

87

 14
.4

5

St

at
is

ti
ca

l A
cc

um
ul

at
or

s

 #
Se

rv
ed

 =

 5
 #

P
ro

ce
ss

ed
 in

 q
ue

ue
 =

 6

 Su
m

 o
f

de
la

ys
 =

 10

.9
4

 M
ax

 d
el

ay
 =

 5.

58

 Su
m

 o
f

fl o
w

 t
im

es
 =

 17

.5
8

 M
ax

 fl
ow

 t
im

e
 =

 6.

51

 In
te

gr
al

 Q
 (t

)
 =

 10

.9
4

 M
ax

 Q
 (t

)
 =

 2

 In
te

gr
al

 B
 (t

)
 =

 12

.2
2

N
ex

t -
 E

ve
nt

 L
is

t

N
um

be
r

 T

im
e

E
nt

ity
E

ve
nt

 T
yp

e

 1
 20

.0
0

 –

 St
op

 2

 20
.5

3

 6

 D
ep

ar
tu

re

 3

 4

85

T
ab

le
 3

.1
4

E
ve

n
t

12

C
ur

re
nt

 E
ve

nt

 E
ve

nt
 N

um
be

r
 =

 12

 T

im
e

 =

 20
.0

0
 E

nt
it

y
 =

 –

 E

ve
nt

 T
yp

e
 =

 St

op

St
at

e
V

ar
ia

bl
es

Q

 (t
)

 =

 0
B

 (t
)

 =

 1

E

nt
it

y
A

tt
ri

bu
te

s

E
nt

ity

 A
rr

iv
al

 T
im

e
at

 Q
ue

ue
A

rr
iv

al
 T

im
e

at
 S

er
ve

r
D

ep
ar

tu
re

 T
im

e

 1
 0.

00

 0.
00

 2.

81

 2
 2.

81

 2.
81

 4.

50

 3
 4.

00

 4.
50

 8.

51

 4
 6.

35

 8.
51

 10

.6
4

 5
 7.

94

 10
.6

4

 14

.4
5

 6
 8.

87

 14
.4

5

St

at
is

ti
ca

l A
cc

um
ul

at
or

s

 #
Se

rv
ed

 =

 5
 #

P
ro

ce
ss

ed
 in

 q
ue

ue
 =

 6

 Su
m

 o
f

de
la

ys
 =

 10

.9
4

 M
ax

 d
el

ay
 =

 5.

58

 Su
m

 o
f

fl o
w

 t
im

es
 =

 17

.5
8

 M
ax

 fl
ow

 t
im

e
 =

 6.

51

 In
te

gr
al

 Q
 (t

)
 =

 10

.9
4

 M
ax

 Q
 (t

)
 =

 2

 In
te

gr
al

 B
 (t

)
 =

 17

.7
7

N
ex

t -
 E

ve
nt

 L
is

t

N
um

be
r

 T

im
e

E
nt

ity
E

ve
nt

 t
yp

e

 1
 20

.5
3

 6

 D

ep
ar

tu
re

 2

 3

 4

86

ARENA SIMULATION 87

 (5) the average delay in queue is sum of delays/# processed in queue, or
10.94/6 = 1.82 min/customer

 (6) the average fl ow time through the system is sum of fl ow times/# served,
or 17.58/5 = 3.52 min/customer

 (7) the time - average number of customers waiting in the queue is
∫B (t)/ t = 10.94/20.00 = 0.55 customers

 (8) the resource utilization is ∫B (t)/ t = 17.77/20.00 = 0.89.

ARENA SIMULATION

Arena simulation software employs the SIMAN simulation language and is
used to construct experimental models that mimic the behavior of a real - world
system. The approach of the software is both visual and intuitive; users can
choose from a range of shapes representing distinct stages in the fl ow of entities
through a system (e.g., create, process, and dispose), place these objects on an
empty fi eld, specify parameters relating to the arrival and service times for
entities, and simulate the system. Arena also generates and compiles statistical
data that describe the performance of the system. In addition, it can support a
range of technology from Microsoft VBA to general - purpose languages such
as C++. As a result, users have the fl exibility of building a diverse set of simula-
tion models. What follows is a brief introduction to the Arena software [3] .

Arena Components —Terminology

Entities, Attributes, Variables, Resources, and Queues In the Arena
simulation environment, the term entity may refer to an object, such as a mat-
tress under assembly, a person, such as a customer engaged in the process
of banking, or an intangible. In many cases, to assist modeling operations, it
is necessary to create entities that represent intangibles. For example, in a
fl ow shop, an entity that represents a cycle time may be released periodically
to move semifi nished products from one workstation to another. Thus, in
the most basic model, entities are created, enter the system, and, following
service, depart the system, while in other models, an entity may remain in
the system, as is the case with a cycle - time entity, until the simulation termi-
nates. Intuitively, entities condition performance measures.

 There are many ways to classify entities. For example, customers may be
classifi ed according to the concept gender, while a factory ’ s mattress product
may be classifi ed according to the concept mattress type. Associated with each
concept is a set of attributes. An attribute is a common characteristic shared
by one or more entities. Gender can be assigned the two attributes, male and
female, while the concept mattress type may be assigned the attributes king,
queen, and single. Using the real - world system as a referent, the modeler is
responsible for identifying the relevant concepts and associated attributes
meant to characterize the entities.

88 DISCRETE-EVENT SIMULATION

 A variable is meant to model features of the real - world system. The process
of exiting a bank, for example, may be modeled by a variable labeled, “ leaving
the bank time. ” This variable may represent the time interval between the
moment the customer completes the transaction with the teller and the
moment he or she exits the bank. In addition, variables can also correspond
to a system condition that is modifi ed when running the simulation. Again,
looking to the bank as an example, for security purposes, a bank may choose
to limit the number of customers entering the building at any particular time.
A modeler can create a variable called “ security limit ” that establishes a
maximal number of combined customers, waiting and in service, allowed
within the bank. This variable can increase incrementally to refl ect those cus-
tomers currently in a queue and being served; once the ceiling number is
reached, the system bars entry into the bank of any additional entities. As the
number of entities in queue draws down and reaches a more tolerable condi-
tion, the “ security limit ” variable can be reset to again allow entry into the
bank of customers seeking service.

 Resources represent servers and are usually constrained in number. Entities
compete for, or are routed to, resources. Resources can be machinery, work-
stations, space, or people that provide the service. Once an entity is served,
the resource is released and available to be accessed by another entity. The
teller is a resource that provides banking services to customers and the quilting
machine is a resource that stitches fabric covering on mattresses. A system
can have multiple resources. For example, the bank can have several tellers
in addition to a credit specialist, while a mattress factory may have both a
quilting station and a label - tagging station.

 There are many system environments where either a person is necessitated
to “ mark time ” or a product is placed in a “ holding pattern ” prior to interface
with a resource. Queues are the proverbial line or, in the case of a product,
the staging area where the entity awaits interaction. Within any system, a
modeler may construct several queues and assign to each a unique property
and name. A modeled bank may have two teller queues, a single credit queue,
and an overcapacity queue. Since there are only four chairs in the waiting area
outside the credit manager ’ s offi ce, the credit queue may be assigned the
unique fi nite capacity of four, the larger lobby area can manage a fi nite capac-
ity of eight customers in each teller queue, and the overcapacity queue, located
just outside the bank ’ s front entrance, is designated an infi nite queue.

Arena Statistics and Hierarchical Structure Arena produces two types of
essential statistics: time - dependent and observational. Time - dependent statis-
tics report system status as a function of time, such as the number of entities in
a queue at a discrete time. Observational statistics, called tallies, are initialized
at zero and report statistics that accumulate with each new event to describe
entity activity to the most proximate moment. Observational statistics include,
among others, the number of customers served, the combined waiting time in
queue, the number of customers that have passed through the queue, and the
longest time spent in the system among all departed customers.

ARENA SIMULATION 89

 The modeling fl exibility of Arena is rooted in its hierarchical structure, a
structure found in high - level simulators. At the base of the structure is pro-
gramming code represented through a simulation language such as the gen-
eral - purpose language C++. This code is used to construct modules such as
the block/element templates and advanced - process/transfer templates. Since
the templates are interchangeable, there is fl exibility in the construction of
simulation models that vary according to the desired level of fi delity and the
goal. The following presents the hierarchical structure of Arena in descending
order:

 (1) user - developed templates
 (2) application – solution templates
 (3) basic process templates
 (4) advanced - process/transfer templates
 (5) block/element templates
 (6) code (e.g., VB, C, and C++)

 The versatility of Arena allows the modeler to combine a low - level model-
ing module, such as a block/element template, with a high - level template, such
as an application – solution template. In the situation where a modeler requires
specialized algorithms, he or she can code such a piece by employing a pro-
cedural language, thus creating a module that may be saved under either a
new or common template.

User Interface

Menu Items, Toolbars, Model Flowchart, and Spreadsheet Window As
with other MS Windows applications, Arena includes the basic Microsoft
concepts and operations such as disks, fi les, and folders as well as employs the
mouse and the key word. The sequence of accessing the different fi les and
levels within Arena typically includes Menu > Choose > Submenu > Tab
labels. One can cut - and - paste either by employing the regular menu options
or by “ alt + shift. ”

 Once the Arena program is opened, Figure 3.6 illustrates the typical screen
view, called the Arena Window. With Arena launched, one can see File, View,
Tools, and Help menus at the top. If a blank model is already opened, then
there are other menus. The most popular mechanism to create a new model
involves File > New. To open an existing saved model, one clicks File > Open,
which will display a dialog box in which one navigates through folders and
subfolders until the desired fi le has been accessed. In the event that one is
required to have more than one model at a time, Arena displays a separate
window for each model. To save an existing model, click File > Save, or to
save a new model, click File > Save As. To end an Arena session, one simply
clicks “ x ” at the upper - right corner of the Arena window or File > Exit.

 The Arena Window is subdivided into several parts. The Model Window
is divided between the fl owchart view and the spreadsheet view. The fl owchart

90 DISCRETE-EVENT SIMULATION

view involves the process fl owchart, animation, and other drawing elements.
Here, many parameters can be accessed, viewed, and modifi ed. The spread-
sheet view provides access to most of the model parameters and can be edited.
When working with larger models, it is desirable to access at once a category
of parameters instead of opening element - by - element in the fl owchart view.

 The project bar is located to the left of the Arena Window. Attached to
this bar are panels that contain a variety of simulation modeling objects. For
example, the panel called “ Basic Process ” displays some essential objects, or
modules, that are common to most simulations models, such as Create and
Assign. Notice the distinct shape of each object. In general, the lowest hori-
zontal button contains the panel “ Reports. ” In this panel, simulation outputs
can be accessed. In addition, the panel called “ Navigate ” allows one to move
through different existing submodels that compose a larger model. This project
bar can be fl oated anywhere or can be docked to the right edge. One can hide/
unhide the project bar, if required, by clicking on the small “ x ” button or by
clicking on View > Project Bar. The number of panels depends upon the fea-

Toolbars

Flowchart

view

Spreadsheet

view
Status

bar

Project

bar

 Figure 3.6 Arena screen overview.

ARENA SIMULATION 91

tures licensed at time of software purchase. Some panels, such as the Basic
Process, are common. Others, however, such as the Call Center panel, are
more specialized. One can attach templates that contain different modeling
elements by way of File > Template Panel > Attach. In the case that one
requires the removal of a panel, File > Template Panel > Detach may be
employed.

 The status bar is usually located at the bottom of the Arena Window. It
displays a variety of information related to the current condition of the simula-
tion model. For example, if the model is not being run, it shows the “ x ” and
 “ y ” coordinates when the pointer is positioned over the fl owchart view. In the
case that the model is being replicated, the status bar exhibits the simulation
clock, the replication number, and the number of replications left to end the
run. This bar can be hidden or unhidden by selecting View > Status Bar. To
show the status bar again, one checks the View > Status Bar options.

Arena Modules Modules describe the process to be simulated and are the
primary building blocks used in the modeling process. They are categorized
as fl owchart and data modules. A general description of each type of module
follows.

 An Arena fl owchart within the Model Window will contain objects, visually
represented by various shapes, through which entities fl ow. Within a simple
system, typically, entities enter the system, are serviced, and exit the system.
Within a fl owchart, this sequential process is represented by placing within
the fl owchart view the modules “ Create ” representing the point of entity entry
into the system, “ Process ” representing the point of treatment or service of
the entity within the system, and “ Dispose ” representing the entity ’ s point of
exit from the system. Each of these modules may be placed into the fl owchart
view by dragging the chosen module from the panel and dropping it into the
fl owchart view. Generally, once dropped into the View, objects are automati-
cally tethered to one another with a connecting line.

 In addition to the Create, Process, and Dispose modules, there are many
more fl owchart modules on other panels; they can have the shape of the opera-
tion they perform, but some are simple rectangles without any fl owchart
association. In some cases, a fl owchart module within a panel can pose a dis-
tinct color that differentiates it from the other modules; some may have more
elaborated graphics that distinctly describe their purpose or operation. To
parameterize, edit, or access the properties of a module that has been placed
in the model within the fl owchart view, one double - clicks revealing a dialog
box where such operations can be performed. Alternatively, one can see and
access the parameters of a module by clicking only once the fl owchart module.
This shows the spreadsheet view and the entries related to that module. Then,
one can edit such entries.

 In addition to the fl owchart modules, the other central building block is the
data module. A data module is used to describe the features of a range of
process elements. These process elements can involve entities, resources,

92 DISCRETE-EVENT SIMULATION

and queues. Data modules can defi ne other variables, values, expressions, and
conditions that are related to the modeled system. In the project bar, data
modules are symbolized as spreadsheets. For example, in the basic process
panel, two such spreadsheet icons are Resource and Variables. Unlike fl ow-
chart modules, a data module cannot be placed into the fl owchart view.
However, data modules can be edited by simply clicking on the spreadsheet
icon; the data module will then become visible in the spreadsheet view; once
in View, existing rows may be modifi ed or new rows added.

 As noted by Kelton et al., data and fl owchart modules are connected to one
another by the names of each shared structure such as resources, variables,
and entity types. When one is defi ning or editing a data or fl owchart module,
Arena presents such related names in a drop - down list menu [3] . This conve-
nient list minimizes the potential for assigning duplicate names.

Simulation of Simple Queuing System Using Arena

Problem Description: Analyzing an Airline Check -in Process In this
portion of the chapter, the reader will be introduced to a typical fl ow scenario
found in an airline check - in system. The fl ow of this check - in process will be
modeled and performance measures analyzed using Arena. We present the
following foundational information relating to the customers and servers:

 (1) The simulation will take place over a period of 16 real - world hours.
 (2) Travelers arrive at the main entrance door of the airline terminal

according to a Weibull distribution with Beta = 4.5 and Alpha = 10.
 (3) At the check - in, travelers wait in a single queue.
 (4) The service time follows a triangular distribution with the values 1.5

for minimum, 3.5 for most likely, and 7 for maximum; note that the
triangular distribution is often employed when a more precise distribu-
tion is unknown, and there are, however, informed or educated esti-
mates for the minimum, maximum, and most likely values.

 We now turn to modeling and simulating the process by presenting the
step - by - step mechanics found in Arena. There are three basic steps: fi rst,
defi ne the types of entity that will fl ow through the system; second, using the
point of view of the entity, defi ne basic information such as the point of entry
into the system, the entity transformation at each step, and the resources that
will be used to complete the service; third, run the simulation and report the
performance measures.

 Entities represent the customers that fl ow through the check - in system.
These entities are created using the “ Create ” module relying on the timing
information provided. The Create module is located in the Basic Process
panel. This module represents the origin for entities that will fl ow through the
model. As described above, to place this module, one drags the Create module
into the Model Window as illustrated in Figure 3.7 .

ARENA SIMULATION 93

 Next, model the check - in service process by placing a Process module. To
do this, fi rst ensure that the Create module has already been placed within the
fl owchart view and has been selected. When dragging the Process module, a
connector will link automatically both the selected Create and the newly
dragged Process modules. In the case that this connection does not occur, one
can either select Object > Connect or select the Connect button from the
toolbar and click between the exit point of the Create module to the entry
point of the Process module. Figure 3.8 presents the connected modules.

 The fl ow of the entity through the system fi nishes with a Dispose module.
This module is necessary to remove entities after processing. To place this
fl owchart module into the model, one fi rst selects the Process module in
the fl owchart view such that the Dispose module will be connected. Drag
a Dispose module from the Basic Process panel and place it next to the
Process module. Again, if it is not connected, follow the above steps to connect
objects.

 Now that the basic fl owchart for the airline check - in process has been con-
structed, one can defi ne the data associated with the modules, including the
name of the module and the information that will be used in the simulation.

Figure 3.7 Create module.

94 DISCRETE-EVENT SIMULATION

Customer Arrival for Check -In (Create Module) First, one can assign a mean-
ingful name to the Create module, such as “ Customers Arrival ” to symbolize
the process of customers entering the system. In this module, it is necessary
to defi ne how people arrive. Since this has been defi ned as a random activity
with a Weibull distribution (Beta = 4.5 and Alpha = 10), one characterizes
accordingly.

 To open the property dialog box of the Create module, double - click the
Create module, then in the Name fi eld, type “ Customer Arrival. ” Next, for
the Entity Type, type in “ Customer. ” In the fi eld type, select “ Expression. ”
In the fi eld “ Expression, ” select WEIB (Beta, Alpha) and substitute Beta and
Alpha with 4.5 and 10, respectively. Change the units to Minutes. Then click
 “ OK ” to close the dialog box.

Check-In Process (Process Module) After entities that represent the cus-
tomer have been created, the customers will undertake a process to be identi-
fi ed, bags and suitcases checked in, and boarding passes issued. Previously, it
was defi ned that the check - in process could be described using a triangular

Figure 3.8 Create and process module.

ARENA SIMULATION 95

distribution. Since the check - in process per customer takes some time, the
Process module will hold the customer entity for a delay while involving a
resource to execute the operation. Thus, during a replication, every time a
customer enters for service, a sample is drawn from the probability distribu-
tion that represents service time. A resource called “ Airline Agent ” will
perform the check - in operation.

 The mechanics of this process is straightforward. First, double - click to
open the property dialog box of the Process module. Then, type “ Check - in
Process ” in the Name fi eld. To create a resource to perform this operation,
select “ Seize Delay Release ” from the action list. Thus, after a customer entity
has waited for the availability of the resource, the customer entity seizes the
resource and a delay for the process time is experienced. Finally, the entity
releases the resource to perform another operation. Click “ Add ” to add
a resource to perform this check - in operation. Type “ Airline Agent ” in the
fi eld called Resource Name within the dialog box and click OK to close the
window.

 To parameterize the experienced delay, fi rst verify that the distribution is
triangular in Delay Type, select Minutes in Units, and type “ 1.5 ” for minimum,
 “ 3.5 ” value (most likely), and “ 7 ” for maximum. Finally, close the dialog box
by selecting OK.

Customer Leave (Dispose Module) Once customers are served, the cus-
tomer leaves the check - in system. The process is ended with a Dispose module.
The Dispose module counts the number of customers that leave the system.
To rename the Dispose module, double - click to open the property dialog box,
and, then, type “ Customer Leave ” and click OK to close the window.

Airline Agent (Resource Module) In addition to the fl owchart modules used
to model the above process, we can also defi ne additional parameters using
data modules. In this case, one can defi ne the cost rate for the airline agent
such that the output includes this cost as part of the report. The Airport Agent
cost is constant at $20 per hour. To accomplish this, one clicks the Resource
module from the Basic Process panel, which displays the Resource spread-
sheet. The resource, Airline Agent, which was defi ned (added) when setting
the Process module, now appears in the fi rst row. Assign $20 per hour when
the resource is either busy or idle by clicking and typing 20 on the Busy/Hour
and Idle/Hour cells.

Executing the Simulation To simulate the model, some general project
information as well as the duration of the replications must be defi ned.
As mentioned above, the investigation requires a simulation window of 16 h.
To accomplish this, open the Project Parameters window by Run > Setup.
Click on the Project Parameters tab and type “ Check - in Process Analysis ”
in the Project Title fi eld. The Statistics Collection box is kept checked and,

96 DISCRETE-EVENT SIMULATION

additionally, the Costing box is checked. Next, click on the “ Replication
Parameters ” tab and type “ 16 ” in the Replication Length fi eld. Keep Hours
in the Time Units fi eld. Finally, to close the dialog box, click OK.

 To start the simulation, click Run > Go. The software will verify the integ-
rity of the model and start the simulation. When the simulation starts, we
may see the entities ’ pictures moving through the fl owchart; counters
adjust values while the simulation creates, process, and removes entities.
Additionally, one may adjust the animation scale factor either by clicking
Run > Speed > Animation Speed Factor or by moving back or forward the
run speed button. The simulation can be paused or stopped at any time by
clicking on the Pause or End buttons. In addition, one may walk through the
simulation one event at a time; at each step, an entity moves in the fl owchart.
One can bypass the animation feature and obtain faster reports by clicking
the fast - forward button. Once a run ends, the simulation software asks the
user if he or she would like to see the report.

Measures of Performance Once it is verifi ed by Arena that the user would
like to see the report, it displays the Category Overview Report. This report
provides a summary of the results across all replications in terms of common
measures of performance. A map that categorizes the types of existing infor-
mation in the report appears at the leftmost hand. The project name is listed
on the top. Entries for each type of data, as well as detailed reports for each
replication, are listed in the report map. Figure 3.9 illustrates the Category
Overview Report.

Figure 3.9 Category overview.

CONCLUSION 97

CONCLUSION

 This chapter has introduced the reader to DES as an approach to answering
effi ciency - related questions, especially those inquiries involving the fl ow of
entities through queues and servers. We began with a conceptual overview
that defi ned queues and queuing and illustrated the relevance of these to
customer service and operations. In this overview, a common general
approach — explicated throughout this chapter — is put forth. The fi rst part of
this approach is the development of a logical representation, or model, of the
real - world queuing environment with special emphasis on the importance of
quality foundational information. The second part of this approach is a process
where the model is executed, or simulated, to allow it to play out over time
revealing the dynamic behavior of the system. The simulation is fi rst initial-
ized, followed next by the introduction of entities into the system, either
probabilistically or deterministically, and then data are accumulated. Next, the
simulation is terminated and the resultant performance measures evaluated.
If the performance measures generated by this run do not fall within estab-
lished parameters, then it may be necessary to make adjustments to the model
and replicate the simulation process.

 The next part of this chapter offers a more detailed look at simulation
methodology. A critical distinction is made between a discrete system, where
the state variables are updated instantaneously at specifi c times, and a continu-
ous system, where the state variables change continuously with the progres-
sion of time. Some common terms, or main components, associated with DES
are then introduced. In addition, a detailed discussion of the two most common
time - advance mechanisms is provided; the advantages of the next - event time -
 advance mechanism, relative to the fi xed - increment mechanism, are expli-
cated. This section concludes with an illustration and description of a typical
simulation fl owchart.

 A DES example is proffered in the next portion of the chapter. Here we
render understandable how to simulate a basic model by introducing the
example of a one - teller banking facility where customers arrive, are processed
by the single teller, and then leave. The concepts such as FCFS queue disci-
pline and IID variates are presented in the context of the example system.
Also presented are the mathematical formulas for four measures of perfor-
mance that are of particular interest in queuing systems.

 Next, we offer practical pedagogy through the hand simulation of the
banking system. This section is designed to be both informative and instruc-
tive, addressing some of the most common questions and pitfalls associated
with an understanding of DES. We fi rst present a simulation template that
contains most of the common statistical accumulators useful to assessing a
system ’ s performance. The fi ve basic sections within the template are
explained. The template is followed by a series of logically sequenced tables
and a detailed narrative that carefully walks the reader through the simulation
process, event - by - event. Changes in state variables, attributes, accumulators,

98 DISCRETE-EVENT SIMULATION

and the event calendar are tracked and explained both conceptually and
operationally.

 Building upon the knowledge gained through the practical execution of the
banking system model, we then offer the reader a more sophisticated — and
powerful — tool to model and simulate a queuing system. We introduce the
reader to Arena simulation software capable of constructing experimental
models. We familiarize the reader with the building blocks necessary to con-
struct and execute models, referred to as Arena components. We then care-
fully illustrate the mechanics of modeling and simulating using Arena by
analyzing the performance of an airline check - in system. Through the use of
modules, we begin by defi ning and creating entities and modeling the check - in
service process. We then run the simulation and generate reports.

 We have introduced, and made reference to, a few of the many applications
of modeling and simulation including transportation, operations management,
medical, engineering, and social sciences. The approach offered here is but
one of several approaches that may be employed to gain better insight into
the complexities inherent in a queuing system. Clearly, DES, when properly
parameterized and girded theoretically, can yield information useful to deci-
sion making.

REFERENCES

 [1] Law AM , Kelton WD . Simulation, Modeling, and Analysis . 4th ed. New York :
 McGraw - Hill ; 2006 .

 [2] Banks J , Carson JS , Nelson BL . Discrete- Event System Simulation . 2nd ed. Upper
Saddle River, NJ : Prentice Hall ; 1996 .

 [3] Kelton WD , Sadowski RP , Sturrock DT . Simulation with Arena . 4th ed. New
York : McGraw - Hill ; 2004 .

99

Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains,
Edited by John A. Sokolowski and Catherine M. Banks
Copyright © 2010 John Wiley & Sons, Inc.

 4

MODELING CONTINUOUS
SYSTEMS

 Wesley N. Colley

 The very title of this chapter may seem oxymoronic. Digital computers cannot,
in general, represent continuous (real) numbers, so how can we possibly use
computers to simulate continuous systems? Mathematicians defi ne degree of
continuity by the ability to take a derivative, but when we look at Leibniz ’ s
formula (Eq. (4.1)) for computing the derivative,

dx
dt

x t t x t
tt

=
+() − ()

→
lim ,
Δ

Δ
Δ0

 (4.1)

 we discover something very troubling indeed — a fi rst - class numerical “ no - no. ”
We are asked to subtract two very similar numbers in the numerator and
divide that result by a tiny number. This experiment is custom - made to exploit
the rounding errors of digital computation.

 Imagine we are simply taking the derivative of t 2 at t = 1. The limit demands
that we use ever smaller values of Δ t to get better and better estimates of the
derivative. Table 4.1 shows what we might fi nd if we were to carry out this
exercise in Microsoft Excel. As we begin to decrease Δ t , the error decreases
nicely, until Δ t is around 10 − 8 , but then the error gets worse again as we
decrease Δ t to a level where the error introduced by round - off limit of the

100 MODELING CONTINUOUS SYSTEMS

machine dominates over the mathematical error itself. So, if one wants to
estimate the derivative natively numerically on a typical PC, the best precision
possible is about a few parts per billion. For some areas of numerical computa-
tion, this round - off limit can be a fundamental limitation to the stability of the
code and the quality of its output. (Curiously, in some cases, the errors intro-
duced can actually add stability, e.g., Jain et al. [1] .)

Round - off is but one example of the broader problem of discretization. Just
as the computer discretizes the real numbers themselves, the computational
techniques for handling continuous systems inherently involve discretization
into chunks much larger than the machine round - off limit. As such, managing
the errors associated with discretization quickly becomes the primary concern
when simulating continuous systems.

 At their worst, discretization errors can lead to extreme instability in cod-
ing — fi nite differencing codes for partial differential equations may yield
acceptable results at one cell size, but complete nonsense at just a slightly
different cell size. In this chapter, we focus on a class of problems that is rather
tame by contrast — integration of ordinary differential equations. Here, the
only derivatives in the problem are taken with respect to the single indepen-
dent variable (in our case, time), and those derivatives are known analytically.
Use of the analytic derivative removes the necessity of estimating derivatives
numerically and nicely isolates the discretization solely to the time step.

SYSTEM CLASS

 We now consider some classes of continuous systems, according to the math-
ematical methods, and therefore the numerical techniques, associated with
modeling their members. Table 4.2 presents a few common examples. Very
often, simulation or evaluation of continuous physical systems boils down
to integration of a fi rst - or second - order differential equation (ordinary or
partial). In fact, a very large fraction of continuous systems are governed

Table 4.1 Estimation of dx/dt for x = t2 in Microsoft Excel for different values of Δt

Δt t t + Δt t∧ 2 (t + Δt) ∧ 2 Approximate dx / dt Error

 1 1 2 1 4 3 0.5
 0.01 1 1.01 1 1.0201 2.01 0.005
 0.0001 1 1.0001 1 1.0002 2.0001 5E - 05
 0.000001 1 1.000001 1 1.000002 2.000001 5E - 07
 1E - 08 1 1 1 1 1.999999988 – 6.1E - 09
 1E - 10 1 1 1 1 2.000000165 8.27E - 08
 1E - 12 1 1 1 1 2.000177801 8.89E - 05
 1E - 14 1 1 1 1 1.998401444 – 0.0008
 1E - 16 1 1 1 1 0 – 1

MODELING AND SIMULATION (M&S) STRATEGY 101

by second - order differential equations, which is due to something of a coin-
cidence, that several different essential equations in physics are of second
order. For the purposes of this chapter, we will focus on the fi rst three items
in the table, which all involve ordinary differential equations of fi rst or second
order.

 MODELING AND SIMULATION (M & S) STRATEGY

 The basic M & S strategy for modeling continuous systems is dictated by
two key steps: understanding the physics of the system and identifying the
appropriate numerical implementation for solving the resulting equations (see
Fig. 4.1). We use the term “ physics ” very broadly, to mean translation of a

 Table 4.2 Mathematical classes of some continuous systems

 Name Some Uses Formula

 First - order ordinary Predator – prey models x. = xf (x , y)
 y. = yg (x , y) (others)

 Second - order ordinary Orbits F = m a
 Oscillators
 Ballistics

 (many, many more)

RLC circuits

Lq Rq

C
q V t�� �+ + = ()1

 Second - order partial

(not covered herein)
 Water waves

etc.

 Sound waves
 Electromagnetic radiation
 Heat transfer
 Chemical diffusion
 Schr ö dinger ’ s equation

∇ = ∂
∂

− ∂
∂

∂
∂

= − ∇ +

2
2

2

2

2
2

1 1

2

f
D

f
t v

f
t

i
t m

V�
�ψ ψ ψ

“Physics”
r = ma

F = ma

r
GMm−

3

Numerical

techniques

options = odeset('RelTol',1.e-4);
[t,xvOut] = ode45(@(t,xv)

gravFunc(t,xv,m),[t0,t1],xv0,options);
function xvderiv = orbitfunc_complete(t,xv)

…
% derivative of position vector
xvderiv(1,1) = xv(4,1);
xvderiv(2,1) = xv(5,1);
xvderiv(3,1) = xv(6,1);

% derivative of velocity vector
xvderiv(4,1) = -GM*xv(1,1)/r^3;
xvderiv(5,1) = -GM*xv(2,1)/r^3;
xvderiv(6,1) = -GM*xv(3,1)/r^3;

Modeled

system

Mathematical

model

Computational

implementation

 Figure 4.1 Basic strategy for M & S of continuous systems.

102 MODELING CONTINUOUS SYSTEMS

real - world system into a set of quantitative mathematical equations, a process
that is the very essence of physics, in particular. Of course, this is not to say
that we may not use equations from biology, chemistry, economics, sociology,
or other sciences, as applicable to the system at hand.

MODELING APPROACH

 The “ physics ” part of the problem is really the modeling phase. There is no way
around developing a great enough understanding of the science of the problem
to pose it as a set of mathematical equations. This is a fundamental and repeat-
ing challenge to the modeler over a career — on project after project, the
modeler is presented with new problems for which he or she must provide cred-
ible models with perhaps only cursory (or even no) training in the relevant
scientifi c fi elds. This is why successful modelers often call themselves “ general-
ists. ” Remember, the modeler is not trying to make breakthrough discoveries
in biochemistry or economics, but is trying to use the relevant knowledge base
from such fi elds to provide accurate models in a particular context. Fortunately
for modelers, reliable sources of such knowledge are more accessible than ever.

State Variables

 The usual assumption in continuous modeling, and for that matter, much of
science, is that a system can be defi ned, at any particular instant, by its state.
This state is, in turn, defi ned by a suite of state variables. We regard that the
state variables of the real - world system evolve in time continuously (hence
the name of the chapter), and we further regard that almost always, the state
variables themselves are continuous, meaning real or complex rather than
integer valued. Common examples of state variables are position, velocity,
mass, rate, angle, fraction, current, and voltage. All of these quantities are real
(or possibly complex) and evolve continuously with time.

 Perhaps most important in selection of state variables is the notion of
completeness . The selected state variables must contain suffi cient information
to elicit all the relevant phenomena associated with the system with adequate
accuracy and precision, as set forth during requirements defi nition. Identi-
fying all of the correct (i.e., necessary and suffi cient) state variables is obvi-
ously critical.

 Just as a simple example, consider the problem of how long it takes an
object on earth ’ s surface to drop 10 ft through the air (under “ normal ” condi-
tions) after starting at rest. If the object is an anvil, the only two state variables
necessary to obtain an excellent result are position and speed. If, however, the
object is a big - leaf maple seed (“ whirligig ” type seed), which generates lift by
spinning, we must know about its rotation rate to estimate its lift. Leaving out
rotation would give completely invalid results.

MODELING APPROACH 103

 On the other hand, one can certainly be guilty of overkill when striving
for completeness. A particular orbit propagator encountered by the author
had the purpose of maintaining tracks of satellites in geosynchronous
orbit. The code correctly provided for the radiation pressure from the sun,
which has a fairly small, but nonnegligible effect on the orbit; position of
the sun and orientation of the satellite were necessary state variables.
Borderline overkill was that the code provided for this pressure to be modifi ed
by solar eclipses (extremely rare at the position of a given satellite and very
short in duration). Defi nite overkill was that the code provided for the (very
small) oblateness and position angle of the moon during that eclipse. The
code ’ s author should have estimated the contributions to error for each of
these effects before plopping them into the code. He would have recognized
that the position angle of the moon was simply unnecessary to keep as a
state variable.

State Variable Equations

 A task closely interrelated with identifi cation of the state variables is identi-
fi cation of the equations that govern them. These equations dictate how the
state of the system changes with respect to the independent variable (for
the purposes of this chapter, time). These equations may be akin to any of
those seen in Table 4.1 , or may be completely different, depending on the
model selected. There is no fundamental limit to the form the state variable
equations may take, but fortunately, as we have previously discussed, most
real - world systems obey fi rst - or second - order differential equations one way
or the other. Quite often, auxiliary variables must be computed during the
computation of the state variable equations, and these variables, with their
associated equations, must be treated with equal care to the state variables
and state variable equations themselves.

Output Equations

 Finally, we must consider what the relevant outputs are: what quantities
does the consumer of our simulation want or need? These issues are usually
addressed during the requirements defi nition phase of development.

 In the simple examples given in this chapter , the output variables we report
are state variables themselves, and sometimes that is the case with other
models. However, much of the time, the desired outputs must be computed
from the state variables using a new set of equations, called output equations.
Output equations often require the same level of expertise and rigor as the
state variable equations and, as such, should always be treated with appropri-
ate care.

 As an example, let us consider planetary orbits. The state variables at hand
are simply the (three - dimensional) position and velocity of the planet relative

104 MODELING CONTINUOUS SYSTEMS

to the sun, collectively called the state vector. Often, however, consumers of
the orbital data prefer the “ orbital elements ” as output. To move from state
vector to the orbital elements requires a fair bit of algebra, including the
computation of energy and angular momentum as intermediate values. Just
as a fl avor, if one wants the semimajor axis a (which describes the size of an
orbit), we solve for it by computing the energy E :

r x y z

v v v v

E
GMm

r
mv

GMm
a

x y z

= + +

= + +

= − + = −

2 2 2

2 2 2

21
2 2

,

 (4.2)

where G is Newton ’ s constant, M is the mass of the sun, and m is the mass of
the planet.

 MODEL EXAMPLES

 Predator – Prey Models

 Predator – prey models are intended to model two species whose populations
are very closely dependent on each other, much in the way we might expect
 “ real ” predator – prey systems to work in the wild [2, 3] . Perfectly isolated
two - species predator – prey situations are fairly rare in the wild, since so many
species usually interact in a given biome; however, there are many cases
where the natural situation is well approximated by the simple two - species
model (e.g., Canadian lynx and Snowshoe rabbit [4]). Furthermore, there
are a great many systems in which the fundamental dynamic is the same,
even when the system has nothing to do with two species of animals in the
wild.

 At its simplest, the predator – prey scenario usually produces cycles in the
population numbers of both species:

 (1) Prey population increases.
 (2) Predators feast on plentiful prey.
 (3) Predator population increases.
 (4) Copious predators overhunt the prey population.
 (5) Prey population decreases.
 (6) Predators starve.
 (7) Predator population goes down.
 (8) Prey is less vulnerable to dwindled predator population.
 (9) Prey species thrives.

 (Repeat from step 1.)

MODEL EXAMPLES 105

 Usually the predator – prey model is specifi ed mathematically by the follow-
ing two equations,

�
�
x xf x y

y yg x y

= ()
= ()

,

, ,
 (4.3)

where x is the population of prey and y is the population of predator. Note
that in each equation, the change in population is proportional to the current
population, such that f (x , y) and g (x , y) defi ne the fractional, or per capita,
growth rates in the populations (equivalently, f is the derivative of ln x).

 The cagey reader may be asking why, in a chapter where we are so sensitive
to discretization errors, are we taking a fundamentally discrete system of, say,
lynxes and rabbits, and representing their populations as continuous real
numbers, only to come back and grouse about the discrete algorithms we will
use to compute those real numbers. The answer is twofold: (1) the predator –
 prey problem has applications in truly continuous areas such as chemical
abundances and (2) even in the case of lynxes and rabbits, the assumption is
that the populations are large enough that the continuous approximation is
valid; this permits the use of calculus, which in turn permits much greater
understanding and means of computation.

 Getting back to the math, it is assumed that df / dy < 0, which says that as
the predator population, y , increases, the growth rate of the prey population
of x declines (steps 3 – 5). However, we assume that dg / dx > 0, which says that
as the prey population, x , increases, the predator growth rate increases (steps
1 – 3). These conditions ensure the basic cyclic conditions we described above;
together with Equation (4.3) , these are often called Kolmogorov ’ s predator –
 prey model [5] .

 Perhaps the most direct way to ensure the Kolmogorov conditions is simply
to design a model in which f is linear in y with a negative slope, and g is linear
in x with a positive slope:

f b py

g rx d

= −
= − .

 (4.4)

 This particular version of the model is called the Lotka – Volterra model ,
after two scientists who very much independently arrived at the form in the
1920s — Lotka modeled fi sh stocks in the Adriatic Sea and Volterra modeled
chemical abundances under certain types of reactions [2] . The behaviors can
be quite varied depending on the selection of the constants, as Figure 4.2
shows.

 The Lotka – Volterra model (as well as some other particular models) permit
construction of an integral of the “ motion, ” or conserved quantity. This con-
served quantity is analogous to more familiar conserved quantities in physics,
such as energy and momentum. Using Equations (4.3) and (4.4) , we have

106 MODELING CONTINUOUS SYSTEMS

 �x x b py= −()

Use
� �

�
�

�

y
y

g x y y
y

rx d

x x b p
y

rx d
x
x

rx d b rx d p

= () ⇒ =
−

= −
−

⎛
⎝

⎞
⎠

−() = −() −

,

��

�
�

�

y

rx d
x
x

b rx d py− = −() −

 (4.5)

Use rx d g x y
y
y

rx d
x
x

b
y
y

py

rx d
x
x

b
y
y

py

C b

− = () =

− = −

− − + =

=

,

l

�

�
� �

�

�
� �

� 0

nn ln .y py rx d x− − +

 This is a conservation law that holds for all x (t) and y (t) that obey Equations
 (4.3) and (4.4) . The particular forms of x (t) and y (t) depend on the choices of
 b , p , r , and d , and the initial conditions at time zero. Figure 4.3 shows “ orbits ”
in the x – y plane for different values of C .

 There is a host of other particular predator – prey models that are also
very well studied (e.g., Hoppensteadt [2]), many with conservation laws similar
to Equation (4.5) .

2.0

1.5

r = b = d = p = 1

r = d = p = 1, b = 2

0 5 10

Time

15 20

x,
 y

x,
 y

1.0

0.5

4

3

2

1

0

 Figure 4.2 Predator – prey behavior for the Lotka – Volterra model, with starting conditions
 x (prey, solid) = 2 and y (predator, dotted) = 1. Note the differing values for the governing
constants at the top and bottom.

MODEL EXAMPLES 107

4

4

3

3

Prey (x)

P
re

d
a
to

r
(y

)

2

2

1

1

0

0

 Figure 4.3 Lotka – Volterra predator – prey model: “ orbits ” for different values of C , with r = b =
 d = p = 1.

 Oscillators

 The solution of second - order differential equations very often leads to oscil-
lating solutions. The second - order nature of Newton ’ s second law, F = m a ,
therefore, yields oscillating solutions for a large number of mechanical systems.
We shall see that for somewhat related reasons, analog electronic circuits can
also have such solutions.

 Let us consider the canonical oscillator, the mass - spring - dashpot system
(Fig. 4.4 , top) (e.g., see Tipler [6]). The spring provides a force that is negative
and proportional to the displacement, x , of the mass; the constant of propor-
tionality is simply called the spring constant k . There is also a “ dashpot, ” which
acts as a damper. In a shock absorber (a real - life version of a mass - spring -
 dashpot system), the dashpot is very often a piston that moves through a gas

k m b

C L R

 Figure 4.4 Two simple oscillator systems: the mass - spring - dashpot system (top) and the RLC
circuit (bottom).

108 MODELING CONTINUOUS SYSTEMS

chamber. The dashpot presents a force that is proportional to the negative of
velocity, with a constant of proportionality, b . So let us consider our forces, to
derive the equation of motion for the system:

F ma mx
kx bx mx

mx bx kx

= =
− − =
+ + =

��
� ��

�� � 0.

 (4.6)

 As it turns out, the system has exact analytic solutions,

 x Aezt= , (4.7)

where z is a complex number. Substituting the solution, we fi nd

x Ae x zAe x z Ae

A mz bz k e

mz bz k

z z z

zt

= = =
+ +() =
+ + =

; ;

.

� �� 2

2

2

0

0

 (4.8)

 Using the quadratic formula:

z

b b km
m

= − ± −2 4
2

.

 (4.9)

 The sign of the discriminant gives three different solution types:

b km

b km

2

2

4 0

4 0

− < ()
− =

:

:

underdamped oscillating

critically dampedd

overdampedb km2 4 0− > : .

 (4.10)

 Underdamped Solution The underdamped solution will feature some level
of oscillatory behavior, because the exponential of an imaginary is a sum of
trigonometric functions (e i θ = cos θ + i sin θ). The solution has the form

x A t e

k
m

b
m

bt m= +()

= −

−cos

.

ω φ

ω

2

2
2

24

 (4.11)

 Note that in the case of no dashpot (b = 0), we have the simple harmonic
oscillator, x = A cos(ω t + φ) with ω = k m The phase angle φ and the ampli-
tude A are determined by the initial conditions. In the simplest case, where
the mass is simply displaced by an amount A and then released at time zero,
 φ = 0. The dashed line in Figure 4.5 shows the motion of such an oscillator.

MODEL EXAMPLES 109

 Critically Damped Solution The critically damped solution guarantees that
the displacement will return exponentially to zero, but does allow for some
growth from any initial velocity:

 x At B e bt m= +() − 2 . (4.12)

 The smooth and rapid return to the zero displacement value is a sought -
 after feature in shock - absorbing systems, and so most such systems are tuned
to reside in the critical damping regime. The solid line in Figure 4.5 shows the
behavior.

 Overdamped Solution The overdamped solution is also guaranteed to
de cline to zero, but, in general, does so more slowly than the critically damped
solution. This seems counterintuitive at fi rst, but what is happening is that the
overbearing dashpot is actually slowing down the return to zero displacement.

 The two available solutions to the quadratic, again allow for different
initial conditions. The dotted line in Figure 4.5 shows the behavior of and
overdamped system:

x Ae Be

b b km
m

t t= +

=
− ± −

+ −

±

λ λ

λ

;

.
2 4

2

 (4.13)

 In all three of the oscillator cases, the constants in the solutions are deter-
mined by setting the initial position and velocity equal to the desired values
at time zero, and solving for the relevant constants.

Overdamped

Critically

 damped

Underdamped

0 5 10 15

t

x

20

–0.2

0.0

0.2

0.4

0.6

0.8

1.0

 Figure 4.5 Motion of an oscillator, for a starting condition of x 0 = 1, v 0 = 0.

110 MODELING CONTINUOUS SYSTEMS

 RLC Circuit In something of a coincidence, a very common analog elec-
tronic circuit demonstrates the very much the same behavior as the mass -
 spring - dashpot system. The RLC circuit (see Fig. 4.4) consists of a resistor
(resistance R), an inductor (inductance L), and a capacitor (capacitance C).
Here, we are not measuring displacement, x , of the spring, but the charge, q ,
on the capacitor. As it turns out, according to Ohm ’ s law, a resistor “ resists ”
motion of charge, or current, in direct proportion to the current, just as the
dashpot resists motion in direct proportion to the velocity. The inductor
opposes the second derivative of charge (or fi rst derivative of current), just as
the mass opposes acceleration. The capacitor stores the energy of accumulated
charge, just as the spring stores energy of the displacement. The capacitor
works a bit differently than the spring, in that the stiffer the spring (the higher
the value of k) becomes, the greater force it applies, but the greater the capaci-
tance, C , the less voltage it applies — as the name implies, a greater capacitance
means a greater ability to accommodate more charge and thus provide less
opposing voltage. (For further discussion on RLC circuits, see Purcell [7] .)
Figure 4.4 is drawn so that the analogy of each of the three components to the
mechanical system is clear. We are left with an equation for the charge that is
mathematically identical to Equation (4.1) :

mx bx kx

Lq Rq
C

q

�� �

�� �

+ + = ()

+ + =

0

1
0

mechanical system

RLC circuit

;

(().

(4.14)

 Of particular interest is the underdamped case, where we inherit a funda-
mental frequency to the system, ω , given below:

q A t e

LC
R
L

Rt L= +()

= −

−cos

.

ω φ

ω

2

2
2

2

1
4

 (4.15)

 The behavior of these circuits when stimulated with an external oscillating
voltage, near this fundamental frequency is extremely useful in electronics,
most notably for construction of frequency fi lters.

 SIMULATING CONTINUOUS SYSTEMS

 General Solution Approach

 In our discussions thus far, we have had a single independent variable: time.
The assumption that time is a universal independent variable in the real world
is a loaded one that came crashing down with the theory of relativity [8] ;
however, for our purposes, in which we are making classical macroscopic

SIMULATING CONTINUOUS SYSTEMS 111

assumptions, the assumption that time is a fully independent time variable is
quite justifi ed.

 Because we have couched our problems as ordinary differential equations
in time, simulation is really a matter of integration of the differential equa-
tions. One often thinks of “ integration ” as simply taking the integral of a
function (“ the integral of 2 t is t 2 ”). More broadly, however, integration includes
solution of differential equations, of which the integral is just a special case in
which the function depends only on the single independent variable.

 The reader may recall from a calculus II course that analytic integration of
functions is, in general, much more diffi cult than differentiation of functions,
and, in fact, is often just not doable. Unfortunately, the situation only gets
worse when we move to differential equations. These are very rarely analyti-
cally integrable. One reason we chose the oscillator model is that it is a rare
example of an analytically integrable system.

 Numerical Solution Techniques

 Since most systems yield equations that are not integrable, we have little choice
but to turn to numerical integration, but as we discussed in the introduction to
the chapter, translation of continuous systems onto fundamentally discrete
computers is a task fraught with peril. As such, the rest of this section addresses
how to carry out discretization in time, and how to minimize the damage.

 Euler ’ s Method

 The simplest technique for solving an ordinary differential equation is the use
of Euler ’ s method . Here, we simply refer back to the formula for the derivative
in Equation (4.1) in the form of an approximation (where the limit has not
truly gone to zero), then invert to estimate the value of x at the next time step,
 x (t + Δ t) based on the value of x (t) and dx / dt evaluated at the current values
of x , and t :

dx
dt

x t t x t
t

x t t x t
dx
dt

t
x t

≈ +() − ()

+() ≈ () +

Δ
Δ

Δ Δ
,

.

 (4.16)

 For ordinary differential equations, we have the derivative available to us
from some function f (x , t), which leaves us with this fi nal form of the Eulerian
method:

 x t t x t f x t t+() ≈ () + ()Δ Δ, . (4.17)

 One may recognize this as a truly linear formula, in that one could write
Equation (4.17) , with some changes in notation, as simply the equation of a

112 MODELING CONTINUOUS SYSTEMS

line as y = b + mx , where the slope m is dx / dt = f (x , t). Because dx / dt is defi ned
to be the slope of the tangent to the curve, Euler ’ s method is also often called
the “ tangential method. ” The ostensibly linear form also makes clear that
errors will be of order O (Δ t 2). This means that for a decrease by a factor of
two in Δ t , we should expect an estimate four times more accurate at a given
time step. Unfortunately for the same total time interval, halving the time step
doubles the number of time steps, which multiplies the error back by one
factor of Δ t , leaving the error over a given interval at O (Δ t). If you want errors
10 times smaller, you just have to carry out 10 times as many iterations.

 The fundamental limitation to the Eulerian method is revealed by its other
name, the tangential method — the derivative is always approximated as the
tangent to the curve. This means that if there is any curvature to the solution
function, the tangent method will always end up “ shooting wide ” of the target,
which is clearly visible in Figure 4.6 . In practice, this effect is also quite
easy to see. Figure 4.7 shows the integration of the simple fi rst - order ordinary
differential equation (ODE) dx / dt = 0.3 x , where we have integrated with time
steps of one unit for 16 time units. At each time step, the Eulerian method
undershoots its estimate of the derivative, because the tangential slope at each
point fails to accommodate the curvature of the true solution.

 What makes matters worse is that the errors compound. By under - or
overshooting the derivative estimate, one incorrectly computes the next value
of x (bad enough), but that also means that the next evaluation of the deriva-
tive is carried out at the wrong value of x . In general, these errors carry
through and compound during the course of the integration.

 Runge – Kutta Methods

 Fortunately, there are alternatives to the Euler method that are straightfor-
ward to implement. A large suite of such techniques are called Runge – Kutta
methods . With these methods, one evaluates the derivative at multiple

)(00 txx =

x

t

txtf Δ),(00

tΔ

Estimate)(01 tt =xx Δ≈

Called “tangential”

because slope is of a

tangent to the curve

at the point of evaluation.

)(0 tt =x Δ

 Figure 4.6 Eulerian method for integration of an ODE.

SIMULATING CONTINUOUS SYSTEMS 113

substeps per iteration to evaluate and accommodate curvature and higher -
 order effects, before advancing to the next full time step. We base the follow-
ing discussion on Runge – Kutta methods largely on the excellent account in
Press et al. [9] .

 The fi rst of these methods is the midpoint method, which Figure 4.8 illus-
trates. This method uses two estimates of the derivative during a time step.
First, the derivative is evaluated at the current time step (just as with Euler
integration), but then we multiply only by Δ t /2 to form an estimate x 1/2 . We
now evaluate the derivative again at this intermediate point (t 1/2 , x 1/2), then
simply use f (t 1/2 , x 1/2) as our estimate of the derivative for the full time step.

 Notice that the time step is twice as long in this fi gure. This is because we
have called the derivatives function twice, whereas the Euler technique only
calls the derivatives function once.

__

Exact solution

Eulerian integration

dx
dt

= 0.3x

0 5 10 15

t

x

0

20

40

60

80

100

120

 Figure 4.7 Eulerian integration of a simple ODE.

)(0 tt =x Δx

t

tΔ

txtf Δ),(2/12/1

),(2/12/1 xt

txtftxx = Δ),() =(2/12/101

In
iti
al

 s
lo

pe

Midpoint s
lope

1x

 Figure 4.8 Midpoint integration method; compare with Figure 4.6.

114 MODELING CONTINUOUS SYSTEMS

 We summarize this in the equations below:

t t
t

x x f t x
t

x x f t x t

1 2 0

1 2 0 0 0

1 0 1 2 1 2

2

2

= +

= + ()

= + ()

Δ

Δ

Δ

;

, ;

, .

 (4.18)

 Figure 4.9 shows the signifi cant improvement made by using the midpoint
method. Note that we have taken only eight steps of 2 time units, rather than
16 steps of 1 time unit. This is to hold constant the number of calls to the
derivative function when comparing to the Euler integration.

 It is useful here to make a notational change, in which we use k i to represent
an estimate of the change in x over the full time step. The Euler integration
equation becomes

k f t x t

x x k
1 0 0

1 0 1

= ()
= +

,

,

Δ
 (4.19)

 while the midpoint integration becomes

k f t x t

k f t t x k t

x x k

1 0 0

2 0
1
2 0

1
2 1

1 0 2

= ()
= + +()
= +

,

,

.

Δ
Δ Δ

 (4.20)

Eulerian

Midpoint

Runge–Kutta

0 5 10 15

t

x

0

20

40

60

80

100

120

 Figure 4.9 Comparison of integrators: Eulerian, midpoint, Runge – Kutta fourth order for the
ODE, dx / dt = 0.3 x .

SIMULATING CONTINUOUS SYSTEMS 115

 The Euler formula and the midpoint formula are actually the fi rst - and
second - order Runge – Kutta integration formulas.

 By far the most commonly used Runge – Kutta formula is the fourth - order
formula,

k f t x t

k f t t x k t

k f t t x k

1 0 0

2 0
1
2 0

1
2 1

3 0
1
2 0

1
2 2

= ()
= + +()
= + +()

,

,

,

Δ
Δ Δ
Δ Δtt

k f t t x k t

x x k k k k
4 0 0 3

1 0 1 2 3 42 2 6

= + +()
= + + + +()

Δ Δ,

.

 (4.21)

 This fourth - order formula, as you may expect, introduces an error at each
time step of order O (Δ t 5). Figure 4.9 illustrates the performance of the fourth -
 order Runge – Kutta formulas versus the fi rst - and second - order formulas.
Note again that we have equalized the computational load for each of the
curves, by holding constant the same number of calls to the derivative function
in each case.

 Figure 4.10 shows that as we increase the number of iterations (decrease
 Δ t), the errors decrease for each method according to their expected order.
For a factor of 10 decrease in time step, the Eulerian error decreases by a
factor of 10, the midpoint error by a factor of 10 2 = 100, and the fourth - order
Runge – Kutta error by a factor of 10 4 = 10,000.

Eulerian

Midpoint

Runge–Kutta

102

100

10–2

10–4

10–6

10 100

Number of iterations

F
in

a
l
e
rr

o
r

1000

 Figure 4.10 Comparison of integrator errors versus stepsize: Eulerian, midpoint, Runge – Kutta
fourth order. Note that the stepsize decreases to the right as the number of iterations (calls to
the derivative function) increases to the right. Note also the log - log scale.

116 MODELING CONTINUOUS SYSTEMS

 It is clear enough that the higher - order formulas outperform the lower -
 order formulas in this case; however, one must not assume that is always true.
A method of order n assumes that the function is continuously differentiable
to order n (a notion we alluded to in the chapter introduction). If the deriva-
tives function has a continuous second derivative, but not a continuous third
derivative, the Runge – Kutta (fourth order) precision will only improve at the
same rate as the midpoint method (second order). Most analytic functions,
such as exp, sine, and ln, are infi nitely continuously differentiable, but many
functions used in modeling the real world are not. Nonetheless, the Runge –
 Kutta fourth - order formula very, very rarely leads to worse results than the
midpoint or Euler formula, and it therefore remains recommendable, even if
the performance is not quite as good as possible.

 Finally, Figure 4.10 suggests that with Runge – Kutta methods, one could
fairly quickly approach machine precision with just a few more factors of 10
in iteration number. In cases where the compute time is very small to start
with, perhaps that is a tenable plan. When compute time impacts the utility
of a model, however, careful trades must be made in desired precision versus
compute time, and charts like Figure 4.10 become an important instrument
for such studies.

Adaptive Time Step

 Runge – Kutta techniques are certainly capable of integrating ODEs within
expected error margins; however, we have thus far considered only systems
that are quite stable in their derivatives over time. That is to say, the magni-
tude of the derivative does not change dramatically over the course of the run.
In many systems, this assumption cannot be made. A problematic example
may be one involving sporadic impulse forces, such as a shock absorber in a
car that runs over occasional large potholes at high speed. Less obvious are
cases where the derivative varies very smoothly but still varies a great deal in
magnitude.

 Figure 4.11 shows the case of a simple two - body gravitational orbit around
the sun. During the orbit, no sudden changes occur in the derivative, but the
performance of the fourth - order Runge – Kutta integration is disastrous in the
vicinity of the sun. Instead of staying in the proper orbit, the planet begins to
loop almost randomly and eventually fl ies completely off into space. The
reason is that far from the sun, the gravitational fi eld is weak, but near the
sun, the fi eld is very strong (due to Newton ’ s inverse square law). In this
example, where we have a highly elliptical (eccentric) orbit, the planet is 20
times nearer the sun at closest pass than farthest past, creating a ratio of force
of a factor of 400. The result in reality is Kepler ’ s second law, which very
loosely states that objects on eccentric orbits whiz around the sun at closest
approach, but linger almost idly at farthest approach. In fact, at the top of
Figure 4.11 , one can see how with equal time steps, the planet is barely moving
at farthest approach (the initial condition), but fi nally starts to race around
the orbit much more rapidly near the sun. And this is the problem; the time

SIMULATING CONTINUOUS SYSTEMS 117

step that was appropriate far from the sun, is not appropriate near the sun.
This is a classic case in which adaptive stepsize is recommended.

 With adaptive stepsize, one uses a remarkable Runge – Kutta formulation,
fi rst found by Fehlberg, and generalized by Cash and Karp, in which six evalu-
ations of the derivative yield both fourth - and fi fth - order precise estimates of
the integration over a time step, using different coeffi cients on the six k values
 [10] . So we now have one estimate whose error is of order O (Δ t 5) and a second
estimate whose error is of order O (Δ t 6). Their difference, Δ , is an estimate of
the error made for this time step and has error of order O (Δ t 5). So, we compute
our integration for stepsize Δ t try and fi nd an error, Δ try . The Δ is of order O (Δ t 5),
so if we had some desired error limit, Δ 0 , the desired stepsize, would be found
this way:

Δ Δ Δ

Δ
t t0

0
1 5

= try
try

.

 (4.22)

 If the Δ try is too large, Δ t 0 is now the recommended time step to try, so that
we stay within the desired error budget. Just as important, if Δ try is too small
(by some factor), Δ t 0 tells us how much we can afford to increase the time step
without violating our error criteria — this means that the integrator does not
spend extra time slogging through very dull portions of the simulation.

 Now we can reconsider Figure 4.11 . As we have seen, in the top fi gure, with
even time step, the integrator laboriously lingered far from the sun where little
was going on, only to race much too fast past the sun and make fatal errors.
This is, essentially, the exact opposite of what we want. At the bottom, we
have used adaptive stepsize. One can readily see that the integrator quickly
recognizes that there is little need to spend effort far from the sun, and so it

Adaptive stepsize

Even stepsize

 Figure 4.11 Runge – Kutta integration over one period of a high eccentricity orbit, with even
time step (top) and adaptive time step (bottom). Each point is a time step taken by the integra-
tor. Overplotted as a solid curve is the orbit predicted by Kepler ’ s laws. The sun is represented
by the snowfl ake symbol.

118 MODELING CONTINUOUS SYSTEMS

races the planet around the orbit quickly until things get more interesting near
the sun. Then, the integrator hits the brakes and chooses much smaller time
steps to move very carefully past the sun. Once around the sun, the integrator
again speeds things up and zips through the dull part of the orbit. Not only is
this a much more judicious use of computer resources, but one can see the
very dramatic improvement in precision.

 The lesson is to remember that the discretization need not remain fi xed
throughout the course of the simulation. It is much more important to main-
tain performance and error budget than constant discretization.

SIMULATION IMPLEMENTATION

 Implementation of these integration techniques we have mentioned does not
require a particularly special computing environment. Java, C++, FORTRAN,
and other general - purpose computing languages very often have code libraries
available that allow rapid development with these techniques (of which Press
et al. [9] is an example in C++).

 There are also mathematical programming environments, such as MATLAB
(produced by The MathWorks, Inc.) and IDL (produced by ITT Visual
Information Systems), which are custom - made for just this type of work. We
now provide discussion of implementation in MATLAB and briefl y discuss
how these methods can even be implemented in Microsoft Excel.

First-Order Simulation by Integration —Predator–Prey

MATLAB Eulerian Simulation Implementing the Eulerian integration is
straightforward in MATLAB (or virtually any other coding environment). We
now discuss the implementation of the predator – prey model in MATLAB,
using Eulerian integration.

 Referring to Figure 4.6 and the surrounding text, we can quickly delineate
what needs to be done:

 1. Evaluate the derivative x. (t , x) at time t and position x .
 2. Add x. (t , x) Δt to x .
 3. Add Δt to t .
 4. Repeat from step 1.

 Below is the MATLAB code for Eulerian integration of the Lotka – Volterra
predator – prey model. The code is a straightforward implementation of the
Eulerian method, with one additional nuance. We have two variables x and y
that are updated each iteration. To ensure proper behavior, we need to store
a temporary version of x (xTmp) for the computation of the y derivative —
 otherwise, we would be updating the velocity with the subsequent iteration ’ s
prey population, which is not valid. For plotting, we simply grow the arrays
tStore , and xStore and yStore with each iteration:

SIMULATION IMPLEMENTATION 119

% Eulerian integration of predator -prey system

% start and end times
t0 = 0.; % sec
t1 = 20.; % sec
dt = 0.05; % sec

% constants (Lotka -Volterra)
b = 1.;
p = 1.;
r = 1.;
d = 1.;

% initial condition
x0 = 1.0; % meters
y0 = 2.0; % meters/sec

% perform the integration
t = t0;
x = x0;
y = y0;
while (t <= t1)

if (t == t0)
tStore = [t];
xStore = [x];
yStore = [y];

else
tStore = [tStore,t];
xStore = [xStore,x];
yStore = [yStore,y];

end
xTmp = x;
x = x + x*(b-p*y)*dt;
y = y + y*(r*xTmp-d)*dt;
t = t + dt;

end

% plot the results
plot(tStore,xStore,’k’);
hold on;
plot(tStore,yStore,’k:’);
hold off;

 Figure 4.12 shows the results of the integration by this code. The overall
form is quite similar to the top plot of Figure 4.2 , although there appears
to be an overall growth in amplitude as time progresses. This is because the
linear Eulerian method is overshooting at the maxima and minima, as we have
discussed.

120 MODELING CONTINUOUS SYSTEMS

MATLAB Runge –Kutta Simulation Having seen the errors in the Eulerian
integration, the next logical step is to implement a Runge – Kutta integrator.
Fortunately, in MATLAB, aside from some ungainly syntax, this task could
hardly be more straightforward. All of the supporting code remains identical
to that in our Eulerian integrator; we simply replace the while loop that carries
out the iterations with a single call to the prepackaged Runge – Kutta integrator
(in this case a fourth - and fi fth - order adaptive stepsize integrator called
ode45):

% Runge -Kutta integration of predator -prey system

% start and end times
t0 = 0.; % sec
t1 = 20.; % sec

% constants (Lotka -Volterra)
b = 1.;
p = 1.;
r = 1.;
d = 1.;

Figure 4.12 Screenshot of Eulerian integration of a Lotka –Volterra predator –prey model in
MATLAB. The prey population (x) is solid, and the predator population (y) is dotted.

SIMULATION IMPLEMENTATION 121

% initial condition
x0 = 1.0; % meters
y0 = 2.0; % meters/sec
xy0 = [x0;y0];

% perform the integration
options = odeset(‘RelTol’,1.e -4);
[t,xyOut] = …

ode45(@(t,xy)ppFunc(t,xy,b,p,r,d),[t0,t1],xy0,options);

% plot the results
plot(t,xyOut(:,1),’k’);
hold on;
plot(t,xyOut(:,2),’k:’);
hold off;

 Note that the fi rst argument to ode45 is the callback to a user - provided
function:

function xyderiv = ppFunc(t,xy,b,p,r,d)

xyderiv = [xy(1) *(b-p*xy(2));xy(2)*(r*xy(1)-d)];

 The cumbersome syntax for ode45 in the main code arises from the fact
that the integrator expects to be passed only the time value and the vector of
variables to be integrated (in our case, x and y , stored as a column vector xy),
but our callback derivatives function expects to hear about the Lotka – Volterra
parameters b , p , r , and d as well. This syntax is simply the way MATLAB
handles such situations. Cumbersome though it may be, this style has some
distinct advantages over many others, which demand use of global variables
or common blocks, or the like, to achieve the same result.

 The second argument of ode45 is a row vector of the start and end times
for the integration; and the third argument contains the column vector of the
initial values of the variables to be integrated. Finally, we include an optional
argument, options , which was set in the previous line, using the odeset
interface. In our case, we have set the relative tolerance for error to a part in
10,000 for either x or y . This tolerance governs the stepsize adjustments made
by the integrator. Figure 4.13 gives the results for this run. Note that the
increasing amplitude problems seen in the Eulerian integration have gone
away completely.

Second-Order Simulation by Integration —Oscillators

 Because Newton ’ s second law involves acceleration, the second derivative of
position, the better fraction of time - evolving physical systems require second -
 order treatment. In our discussion, so far, however, we have not discussed
methods for treating second - order systems numerically. Fortunately, imple-
mentation is straightforward. We simply maintain track of both the position
and the velocity as independent variables. The derivatives of position and

122 MODELING CONTINUOUS SYSTEMS

velocity are velocity and acceleration. This trick may seem groundless, since
very often position and velocity are not independent at all, but remember, we
are working under the premise that the system has been linearized for very
small changes in time, and in that limit, the two are independent. A single
Eulerian step for a mass under and applied force looks like this,

x x v t

v v F x t m t

t t t

1 0 0

1 0 0 0

1 0

= +
= + ()[]
= +

Δ
Δ

Δ
,

,

 (4.23)

where F (x , t) is the force applied and m is the mass.

 MATLAB Eulerian Simulation We provide now a code listing for Eulerian
integration of the mass - spring - dashpot system. The variables t , x , and v store
current time, position, and speed. We have parameterized the behavior of the
system according to how we set b (b) in terms of the critical value of b at
which the system would be critically damped. When b < b crit , the system is
underdamped; when b > b crit , it is overdamped; and when b = b crit , it is critically
damped:

 Figure 4.13 Screenshot of adaptive stepsize fourth - and fi fth - order Runge – Kutta integration
of Lotka – Volterra predator – prey model in MATLAB. The prey population (x) is solid, and the
predator population (y) is dotted.

SIMULATION IMPLEMENTATION 123

% start and end times
t0 = 0.; % sec
t1 = 20.; % sec
dt = 0.1; % sec

% spring systems constants
m = 1.; % kg
k = 1.; % Newtons/meter

bCrit = sqrt(4 *k*m);
b = bCrit *0.5;
% Eulerian integration of oscillator system

% initial conditions
x0 = 1.0; % meters
v0 = 0.0; % meters/sec

% perform the integration
t = t0; % initial time
x = x0; % initial position
v = v0; % initial speed
while (t <= t1)

if (t == t0)
tStore = [t];
xStore = [x];

else
tStore = [tStore,t];
xStore = [xStore,x];

end
xTmp = x;
x = x + v*dt;
v = v - (k *xTmp + b*v)/m*dt;
t = t + dt;

end

xExact = springExact(tStore,m,k,b,x0,v0);

% plot the results
subplot(2,1,1);
plot(tStore,tStore*0,’k’);
hold on;
plot(tStore,xExact,’r’);
plot(tStore,xStore,’o’);
xlabel(‘time (sec)’);
ylabel(‘position (m)’);
hold off;

subplot(2,1,2);
plot(tStore,tStore*0,’r’);

124 MODELING CONTINUOUS SYSTEMS

 hold on;
 plot(tStore,xStore - xExact,’o’);
 xlabel(‘ time (sec)’);
 ylabel(‘position err (m)’);
 hold off;

 Figure 4.14 shows the results of this run. There are two plots: the position
as a function of time and the error of the integration when compared with the
exact solution. The errors we might expect for each time step should be of
order O (Δ t 2). Since Δ t = 0.1 s, and all other quantities in the system are of order
unity, the errors peaking in magnitude at about 0.04 m appear quite reason-
able. Checking the performance against exact solutions (when available), as
we have done here, is a critical step in the verifi cation of a code. Because this
is such an important step, we also include now our code for computing the
exact solution for a given system, following Equations (4.11 – 4.13). For each
case (over - , under - , and critically damped), the code adjusts the various coef-
fi cients to ensure that the initial conditions are met:

 function xExact = springExact(t,m,k,b,x0,v0)

 discrim = b * b - 4 * k * m;

P
o
s
it
io

n
 (

m
)

P
o
s
it
io

n
 e

rr
o
r

(m
)

Time (s)

Time (s)

0 2 4 6 8 10 12 14 16 18 20
–0.5

0

0.5

1

0 2 4 6 8 10 12 14 16 18 20
–0.06

–0.04

–0.02

0

0.02

 Figure 4.14 Screenshot of Eulerian integration of the mass - spring - dashpot system in MATLAB,
where b = b crit /2.

SIMULATION IMPLEMENTATION 125

if (discrim > 0.)
lamPlus = (-b+sqrt(discrim))/(2*m);
lamMinus = (-b-sqrt(discrim))/(2*m);
Mat = [1.,1.;lamPlus,lamMinus];
soln = inv(Mat) *[x0;v0];
A = soln(1);
B = soln(2);
xExact = A *exp(lamPlus*t) + B*exp(lamMinus*t);

else
if (discrim < 0.)

omega = sqrt(-discrim)/(2*m);
lambda = -b/(2*m);
phi = atan((lambda -(v0/x0))/omega);
if (abs(phi) < pi*0.25)

A = x0/cos(phi);
else

A = v0/(lambda *cos(phi)-omega*sin(phi));
end
xExact = A. *cos(omega.*t+phi).*exp(lambda.*t);

else
lambda = -b/(2*m);
B = x0;
A = (v0 -lambda*B);
xExact = (A. *t+B).*exp(lambda.*t);

end
end

MATLAB Runge –Kutta Simulation The Runge - Kutta implementation of
the oscillator system follows directly:

% Runge -Kutta integration of oscillator system

% initial condition
x0 = 1.0; % meters
v0 = 0.0; % meters/sec
xv0 = [x0;v0];

% perform the integration
options = odeset(‘RelTol’,1.e -4);
[t,xvOut] = …

ode45(@(t,xv)springFunc(t,xv,m,k,b),[t0,t1],xv0,options);
…

 The derivatives function is also straightforward, following Equation (4.6) :

function xvderiv = springFunc(t,xv,m,k,b)

xvderiv = [xv(2); -(b*xv(2)+k*xv(1))/m];

126 MODELING CONTINUOUS SYSTEMS

 Figure 4.15 shows the results of the adaptive stepsize Runge – Kutta run.
The errors shown in the bottom should remain better than a part in 10,000 or
so, and we see that, in fact, our fractional errors do remain below that thresh-
old as desired.

 I recommend that readers try out the code and play with lots of values for
 bCrit .

 Spreadsheet Simulation The MATLAB environment is an excellent one
for implementing simulations of continuous systems, but not every system has
MATLAB installed. We therefore pause to give a quick discussion of carrying
out a simulation in a common spreadsheet environment.

 The Eulerian integration technique is particularly straightforward to imple-
ment. Table 4.3 shows the actual spreadsheet.

 After the parameter headings, column A stores the time variable, incre-
menting by Δ t set in cell B8. Column B is the position of the mass. The fi rst
entry, B15, is simply set equal to x 0 (B10), but thereafter has the form seen
in B16 = B15 + D15 * B8, which says that we will add to the previous

P
o
s
it
io

n
 (

m
)

Time (s)

Time (s)

0 2 4 6 8 10 12 14 16 18 20
–0.5

0

0.5

1

P
o
s
it
io

n
 e

rr
o
r

(m
)

–0.5

–1

0

0.5

1
× 10–5

0 2 4 6 8 10 12 14 16 18 20

 Figure 4.15 Screenshot of adaptive stepsize Runge – Kutta fourth/fi fth - order integration of the
mass - spring - dashpot system in MATLAB, where b = b crit /2.

SIMULATION IMPLEMENTATION 127

row ’ s value the value of x
.
prevΔt = D15 * B8. Similarly, C15 is set to v0 , but

C16 is =C15 + E15 * B8, the previous velocity plus the time derivative of
velocity (acceleration) times Δt . Column D features our “ trick ” for computing
the second derivative; D15 contains simply =C15, which says that x

.
 = v . It is

in column E where the actual physics happens, because, again, v
.
 = a . So, we

have in E15 “ = – (B2 * B15 + B4 * C15)/B1, ” which is − (kx + bv)/ m , as
prescribed by Equation (4.6) . Figure 4.16 shows the results of the Excel imple-
mentation for the case where b = bcrit /2 (compare to Fig. 4.14).

 Figure 4.16 shows the results from the Eulerian integration of mass - spring -
 dashpot system in Microsoft Excel, with b = bcrit /2. Note that the scale of the
y - axis in the error plot is in millimeters.

 One can even implement a Runge – Kutta integration in Excel. The spread-
sheet is similar to the Eulerian spreadsheet; however, instead of having two
columns for and , one has eight columns for the k1 , k2 , k3 , and k4 terms for
both x and v . Column B is changed from xprev + x

.
prevΔt to the familiar Runge –

 Kutta formula xprev + (k1 + 2 k2 + 2 k3 + k4)/6, or =B15 + (D15 + 2 * F15 + 2 *
H15 + J15)/6 in B16, with a similar implementation in column C for the

Table 4.3 Microsoft Excel spreadsheet for integrating the oscillator system

 A B C D E F G

 1 m = 1 kg
 2 k = 1 N/m
 3 bCrit = 2
 4 b = 1
 5
 6 t0 = 0 s
 7 t1 = 20 s
 8 dt = 0.1 s
 9
 10 x0 = 1 m
 11 v0 = 0 m/s
 12
 13
 14 Time x v x - dot v - dot Position err (mm)
 15 0 1 0 0 − 1 0
 16 0.1 1 − 0.1 − 0.1 − 0.9 4.833415278
 17 0.2 0.99 − 0.19 − 0.19 − 0.8 8.669244507
 18 0.3 0.971 − 0.27 − 0.27 − 0.701 11.51923907
 19 0.4 0.944 − 0.3401 − 0.3401 − 0.6039 13.41299331
 20 0.5 0.90999 − 0.40049 − 0.40049 − 0.5095 14.39547346
 21 0.6 0.869941 − 0.45144 − 0.45144 − 0.4185 14.52458889
 22 0.7 0.824797 − 0.49329 − 0.49329 − 0.33151 13.8688343
 23 0.8 0.775468 − 0.52644 − 0.52644 − 0.24903 12.5050276
 24 0.9 0.722824 − 0.55134 − 0.55134 − 0.17148 10.51616442
 25 1 0.66769 − 0.56849 − 0.56849 − 0.0992 7.989406608

128 MODELING CONTINUOUS SYSTEMS

velocity. It is worth giving as an example the code inside the k 2 column for x
(cell F15), just to show how one proceeds through the k ’ s. Cell F15 contains
=B8 * (C15 + 0.5 * E15). As prescribed by the Runge – Kutta fourth -
order method, k 2, x = Δ t · x

.
 (x + k 1, x /2, t + Δ t /2), which for our system is simply

 k 2, x = Δ t · x
.
 (x + k 1, x /2) = Δ t · (v + k 1, v /2). The entry in G15 for k 2, v is somewhat

more complicated, though the principal is the same: =B8 * (– (B2 * ($B15 +
0.5 * $D15) + B4 * ($C15 + 0.5 * $E15))/$B$1).

 The results of this integration can be seen in Figure 4.17 . The errors reported
are tiny indeed. We note here, however, that adaptive stepsize (as seen in Fig.
 4.15) would be a signifi cantly greater challenge to implement in a spreadsheet.

 Figure 4.17 shows the results from the fourth - order Runge – Kutta integra-
tion of mass - spring - dashpot system in Microsoft Excel, with b = b crit /2. Note
that the scale of the y - axis in the error plot is in millimeters.

 CONCLUSION

 Simulating continuous systems on fundamentally discrete digital computers
seems, on its face, to be problematic from the start. Fortunately, when care is
used in the discretization process, errors can be budgeted carefully and effec-

–50

–40

–30

–20

–10

0

10

20

30

P
o

s
it

io
n

 e
rr

 (
m

m
)

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

1
.1

2
.2

3
.3

4
.4

5
.5

6
.6

7
.7

8
.8

9
.9 1
1

1
2
.1

1
3
.2

1
4
.3

1
5
.4

1
6
.5

1
7
.6

1
8
.7

1
9
.8

0

1
.1

2
.2

3
.3

4
.4

5
.5

6
.6

7
.7

8
.8

9
.9 1
1

1
2
.1

1
3
.2

1
4
.3

1
5
.4

1
6
.5

1
7
.6

1
8
.7

1
9
.8

P
o

s
it

io
n

 (
m

)

Time (s)

 Figure 4.16 Results from the Eulerian integration of the mass - spring - dashpot system in
Microsoft Excel, with b = b crit /2. Note that the scale of the y - axis in the error plot is in millimeters.

REFERENCES 129

tively. We have presented the relatively simple case of integrating ordinary
differential equations, where we know the analytic derivatives of our solution
functions, and the only derivatives are taken with respect to the independent
variable. We have found that results with predictable precision can be calcu-
lated with straightforward implementations in a host of different programming
environments, even spreadsheets. As the reader ventures into more complex
continuous systems, continued diligence must be exercised in monitoring
errors and numerical instabilities.

 REFERENCES

 [1] Jain B , Seljak U , White S . Ray - tracing simulations of weak lensing by large - scale
structure . Astrophysical Journal , 530 : 547 – 577 ; 2000 .

 [2] Hoppensteadt F. Predator - prey model . Scholarpedia , 1 (10): 1563 ; 2006 . Available
at http://www.scholarpedia.org/article/Predator-prey_model . Accessed June 1,
2009.

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

1
.1

2
.2

3
.3

4
.4

5
.5

6
.6

7
.7

8
.8

9
.9 1
1

1
2
.1

1
3
.2

1
4
.3

1
5
.4

1
6
.5

1
7
.6

1
8
.7

1
9
.8

P
o

s
it

io
n

 (
m

)

–0.0008

–0.0006

–0.0004

–0.0002

0

0.0002

0.0004

0

1
.2

2
.4

3
.6

4
.8 6

7
.2

8
.4

9
.6

1
0
.8 1
2

1
3
.2

1
4
.4

1
5
.6

1
6
.8 1
8

1
9
.2

Time (s)

P
o

s
it

io
n

 e
rr

 (
m

m
)

 Figure 4.17 Results from the fourth - order Runge – Kutta integration of mass - spring - dashpot
system in Microsoft Excel, with b = b crit /2. Note that the scale of the y - axis in the error plot is in
millimeters.

130 MODELING CONTINUOUS SYSTEMS

 [3] Sadava D , Heller HC , Orians GH , Purves WK , Hillis DM . Life: The Science of
Biology . New York : W.H. Freeman & Company ; 2008 .

 [4] Allan D . Trophic Links: Predation and Parasitism (lecture in Global Change 1,
taught at the University of Michigan, Fall 2008). Available at http://www.
globalchange.umich.edu/globalchange1/current/lectures/predation/predation.
html . Accessed June 1, 2009 .

 [5] Freedman HI . Deterministic Mathematical Models in Population Ecology . New
York : Marcel Dekker ; 1980 .

 [6] Tipler PA . Physics . New York : Worth ; 1982 , pp. 311 – 339 .
 [7] Purcell EM . Electricity and Magnetism, Berkeley Physics Course . Vol. 2 . New

York : McGraw - Hill ; 1985 , pp. 298 – 319 .
 [8] Einstein A. Zur Elektrodynamik bewegter K ö rper . Annalen der Physik , 17 : 891 ;

 1905 .
 [9] Press WH , Teukolsky SA , Vetterling WT , Flannery BP . Numerical Recipes in

C++ . Cambridge : Cambridge University Press ; 1988 , pp. 717 – 727 .
 [10] Cash JR , Karp AH. A variable order Runge - Kutta method for initial value prob-

lems with rapidly varying right - hand sides . ACM Transactions on Mathematical
Software , 16 : 201 – 222 ; 1990 .

131

Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains,
Edited by John A. Sokolowski and Catherine M. Banks
Copyright © 2010 John Wiley & Sons, Inc.

5

MONTE CARLO
SIMULATION

John A. Sokolowski

 When one hears the name Monte Carlo , one often thinks of the gambling
locale in the country of Monaco. It is the home of the famous Le Grand Casino
as well as many other gambling resorts and Formula One Racing. This chapter,
however, is not about gambling or racing. It is, however, about a concept that
underlies gambling, that is, probability, hence, its association and designation
with the well - known gambling region. The scientifi c study of probability con-
cerns itself with the occurrence of random events and the characterization of
those random happenings. Gambling casinos rely on probability to ensure,
over the long run, that they are profi table. For this to happen, the odds or
chance of the casino winning has to be in its favor. This is where probability
comes into play because the theory of probability provides a mathematical way
to set the rules for each one of its games to make sure the odds are in its favor .
As a simulation technique, Monte Carlo simulation relies very heavily on
probability.

 Monte Carlo simulation, also known as the Monte Carlo method, origi-
nated in the 1940s at Los Alamos National Laboratory. Physicists Stanislaw
Ulman, Enrico Fermi, John von Neumann, and Nicholas Metropolis had to
perform repeated simulations of their atomic physics models to understand
how these models would behave given the large number of uncertain input
variable values. As random samples of the input variables were chosen for

132 MONTE CARLO SIMULATION

each simulation run, a statistical description of the model output emerged that
provided evidence as to how the real - world system would behave. It is this
concept of repeated random samples of model input variables over many simu-
lation runs that defi nes Monte Carlo simulation . Essentially, we are creating
an artifi cial world (model) that is meant to closely resemble the real world in
all relevant aspects.

 Monte Carlo simulation is often superior to a deterministic simulation of a
system when that system has input variables that are random. Deterministic
simulations are referred to as what - if simulations. In these simulations, a single
value is chosen for each input random variable (a particular what - if scenario)
based on a best guess by the modeler. The simulation is then run and the
output is observed. This output is a single value or a single set of values based
on the chosen input. But because the input variables are random variables,
they can take on any number of values defi ned by their probability distribu-
tions. So to have a sense of how the system would respond over the complete
range of input values, more than one set of inputs must be evaluated. Monte
Carlo simulation randomly samples values from each input variable distribu-
tion and uses that sample to calculate the model ’ s output. This process is
repeated many times until the modeler obtains a sense of how the output
varies given the random input values. One should readily see that when the
simulation contains input random variables, Monte Carlo simulation will yield
a result that is likely to be more representative of the true behavior of the
system. The next section formally defi nes Monte Carlo simulation and pro-
vides examples of its use.

THE MONTE CARLO METHOD

 When setting up a Monte Carlo simulation or employing the Monte Carlo
Method, one follows a four - step process. These four steps are:

Step 1 Defi ne a distribution of possible inputs for each input random
variable.

Step 2 Generate inputs randomly from those distributions.
Step 3 Perform a deterministic computation using that set of inputs.
Step 4 Aggregate the results of the individual computations into the fi nal

result.

 While these steps may seem overly simplistic, they are necessary to capture
the essence of how Monte Carlo simulations are set up and run.

 This four - step method requires having the necessary components in place
to achieve the fi nal result. These components may include:

 (1) probability distribution functions (pdfs) for each random variable
 (2) a random number generator

THE MONTE CARLO METHOD 133

 (3) a sampling rule — a prescription for sampling from the pdfs
 (4) scoring — a method for combining the results of each run into the fi nal

result
 (5) error estimation — an estimate of the statistical error of the simulation

output as a function of the number of simulation runs and other
parameters.

 Step 1 requires the modeler to match a statistical distribution to each
input random variable. If this distribution is known or suffi cient data exist
to derive it, then this step is straightforward. However, if the behavior of
an input variable is not well understood, then the modeler might have to
estimate this distribution based on empirical observation or subject matter
expertise. * The modeler may also use a uniform distribution if he or she is
lacking any specifi c knowledge of the variable ’ s characteristics. When addi-
tional information is gathered to defi ne the variable, then the uniform distribu-
tion can be replaced.

 Step 2 requires randomly sampling each input variable ’ s distribution many
times to develop a vector of inputs for each variable. Suppose we have two
input random variables X and Z . After sampling n times, we have X = (x 1 , x 2 ,
 … , x n) and Z = (z 1 , z 2 , … , z n). Elements from these vectors are then sequen-
tially chosen as inputs to the function defi ning the model. The question of how
large n should be is an important one because the number of samples deter-
mines the power of the output test statistic. As the number of samples increases,
the standard deviation of the test statistic decreases. In other words, there is
less variance in the output with larger sample sizes. However, the increase in
power is not linear with the number of samples. The incremental improvement
of power decreases by a factor of about 1 n , so there is a point when more
sampling provides little improvement. Determining the number of trials
needed for a desired accuracy is addressed below.

 Step 3 is straightforward. It involves sequentially choosing elements from
the randomly generated input vectors and computing the value of the output
variable or variables until all n outputs are generated for each output
variable.

 Step 4 involves aggregating all these outputs. Suppose we have one output
variable Y . Then we would have as a result of step 4 an output vector Y = (y 1 ,
 y 2 , … , y n). We can then perform a variety of statistical tests on Y to analyze
this output. These tests will be described later in the chapter.

 The following is a simple example of how this method works.

 * When modeling systems, especially those in the social sciences, subject matter experts may be
the only source of data available to characterize the behavior of a variable. This is true when no
scientifi c data or data collection is available. Subject matter expertise may also be called upon as
a method to validate the output of the simulation. See Chapter 10 for a further discussion on
validation techniques.

134 MONTE CARLO SIMULATION

 Example 1: Determining the Value of π

 Recall that the value of π is the ratio of a circle ’ s circumference to its diameter.
To calculate this value, we can set up a Monte Carlo simulation that employs
a geometric representation of the circle.

 1. To start, draw a unit circle arc, that is, an arc of radius one circumscribed
by a square as shown in Figure 5.1 .

 2. Then, randomly choose an x and y coordinate inside the square, and
place a dot at that location.

 3. Repeat step 2 at a given number of times. See Figure 5.2 .
 4. Count the total number of dots inside the square and the number of

dots inside the quarter circle. With a large number of dots generated,
these values will approximate the area of the circle and the area of
the square. From mathematics, this result can be represented as

#
#

 of dots inside circle
 of dots inside square

= =
1
4

2

2

1
4

π
π

r

r
..

 Step 1 of our example represents step 1 of the above method, that is, deter-
mining the domain of possible inputs. Steps 2 and 3 correspond to method
step 2, and step 4 encompasses steps 3 and 4 of the method.

 Our example relied on several components mentioned above. A random
number generator was necessary to select the coordinates for each dot. The
coordinates were selected from a uniform distribution that provided the prob-

0

1

0 1

 Figure 5.1 Unit circle arc for calculation of π .

THE MONTE CARLO METHOD 135

ability density function. A sampling rule existed that used the random numbers
to select values from the uniform distribution. The scoring method was given
by the formula in step 4 above. Finally, error estimation can be performed by
comparing the computed value of π to an authoritative source for its value.

 This simulation can be set up using a spreadsheet and the built in functions
of rand() that generates uniform random numbers between 0 and 1 and the
 countif(range, criteria) function that can count the number of random numbers
that meet the specifi ed criteria. The author generated 500 uniform random
numbers between zero and one for the x coordinate of each point and the
same for the y coordinate. These numbers were paired up and plotted. Precisely
340 of the 500 points fell inside the circle giving a simulated value for π of
2.76. This method produced an error of 12.1 percent. Using a larger set of
generated dots can help reduce the error to an acceptable range realizing that
it requires a trade - off for extra computation.

 From example 1, you can see the necessary components that are central to
Monte Carlo simulations. These components are one or more input random
variables, one or more output variables, and a function that computes the
outputs from the inputs. This confi guration is shown in Figure 5.3 .

 In this fi gure, notice that there are three input random variables x 1 , x 2 , and
 x 3 , all with different distributions. There are two output variables, y 1 and y 2 ,
that have resulting distributions created by the repeated sampling of the input

0

1

0 1

 Figure 5.2 Random dots placed inside the square.

136 MONTE CARLO SIMULATION

and feeding those samples into the function f (x). The next example builds on
this model to illustrate how a what - if scenario outcome can differ from one
produced via a Monte Carlo approach.

 Example 2: Computing Product Earnings

 Let us suppose we want to predict a product ’ s earning in future years given
sales data accumulated over the last 5 years. A product ’ s earning is a function
of unit price , unit sales , variable costs , and fi xed costs . Specifi cally, earning = (unit
price) × (unit costs) − (variable cost s + fi xed costs). We will assume that vari-
ables used to calculate earnings are all independent of one another. The last
5 years of data for these variables are shown in Table 5.1 .

 From these data, one can develop a probability distribution to represent
each of the input variables. An appropriate distribution representation would
be a triangular distribution , which is typically used when only a small amount
of data is available to characterize the input variables. These distributions may
be constructed from Table 5.2 .

 Constructing a triangular distribution requires three values: a minimum, a
maximum, and a most likely or mode. We can represent these values by a , b ,
and c , respectively. Then, the probability density function for this distribution
is defi ned as follows:

 Table 5.1 Product earnings by year

 Year

 1 2 3 4 5

 Unit price 50 52 55 57 65
 Unit sales 2000 2200 2700 2500 2800
 Variable costs 50,000 55,000 56,000 57,000 58,000
 Fixed costs 10,000 12,000 15,000 16,000 17,000
 Earnings 40,000 47,400 77,500 69,500 107,000

Model
f(x)

x1

x2

x3

y1

y2

 Figure 5.3 Basic Monte Carlo model.

THE MONTE CARLO METHOD 137

f x a b c

x a
b a c a

a x c

b x
b a b c

c x
, ,() =

−()
−() −()

≤ ≤

−()
−() −()

≤

2

2

for

for ≤≤

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

b

otherwise0 .

 (5.1)

 Figure 5.4 illustrates the triangular distribution for unit price as computed
from Equation (5.1) . The other variables have similar triangular representa-
tions. The max values were chosen as best guess estimates of the highest values
these parameters will reach. This is often done using subject matter experts
intuitively familiar with how these variables are likely to behave. The min
values were the minimum numbers found in Table 5.1 for each variable. The
most likely values were calculated by averaging the 5 years of data for each
factor.

 Table 5.2 Triangular distribution data

 Min Most Likely Max

 Unit price 50 55 70
 Unit sales 2000 2440 3000
 Variable costs 50,000 55,200 65,000
 Fixed costs 10,000 14,000 20,000
 Earnings 40,000 65,000 125,000

50 55 60 65 70
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Unit price

 Figure 5.4 Unit price triangular distribution.

138 MONTE CARLO SIMULATION

 Using these triangular distributions, 10,000 samples were generated and
used to compute predicted future earnings. The following MATLAB ® code
was used to generate the samples.

MATLAB Program

h = sqrt(rand(1,10000));
unit_price =(70 -50)*h.*rand(1,10000)+55 -(55-50)*h;
variable_costs=(65000 -50000)*h.*rand(1,10000)+55200-(55200-
50000)*h;
fixed_costs =(20000 -10000)*h.*rand(1,10000)+14000-(14000-
10000)*h;
unit_sales=(3000 -2000)*h.*rand(1,10000)+2440-(2440-2000)*h;
for i = 1:10000
earnings(i)= unit_price(i) *unit_sales(i)-(variable_
costs(i)+fixed_costs(i));
end

 The summary statistics for the output variable earnings are shown in
Table 5.3 .

 A plot of the computed earnings is shown in Figure 5.5 . This plot represents
the probability density function for the output distribution.

 From the Monte Carlo simulation results, one can see a difference between
the most likely earnings value (65,000) from Table 5.2 and the mean earnings
value (73,206) of Table 5.3 . In other words, the simple what- if analysis of
a deterministic computation of earnings differs from the Monte Carlo compu-
tation that takes into account many combinations of input variable values
that could occur in predicting future earnings. Instead of a single point analysis,
the modeler has the results of 10,000 points on which to base his or her estimate
of future earnings. These simulation runs take into account 10,000 different
combinations of input variables, which provide a much broader picture of
the possible values that earnings could take on given the possible variability
in the real - world data. One can also compare the minimum and maximum
expected earnings from both the single - point estimate and the Monte Carlo
estimate to get an understanding of the possible extreme values that may result.

 How good of an estimate of the true population mean is the Monte Carlo
computed mean earnings value ? One way to assess this is to compute a

Table 5.3 Earnings summary statistics

 Parameter Value

 Mean 73,206
 Median 71,215
 Standard deviation 16,523
 Variance 273,009,529
 Min 21,155
 Max 137,930

THE MONTE CARLO METHOD 139

confi dence interval for the population mean based on sample data. This com-
putation is based on the important statistical concept of the central limit
theorem . This theorem is expressed as follows.

 Theorem 1 (Central Limit Theorem) Suppose Y 1 , … , Y n are independent
and identically distributed (IID) samples and E Yi

2[] < ∞ . Then

ˆ
, ,

θ θ
σ

n

n
N n

− ⇒ () → ∞0 1 as

 (5.2)

where

ˆ , :θ θn i ii

n Y n E Y= = []=∑ 1 and σ 2 : = Var (Y i).

 Note that nothing is assumed about the distribution of the Y i ’ s other than
their variance is less than infi nity. So from Equation (5.2) , if n is suffi ciently
large, then we can compute a confi dence interval for θ based on a standard
normal distribution. The confi dence interval is computed as follows.

 Let z 1 − α /2 be the (1 − α /2) percentile point of the N (0, 1) distribution such
that

 P z Z z− ≤ ≤() = −− −1 2 1 2 1α α α,

where Z ∼ N (0,1). Now take the simulated IID samples Y i and construct a
100(1 − α)% confi dence interval for θ = E [Y]. Essentially, we are constructing
a lower and upper bound L (Y) and U (Y) such that

2 4 6 8 10 12 14 16

x 104

0

50

100

150

200

250

300

350

400

 Figure 5.5 Computed earnings distribution plot.

140 MONTE CARLO SIMULATION

 P L Y U Y() ≤ ≤ ()() = −θ α1 .

 The central limit theorem tells us that n nnθ̂ θ−() is approximately a
standard normal distribution for large n , so we have

P z
n

z

P z
n

z
n

n

n

− ≤
−()

≤
⎛

⎝
⎜

⎞

⎠
⎟ ≈ −

⇒ − ≤ − ≤⎛

− −

− −

1 2 1 2

1 2 1 2

1α α

α α

θ θ
σ

α

σ θ θ σ

ˆ

ˆ
⎝⎝

⎞
⎠ ≈ −

⇒ − ≤ ≤ +⎛
⎝

⎞
⎠ ≈ −− −

1

11 2 1 2

a

P z
n

z
n

n n
ˆ ˆ .θ σ θ θ σ αα α

 So the approximate 100(1 − α)% confi dence interval for θ is given by
Equation (5.3) :

L Y U Y z

n
z

n
n n() ()[] = − +⎡

⎣⎢
⎤
⎦⎥− −, , .θ σ θ σ

α α
� �

1 2 1 2

 (5.3)

 One other issue must be addressed before computing our confi dence inter-
val, that is, σ 2 is usually not known. However, it can be estimated by the fol-
lowing formula:

 ˆ
ˆ

.σ
θ

n

i ni

n Y

n
2

2

1

1
=

−()
−

=∑

 So replacing σ with σ̂ , we arrive at

L Y U Y z

n
z

n
n

n
n

n() ()[] = − +⎡
⎣⎢

⎤
⎦⎥

− −, ˆ ˆ
, ˆ ˆ

θ σ θ σ
α α1 2 1 2

 (5.4)

 as the fi nal equation for computing the confi dence interval .
 Equation (5.4) can now be applied to the results of Monte Carlo simulation

in example 2. For α = 0.05, the z 1 − α /2 value for the standard normal distribution
is 1.96. Table 5.3 provides the standard deviation for the 10,000 sample points
so the confi dence interval for the mean earnings is [72,999, 73,446]. One should
interpret this interval as we are 95 percent confi dent that the interval contains
the actual population mean . The smaller this interval is, the more confi dence
we have in the estimate of the actual population mean.

 Even though we have high confi dence that the population mean falls in the
above interval, that does not necessarily indicate that is what earnings will be.
Figure 5.5 shows how widely earnings could vary given a specifi c set of sales
and price conditions. It is because of the Monte Carlo method that we are
able to represent and to visualize the possible outcomes.

THE MONTE CARLO METHOD 141

 The width of the confi dence interval is a function of the number of sample
points chosen. If one wants to achieve a certain level of confi dence, then
one must be able to determine the number of samples necessary to achieve
that accuracy. The error between the actual mean and the computed mean can
be represented by an absolute error Ea n= −θ̂ θ . Thus, we want to choose a
value for n such that P (E a ≤ ε) = 1 − α , where ε is the actual error. Recall from
above,

 P z
n

z
n

n n
ˆ ˆ .θ σ θ θ σ αα α− ≤ ≤ +⎛

⎝
⎞
⎠ ≈ −− −1 2 1 2 1

 This implies that

P z

n
n

ˆ .θ θ σ αα− ≤⎛
⎝

⎞
⎠ ≈ −−1 2 1

 So in terms of E a , we have

P E z

n
a ≤ +⎛

⎝
⎞
⎠ ≈ −−1 2 1α

σ α.

 If we want P (E a ≤ ε) ≈ 1 − α , then we must choose n such that

n

z
= −σ

ε
α

2
1 2
2

2
.

 (5.5)

 Just as with the computation of the confi dence interval, σ 2 is usually not
known. One way to solve this problem is to estimate it by doing a pilot simula-
tion . Here, the modeler conducts a small number of runs and uses the results
of those runs to estimate σ 2 . The estimate is then used to compute an n̂ . This
number of runs is then performed, the output variable ’ s statistics are gathered,
and a confi dence interval is computed. If the modeler follows this two - stage
procedure, it is likely that n̂ runs will produce the desired level of accuracy.
For this method to work, the initial number of runs to estimate σ 2 must be
suffi ciently large (≥ 50). The following pseudocode describes this procedure:

 Two - Stage Procedure for Estimating the Number of Simulation Runs

 / * Do pilot simulation fi rst * /
 for i=1 to p
 generate X i
 end for

set

θ̂ = h X pi()∑

 set

ˆ ˆσ θ2

2

1= () −() −()∑ h X pi

142 MONTE CARLO SIMULATION

set

n

z
= −σ̂

ε
α

2
1 2
2

2

 / * Now do main simulation * /
 for i=1 to n
 generate X i
 end for

set

θ̂n

ih X n= ()∑
 set

ˆ ˆσ θn

i
nh X n2

2

1= () −() −()∑

 set

100 1 %Ci−() − +⎡
⎣⎢

⎤
⎦⎥− −α θ σ θ σ

α α= ˆ ˆ
, ˆ ˆ

n
n

n
nz

n
z

n
1 2 1 2

 To illustrate the procedure, we will repeat the Monte Carlo simulation of
 earnings from example 2. Suppose we want to control the absolute error so
that

 P Ea ≤() = −1000 1 α.

 Note that this is equivalent to saying that we want the confi dence interval
to have a width of less than or equal to 2 × 1000 = $2000. For the pilot simula-
tion, we choose p = 100 and α = 0.05. Using the two - stage procedure above
produces a ˆ ,θ = 70 586 and ˆ .σ 2 1 8897 8= e . Applying Equation (5.5) gives us an
 n̂ ≈ 726. Using this number for our second stage, we obtain the following:
 ˆ ,θn = 73 424, ˆ .σn e2 2 6731 8= , and a confi dence interval of [72,235, 74,613], which
is about $2400 wide. Note that the fi rst Monte Carlo simulation using 10,000
samples produces a confi dence interval width of $447.

 From the example above, one can see that this two - stage procedure pro-
vides a method for determining a close approximation for the number of runs
needed to achieve a certain absolute error value.

 SENSITIVITY ANALYSIS

 An important analytic concept based on Monte Carlo simulation is that of
 sensitivity analysis . For our purposes, we will defi ne sensitivity analysis as the
study of how uncertainty in a model ’ s output can be assigned to the various
sources of input uncertainty. As one can see from the discussion above, input
and output uncertainties are at the heart of the Monte Carlo simulation.
Gauging which input random variables have the most infl uence on the output
random variables is an important fact to know when trying to analyze a
model ’ s behavior. This section will introduce concepts for performing sensitiv-
ity analysis based on Monte Carlo simulation and how sensitivity analysis can
be used to adjust the Monte Carlo simulation.

 Sensitivity analysis is important for several reasons. It can help uncover
model errors and identify important bounds on input variables. This analysis

SENSITIVITY ANALYSIS 143

can also help identify research priorities and simplify models. Thus, sensitivity
analysis plays a signifi cant role as a tool to assess model validity.

 The most common method for conducting sensitivity analysis is based on
derivatives. For example, given ∂ Y j / ∂ X i where Y j is a output random variable
and X i is a input random variable, one can see that this partial derivative can
be interpreted as the change in Y j with respect to X i , which is consistent with
our defi nition of sensitivity analysis. Derivative - based approaches are very
effi cient from a computational standpoint; however, it does have one serious
fl aw. Derivative - based approaches are only valid at the point that they are
computed. This is acceptable for linear systems but would be of little value
for systems exhibiting nonlinear behavior. There are, however, other methods
that can be applied for all systems.

 One simple method involves a visual assessment of an input variable ’ s
effect on an output variable. This method employs a scatter plot where each
input variable in the Monte Carlo simulation is individually plotted against
the output variable and the resulting pattern is analyzed. The more structured
the output pattern, the more sensitive is the output variable to that input
variable.

 Referring back to example 2, we had four random input variables that
contributed to computing the earnings random output variable. If we plot each
of the 10,000 randomly generated inputs against the corresponding output
using a scatter plot, we get the results shown in Figure 5.6 .

2

1

0
5 5.5 6

Variable costs

E
a
rn

in
g
s

6.5

× 105

2

1

0
1 1.2 1.4

Fixed costs

E
a
rn

in
g
s

1.6 1.8 2

× 105 × 104

2

1

0
1 1.2 1.4

Unit sales × unit price

E
a
rn

in
g
s

1.6 1.8 2 2.2

× 105

× 104

× 105

 Figure 5.6 Scatter plots of earnings versus each input variable.

144 MONTE CARLO SIMULATION

 The scatter plots show that the variable earnings is more sensitive to the
product of unit_price and unit_sales than the fi xed and variable costs because
of its structured pattern. From the results of this analysis, one could set the
 fi xed_costs and variable_costs inputs to their mean values and rerun the Monte
Carlo simulation using only unit_sales and unit_price as random input vari-
ables with little loss in accuracy. The results of this Monte Carlo simulation
are shown in Table 5.4 .

 The resultant 100(1 − α)% confi dence interval for the mean is [75,223,
75,869]. The mean in Table 5.4 is within $2400 of the mean of the full Monte
Carlo model from Table 5.3 and is still a better predictor than just using the
single - point what - if analysis, which produced an earnings prediction of $65,000.
Thus, sensitivity analysis allowed us to reduce the complexity of our model
with only about 3 percent change in results.

 While scatter plots provide a good visual means for identifying the relative
sensitivity among input variables, other computational methods are available
that improve on the derivative - based approach mentioned above. One such
approach is the sigma - normalized derivatives . This is defi ned as follows:

S

Y
XX

X

Y i
i

iσ σ
σ
= ∂
∂

.

 (5.6)

 The derivative is normalized by the input – output standard deviations. The
larger the result of this computation, the more sensitive the output is to this
input. The sensitivity measure of Equation (5.6) is widely recognized and is
recommended for sensitivity analysis by a guideline of the Intergovernmental
Panel for Climate Change [1] . When the results of Equation (5.6) are squared
and summed across all input variables, the following equation holds:

SX

i

r

i

σ() =
=
∑ 2

1

1.

 This will be illustrated by again revisiting example 2, our earnings computa-
tion. Table 5.5 provides the sigma - normalized derivatives for the earnings
model.

 Table 5.4 Earnings summary statistics for simplifi ed
model

 Parameter Value

 Mean 75,551
 Median 73,102
 Standard deviation 16,219
 Variance 263,040,000
 Min 33,223
 Max 135,790

REFERENCES 145

 As one can see, the product of unit_sales and unit_price is the most sensitive
parameter and bears out the results of the scatter plot analysis.

 There are other sensitivity analysis techniques based on the Monte Carlo
simulation. The reader is referred to Santelli et al. for a discussion of the most
prominent techniques as well as a comparison of the two techniques presented
above [2] .

 CONCLUSION

 This chapter explored the Monte Carlo simulation method for characterizing
a model ’ s behavior in the face of one or more input random variables. This
method provides a more representative way to understand the behavior of
such models compared with a fi xed set of parameters under what - if analysis.
Additionally, the concept of a confi dence interval was introduced as a measure
of the accuracy of the Monte Carlo simulation in relation to the actual popula-
tion mean of the system under study. A technique for estimating the sample
size required to achieve a specifi ed accuracy was also described. The chapter
concluded with a discussion of sensitivity analysis based on Monte Carlo tech-
niques and introduced two methods for assessing the contribution of each
input random variable to the model ’ s output.

 REFERENCES

 [1] IPCC . Good Practice Guidance and Uncertainty Management in National
Greenhouse Gas Inventories . 2000 . Available at http://www.ipcc-nggip.iges.or.jp/
public/gp/gpgaum.htm . Accessed May 2, 2009.

 [2] Santelli A , Ratto M , Andres T , Campolongo F , Cariboni J , Gatelli D , Saisana M ,
 Tarantola S . Global Sensitivity Analysis: The Primer . West Sussex : John Wiley &
Sons ; 2008 .

 Table 5.5 Sigma - normalized derivatives

 Variable

 variable_costs 0.03
 fi xed_costs 0.01
 unit_sales × unit_price 0.96

SXi
σ()2

147

Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains,
Edited by John A. Sokolowski and Catherine M. Banks
Copyright © 2010 John Wiley & Sons, Inc.

6
SYSTEMS MODELING:

ANALYSIS AND
OPERATIONS RESEARCH

Frederic D. McKenzie

 Model engineering is the process of determining the appropriate model type
and implementation methodology to use for representing a system of interest
and then designing and implementing the model. This chapter introduces the
concept of system model types and discusses in detail various types of models
and particular methodologies that create models of the types discussed. In
those sections, we will draw upon terminology from Fishwick and relate those
terms to other generalized nomenclature [1] . Formal and semiformal tools to
aid analysis are presented in subsequent sections as well as analytic methods
and procedures. We complete the chapter with a discussion of operations
research (OR) methods and a familiar extended example. Throughout the
chapter, examples have a common thread that is used to emphasize the fact
that a system may be modeled in many different ways depending upon what
questions are being asked.

SYSTEM MODEL TYPES

 Models are representations and, therefore, their depictions and specifi cations
can take many forms. Probably the most convenient way to represent a system
is by using a textual description. System requirements try to capture all the

148 SYSTEMS MODELING: ANALYSIS AND OPERATIONS RESEARCH

needed capabilities of a model but do not easily convey the overall functional-
ity of the system as these specifi cations are usually at a very low level and one
can rarely see the forest through the trees. So, a better way to conceive and
perceive the overall functionality of a model is by using a graphic depiction.
Conceptual models are generally informal and typically graphic depictions of
systems that quickly and easily convey the overall functionality of a system.
This type of model is created and used early in the design process whether the
design is of a system to be built or of a model to be abstracted from an already
existing system. We build models to learn or to communicate something about
a system, and, depending on what we want to learn or to communicate, we
can use different types of models.

 Conceptual models are often used only for communicating the overall
functionality of a system. When we want to analyze a system to learn some-
thing more about it, we use different types of models that may be (1) based
on the state of the system as it evolves over time; (2) focused on the stochastic
nature of the model; (3) representative of the dynamic, physics - based pro-
cesses of the system; (4) described according to the systems ’ multidomain or
multielement makeup; or (5) composed of a hybrid of more than one of these
modeling fl avors. As terminology may differ among the varied backgrounds
of simulation professionals, we will choose to describe these modeling fl avors
using the terminology from Fishwick ’ s perspective on model types [1] . Fishwick
uses the term declarative to connote state - event focused models and the term
functional to describe a system using directionally connected components with
mathematical relationships of equations and the variables that relate them.
Fishwick ’ s constraint models are similar to functional models except that the
directed nature of the connected components is less important than the phys-
ics - based relationships among system components and the balancing of those
physical properties. Additionally, systems that are modeled using a multiele-
ment approach is said to be spatially modeled. Such spatial models either focus
on the space the system occupies by dividing that space into many units with
procedures to update elements in that unit or spatial models may focus on the
elements within the space occupied by the system and the elements follow
their own rules while occupying the system space. Of course, a major philoso-
phy of Fishwick is that a single modeling technique may not fulfi ll the needs
of every question to be learned from modeling the system especially if the
system is complex. Therefore, a system model is likely to be a hybrid, com-
posed of different types of models, or, in Fishwick ’ s terms, a multimodel. In
the following sections, we will describe these various types of models and
provide examples to enhance the explanations.

MODELING METHODOLOGIES AND TOOLS

 In this section, the types of models outlined above are defi ned and discussed.
One or two methodologies that create the various model types are discussed

MODELING METHODOLOGIES AND TOOLS 149

in considerable detail with unifying examples. We start with high - level, low -
 detail conceptual models and then consider several other more detailed model
types that answer particular questions we want answered about the example
systems presented.

Conceptual Models

 A system concept is a generalized idea of one or a group of interacting com-
ponents and its desired functionality articulated by textual or graphic means.
This expression of the concept is the conceptual model. The degree of gener-
alization distinguishes a conceptual model from other types of models.
Conceptual models are typically very informal in terms of detail and accuracy.
The focus is on quickly communicating the main qualities and capabilities of
the target system. Therefore, in one or two paragraphs or fi gures, a conceptual
model should convey what is the system, what does the system do, and what
if anything is unique about the target system.

 The simplest form of conceptual model is a picture of the system. If the
system does not exist yet, a picture of a similar or analogous system to the
target system may be used. A picture is indeed an abstraction of the actual
subject but still may contain too many details so as to detract from the main
qualities intended to be conveyed. Perhaps the most ubiquitous format for
conceptual models is the simple sketch that is a rough drawing of a system
leaving out unimportant details. A sketch conforms to no particular rules, but,
generally, elements of a sketch will represent objects or actions in the real
world. A sketch may combine text along with symbols as necessary. This fi rst
draft conceptual model representation may be further refi ned into a diagram,
plan, graph, and map, which are essentially more organized conceptual models.

 The following paragraph is a textual representation of a conceptual model:

 The system will be placed on a two - lane highway with suffi cient space to con-
struct double bypass lanes for 500 m. The bypass lanes will contain a two - lane
toll area that will provide cash and credit toll payment and change on a 24 h basis.
The lanes of the main highway will contain our new Easy Pass electronic toll
collection capability. Drivers signed up for the Easy Pass system will remain on
the main highway lanes and maintain the posted speed limit. Their Easy Pass
accounts will automatically be credited as the cars pass by using the constructed
highway sensors. The bypass toll lanes will have suffi cient space for non - Easy
Pass users to queue while paying the toll. We believe that Easy Pass will be a
signifi cant advantage to local drivers and our subscription accounts will quickly
rise due to the obvious convenience. An early advertising campaign will ensure
signifi cant enrollment before the system comes on - line.

 The text - based model above is detailed enough to convey the necessary
information. What is the system? The system is an automatic toll collector.
What does it do? It senses the cars from drivers that have enrolled in the
system and collects the toll from their accounts. What is unique? It provides

150 SYSTEMS MODELING: ANALYSIS AND OPERATIONS RESEARCH

the convenience to local drivers of not having to stop to pay the toll. Therefore,
this is a good conceptual model. However, it may have taken too much time
to convey the information particularly for busy executives who may be making
the decision to fund the project.

 Consider Figure 6.1 , which illustrates a sketch of our target Easy Pass
system. Almost immediately, the overall concept of the system can be under-
stood. The sketch conveys a system that has some method of allowing some
cars to pass a toll area seemingly without slowing down while other cars are
required to stop and queue to pay the toll. The sketch includes the words “ toll ”
and “ Easy Pass ” to convey some of the uniqueness of the system and a 500 - m
scale to provide added detail. However, there are still a few details not gar-
nered from the sketch that are present in the textual description, such as the
statements that both cash and credit payments will be accepted, that no slowing
down will be needed, and that there will be an advertising campaign for early
enrollment.

 The combination of the sketch and an accompanying textual description
will capture the advantages and mitigate the disadvantages of both conceptual
model formats. Of course, our sketch should probably be refi ned a bit more
before being presented to the decision - making executives. So, Figure 6.2
shows a visual model or visualization of our Easy Pass system. Certainly, more
polished but not necessarily conveying any more information than our sketch.
In fact, the diagram leaves off the 500 - m scale — something the executives
probably will not be interested in but engineers intending to build the system
will defi nitely want to know.

Easy Pass

Toll

500 m

 Figure 6.1 Easy Pass (EP) toll collection system sketch.

 Figure 6.2 Easy Pass (EP) toll collection system visualization.

MODELING METHODOLOGIES AND TOOLS 151

 So far, we have captured much of the structure of the system and implied
some of the functionality. If we want to be more explicit in the various aspects
of the functionality and interactions among system elements, we can allow for
other constructs that are also conceptual models. One such construct that will
capture overall functionality is called a concept map . Concept maps are very
simple and informal directed graphs, where the nodes of the graphs capture
the concepts or elements of the system and directed arcs (arrows) imply inter-
actions between connected elements. Labels on the directed arcs defi ne the
nature of the interaction, and the element nodes are shown as labeled rect-
angles or circles. Figure 6.3 is a concept map that captures the toll collection
functionality of the Easy Pass system. The fl ow in this case starts with the node
that does not have an input arc namely the “ car ” node. Notice how all of the
nodes map easily to real objects in the system and the arcs map nicely to
operations on the objects. This follows the object - oriented nature of concep-
tual modeling. In fact, it is easy to see how a textual description can be derived
from the concept map and vice versa by turning objects into nouns and opera-
tions into verbs. From Figure 6.3 , we can obtain the following: (1) a car triggers
the Easy Pass sensor that relies on a license plate camera, (2) the Easy Pass
sensor compares some information with the Easy Pass account system, (3) the
Easy Pass account system gives a green light to Easy Pass drivers and a red
light to ordinary drivers, and (4) ordinary drivers receive a traffi c ticket for
not paying the toll.

 This diagram provides an overall or high - level view of one element of the
system ’ s functionality. There are still many details that engineers would need
to know in order to implement the system. How quickly does the system need
to respond to give the drivers green or red lights? What happens if the license

Triggers

Car

Easy Pass

sensor

Easy Pass

driver

Ordinary

driver

Ticket

Easy Pass

account system

License plate

camera

Compares with

Give green

light to

Give red

light to

Receives

Relies on

 Figure 6.3 Concept map for Easy Pass toll collection functionality.

152 SYSTEMS MODELING: ANALYSIS AND OPERATIONS RESEARCH

plate is unreadable? How much memory is needed in the account system? For
these and other questions, more formal representation methods may be
needed to remove ambiguity especially if automated analytic methods are to
be used. Formal conceptual models include conceptual graphs and concept
graphs that are essentially the same [2] . These models utilize additional rules
and notations to construct unambiguous logic graphs that are typically used
by the artifi cial intelligence community to support reasoning methodologies.
The reader is left to explore independently these powerful techniques of rep-
resenting conceptual models.

Declarative Models

 Declarative models follow closely from conceptual models in that the system
and elements of the system are described at a fairly high level of detail as
opposed to a physics - based model of the dynamics of the system. Essentially,
these models declare the status or state of each element of the system as they
interact over time. Mappings are also provided to show how inputs to the
system affect changes in the state of these elements. Inputs to the system are
events that are considered instantaneous in contrast to states that have dura-
tion. Note that the beginning of a new state in itself can be considered an
event, which leads one to the realization that events can be considered instan-
taneous states.

 Real - world systems can be very complex with many elements, so keeping
track of the changing states of these elements through discrete points in time
may be a daunting task. Therefore, an initial challenge for declarative models
is to parsimoniously choose appropriate elements, states, and events to appro-
priately model the aspects of the system of interest to study. This grouping of
discrete states associated with the modeled system is known as its state space.
We will illustrate these concepts by examining a few methodologies to imple-
ment declarative models — fi nite - state automata (FSA), Markov chains, and
queuing simulations.

FSA FSA are also widely known as fi nite - state machines. This modeling
methodology represents states as circles and transitions between these states
as arrows. Events that can trigger transitions to new states can be as simple
as the end of the current state or as complex as a combination of conditions
and behaviors of objects within the system. Conditions are requirements that
must be satisfi ed before a transition can be made to another state. Outputs
associated with FSA can be based on either the current state (Moore machine)
or both the current state and a triggered event (Mealy machine). Figure 6.4 is
an FSA model of our Easy Pass toll collection functionality using notation
from Harel [3] . Harel is the name of an FSA notation that has been incorpo-
rated into a useful tool for modeling systems called the Unifi ed Modeling
Language (UML). UML is a standardized, semiformal, object - oriented,
graphic notation that is used widely for modeling the design, implementation,

MODELING METHODOLOGIES AND TOOLS 153

and deployment of primarily software - focused systems. We will revisit UML
later.

 The fi gure describes the functionality or behavior of the account system
object from the Easy Pass system model. The small black circle at the top
left - hand corner of the fi gure is the start state, while the black circle with
another concentric circle around it (near bottom left) symbolizes the end state.
The other rounded rectangle shapes are also states. These states identify how
the account system object changes over time. Labels on the transition arrows
in most cases identify events that will transition the object from one state to
another. A notable exception is the “ [red light > 2 s] ” label, which is a condi-
tion that has to be satisfi ed before the transition can take place. Another
notable exception is the transition between the checking accounts state and
the giving green light state. The transition occurs based on the “ account cred-
ited ” event, but then there is also an action that is performed. The slash symbol
identifi es that there is an activity to be performed by the account system
object, while the “ ∧ ” symbol indicates that the activity is the sending or invok-
ing of an event on the bank object. The event invoked on the bank object is
called processTransaction. Note that there are many parallels with the object -
 oriented design such as events being analogous to procedure or method calls
on instantiated classes. A class is the name given to the component that defi nes
the general structure and functionality (methods) for elements or entities that
are of a common type.

 Finally, the arrows without labels indicate that the transition will occur
upon completion of the current state. Note that outputs in this model occur

Start

Initialized

Shutdown Compare license plate

Account not found

[Red light > 2 s]

Initializing

accounts

Checking

accounts

Sending

ticket

Giving

red light

Giving

green light

Waiting for

input

Account credited/^Bank. process transaction

 Figure 6.4 FSA for Easy Pass account system object behavior.

154 SYSTEMS MODELING: ANALYSIS AND OPERATIONS RESEARCH

both on the transitions, as evidenced by the action of sending an event, and
also within some states as implied by the states that show green and red lights.
The green and red light indicators would be activated during the time within
the respective states. Therefore, this model uses both Moore and Mealy fi nite -
 state machine constructs.

 The model can be used to communicate the behavior of the various ele-
ments of the Easy Pass system as well as aid in analyzing the correctness of
the behavior by tracing through the variety of scenarios and behaviors that
can occur and by ensuring that all possible uses and faults are accounted for.
But, what if we are unsure of various aspects of the system that can only be
represented by a stochastic process? In such a case, we can make use of a
different declarative modeling methodology such as Markov chains.

 Markov Chains Professor Andrey Markov was a Russian mathematician
whose work focused on stochastic processes. From him we get the Markov
property that says that transitioning to a future state depends only on the
current state and not on any of the previously visited states. A Markov chain
is a stochastic process that exhibits the Markov property. Thus, a Markov
model is a system model that can be described by state changing stochastic
processes using a Markov chain.

 Returning to our Easy Pass system, suppose that the license plate camera
had only an 80 percent success rate and the combined probability of unknow-
ing drivers and unscrupulous drivers is estimated to be 30 percent during the
fi rst 6 months, which will be the grace period for giving tickets. The executives
want to know how much ticket revenue is lost during the grace period. We
will use the FSA model in Figure 6.5 to help with this analysis. This time the

Account found

No account
Acquired

Not acquired

Car

Crediting

accounts

Comparing with

accounts

Acquiring

license plate

Updating

revenue loss

Sensing

 Figure 6.5 FSA for Easy Pass revenue loss.

MODELING METHODOLOGIES AND TOOLS 155

model does not show the behavior of a particular object but rather the overall
system functionality that we are interested in. To simplify the model, we will
substitute a sequential labeling convention for the names of the states and
then utilize a Markov chain to create a Markov model.

 The sequential labeling we will use is S1 for the fi rst state, S2 for state 2,
and so on. The mappings between sequential state labels and the state names
are shown in Table 6.1 .

 Using this mapping and including the given probabilities, we have the fol-
lowing Markov model shown in Figure 6.6 .

 In Figure 6.6 , arrows without labels are assumed to have a transition prob-
ability of 1.0. If a car is detected, the system will transition to S2, which is the
acquiring of the license plate. At this point, there is a random chance of prop-
erly acquiring the plate number of 80 percent. Otherwise, the number of
failures is incremented in S4. In general, each car will either transition through
states {S1, S2, S4} with probability 1.0 × 0.2 = 0.2, {S1, S2, S3, S4} with probabil-
ity 1.0 × 0.8 × 0.3 = 0.24, or {S1, S2, S3, S5} with probability 1.0 × 0.8 × 0.7 = 0.56.
Therefore, 44 percent of cars eventually cause a transition through the revenue
loss state. Of course, this model should be contrasted with an after - grace -
 period projected loss model, and a stochastic process describing the projected
numbers of cars should be incorporated. Nevertheless, the model in Figure 6.6
can also be represented by a transition matrix as shown in Figure 6.7 .

 Table 6.1 Sequential state labels

 S1 Sensing
 S2 Acquiring license plate
 S3 Comparing with accounts
 S4 Updating revenue loss
 S5 Crediting accounts

S5

S1 S2 S3

S4

0.7

0.8

0.2
0.3

 Figure 6.6 Markov model for Easy Pass revenue loss.

156 SYSTEMS MODELING: ANALYSIS AND OPERATIONS RESEARCH

 In the transition matrix, i refers to the number of the current state while
 j refers to the number of the next state. The transition probability of 0.8 in
row i = 2, column j = 3 is associated with transitioning from S2 to S3 and can
be read as P(2,3) = 0.8. P(i , j) is the probability of a particular transition. Note
also that each row i of the transition matrix must sum to 1.0. Using these
models, we can plot a profi le of the revenue streams and losses over time while
employing different traffi c loads for the system model. Let us now look at a
different modeling methodology that can also help assess the impact of differ-
ing traffi c loads on the system.

 Queuing Simulations Of signifi cant concern is the length of the ramp that
ordinary drivers use to pay cash or credit for the toll. If traffi c is busy enough
and there are too many drivers not using Easy Pass, the queue of cars at the
toll booth could potentially get so long that traffi c on the main highway
becomes disrupted. So the questions to answer are how long will the queue
get during various times of the day and various days of the year, and what is
the trade - off in loss of revenue versus length of ramp if we have to stop charg-
ing tolls when the traffi c volume is too high for the pay toll booths to operate
safely. A discrete - event queuing simulation is a methodology that can answer
these questions.

 Let us tackle the question of queue length by fi rst examining data about
the fl ow of traffi c at the proposed site of the Easy Pass system. Our data col-
lection team installed traffi c counters for several months and found that the
traffi c during the day before the Thanksgiving Day holiday was by far the
busiest day of the year. The executives decided that this was a statistical outlier
that would have to be handled by intermittent no toll collection periods.
However, they noted that the next busiest day of the year was equivalent to
a sustained weekday rush hour interval and would like a weekday analysis as
well as a heavy rush hour load analysis. From the traffi c counters, we have the

0

0

0

1

1

1

2

3

4

5

1 2 3 4
Column j =

Row i =

5

1

0

0

0

0

0

0.8

0

0

0

0

0.2

0.3

0

0

0

0

0.7

0

0

 Figure 6.7 Revenue loss transition matrix.

MODELING METHODOLOGIES AND TOOLS 157

changing rates of traffi c fl ow for 2 - h periods throughout the day averaged over
many weekdays and, not surprisingly, the times between car counts are statisti-
cally similar to random draws from an exponential distribution having the
traffi c fl ow rate averages. Figure 6.8 captures the queuing simulation model
for the system elements identifi ed.

 The model shows the two - lane toll booth with two separate queues, which
we assume to be serviced by two separate toll booth cashiers. For simplicity,
our model simulates just one queue and server combination. The server is
the toll booth operator for the indicated lane. We make another assumption
that cars entering the ramp will mostly choose the shortest queue and so the
length of each queue on average will be the same. A fi nal assumption is that
the service time per car will be 2 min plus or minus an error of a few seconds
provided by a normal distribution with a mean μ = 3 s and a standard deviation
 σ = 4.5. We already know the traffi c rates per 2 - h period, and the inverse
of these will translate to interarrival (length of time between cars) averages
for our random draws from an exponential distribution. For example, if the
traffi c rate is 50 cars per hour, this translates to a 1/50 = 0.02 h or 1.2 min
between cars, but since we have two lanes, we can divide the rate in two to
get 1/25 = 0.04 h or 2.4 min between cars entering into one lane of the toll
ramp. Therefore, our interarrival distribution is exponential with μ = 2.4.

 This time the focus of this declarative model is on the arrival and departure
events shown as the large circles in Figure 6.8 . An arrival event signals the entry
of the next car into this queuing simulation aspect of the Easy Pass system. A
new entity arriving will enter the queue if one already exists or immediately
begin being serviced. The entry of this entity will immediately cause a new

Toll

Enter Depart

DepartureArrival

Schedule next Schedule next

(A9, 2:15) (D1, 2:16)

Event queue

Next

event

expo (m) norm (m, s)

 Figure 6.8 Queuing simulation model.

158 SYSTEMS MODELING: ANALYSIS AND OPERATIONS RESEARCH

arrival to be scheduled. An entity or car that has completed paying the toll will
then depart the system causing a new departure to be scheduled for the next
entity beginning service. Not shown in the fi gure is the fact that if there are no
cars already in the system, a new arrival will not be queued but rather will go
straight into service and therefore would also trigger a departure to be sched-
uled in addition to the scheduling of the next arrival. Newly scheduled arrival
or departure events are placed in the event queue element shown at the bottom
of Figure 6.8 . All events are tagged with a time stamp, which indicates when
the event should occur in time. The event queue in the fi gure shows that the
arrival event #9 (A9) will occur at time 2:15, while the departure event (D1)
will occur at time 2:16. The numbers on the events also correspond to the spe-
cifi c entity or car that entered into the simulation. The departure time for D1
minus the arrival time A1 will tell us how much time car #1 spent in the system.
Since we are interested in the length of the queue, we will keep track over the
entire day of how many cars enter the system and how many cars leave the
system. The difference between these will indicate what was the queue length
at a particular point in time. The maximum value from a plot of this quantity
will answer our question about how long will the queue get, which will translate
to how much space on the ramp is needed. We can compare these results with
a steady - state queuing theory formula for the average length of the queue using
the arrival and service rates above.

 By making further assumptions such as an exponential service time instead
of a normal distribution, the approximate average length of the queue is 4.2
cars using a relatively simple queuing theory formula. This can serve as a
sanity check for our simulation model. However, as we have determined, the
traffi c rates change about every 2 h, while the queuing theory equations are
for theoretically infi nite runs. Our queuing simulation model will provide
better estimates that are tailored to the Easy Pass system parameters. After
having determined the queue length, we note that we also need to accom-
modate enough space for deceleration as cars come off the main highway and
onto the toll ramp where they will come to a stop. We will examine this situ-
ation using a different type of model.

Functional Models

 Let us consider that in addition to knowing the average and maximum queue
lengths for the toll ramp, we need to know that there is adequate stopping
distance between the end of the queue and a car that has exited the main
highway. So given the speed limit for this stretch of road and assuming good
weather conditions that permit traveling at the speed limit, what is the stop-
ping distance that is needed. The following diagram shows the situation and
the parameters of interest. The stopping distance is given as “ d ” and the initial
velocity as a vehicle enters the toll ramp is v0 . The resistive force due to fric-
tion after brakes are applied is given as Ff , which is equal to the coeffi cient of
friction μ multiplied by the force applied by the weight of the vehicle, that is,

MODELING METHODOLOGIES AND TOOLS 159

 F f = μ mg where m is mass and g is the acceleration due to gravity. Since this
force is applied in the opposite direction to the movement of the car, the result
is actually a deceleration (Fig. 6.9).

 We refer back to physics - based relationships known as fi rst principles to
obtain our governing equations based on velocity, deceleration, and distance.
The well - known equations a = dv / dt and v = dx / dt indicate that acceleration
is the derivative of velocity with respect to time, and velocity is the derivative
of distance with respect to time. With this information, we can create our
functional model and simulate it to obtain our results. In Figure 6.10 , we create
a block model with these relationships. A block model is a connected network
of components that have transfer functions with different capabilities depend-
ing on the type of component a block or connectable icon is representing.
Inputs to a block will produce outputs via an internal equation. The integrator
blocks shown by the integration symbol “ ∫ ” provides the derivative relation-
ships described by the physics - based equations above.

 Besides the integrator blocks, the fi gure also shows a constant block that
will output the constant deceleration value obtained by multiplying the coef-
fi cient of friction with the value for g , which is equal to 9.8 m/s 2 . If we assume
that the friction coeffi cient on a nice weather day is 0.75, the deceleration a f
will be equal to μ g = 0.75(9.8) or 7.35 m/s 2 . Also, based on the speed limit, the
initial velocity v 0 will be approximately 25 m/s. Confi guring our block model
with these initial values and simulating for 5 s, we get the following results.

 Figure 6.11 shows two plots in which both horizontal axes display time. The
plot on the left in Figure 6.11 shows the output of the middle velocity block
in the block model. Note that the plot starts initially from 25 m/s on the vertical
axis and consistently decreases until zero velocity. This deceleration occurs in
about 3.4 s. The right plot is the output of the distance block in the block model

v0

Ff

d

 Figure 6.9 Easy Pass deceleration diagram.

af

C ∫ ∫
a v x

v0

 Figure 6.10 Easy Pass deceleration block model diagram.

160 SYSTEMS MODELING: ANALYSIS AND OPERATIONS RESEARCH

(Fig. 6.10). The vertical axis here is distance traveled in meters. So, over the
same amount of time, it can be seen that the car travels about 42.5 m, which
answers our question about the stopping distance needed for cars entering the
toll ramp from the main highway. The next section looks at this same issue
but from a different perspective.

Constraint Models

 As mentioned previously, constraint models are similar to functional models
except that the directed nature of the connected components, as can be seen
from the block model, is less important than the physics - based relationships
among system components and the balancing of those physical properties.
Here we note that conservation of energy is involved. The law of conservation
of energy tells us that the total energy in a closed system remains the same
although some or all of the energy may be transferred from one form of energy
to another. Therefore, we have a constraint that allows us to balance one form
of energy with another. Such a concept is useful when looking at multidomain
systems as different forms of energy are likely to involve elements where dif-
ferent physics - based equations apply. For instance, a light bulb transforms
electrical energy into light and heat energy. All three domains have their own
energy equations but can be balanced to show the transfer and relationships
necessary to perform a proper analysis of the system.

 Our Easy Pass stopping distance problem can be approached in this manner.
First, the kinetic energy associated with the moving car is equal to ½ mv2 where
m is mass and v is velocity. When the car comes to a complete stop, its velocity
is zero and so this form of energy goes to zero. Much of this energy loss is
dissipated as heat. The change in energy here is equal to the work done in
stopping the car, which essentially is the force due to friction Ff applied in the

0 1 2 3 4 5
0

5

10

15

20

25

30

0 0.5 1.0 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40

45

Figure 6.11 Deceleration time and distance results.

MODELING METHODOLOGIES AND TOOLS 161

opposite direction over the stopping distance. We learned earlier that the
friction force F f is equal to μ mg , so our constraint model is

1
2

2mv F df=

 or

1
2

2 0mv mgd− =μ .

 Solving for the stopping distance d we get

 d v g= 1
2

2 μ .

 The initial velocity we used for our car was 25 m/s and so ½ v 2 is equal
to 625/2 = 312.5. From before, we know μ g to be equal to 7.35 m/s 2 . So, our
stopping distance d is equal to 312.5/7.35 = 42.517 m, which is equivalent to
what we obtained using our functional block model. The power associated
with this energy transfer is equal to energy transferred per unit time. Assuming
a 1088 - kg vehicle and remembering that the vehicle was stopped in approxi-
mately 3.4 s, the power associated with this system is 1088(312.5)/3.4 = 100,000 J/s
or 100 kW.

 In our Easy Pass system example, these relationships were kept within a
single domain, but if we were using a motor to crank a generator to in turn
create electricity that powers a lantern where our objective was to measure
the heat from the lantern, these relationships would span many domains. The
energy balance across the domains would create constraints that enable the
needed analyses. Bond graphs are tools that often used to allow this multi-
domain modeling. Bond graphs are based on a generic model of power trans-
fer in various domains and can span electrical, mechanical, hydraulic, thermal,
and chemical systems. The generic model focuses on effort and fl ow where
the product of the two is power. Effort in the mechanical domain we have
modeled is equivalent to force, while fl ow is equivalent to velocity. They are
called bond graphs because the elements in the graph specify the relationships
between effort and fl ow on the connections or bonds in the graph.

 Spatial Models

 Spatial models are multielement models where either the spaces in the
system are the elements or the entities within the spaces are the elements. An
additional trait of these models is that elements are treated in a somewhat
regularized manner so that rules of updating spaces or the behavior of entities
within the spaces are uniform for many, if not all, of the elements. A common
modeling method in which the space is the element that is focused on is the

162 SYSTEMS MODELING: ANALYSIS AND OPERATIONS RESEARCH

cellular automaton. In general, cellular automata are regularized matrices of
cells in which each cell has the same set of rules to apply in order to update
the information within itself. A given cell may also utilize the current informa-
tion in neighboring cells but may not change information in other cells. The
game of life is a popular implementation associated with cellular automata.
The rules are very simple:

 (1) A cell is either alive or dead.
 (2) A cell stays alive if there are two or three other live cells around it.
 (3) If there are less than two live cells around, it dies of loneliness.
 (4) If there are more than three live cells around, it dies of overcrowding.
 (5) If a cell is dead and there are three live cells around, it becomes alive.

 The cells in the grid have a different color depending on whether they are
alive or dead. As the rules are applied, the colors in the grid change and shift
sometimes dramatically and sometimes none at all. Depending on the initial
marking of alive and dead cells, various patterns can emerge that could be
used to model real - life phenomena.

 For our Easy Pass system, we will draw upon rules governing the transfer
of heat using a different spatial model but also dividing up our system into
elements. We will utilize a lot of assumptions for this one. The executives are
concerned that the coeffi cient of friction we are using will change due to the
heat from the car tires when pulling off onto the toll ramp and applying brakes.
We will assume that brakes are applied when the car is traveling in one direc-
tion and that the maximum heat is transferred at the moment that brakes are
applied. Also, we will look at a small one - dimensional segment of road and
treat it as an isolated and homogeneous section of material. So we have the
following fi gure.

 Figure 6.12 is our section of road where a tire has applied one unit of heat
to the center of the section. The assumed uniform material will conduct heat
in both directions and so we want to study how this heat will dissipate over
time to eventually determine based on time between vehicle arrivals whether
or not this heat will linger to affect a change to our coeffi cient of friction used
in the previous evaluations. To start, we divided our material into nine equal
parts as shown in the fi gure, so this is indeed a multielement model and
because we will use a partial differential equation (PDE), the heat equation,
to model the relationships between elements; this is also a fi nite element

1 2 3 4 5 6 7 8 9

 Figure 6.12 Idealized section of the road affected by friction heat.

MODELING METHODOLOGIES AND TOOLS 163

model (FEM). * The heat PDE specifi es the rate of temperature change with
respect to time and position, while ordinary differential equations defi ne rates
of change only with respect to time. Here we defi ne the heat equation in one
dimension,

∂
∂
= ∂
∂

T
t

T
x

2

2
,

where T is temperature, t is time, and x is position.
 Estimating this one - dimensional heat equation by the fi nite difference

method gives us the following fi nite difference equation:

T x t t T x t

t T x x t T x t T x x t
x

, ,
, , ,

,+() = () + +() − () + −(){ }Δ Δ Δ Δ
Δ

2
2

where Δ x is the incremental change in position and Δ t is the incremental
change in time.

 Applying this equation to our Easy Pass idealized road section while using
 Δ x = 1 and Δ t = 0.25 s, the next value for the road element at position 5 will
be T (5, 0.25) = 1 + 0.25(0 – 2 × 1 + 0)/1 = 1 – 0.5 = 0.5 after the initial applica-
tion of 1 unit of heat. Values at x positions 4 and 6 at the fi rst time step are
 T (4, 0.25) = 0.25 and T (6, 0.25) = 0.25, respectively. Figure 6.13 shows the
change in heat over 2 s of incrementing by 0.25 - s time steps.

 This analysis shows that after 2 s, the amount of heat transferred to a par-
ticular element dissipates to less than 20 percent (0.196) of its original value.
We can use these results to someday determine whether or not to change our
friction coeffi cient in our previous analysis.

 Figure 6.13 Idealized section of the road affected by friction heat.

 * Adapted from Stoughton J. ECE 605 Lecture Notes, Old Dominion University, Fall 1999.

164 SYSTEMS MODELING: ANALYSIS AND OPERATIONS RESEARCH

 As mentioned in the beginning of this section, cellular automata are spatial
models where the spaces in the system are the elements that are treated with
regularized rules of updating the spaces. Spatial models also focus on systems
where the entities within the spaces are the elements with regularized behavior
for updating the states of entities. Multiagent modeling is a common modeling
method that focuses on the entities within the space. Agents are software
processes or objects that typically represent an element of the real - world
system that provides a useful capability within the system. An agent ’ s actions
are governed by rules of behavior that are uniform for many, if not all, agents
of the same type. When a system is primarily modeled by several agents acting
together to accomplish a common goal, this system model is called a multia-
gent model.

 Probably the most interesting characteristic of agents is their autonomous
nature. Their rules of behavior allow them to know when and how to act on
the system as necessary. When a global overall behavior occurs from the indi-
vidual autonomous activities of single agents working disparately or coopera-
tively, the behavior is said to be emergent especially if the behavior was
unexpected.

 Multiagent models are used extensively in modeling human behavior such
as in crowd models or in military battlefi eld scenarios, where a mathematical
model of the whole system would be too complex with too many simplifi ca-
tions needed. As a result, validation methods for these models are a subject
of much discussion and research. For our Easy Pass system, agents could obvi-
ously be the cars themselves, but they could also be the drivers as well. In fact,
depending on the question being asked, our entity - based multielement Easy
Pass spatial model could include other agents such as the camera, sensor, toll
booth, toll booth operators, and so on.

Multimodels

Hybrid models play an important role in most real - world systems. As we have
seen from our Easy Pass system, several perspectives can be gained where
each can answer a different question of import. To fully answer the range of
questions one may have for a system, a combined group of model types may
be the answer. Multimodels are composed of several models carefully con-
nected in a network or graph where the models could easily be of more than
one type. Such a hybrid model can employ a number of abstraction perspec-
tives and can address a wider variety of questions. Additionally, large complex
systems may have innate phases where different types of models are needed
to defi ne the activity occurring at those different stages.

 Fishwick emphasizes the potential differences within multimodels by
describing the relationships between aggregation and abstraction [1] . With
abstraction, simulation of the model occurs with possibly every abstracted
element of the system and since one element of the system may be abstracted
to a greater degree than another, care must be taken when passing information

ANALYSIS OF MODELING AND SIMULATION (M&S) 165

from one modeled component to another. An important point is that more
abstraction means more loss of information, while more refi nement means an
increase in information. Therefore, a datum in a more refi ned component will
lose information when transferred to the more abstracted component, and a
record transferred in the other direction will need to be supplemented with
additional data. With decomposition, the multimodel is hierarchical with the
actual simulation of the model occurring at the lowest decomposed level.
Hence, no information is passed from the simulated (lowest) level to the
higher levels. The higher levels serve only to arrange lower - level components
in a design - friendly and semantically intuitive manner.

ANALYSIS OF MODELING AND SIMULATION (M&S)

 In addition to communicating the main qualities and capabilities of the target
system, the raison d ’ ê tre for system models is to learn something about the
actual system. Analysis is the process we use to obtain the information.
However, when we learn that something, steps should have been taken to
ensure that the model has a high probability of being correct. Therefore,
before this fi nal analysis, we must verify that the implemented model is what
we conceived would be needed to answer our questions about the system, and
we must ensure that this model is providing valid reliable output similar to
the real system or at least similar to a comparable system if the real one does
not exist yet. These procedures are called verifi cation and validation. In addi-
tion to ensuring that the conceived model was implemented, verifi cation deter-
mines whether the correct variables are available and able to be measured,
which may be needed to answer specifi c questions about the model. The most
elegant implementation is useless if the necessary data sources are not avail-
able. Following, validation determines if the output data generated by the
model is close enough to those generated by the real system so that we can
say that there is no statistical difference between the model and the system
when examining the required variables. This brings up a very important point
in that often we do not need to model the whole system to learn what we want
to know and being parsimonious with our modeling saves time and money.
Since these savings begin when we are conceiving the model, we will fi rst
discuss tools for creating models ready for analysis followed by the analysis
of the models themselves.

Formal Modeling

 Even before verifi cation and validation, analysis is driven by choices made
in the design, methods, and tools used to create the model. As we have
learned, models can represent high - level system views where details are few
or low - level system views where there are many details. These different
abstractions do lead to intrinsic ambiguities that may or may not lead to

166 SYSTEMS MODELING: ANALYSIS AND OPERATIONS RESEARCH

diffi culties depending on the questions being asked of the model. Nevertheless,
when we know that a model will be subject to signifi cant analyses, we may
want to start out with modeling methods that promote specifi c rules on how
to properly construct the model, so that these rules can be used in subse-
quently interpreting and analyzing the model. Methodologies that use precise
rules about modeling and simulating are called formalisms . A model created
using a formalism is a formal model. This confers the connotation that the
model is unambiguous and mathematically manageable often allowing auto-
mated analyses.

 Since utilizing rigorous characterizations of system elements provides the
basis for system model analytics, we will fi rst discuss system model description
techniques. A system is described formally as a set or tuple with variables such
as time, inputs, outputs, possible states, state transition functions, and output
functions. From Zeigler et al., we get the following notation [4] :

 System tuple ext= < >X S Y ta, , , , , , ,intδ δ λ

where X is the system model set of inputs, S is the set of states that the system
model can achieve, Y is the system model output set, δ int is the internal transi-
tion function that describes how the states within the system transition due to
internal behavior, δ ext is the external transition function that describes how the
states transition due to external input events, λ is the output function that
describes what output a state will generate, and ta is the time advance that
describes how the system changes state with regard to time — for example,
either discretely or continuously.

 Using this notation, we can describe our previous Easy Pass FSA from
Figure 6.4 . This time we will map the state names to numbered state labels so
we will not need the start state, and we will also leave off the end state to
create Figure 6.14 . The state name to state label mapping is below (Table 6.2).

S6S1

S2

S3

S5
ext event

No

Yes

S4

 Figure 6.14 Simplifi ed FSA from Easy Pass account system object behavior.

ANALYSIS OF MODELING AND SIMULATION (M&S) 167

 Note that many of the event labels were left off the diagram except one,
which is an external event triggered by a passing car and two internal events.
The name of the external input event from Figure 6.4 is “ compare license
plate ” and is represented in Figure 6.14 simply as “ ext event. ” The other two
labeled events refer to whether or not the driver of the car has an Easy Pass
account — “ no ” refers to “ account not found ” and “ yes ” refers to “ account
credited. ” All other events that cause state transitions for the FSA are internal
events that can be labeled “ processing completed ” ; however, we will leave this
label off since the unlabeled arrow means the same thing, which is to transition
when processing in the state has completed.

 Using our systems theory notation above, we can now formally describe
this system. The set of inputs for the model is X = {ext event, yes, no, process-
ing completed}. The state set for the system is S = {S1, S2, S3, S4, S5, S6}. The
set of outputs is Y = {Green Light, Red Light, Ticket, Bank.processTransac-
tion}. For our external transition function we have

 δext S ext event S2 3, ;() =

 δext Sn ext event Snn ≠() =2, .

 The fi rst statement means that when the system model is in state S2 and
the external input event is triggered, the system will transition to S3. The last
statement simply means that the external transition function does not have an
effect on other states besides S2. For our internal transition function, the defi -
nitions are δ int (S1, processing completed) = S2; δ int (S2, < any >) = S2; δ int (S3,
yes) = S4; δ int (S3, no) = S5; δ int (S4, processing completed) = S2; δ int (S5, pro-
cessing completed and ta > 2) = S6; and δ int (S6, processing completed) = S2.

 Note that any other inputs that occur other than those shown above will
result in the system model remaining in its current state. Also, the defi nition
 δ int (S2, < any >) = S2 is provided to show that internal inputs do not affect a
transition out of S2; < any > means any event. Finally, the output function λ is
based on the output of the current state whose output will be one of the
members of set Y , and the time advance function ta we will say is based on
the set of positive integers and is used at least in S5 to satisfy the condition
that the red light is on for at least 2 s before transition to S6.

 Zeigler ’ s formalism to capture state - event declarative models such as this
Easy Pass FSA is called the Discrete - Event System Specifi cation (DEVS).

 Table 6.2 State label mapping

 S1 Initializing accounts
 S2 Waiting for input
 S3 Checking accounts
 S4 Giving green light
 S5 Giving red light
 S6 Sending ticket

168 SYSTEMS MODELING: ANALYSIS AND OPERATIONS RESEARCH

There are other systems theory formalisms for other model types and methods.
Functional models may be better described by the Discrete Time System
Specifi cation (DTSS) and constraint models such as bond graphs by the
Differential Equation System Specifi cation (DESS). * For DEVS, the basic
component is an atomic model , which contains states and events as we have
been discussing. Additionally, the atomic model is encapsulated with external
communication only through input ports and output ports. For our Easy Pass
FSA model, the input port would receive the external input that senses a
car while there would be output ports for our identifi ed external outputs
(Green Light, Red Light, and Ticket). We may or may not consider Bank.
processTransaction an internal output, which may go to a different element
in the overall Easy Pass model. DEVS uses these input and output ports to
connect atomic models together to compose coupled models . Therefore,
coupled models contain sets of lower - level (more detailed) models and sets
of their own input and output ports, as well as the coupling specifi cations
between its own internal models and to other external coupled models.

Semiformal Modeling

 The advantage of formal models is that they provide a rigorous mathematical
approach for representing dynamic systems that allow unambiguous under-
standing of characteristic system behavior and thorough analyses of system
capabilities, properties, limits, and constraints. The disadvantage of formal
models is that they are complex and somewhat tedious to design and imple-
ment. Semiformal representation methods are a trade - off that allows ease of
use with less unambiguity, but with still a degree of analytic capability. One
such representation method is the UML. As mentioned previously, UML is a
standardized, semiformal, object - oriented, graphic notation that is widely used
to model system and software structure and behavior.

 UML is unifi ed because at the time it was conceived, it brought together
several prominent object - oriented design and analysis methodologies by Grady
Booch, Jim Rumbaugh, and later by Ivar Jacobson — also known as the three
amigos. The new unifi ed modeling methodology supports the full life cycle
of software - based systems from requirements to deployment with many
design artifacts to ease update and maintenance. We will discuss several of its
features including use case, activity, class, sequence, and statechart diagrams.

Use Cases Use cases are very important tools for linking the needs of
the user with the design of the system. They are textual descriptions that
describe a particular capability of the system. The typical use case begins with
an external input event, which may be as simple as the user pushing a button
or a car tripping a sensor and ends with an external output such as an update

 * See Zeigler et al. [4] for descriptions of DTSS and DESS.

ANALYSIS OF MODELING AND SIMULATION (M&S) 169

to a graphic display or the issuance of a ticket. The textual description of the
use case then provides the conditions under which the use case can be acti-
vated, the dynamic internal interactions that take place to carry out the use
case activity, any alternate threads or exceptions within the use case activity,
and the conditions for ending the use case. The activities within the use case
are associated with capabilities that should be tied to corresponding require-
ments that were identifi ed for the system. Recall our text - based conceptual
model of our Easy Pass system. We can write the requirements for this system
as follows:

 (1) The system will be placed on a two - lane highway.
 (2) There shall be suffi cient space to construct a toll ramp.
 (3) The toll ramp shall contain a toll area that will provide cash and credit

toll payment.
 (4) The lanes of the main highway shall contain the Easy Pass electronic

toll collection capability.
 (5) Drivers enrolled in the Easy Pass system will remain on the main

highway.
 (6) Easy Pass drivers ’ accounts shall automatically be collected as their

cars drive by using the constructed highway sensors.
 (7) The Easy Pass account system shall compare passing license plate

numbers with those of registered Easy Pass drivers.
 (8) Registered Easy Pass Drivers on the main highway shall be given a

green light.
 (9) Nonregistered drivers shall be given a red light for at least 2 s and

automatically issued a ticket to be received via the postal service.
 (10) The bypass ramp toll lanes shall have suffi cient space for non - Easy

Pass users to queue while paying the toll.

 Here, we use the word “ shall ” to emphasize that it is important to exactly
meet this requirement, and we use the word “ will ” to say that this is most
likely the way we want this requirement done. For example, requirement #1
leaves room for the circumstance that the system might be placed on a four -
 lane highway. Next, we have our use case as follows:

Use Case Name. Easy Pass Issues a Ticket
Use Case Description. When the license plate camera captures a license

plate, it will send this information to the accounting component of the
Easy Pass system, which will process this information as described here.
Requirements 4, 6, 7, 8, and 9 are covered by this use case.

Entry Conditions. This use case begins when a car is detected by the license
plate sensor and the licensed plate is acquired, thereby, providing a
license plate to be compared.

170 SYSTEMS MODELING: ANALYSIS AND OPERATIONS RESEARCH

Main Thread. The license plate number received is compared with the
database of records in the accounting system. If a record is not found,
the driver is given a red light and a loud buzzer sounds. Then, the
accounting system records that a ticket must be issued to the driver.

Alternate Threads. If the record is found, the accounting system will credit
the driver ’ s account and the driver is given a green light.

Exceptions. The acquired record of the license plate may be empty indicat-
ing that it was not acquired properly. In this case, nothing will be done
except wait for the next license plate notifi cation.

Exit Conditions. This use case is completed when either a green light has
been given to the driver or a record of the toll runner has been made
and tagged for ticketing.

 The use case name is “ Easy Pass Issues a Ticket, ” which passes a rule of
thumb that use case names should be at least fi ve words long. * This is to
prevent software engineers from thinking too quickly ahead and giving class
specifi cation names to use cases, which can become confusing. Note that the
use case covers only requirements 4, 6, 7, 8, and 9, so there may be other use
cases to cover other requirements such as requirement #3. Requirements 1, 2,
3, 4, 5, 6, and 10 have hardware/construction connotations, which means that
requirements 3, 4, and 6 have both hardware and software considerations. One
other thing to notice is the extra capability of a loud buzzer added in the main
thread. This might have seemed like a useful and normal thing to do, but it
was not required by the user as evidenced by a missing requirement for it. The
addition of this capability is called requirement creep and can easily generate
cost overruns in time and money. If it seems like the right thing to do, simply
go back to the user and ask if it is wanted or needed so that it can be added
as a requirement and budgets can be adjusted as necessary.

 When the use case is fi nally graphically represented on a use case diagram,
an oval encircling the name of the use case is used. The “ Easy Pass Issues
a Ticket ” use case will be placed along with other use cases on the diagram
with any relationships among them shown on the diagram. Also shown on
the diagram will be icons representing actors or external entities that interact
with the use cases and provide external input or an external outlet. For
example, as in our concept map of the Easy Pass system, an actor representing
a car will be placed on the diagram to indicate the outside of the system trigger
for the use case. The next step is to convince ourselves that we have captured
the required capabilities of the system and then create dynamic representa-
tions that elaborate the use case using design artifacts placed within interac-
tion diagrams.

 * This is the author ’ s rule of thumb.

ANALYSIS OF MODELING AND SIMULATION (M&S) 171

Activity Diagrams Among other things, activity diagrams are useful in
providing a high - level view of the behavior of the system from the time the
system is brought online until it is no longer in use. These diagrams show how
capabilities captured by use cases fi t into the overall operation of the system.
Consequently, they are often utilized to ensure that there are no missing
capabilities not captured by implemented use cases. Activity diagrams are in
essence decision fl owcharts containing control, decision, and action elements
that graphically describe the fl ow of the system throughout its life cycle.

Class Diagrams As with many modeling tools, UML is concerned with
capturing both the structure and the behavior of systems. Structure is
concerned with how elements within systems are connected, while behavior
is concerned with the dynamic way these elements interact. Class diagrams
capture the specifi cations of classes and the static structural relationships
among them. As previously mentioned, a class defi nes the general structure
and functionality (methods) for objects that share commonalities. For instance,
the class “ automobile ” can be the general name given to many instances
or car objects that can be uniquely identifi ed by their license plates and color
and so on, but they are all generally built the same way and perform the same
function.

 Besides the expression of the attributes and operations that specifi es classes,
class diagrams show how each class is related to other classes in the system
model. Since this is an object - oriented model, these specifi cations and rela-
tionships are often referred to as an object model. Relationships that can be
represented include inheritance, aggregation, multiplicity, and generic asso-
ciation. Inheritance signifi es that child classes can include or inherit from a
parent class all of the attributes and methods belonging to that parent, while
aggregation expresses a whole/part relationship where the class, which is the
whole component, is composed of one or more other connected classes.
Multiplicity identifi es how many of one class is generally associated with how
many of another. When a special relationship such as inheritance or aggrega-
tion does not exist, the connectivity is generally called an association and can
be labeled explicitly with text to defi ne the role of the relationship.

Sequence Diagrams Sequence diagrams are a form of interaction diagram
that expresses the dynamic interactions among objects and also frequently
with actors. These representations elaborate the use cases by linking the object
model defi ned during the creation of the class diagrams with the sequential
activities defi ned in the use case. Therefore, sequence diagrams display objects
and actors along with events (method calls and external inputs) occurring
between them in a timeline fashion with time starting at the top of the diagram
and advancing toward the bottom of the diagram. Figure 6.15 illustrates a
sequence diagram based on our “ Easy Pass Issues a Ticket ” use case described
earlier.

172 SYSTEMS MODELING: ANALYSIS AND OPERATIONS RESEARCH

 In the diagram, the fi rst two rectangles are actors that interact with the
system and would be portrayed in the use case. These represent hardware
components that would not have software associated with them, while the
third rectangle represents a software object that would additionally have an
associated hardware component. An interaction from the sensor invokes a
method on the camera object that in turn invokes a method on the account
object causing the comparison of the license plate record with the database of
Easy Pass account holders. The comparison is performed by the account
object. Arrows point to the objects that would carry out the specifi ed behavior
labeled on the arrow.

 Note that the account object has an arrow pointing to itself. This represents
an internal method invocation and can be placed on the sequence diagram to
show that it is happening and also to indicate a performance requirement such
as fi nding the record within 30 ms. Alternate paths on the sequence diagram
are created using conditions of either fi nding the record [record] or not fi nding
the record [!record] with the “ ! ” symbol representing not. Then, the method
invocations are given as actions or events after the “ / ” symbol. An example
method invocation on the light object is LightObject.green(). The red method
invocation is given with a parameter value of 2, which presumably means to
stay on for 2 s. Finally, the ticket object is asked to issue a ticket. Clearly, this
technique is useful in understanding and communicating the behavior associ-
ated with use cases and of the system.

 Statecharts David Harel statechart notation was incorporated into UML to
represent the dynamic behavior of objects and is typically used on especially
complicated objects in the system model [3] . We have previously described
this notation and illustrated its use on a fi nite - state machine model of the Easy

triggers

Car Sensor
Camera

object

Account

object

Light

object

Ticket

object

get plate ()

compare plate ()
check records ()

[record]/green ()

[!record]/red (2)

[!record]/issue ticket ()

 Figure 6.15 Sequence diagram for Easy Pass issues a ticket use case.

ANALYSIS OF MODELING AND SIMULATION (M&S) 173

Pass account system object behavior (Figure 6.4). Most UML tools allow the
development of such state machines. Some of these tools also allow the gen-
eration of software source code based on the UML object model and associ-
ated dynamic representations. This is a signifi cant advantage of these tools.
However, a disadvantage may occur when keeping the model design in sync
with the generated code, so some tools also have the capability to reverse
engineer the source code into an object model with mixed success.

Other UML Diagrams UML utilizes many other diagrams that are effective
for different stages of development. There are a few other types of interaction
diagrams than sequence diagrams, and there are diagrams that help design
how to package the software into fi les and libraries. There are also diagrams
that express the interfaces with other components and describe how to deploy
the software onto networked computer systems. UML is indeed the most
complete system and software modeling tool to date.

Model and Simulation Analyses

 When we analyze a model, we consider the robustness and completeness of
the model itself as well as the behavior of the model under dynamic execution.
After conceiving the model, the fi rst form of analysis is verifi cation. During
verifi cation , we ensure that the requirements of the conceptual model have
been properly translated in the executable system model and that the model
is able to be run with no unforeseen errors and with reliable results. This can
be done with automated debugging tools, manual code reviews, and model
stress tests. Automated debugging tools provide syntax and some logic support
in fi nding and fi xing bugs, but fi nding semantic errors can be diffi cult. Manual
code reviews are performed by sitting around a table and explaining the code
to peers that can critique and fi nd problems. These can be quite useful pro-
vided ample time is available and everyone can remain awake. Model stress
tests are performed by running or executing the model with inputs set to their
maximum and minimum boundary conditions to ensure that the model per-
forms as expected.

Validation is mainly concerned with making sure our robust model provides
useful results by being a close enough approximation to the target system. This
form of analysis is done by performing statistical tests on the difference
between the output of the model and the output of the target system. If the
target system does not exist, a similar system may be used or an expert knowl-
edgeable about the system or similar systems can examine the model output
and make a decision as to the models ’ validity based on his or her past experi-
ences. This type of subjective validation is called face validation. After valida-
tion, the model is ready to answer the question for which it was created to
answer.

 When we run the software program that executes the model, we say that
we are simulating the model. When we simulate the model under a variety of

174 SYSTEMS MODELING: ANALYSIS AND OPERATIONS RESEARCH

input conditions, we say that we are experimenting with the model. It is
through this form of analysis that we fi nally get our questions about the system
answered. But, believe it or not, we still need to do a bit of design — experi-
mental design. Experimental design is concerned with reducing the time and
effort associated with simulating by identifying the information needed to be
gathered from each simulation replication, how many replications need to be
made, and what model parameter changes need to be compared. If the model
contains stochastic processes and many parameter change considerations, mil-
lions of simulation replications could be needed. A replication is an execution
of the model from start to fi nish in typically faster than real time. If the model
is very complex, it may take several hours or days between runs. An experi-
mental design strategy can save time and money when dealing with complex
system models. One way it does this is by identifying and ruling out the change
of parameters that may not be contributing to the desired output variables.
Another way is by assigning high and low values to candidate parameters and
running simulations using combinations of the high and low values to see
which ones are having an effect. Candidate parameters are those that are likely
to have an effect on the response of the output variables for which we have
an interest.

OR METHODS

 When the system is well understood but contains many factors and many
constraints, an optimal solution is diffi cult to fi nd. OR is the discipline of using
mathematical models applied to complex systems in order to optimize various
factors that infl uence the performance of the system and to make business
decisions that maximize profi t or minimize cost. The solution space for an
optimal or near - optimal solution is extremely large, so the art of OR is to fi nd
mathematical relationships that prune the solution space. Steps involved in
fi nding the maxima or minima needed for the optimal solution are fi rst to
formulate the problem, next to develop a mathematical model to represent
the system, and fi nally to search for a solution to the problem by solving the
mathematical model. Linear programming is a deterministic technique often
used to fi nd optimal solutions to OR problems by solving linear equations of
system variables including objective functions that describe what must be
maximized or minimized for the system subject to several inequality con-
straints. OR methods can also use stochastic methods such as Markov chains
and queuing theory. However, let us look at a linear programming solution to
our Easy Pass system.

 The executives would like to provide a park and pool service next to the
Easy Pass system toll ramp. This service offers to customers the ability to park
in a parking lot next to the toll ramp and then take either an electric van (EV)
or an electric car (EC) to two designated metropolitan subway stops on dif-
ferent subway lines — one nearby and one farther away. The electric vehicles

OR METHODS 175

are part of a green initiative named Easy Green Commute (EGC) that is
intended to appeal to environmentally conscious patrons as well as to custom-
ers wanting to avoid the inconvenience and expense of downtown traffi c and
parking. Metro subway stop parking is typically $15 per day, and downtown
parking can be even more. To utilize the service, registered clients simply
reserve either a car or a van and choose any available from the parking lot.
There will be designated parking spaces at the metro stops for the EGC
vehicles, making access to the subway easy and convenient. There are already
plans to use the ECs for a lunchtime downtown service, so the executives have
agreed to guarantee a minimum of 20 ECs at the near metro stop.

 The EGC parking lot at the Easy Pass toll ramp has room to support 100
EGC vehicles and clients ’ cars. The executives have estimates for customer
demands for taking vehicles to the metro stops, which are shown in the fol-
lowing table.

 Table 6.3 shows that the highest demand is for taking the EVs to the near
metro stop as this is the most economical way to downtown if a commuter
group is large enough. The demands for other options are as shown in the
table.

 EVs cost $200 a day to reserve for the near metro stop and $220 a day for
the far metro stop, while EC ’ s cost $100 a day for the near metro and $150 a
day for the far metro based on maintenance and power charging costs for the
vehicles. The executives want to know how many EVs and ECs should be
ordered to maximize the profi t from this enterprise and how many of each
should be earmarked to service the metro stops. The objective function for
the linear program then is

maximize _ _ _

_
f x EV NM EV FM EC NM

EC FM
() = × + × + ×

+ ×
200 220 100

150 ,

where EV_NM is the # of EVs for the near metro, EV_FM is the # of EVs for
the far metro, EC_NM is the # of ECs for the near metro, EC_FM is the # of
ECs for the far metro, and x is a vector of the four variables (EV_NM , EV_
FM , EC_NM , and EC_FM).

 The objective function above adds the revenues from the total number of
vehicles going to a particular metro stop multiplied by the rental costs for the
particular type of vehicle. Note that this is a linear function, so constructing a
mathematical model using this technique is called linear programming. The
objective function is subject to a number of inequalities that are gleaned from

 Table 6.3 Metro stop demand

 Demand Near Metro Stop Far Metro Stop

 Electric vans 60 20
 Electric cars 40 30

176 SYSTEMS MODELING: ANALYSIS AND OPERATIONS RESEARCH

the information we know about the system. From the demand information,
we get the following inequalities:

 EV NM_ ≤ 60,

 EV FM_ ≤ 20,

 EC NM_ ≤ 40,

 EC FM_ ≤ 30.

 The additional inequality equation below is based on the maximum number
of EGC parking spaces at the Easy Pass toll ramp:

 EV NM EV FM EC NM EC FM_ _ _ _+ + + ≤ 100.

 There are different methods for solving linear programs. Essentially, they
search for the optimum solution that occurs at either the maximum or the
minimum point in the solution space. For our problem, we will utilize a solver
that requires the solution to be a minimization of the objective function and
inequalities to be specifi ed as vectors and matrices so that

 solution linear_programming_solver _f x c A b lower bounds() = (, , ,)),

where

 c = − − − −[] =200 220 100 150 coefficient vector of the objective fuunction,

 Ax b≤ ,

A x=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 1

,

EV_NM

EV_FM

EC_NM

EC__FM

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

, ,b

60

20

40

30

100

lower bounds_ =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0

0

20

0

.

 Since our solver requires an objective function that needs to be minimized,
we simply multiply our objective function by − 1 to transform maximization to
minimization, which gives us the coeffi cient vector c above with the negative -
 valued coeffi cients. The matrix A contains all of the coeffi cients from the
inequality equations that serve to constrain the solution space of the objective
function. For instance, the fi rst row of the matrix is equivalent to

OR METHODS 177

 1 0 0 0 60× + × + × + × ≤EV NM EV FM EC NM EC FM_ _ _ _

 or

 EV NM_ ≤ 60.

 The equation Ax ≤ b describes the set of equations that constrain the solu-
tion space given the values of A and b and the set of variables x , while the
 lower_bounds vector contains constraints on the lowest values the variables
can assume. For instance, the 20 value in the vector refers to variable EC_NM
and the constraint given earlier that 20 ECs will be guaranteed to be serving
the near metro stop.

 The outputs of the solver are the values of variables in x that provide the
optimum solution to f (x) and the optimum value itself that was achieved for
 f (x). Using our solver, the results found are

x =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

60 0

20 0

20 0

0 0

.

.

.

.

and

 f x() = 18 400, .

 The results show that we should use all the demand for EVs at the near
metro stop and zero of the ECs for the far metro stop, while the other variables
are both 20. Using these values, our objective function indicates that the EGC
endeavor would make $18,400 per day.

 But the executives forgot to mention that patrons that utilize the EGC
system are not required to pay toll, so there is a loss of revenue associated
with the park and pool service. Specifi cally, the toll for all vehicles is $10 and
the EVs can hold 10 passengers, so this is a loss of $100 that has to be reim-
bursed to the Easy Pass system. ECs can hold four passengers. We need to
update our linear program to refl ect the $10 per passenger loss of revenue.
Our objective function becomes

f x EV NM EV FM EC NM EC FM

TEV
() = × + × + × + ×

− × − ×
200 220 100 150

10 10 4 10
_ _ _ _

TTEC,

where TEV is the total number of EVs and TEC is the total number of ECs.
 Our solver has to be updated also to account for the additional constraints.

This time we will add some equality constraints that show the relationships
among the different variables such as TEV = EV_NM + EV_FM and TEC =
 EC_NM + EC_FM . We will also add one more inequality, TEV + TEC ≤ 100,
which constrains the total of these two variables to be less than or equal to

178 SYSTEMS MODELING: ANALYSIS AND OPERATIONS RESEARCH

the number of parking spaces available. Our new solver and corresponding
parameters are provided below:

 solution linear_programming_solver _f x c A b A b lowereq eq() = , , , , bbounds(),

where

 c = − − − −[] × ×200 220 100 150 100 40 10 10 4 10with added and ,

 Ax b≤

A x=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1 1 1 1 0 0

0 0 0 0 1 1

, ==

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

EV_NM

EV_FM

EC_NM

EC_FM

TEV

TEC

, b

60

20

40

30

1000

100

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

,

 A x beq eq= ,

A beq eq=

− −
− −

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢
⎤
⎦⎥

1 1 0 0 1 0

0 0 1 1 0 1

0

0
, ,

lower bounds_ =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

0

0

20

0

0

0

.

 For the equation A eq x = b eq , we moved all the variables to one side of the
equation to get TEV – EV_NM – EV_FM = 0 and TEC – EC_NM – EC_
FM = 0. Note how adding just two more variables swells the inequality coef-
fi cient matrix A from 20 numbers previously to now 36 numbers almost
doubling in size — proving that these problems can get very large and complex
very quickly.

 Our new solver yields the following results:

x =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

30 0

20 0

20 0

30 0

50 0

50 0

.

.

.

.

.

.

REFERENCES 179

and

 f x() = 9900.

 Now the results indicate that we should appropriate 50 EVs and 50 ECs.
Also, 30 EVs should be allocated to service the near metro terminal and 20
for the far metro stop, while the minimum 20 ECs should be used for the near
metro stop and 30 ECs should be allocated to the far metro terminal. Given
these new values, our objective function now correctly indicates that the EGC
endeavor would maximally make $9900 per day.

 As we can see, linear programming is a powerful technique to help answer
the business decisions of OR, but these problems are only as powerful as the
accuracy of the model developed as it is in the case of all modeling method-
ologies. Additionally, as models become more complex, keeping track of
variables, solving large matrices, and avoiding nonlinearities become more
diffi cult, which then require different solvers and maybe different approaches
to these OR problems.

 CONCLUSION

 Types of models or modeling fl avors allow us to learn or communicate some-
thing about a system in different ways depending on the questions being
asked. Conceptual models are used for communicating the overall functional-
ity of a system, while other types of models are more often used for system
analysis. We use different types of models that may be state - event focused,
physics - based, multidomain, spatial models, or composed of a hybrid of one
or more of these modeling fl avors. Upon choosing a model type, we must be
careful what tools are used to implement the model so that proper analyses
and evaluation results may be achieved.

 REFERENCES

 [1] Fishwick PA . Simulation Model Design and Execution: Building Digital Worlds .
 Upper Saddle River, NJ : Prentice Hall ; 1995 .

 [2] Aubert JP , Baget JF , Chein M . Simple conceptual graphs and simple concept
graphs . In Lecture Notes in Computer Science: Conceptual Structures: Inspiration
and Application . Vol. 4068 . Carbonell JG , Siekmann J (Eds.). Berlin/Heidelberg :
 Springer ; 2006 , pp. 87 – 101 .

 [3] Harel D . Statecharts: A visual formalism for complex systems . Science of Computer
Programming , 8 (3): 231 – 274 ; 1987 .

 [4] Zeigler B , Praehofer H , Kim TG . Theory of Modeling and Simulation . 2nd ed.
 New York : Academic Press ; 2000 .

180 SYSTEMS MODELING: ANALYSIS AND OPERATIONS RESEARCH

FURTHER READINGS

 Eriksson H - E , Penker M , Lyons B , Fado D . UML 2 Toolkit . Indianapolis, IN : Wiley ;
 2004 .

 van Harmelen F , Lifschitz V , Porter B (Eds.). Handbook of Knowledge Representation .
 Oxford, UK : Elsevier ; 2008 , pp. 213 – 237 .

181

Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains,
Edited by John A. Sokolowski and Catherine M. Banks
Copyright © 2010 John Wiley & Sons, Inc.

7

VISUALIZATION

Yuzhong Shen

 As the Chinese proverb “ A picture is worth one thousand words ” says, vision
is probably the most important sense of the fi ve human senses. The human
visual system is a sophisticated system with millions of photoreceptors in the
eyes connected to the brain through the optic nerves, bringing about enor-
mous information processing capabilities unpaired by any other human sensory
systems. Vision is an inherent ability of human beings, while many other cog-
nitive abilities such as languages are acquired with age. To exploit the immense
computing power of the human visual system, visualization is widely utilized
as one major form of information representation for various purposes.

 Visualization is a process that generates visual representations, such as
imagery, graph, and animations, of information that is otherwise more diffi cult
to understand through other forms of representations, such as text and audio.
Visualization is an essential component in modeling and simulation and is
widely utilized at various stages of modeling and simulation applications.
Visualization is especially important and useful for conveying large amount
of information and dynamic information that varies with time. The foundation
of visualization is computer graphics ; thus, understanding of fundamental
theories of computer graphics is very important for developing effective
and effi cient visualizations. This chapter fi rst introduces the fundamentals of

182 VISUALIZATION

computer graphics, including computer graphics hardware, 3D object repre-
sentations and transformations, synthetic camera and projections, lighting and
shading, and digital images and texture mapping. It then discusses contempo-
rary visualization software and tools, including low - level graphics libraries,
high - level graphics libraries, and advanced visualization tools. This chapter
concludes with case studies of two commonly used software packages, namely,
Google Earth and Google Maps . *

COMPUTER GRAPHICS FUNDAMENTALS

 In modeling and simulation, the term visualization generally refers to the
use of computer graphics for various purposes, such as visual representation of
data for analysis and visual simulation of military exercises for training. At the
core of visualization is computer graphics. Developing effective and effi cient
visualizations in modeling and simulation requires in - depth understanding of
computer graphics fundamentals. Computer graphics is a subfi eld of computer
science that is concerned with the generation or manipulation of images using
computer software and hardware [1 – 5] . Computer graphics played an essential
role in easing the use of computers and thus bringing about the omnipresence
of personal computers and other computing devices. Now computer graphics
is used in almost all computer applications, including, but not limited to,
human – computer user interface , computer - aided design (CAD) and manufac-
turing (CAM), motion pictures, video games, and advertisement.

 This section briefl y introduces several fundamental topics that are impor-
tant for users of computer graphics in order to develop effective and effi cient
visualizations. Some low - level computer graphics details, especially those real-
ized by hardware, are not covered in this section. However, it is important to
note that as the latest computer graphics hardware provides more program-
mability, the application programmers have more control of the hardware that
was not accessible before. In order to take advantage of the latest graphics
hardware, knowledge of low - level computer graphics is still needed.

Computer Graphics Hardware

 Generation of sophisticated and realistic images using computer graphics
usually involves sophisticated algorithms and large amount of data, which in
turn translate into requirements on both computational power and memory
capacity in order to execute the algorithms and store the data. Early computer
systems did not have specialized computer graphics hardware, and the central
processing unit (CPU) performed all graphics - related computations. Due to

 * Please note that color versions of the fi gures in this chapter can be found at the book ’ s ftp site
at ftp://ftp.wiley.com/public/sci_tech_med/modeling_simulation .

COMPUTER GRAPHICS FUNDAMENTALS 183

the limited computational power of early computing systems, displaying just a
few simple images could bog down their performance substantially [1,3] .
Dedicated graphics acceleration hardware fi rst became available on expensive
workstations in the mid - 1980s, followed by 2D graphics accelerators for per-
sonal computers in the early and mid - 1990s, thanks to the increasingly wide-
spread use of Microsoft Windows operating system. In the mid - and late 1990s,
3D graphics accelerations became commonplace on personal computers. These
graphics cards contained what are now called fi xed graphics pipeline since
the graphics computations performed by these graphics cards such as geomet-
ric transformations and lighting could not be modifi ed by the application
programmers. Starting early 2000s, programmable graphics pipelines were
introduced that allow application programmers to write their own shading
programs (vertex and pixel shaders) to perform their customized graphics
computations [6 – 8] .

 The dedicated hardware circuit to accelerate computer graphics computa-
tions is now commonly referred to as graphics processing unit or GPU for
short. GPUs are highly parallel, high - performance computer systems them-
selves by any benchmark measure, and they contain much more transistors
and have more computational power than traditional CPUs. The graphics
hardware can be implemented as a dedicated graphics card, which communi-
cates with the CPU on the motherboard with an expansion slot such as the
Peripheral Component Interconnect (PCI) Express. The dedicated graphics
card has its processing unit (GPU) and memory, such as the one illustrated in
Figure 7.1 . Graphics hardware can also be integrated into the motherboard,
which is referred to as integrated video. Although integrated graphics hard-
ware has its own processing unit (GPU), it does not have dedicated graphics
memory and instead it shares with the CPU the system memory on the moth-
erboard to store graphics data, such as 3D models and texture images. It is
not surprising that dedicated graphics cards offer superior performance than
integrated videos. With advances in very large - scale integrated circuit (VLSI)
technology and thanks to mass production to satisfy the consumer market, the
performance of graphics cards is improving rapidly while their costs have been

Motherboard

CPU Memory

Graphics card

GPU Memory
PCI Express

 Figure 7.1 Dedicated graphics card. The CPU is located on the motherboard, while the GPU
is on the graphics card. Each has its own memory system. CPU and GPU communicate via
the PCI Express interface.

184 VISUALIZATION

continually falling. Now new high - performance graphics cards can be pur-
chased for less than $100.

 Previously, application programmers did not pay much attention to the
GPU because the functions on the GPU were fi xed, and the application pro-
grammers could not do much about it. Now that GPUs are providing more
programmability and fl exibility in the forms of programmable vertex shaders
and pixel shaders, the application programmers need to know more about
GPU architectures in order to develop effective and effi cient visualizations
 [6 – 8] . It is critical for the modeling and simulation professionals to under-
stand the contemporary computer graphics system architecture illustrated in
Figure 7.1 .

 Because modern GPUs provide massively parallel computing capabilities, it
is desirable to perform general - purpose computations on GPUs in addition to
the traditional computer graphics applications. General - purpose computing on
graphics processing unit, or GPGPU for short, addresses such issue and is a
very active research area that studies the methods and algorithms for solving
various problems, such as signal processing and computational fl uid dynamics
using GPUs [7] . Early GPGPU applications used specialized computer graph-
ics programming languages such as GPU assembly language, which was very
low - level and diffi cult to use. High - level shading languages such as High Level
Shading Language (HLSL) and Open Graphics Library (OpenGL) Shading
Language (GLSL) were released later. However, they were designed for com-
puter graphics computations, and it was not convenient to represent general
problems using such languages. The situation changed since NVIDIA, cur-
rently the world leader on GPU market, released Compute Unifi ed Device
Architecture (CUDA), which is an extension to the C programming language
 [9,10] . The users do not need to have in - depth knowledge of programmable
shaders in order to use CUDA for general computations. Thus, the availability
of CUDA signifi cantly reduced the diffi culties using GPU for general - purpose
computations. To facilitate parallel computing on different GPUs or even
CPUs, the Open Computing Language (OpenCL) has been released for various
platforms [11] .

3D Object Representations and Transformations

 A computer graphics system can be considered as a black box, where the
inputs are objects and their interactions with each other and the outputs are
one or more 2D images that are displayed on output devices, such as liquid
crystal display (LCD) and cathode ray tube (CRT) monitors. Modern 3D
computer graphics systems are based on a synthetic camera model, which
mimics the image formation process of real imaging devices, such as real
cameras and human visual systems [1 – 5] . Various mathematical representa-
tions are needed in order to describe different elements, such as 3D objects,
camera parameters, lights, and interactions between 3D objects and lights.

COMPUTER GRAPHICS FUNDAMENTALS 185

Among the various mathematical tools used in computer graphics, linear
algebra is probably the most important and fundamental instrument.

 Modern graphics hardware is optimized for rendering convex polygons. A
convex object means that if we form a line segment by connecting two points
in the object, then any point on that line segment is also in the same object.
Convexity simplifi es many graphics computations. For this reason, 3D objects
are represented using convex polygonal meshes. As illustrated in Figure 7.2 ,
the object (tank) consists of many polygons and each polygon is formed by
several vertices. The most popular form of polygonal mesh is the triangular
mesh, since triangles are always convex and all three vertices of a triangle are
guaranteed to be on the same plane, which simplifi es and facilitates many
graphics computations, such as interpolation and rasterization. There are two
fundamental mathematical entities used to represent 3D object locations and
 transformations : points and vectors. A point represents a location in space,
and a mathematical point has neither size nor shape. A vector has direction
and length but no location. In addition to points and vectors, scalars such as
real numbers are used in computer graphics to represent quantities such as
length. Most computer graphics computations are represented using matrix
operations, such as matrix multiplication, transpose, and inverse. Thus, in -
 depth understanding and grasp of matrix operations is essential in order to
develop effective and effi cient computer graphics applications.

 For 3D computer graphics, both points and vectors are represented using
three components of real numbers, corresponding to the x , y , and z coordi-
nates in the Cartesian coordinate system. Both points and vectors can be
represented as column matrices (matrices that have only one column) and row
matrices (matrices that have only one row). This chapter utilizes column
matrices to represent points and vectors as this notation is more commonly
used in linear algebra and computer graphics literature. In practice, all points
and vectors are internally represented by four - component column matrices in
computer memory, which are called homogeneous coordinates . All affi ne
transformations such as translations and rotations can be represented by
matrix multiplications using a homogeneous coordinate system, which greatly

(a) (b) (c)

 Figure 7.2 The tank model: (a) surface representation; (b) mesh (or wireframe) representation;
(c) vertex representation (model courtesy of Microsoft XNA).

186 VISUALIZATION

simplifi es hardware implementation and facilitates pipeline realization and
execution. In the homogeneous coordinate system, a point P and a vector v
can be represented as follows:

P

x

y

z

x

y

z
=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥1 0

, .v

 (7.1)

 It should be noted that the fourth component of the point P is 1 while that
of the vector v is 0. This is true for all points and vectors. Visualizations usually
involve dynamic objects, which can change location, size, and shape with time,
for example, a running soldier, a fl ying plane, and so on. Many of these
dynamic changes can be represented using affi ne transformations, which pre-
serve the collinearity between points and ratios of distances. Affi ne transfor-
mations are essentially functions that map straight lines to straight lines. The
three most commonly used affi ne transformations are translation, rotation,
and scaling, as illustrated in Figure 7.3 .

 Both translations and rotations are rigid body transformations; that is, the
shape and the size of the object are preserved during the transformations.

(a) (b)

(c) (d)

 Figure 7.3 Examples of translation, rotation, and scaling: (a) the original model; (b) translated
model (to the left of the original location); (c) rotated model (rotation of 45 degrees about the
vertical axis); (d) scaled - down model.

COMPUTER GRAPHICS FUNDAMENTALS 187

Translation moves the object by a displacement vector d = [T x T y T z 0] T , and
the corresponding transformation matrix can be represented as

T d() =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 0

0 1 0

0 0 1

0 0 0 1

T

T

T

x

y

z

.

 (7.2)

 Assume that a point P = [x y z 1] T is on the object. After applying transla-
tion T to the object, the point P is translated to the point P ′ = [x ′ y ′ z ′ 1] T ,
which can be computed as a matrix multiplication P ′ = T P as follows:

′ =

′
′
′

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

P

x

y

z
P

T

T

T

xx

y

z

1

1 0 0

0 1 0

0 0 1

0 0 0 1

T
yy

z

x T

y T

z T

x

y

z

1 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

+
+
+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.

 (7.3)

 The inverse transformation of T (d) is T (− d), that is,

T d T d() = −() =

−
−
−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−1

1 0 0

0 1 0

0 0 1

0 0 0 1

T

T

T

x

y

z

.

 (7.4)

 The 3D rotations are specifi ed by a rotation axis (or vector), a fi xed point
through which the rotation axis passes, and a rotation angle. Here, we only
describe three simple rotations in which the fi xed point is the origin and the
rotation axes are the axes of the Cartesian coordinate system. More complex
rotations can be achieved through composite transformations that concate-
nate simple rotations. Rotations about x - , y - , and z - axes by an angle of φ can
be represented by

R Rx yφ
φ φ
φ φ

φ

φ

() =
−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

() =

1 0 0 0

0 0

0 0

0 0 0 1

cos sin

sin cos
,

cos 00 0

0 1 0 0

0 0

0 0 0 1

0 0

sin

sin cos
,

cos sin

si

φ

φ φ

φ

φ φ

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

() =

−

Rz

nn cos
.

φ φ 0 0

0 0 1 0

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(7.5)

188 VISUALIZATION

 Rotations about an arbitrary rotation axis can be derived as products of
three rotations about the x - , y - , and z - axes, respectively. Any rotation matrix
 R (φ) is always orthogonal, that is,

 R R R R Iφ φ φ φ() () = () () =T T , (7.6)

where R T (φ) is the transpose of R (φ) and I is the identity matrix. A point P
will be at the location P ′ = R P after it is transformed by the rotation R . The
inverse transformation of rotation R (φ) is R (− φ), that is,

 R Rφ φ() = −()−1 . (7.7)

 Scaling transformations are not rigid - body transformations; that is, the size
of the object can be changed by scaling, as is the shape of the object. A scaling
transformation scales each coordinate of a point on the object by different
factors [S x S y S z] T . Its matrix representation is

S S S S

S

S

S
x y z

x

y

z

, , .() =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0 0 0

0 0 0

0 0 0

0 0 0 1

 (7.8)

 Thus, a point P = [x y z 1] T is transformed into the point P ′ = [x ′ y ′ z ′ 1] T
by the scaling operation S as follows:

′ =

′
′
′

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

P

x

y

z
P

S

S

S

xx

y

z

1

0 0 0

0 0 0

0 0 0

0 0 0 1

S
yy

z

S x

S y

S z

x

y

z

1 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.

 (7.9)

 The inverse transformation of scaling S (S x , S y , S z) is S (1/ S x , 1/ S y , 1/ S z),
that is,

S SS S S
S S S

S

S

S
x y z

x y z

x

y

z

, , , ,() = ⎛
⎝⎜

⎞
⎠⎟
=

⎡

⎣

⎢
−1 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.

 (7.10)

 One common use of scaling is for unit conversion. Modeling and simulation
applications contain many sophisticated assets, such as 3D models, textures,
and so on. They are usually developed by different artists, and different units
may be used. For example, one artist might use metric units, while another
used English units. When the assets with different units are used in the same

COMPUTER GRAPHICS FUNDAMENTALS 189

application, their units should be unifi ed and scaling is used for unit conver-
sion. Scaling can also be used to change object size and to generate special
effects.

 The 3D models are usually generated by artists in a convenient coordinate
system that is called local coordinate system or object coordinate system. For
example, the origin of the local coordinate system for a character can be
located at the midpoint between the character ’ s feet with x - , y - , and z - axes
pointing right, up, and back, respectively. In applications involving many
objects, the objects ’ local coordinates are fi rst converted to the world or global
coordinate system that is shared by all objects in the scene. The most common
sequence of transformations is scaling, rotation, and translation, as shown in
Figure 7.4 .

 Synthetic Camera and Projections

 As mentioned earlier in this chapter, modern 3D computer graphics is based
on a synthetic camera model that mimics real physical imaging systems, such
as real cameras and human visual systems. The inputs to the synthetic camera
include 3D objects and camera parameters such as camera location, orienta-
tion, and viewing frustum. The output of the synthetic camera is a 2D image
representing the projections of objects onto projection plane of the synthetic
camera (corresponding to the fi lm plane of a real camera). Figure 7.5 shows
a car and a camera on the left and the image of the car captured by the camera
on the right. It can be seen that different images of the same car can be formed
by either moving the car or changing the camera settings.

 Similar to using a real camera, the application programmer must fi rst posi-
tion the synthetic camera in order to capture the objects of interests. Three
parameters are used to position and orient the camera: camera location
 P C , object location P O , and camera up direction v up . The camera location can

(a) (b) (c) (d)

 Figure 7.4 Common sequence of transformations. The most common sequence of transfor-
mations from a local coordinate system to a world coordinate system is scaling, rotation, and
translation: (a) original clock, (b) scaled clock, (c) the scaled clock in (b) is rotated for 90
degrees, and (d) the scaled and rotated clock in (c) is translated into a new location, which is
the fi nal location of the clock.

190 VISUALIZATION

be considered as the center of the camera or the camera lens; the object
location is the target location, or where the camera is looking at; the camera
up direction is a vector from the center of the camera to the top of the camera.
The camera location and object location are 3D points, while the camera up
direction is a 3D vector. A camera coordinate system can be constructed
based on these three parameters, and the three axes of the camera coor-
dinate system are represented as u , v , and n in the world coordinate system.
That is,

u v n=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

u

u

u

v

v

v

n

n

n

x

y

z

x

y

z

x

y

z

0 0 0

, ,

⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥

.

 (7.11)

 The transformation from the world coordinate system to the camera coor-
dinate system is

M =

− − −
− − −

u u u u P u P u P

v v v v P v P v P

n

x y z x C x y C y z C z

x y z x C x y C y z C z

x

, , ,

, , ,

nn n n P n P n Py z x C x y C y z C z− − −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, , ,

.

0 0 0 1

 (7.12)

 Since the fi nal rendered images are formed by the lens of the camera, all
world coordinates are transformed into camera coordinates in computer
graphics applications. A point with world coordinate P world is transformed into
its camera coordinate P camera as follows:

 P Pcamera world=M . (7.13)

 Figure 7.5 A synthetic camera example. Shown on the left are a car and a camera and on
the right is the image of the car captured by the camera. Different images of the same car can
be captured by either moving the car or adjusting the camera.

COMPUTER GRAPHICS FUNDAMENTALS 191

 Figure 7.6 shows the relationship between the world coordinate system and
the camera coordinate system.

 When using a real camera, we must adjust the focus of the camera after
positioning the camera before taking a picture. Similarly, the focus of the
synthetic camera needs to be adjusted too. The focus of the synthetic camera
can be specifi ed by defi ning different projections. There are two types of pro-
jections: perspective projections and parallel projections , which can be differ-
entiated based on the distance from the camera to the object. The camera is
located within a fi nite distance from the object for perspective projections,
while the camera is at infi nity for parallel projections. In perspective projec-
tions, the camera is called the center of projection (COP), and the rays that
connect the camera and points on the object are called projectors. Projections
of these points are the intersections between the projectors and the projection
plane, as illustrated in Figure 7.7 .

 Perspective projections can be defi ned by a viewing frustum, which is speci-
fi ed by six clipping planes: left, right, bottom, top, near, and far (Fig. 7.7). Note
that all the clipping planes are specifi ed with respect to the camera coordinate
system (in which the camera is the origin), while the camera ’ s location and
orientation are specifi ed in the world coordinate system. A special but very
commonly used type of perspective projections is symmetric perspective

z

n Pc

Po

v

u

y

xO

 Figure 7.6 Relationship between the world coordinate system and the camera coordinate
system. The three axes of the camera coordinate systems are represented as u , v , and n in
the world coordinate system. All objects ’ world coordinates are fi rst converted to camera coor-
dinates in all computer graphics applications.

192 VISUALIZATION

Top

Left

Bottom Near

Right
Far

 Figure 7.7 Perspective projections. The camera is the COP. Projectors are rays connecting
the COP and points on the objects. The intersections between the projection plane and the
projectors are the projections (or images) of the points on the object.

Far

Near

Field of view
w

h

 Figure 7.8 Symmetric perspective projective. The most common type of perspective projection
is symmetric perspective projection, which can be specifi ed by four parameters: FOV, aspect
ratio (w / h), near plane, and far plane. All the parameters are defi ned in the camera coordinate
system in which the camera is the origin.

projection, which can be specifi ed by four parameters: fi eld of view (FOV),
the aspect ratio between the width and height of the near clipping plane, and
near and far clipping planes (Fig. 7.8). Again all the parameters are specifi ed
with respect to the camera coordinate system. Perspective projections are
characterized by foreshortening, in which far objects appear smaller than close
objects (Fig. 7.9).

COMPUTER GRAPHICS FUNDAMENTALS 193

 Parallel projections can be considered as special cases of perspective projec-
tions in which the camera is located infi nitely far from the object. Thus, there
is no COP in parallel projections. Instead, direction of projection (DOP) is
used. Parallel projections can be classifi ed into orthographic projections and
oblique projections based on the relationship between the DOP and the pro-
jection plane. If the DOP is perpendicular to the projection plane, the parallel
projection is called orthographic projection; otherwise, it is called oblique
projection. Parallel projections are defi ned by specifying the six clipping planes
(left, right, bottom, top, near, and far) and the DOP. Orthographic projections
are frequently used in architectural design, CAD and CAM, and so on, because
they preserve distances and directions along the projection plane, thus allow-
ing accurate measurements.

 In 3D modeling software, it is very common to have multiple perspective
and orthographic views of the same object. The frequently used orthographic
views are generated from the top, front, and side. Figure 7.10 shows four
views of the model Tank in Autodesk Maya, a leading software package for
3D modeling, animation, visual effects, and rendering solution. Internally,
all projections are converted into an orthographic projection defi ned by a
canonical viewing volume through various transformations, such as scaling
and perspective normalization [1 – 5] .

Figure 7.9 Perspective projections. Perspective projections are characterized by foreshorten-
ing, that is, far objects appear smaller than near objects (image courtesy of Laitche).

194 VISUALIZATION

 Lighting and Shading

 Color Sources of excitation are needed to form images in physical imaging
systems. For human visual systems, the source of excitation is visible light,
which is one form of electromagnetic radiation with wavelengths in the range
of 380 – 750 nm of the electromagnetic spectrum (Fig. 7.11). Although the
visible light band covers the continuous range from 380 to 750 nm, human
visual systems are most sensitive to three primary frequencies because of the
physiological structure of human eyes. The retina on the back of human eye
is responsible for forming images of the real world , and it has two types of
photoreceptors cells: rods and cones. Rods are mainly responsible for night

400 nm 500 nm 600 nm 700 nm

 Figure 7.11 Electromagnetic spectrum. Visible light occupies the range from 380 to 750 nm
in the electromagnetic spectrum.

 Figure 7.10 Screen capture of Autodesk Maya. It is common to have multiple views of the
same object in 3D modeling software and other modeling and simulation software. Shown here
are three orthographic views (top, front, and side) and one perspective view (persp).

COMPUTER GRAPHICS FUNDAMENTALS 195

vision or low - intensity light, while cones for color vision. There are three types
of cones that are most sensitive to red, green, and blue colors, respectively.

 The tristimulus theory was developed to account for human eyes ’ physio-
logical structure, and it states that any color can be represented as a linear
combination of three monochromatic waveforms with wavelengths of 700,
546.1, and 438.1 nm, roughly corresponding to red, green, and blue colors,
respectively. Figure 7.12 shows the color matching functions, which describe
the amount of primary colors needed to match any monochromatic light of
any single wavelength. Note that the red color matching function has some
negative values, which represent the amount of red color needed to be added
to the target color so that the combined color would match the sum of blue
and green primary colors.

 Display hardware devices, such as CRT and LCD, need only generate the
three primary colors, and the fi nal color is a linear combination of them.
However, display devices cannot generate negative coeffi cients, and as a
result, display devices cannot represent the entire visible spectrum. The range
of colors that can be generated by a display device is called its color gamut,
which is the range of colors that can be generated by adding primary colors.
Different devices have different color gamut. In terms of color representa-
tions, any color can be described by its red, green, and blue components,
denoted by R, G, and B, respectively. This representation is commonly
referred to as the color cube, as shown in Figure 7.13 . In the remainder of this
chapter, we will not differentiate between the three primary colors, and all the
processing and computations will be applied to each primary color separately,
but in the same way.

0.40

0.30

0.20

0.10

0.00

400 500 600

l
700 800

–0.10

r (l)

g (l)

b (l)

 Figure 7.12 The CIR 1931 RGB color matching functions. The color matching functions are
the amounts of primary colors needed to match any monochromatic color with single wavelength
(image courtesy of Marco Polo).

196 VISUALIZATION

Lights In a dark room without any light, we cannot see anything. The same
is true for computer graphics applications. In order to generate visualizations
of the object, we fi rst need to specify light sources that mimic natural and
man - made light sources, be it the sunlight and a bulb inside a room. Different
types of light models (lighting) were developed in computer graphics to simu-
late corresponding lights in real life [1 – 5] . The most commonly used light
models in computer graphics applications are ambient light, point light, spot-
light, and directional light [1 – 5] .

 (1) Ambient lights provide uniform lighting; that is, all objects in the scene
receive the same amount of illumination from the same ambient light,
independent of location and direction. However, different objects or
even different points on the same object can refl ect the same ambient
light differently and thus appear differently. Ambient lights are used
to model lights that have been scattered so many times that their direc-
tions cannot be determined. Ambient lights are commonly used to
provide environment lighting.

 (2) A point light is an ideal light source that emits light equally in all direc-
tions, as shown in Figure 7.14 (a). A point light is specifi ed by its color
and location. The luminance of a point light attenuates with the dis-
tance from the light, and the received light at point Q can be computed
as follows:

Figure 7.13 The color cube. Display devices use three primary colors: red, green, and blue
to generate a color. Thus, a color can be represented as a point inside the cube determined
by the red, green, and blue axes.

COMPUTER GRAPHICS FUNDAMENTALS 197

I Q

a bd cd
I() =

+ +
1

2 0 ,

 (7.14)

 where I 0 is the point light intensity, d is the distance between the light
and the point Q , and a , b , and c are attenuation coeffi cients, called
constant, linear, and quadratic terms, respectively. The use of three
attenuation terms can reduce the harsh rendering effects of using just
the quadratic attenuation. Also, ambient lights can be combined with
point lights to further reduce high - contrast effects.

 (3) Spotlights produce cone - shaped lighting effects and are specifi ed by
three parameters: location, direction, and cutoff angle, as shown in
Figures 7.14 (b) and 7.15. The shape of the spotlight is a cone, which is
determined by the light ’ s location P and the cutoff angle θ . The spot-
light does not produce any luminance outside the cone. The light inten-
sity inside the cone varies as a function of the parameter φ (Fig. 7.15),
which is the angle between the direction of the spotlight and a vector
connecting the location of the spotlight (i.e., the apex of the cone) and
a point on the target object. The light intensity is a decreasing function
of the angle φ , and the attenuation with φ is usually computed as cos e φ ,
where e is a parameter that can be used to adjust the tightness of the
spotlight. In addition, spotlights also attenuate with distance, so
Equation (7.10) should be applied to spotlights as well.

 (4) Directional lights , or distant lights, are used to model light sources that
are very far from the object, such as the sunlight. A directional light
has constant intensity and is specifi ed by its direction, as the one shown
in Figure 7.14 (c). Directional lights are assumed to be located at infi n-
ity; thus, they do not have a location.

 Refl ection Models After describing several common light models used in
computer graphics, it is now time to discuss the interactions between lights
and objects: refl ection . It is these interactions that make non - self - illuminating
objects visible. For the sake of simplicity, here we only consider opaque, non -

(a) (b) (c)

 Figure 7.14 Different types of lights: (a) point light; (b) spotlight; (c) directional light.

198 VISUALIZATION

 self - illuminating objects whose appearances are totally determined by their
surface properties. (Self - illuminating objects can be modeled as lights directly.)
The light rays emitted by light sources are fi rst refl ected by the object surface;
then, the refl ected light ray reaches human eye and forms the image of the
object, as shown in Figure 7.16 .

 The interactions between lights and objects are very complicated, and
various models have been proposed. Global illuminations are physics - based

P

q

f

 Figure 7.15 Spotlight parameters. A spotlight is determined by three parameters: location,
direction, and cutoff angle. There is no light outside the cone determined by the light location
and the cutoff angle. Inside the cone, the light intensity is a decreasing function of the angle φ ,
usually computed as cos e φ .

 Figure 7.16 Interactions between lights and objects. The light rays emitted by the light source
are fi rst refl ected by the object surface; then, the refl ected light rays reach human eyes and
form the image of the object.

COMPUTER GRAPHICS FUNDAMENTALS 199

modeling that simulates multiple interactions between light sources and
objects and interactions between objects, while local illuminations only con-
sider the interactions between light sources and objects. This chapter only
considers local illumination models. Several refl ection models have been
developed to simulate a variety of interactions between light sources and
object surfaces. These models utilize several vectors as illustrated in Figure
 7.17 . The vector l indicates the direction of light source, n is the surface
normal, r is the direction of refl ection, and v is the viewer direction. All four
vectors are dependent on the point position on the object and thus can change
from point to point.

 The simplest refl ection is ambient refl ection. Because ambient light sources
provide uniform lighting, the refl ected light or brightness is not dependent on
surface normal or viewer locations. Thus, ambient refl ection can be repre-
sented as follows:

 I Q I k() = a a , (7.15)

where I a is the intensity of the ambient light and k a is the ambient refl ection
coeffi cient at point Q , which ranges from 0 to 1. It is important to note that
different points or surfaces can have different ambient refl ection coeffi cients
and thus appear differently even illuminated with the same ambient light
source. Figure 7.18 (a) shows an example of ambient refl ection. Because com-
putation of ambient refl ection does not involve any vectors or directions, the
object appear fl at and does not have any 3D feel.

 Many objects have dull or matte surfaces, and they refl ect light equally in
all directions. Such kinds of objects are called Lambertian objects, and their
refl ections are called Lambertian refl ection or diffuse refl ection. The light

 Figure 7.17 The vectors used in lighting calculation are l : light direction from the object to the
light source; n : surface normal; r : direction of refl ection; and v : viewer direction from the object
to the viewer.

200 VISUALIZATION

refl ected by Lambertian objects is determined by the angle between the light
source and the surface normal as follows:

 I Q I k I k() = = ⋅d d d dcos ,θ l n (7.16)

where I d is the light intensity, k d is the diffuse refl ection coeffi cient, and θ is
the angle between the light direction l and the surface normal n . When θ > 90 ° ,
cos θ would have a negative value, which is not reasonable because the object
cannot receive a negative light intensity. Thus, Equation (7.16) can be further
revised to accommodate this fact as follows:

 I Q I k I k() = () = ⋅()d d d dmax cos , max , .θ 0 0l n (7.17)

 Considering distance attenuation, Equation (7.17) can be further rewritten
as

I Q

a bd cd
I k

a bd cd
I k() =

+ +
() =

+ +
⋅()1

0
1

0
2 2d d d dmax cos , max , .θ l n

 (7.18)

 As Equation (7.18) indicates, the diffuse refl ection is not dependent on view
directions. Thus, the same point on the object appears the same to two viewers
at different locations. Figure 7.18 (b) shows an example of diffuse refl ection
from which it can be seen that the object (soccer) appears dull although it
does have 3D appearance.

 Shiny objects often have highlighted spots that move over the object surface
as the viewer moves. The highlights are caused by specular refl ections, which
are dependent on the angle between the viewer direction and the direction of
refl ection, that is, angle φ in Figure 7.17 . For specular surfaces, the light is
refl ected mainly along the direction of refl ection. The specular refl ections
perceived by the viewer can be modeled as follows:

 I Q I k I ke e() = = ⋅()()s s s scos max , ,φ r v 0 (7.19)

(a) (b) (c)

 Figure 7.18 Surface refl ections. The fi gure shows different surface refl ections of the same
object (a soccer ball): (a) ambient refl ection, (b) diffuse refl ection, and (c) specular refl ection.

COMPUTER GRAPHICS FUNDAMENTALS 201

where the exponent e is called the shininess parameter of the surface and a
larger e represents smaller highlighted spot. Figure 7.18 (c) shows an example
of specular refl ection. It can be seen that the object appears more realistic and
has stronger 3D feel.

 Most object surfaces have all the refl ection components discussed above.
The total combined effect of ambient refl ection, diffuse refl ection, and specu-
lar refl ection can be described by the Phong illumination model as follows:

I Q I k

a bd cd
I k I k e() = +

+ +
() + ⋅()()()a a d d s s

1
0 0

2
max cos , max , .θ r v

 (7.20)

 It is important to note that Equation (7.20) should be calculated for each
component (red, green, and blue) of each light source, and the fi nal results
are obtained by adding all the light sources. The Phong illumination model is
implemented by the fi xed graphics pipeline of OpenGL and Direct3D.

 Shading Models Vertices are the smallest units to represent information
for polygonal meshes. All the information of the polygonal mesh is defi ned at
the mesh ’ s vertices, such as surface normal, color, and texture coordinates (to
be discussed in the next section). Shading models come into play when we
need to determine the shade or the color of the points inside a polygon. Here
we briefl y discuss three commonly used shading models: fl at shading, smooth
shading, and Phong shading.

 Recall that four vectors are used to calculate the color at a point: light direc-
tion, surface normal, direction of refl ection, and viewer direction. These vectors
can vary from point to point. However, for points inside a fl at polygon, the
lighting calculations can be greatly simplifi ed. First, the surface normal is
constant for all points inside the same fl at polygon. If the point light is far
away from the polygon, the light direction can be approximated as constant.
The same approximations can be made for viewer direction if the viewer is far
away from the polygon. With these approximations, all the points inside a
polygon have the same color, and we need to perform the lighting calculation
only once and the result is assigned to all points in the polygon. Flat shading is
also called constant shading. However, polygons are just approximations of
underlying curved smooth surface, and fl at shading generally does not generate
realistic results. Figure 7.19 (a) shows an example of fl at shading of a sphere.

 The individual triangles that constitute the sphere surface are clearly visible
and thus is not a good approximation of the original sphere surface. In smooth
shading, lighting calculation is performed for each vertex of the polygon.
Then, the color of a point inside the polygon is calculated by interpolating the
vertex colors using various interpolation methods, such as bilinear interpola-
tion. Gouraud shading is one type of smooth shading in which the vertex
normal is calculated as the normalized average of the normals of neighboring
polygons sharing the vertex. Figure 7.19 (b) shows an example of Gouraud
shading of the sphere. It can be seen that Gouraud shading achieves better

202 VISUALIZATION

results than the fl at shading, but still has some artifacts such as the irregular
highlighted spot on the sphere surface. The latest graphics cards support
Phong shading, which interpolates vertex normals instead of colors across a
polygon. The lighting calculation is performed at each point inside the polygon
and thus achieves better rendering effects than smooth shading. Phong shading
was not supported directly by the graphics cards until recently. Figure 7.19 (c)
shows an example of Phong shading of the same sphere, and it can be seen
that it achieves the best and most realistic rendering effects.

 Digital Images and Texture Mapping

 As mentioned previously, vertices are the smallest units that can be used to
specify information for polygonal meshes. If the object has complex appear-
ance, for example, the object contains many color variations and a lot of
geometric details, many polygons would be needed to represent the object
complexity because colors and geometry can be defi ned only at the polygon
vertices. Even though the memory capacity of graphics cards has been increas-
ing tremendously at a constant pace, it is still not feasible to store a large
number of objects represented by high - resolution polygonal meshes on the
graphics board. Texture mapping is a revolutionary technique that enriches
object visual appearance without increasing geometric complexity signifi -
cantly. Vertex colors are determined by matching the vertices to locations in
digital images that are called texture maps.

 Texture mapping can enhance not only the object ’ s color appearance but
also its geometric appearance. Texture mapping is very similar to the decora-
tion of a room using wallpaper. Instead of painting the wall directly, pasting
wallpaper onto the wall greatly reduces the efforts needed and increases
visual appeal at the same time. Also, the wallpaper of the same pattern can
be used repeatedly for different walls. The “ wallpapers ” used in texture
mapping are called texture maps, and they can be defi ned in 1D, 2D, and
3D spaces. The most commonly used texture maps are 2D textures and digital
images are the major form of 2D textures, although textures can be generated

(a) (b) (c)

 Figure 7.19 Shading models: (a) fl at shading; (b) smooth shading; (c) Phong shading.

COMPUTER GRAPHICS FUNDAMENTALS 203

in other ways, such as automatic generation of textures using procedural
modeling methods.

 Digital Images The 2D digital images are 2D arrays of pixels, or picture
elements. Each pixel is such a tiny square on display devices that human visual
system can hardly recognize its existence, and the entire image is perceived
as a continuous space. Figure 7.20 (a) shows a color image whose original size
is 753 × 627 (i.e., 753 columns and 627 rows), and Figure 7.20 (b) shows an
enlarged version of the toucan eye in which the pixels are clearly visible.

 Each pixel has an intensity value for grayscale images or a color value for
color images. As a result of the tristimulus theory, only three components (red,
green, and blue) are needed to represent a color value. It is very common to
use 1 byte (8 bits) to represent the intensity value for each color component,
with a range from 0 to 255. Figure 7.21 shows the RGB components of the
image in Figure 7.20 (a).

(a) (b)

 Figure 7.20 Color image. (a) A color image of size 753 × 637 and (b) an enlarged version of
the toucan eye in (a) where the pixels are clearly visible in (b).

(a) (b) (c)

 Figure 7.21 Each color image or pixel has three components and shown here are the (a) red,
(b) green, and (c) blue components of the image in Figure 7.20 .

204 VISUALIZATION

 Although the RGB format is the standard format for color image repre-
sentation used by display hardware, other color spaces have been developed
for different purposes, such as printing, off - line representations, and easy
human perception. Here we briefl y describe several of them, including CMYK,
YCb C r , and HSV. The CMYK color space is a subtractive color space used for
color printing. CMYK stands for cyan, magenta, yellow, and black, respec-
tively. Cyan is the complement color of red; that is, if we subtract the red
color from a white light, the resulting color is cyan. Similarly, magenta is the
complement of green, and yellow is the complement of blue. The CMYK color
space is shown in Figure 7.22 .

 The YC b C r color space is commonly used in encoding of digital images and
videos for different electronic devices and media, for example, digital camera,
digital camcorders, and DVDs. YC b C r represents luminance, blue - difference
(blue minus luminance), and red - difference (red minus luminance). The
YCb C r color space is more suitable for storage and transmission than the RGB
space, since the three components of the YC b C r color space are less correlated.
The HSV color space contains three components: hue, saturation, and value,
and it is often used for color specifi cation by general users since it matches
human perception of colors better than other color spaces. Representations
in different color spaces can be easily converted to each other; for example,
the YC b C r color space is used to store digital color images on the hard disk,
but it is converted into the RGB color space in the computer memory (and
frame buffer) before it becomes visible on the display devices.

 Digital images can be stored on hard drives in uncompressed formats or
compressed formats. Image compression refers to the process of reducing
image fi le size using various techniques. Image compression or, more gener-
ally, data compression can be classifi ed into lossless compression and lossy
compression. Lossless compression reduces the fi le size without losing any
information, while lossy compression reduces the fi le size with information

Figure 7.22 CMYK color space.

COMPUTER GRAPHICS FUNDAMENTALS 205

loss but in a controlled way. Lossy compression is commonly used for multi-
media data encoding, such as images, videos, and audio, since some minor
information loss in such data is not noticeable to humans. Image compression
is necessary mainly because of two reasons: effective storage and fast fi le
transfer. Even though the capacity of hard drives is increasing rapidly every
year, the amount of digital images and video generated outpaces the increases
of hard drive capacity, due to the ubiquitous digital cameras, increasing image
resolution, and new high - resolution standards, for example, high - defi nition
TV (HDTV). On the other hand, image compression can greatly reduce the
time needed for transferring fi les between computers and between CPUs and
peripheral devices, such as USB storage. Various image compression algo-
rithms have been developed and among them Joint Photographic Experts
Group (JPEG) is the most widely used format. JPEG can achieve compression
ratios in the range from 12 to 18 with little noticeable loss of image quality
(see the examples in Fig. 7.23). Several techniques are used in the JPEG stan-
dard, including discrete cosine transform (DCT), Huffman coding, run - length
coding, and so on. The latest JPEG format is JPEG 2000, which uses discrete
wavelet transform (DWT) and achieves better compression ratios with less
distortion.

 Texture Mapping Texture mapping matches each vertex of the polygonal
mesh to a texel (texture element) in the texture map. Regardless of the origi-
nal size of the digital image used for the texture map, textures always have a
normalized texture coordinates in the range [0, 1], represented by u and v for
horizontal and vertical directions, respectively. Each vertex of the polygonal
mesh is assigned a pair of texture coordinates, for example, [0.32, 0.45], so that
the vertex ’ s color is determined by the texel at the location specifi ed by the
texture coordinates in the texture map. The texture coordinates for points

(a) (b) (c)

 Figure 7.23 JPEG standard format. JPEG is the standard format used for image compression.
It can achieve compression ratios from 12 to 18 with little noticeable distortion: (a) the compres-
sion ratio is 2.6 : 1 with almost no distortion, (b) the compression ratio is 15 : 1 with minor distor-
tion, and (c) the compression ratio is 46 : 1. Severe distortion is introduced, especially around
sharp edges (image courtesy of Toytoy).

206 VISUALIZATION

(a) (b)

(c) (d)

(e)

 Figure 7.24 Texture mapping: (a) the polygonal mesh of the model tank, (b) the model ren-
dered without texture mapping, (c) and (d) are two texture maps used for the model, and (e)
the fi nal tank model rendered using texture mapping.

COMPUTER GRAPHICS FUNDAMENTALS 207

inside a polygon are determined by interpolating the texture coordinates of
the polygon vertices. Figure 7.24 (a) and (b) shows the polygonal mesh for the
model tank and the surface of the tank rendered without texture mapping.
It can be seen that the tank has only a single color and does not appear
very appealing. Figure 7.24 (c) and (d) shows the two texture maps used for
the tank. The fi nal tank model rendered with texture mapping shown in
Figure 7.24 (e) has a much richer visual complexity and appears much more
realistic.

 Various methods have been developed for determining the texture coordi-
nates for each vertex of the polygonal mesh. If the object can be represented
by a parametric surface, the mapping between a point on the surface and a
location in the texture map is straightforward. Each point P (x , y , z) on the
parametric surface can be represented as a function of two parameters s and
 t as follows:

x x s t

y y s t

z z s t

= ()
= ()
= ()

⎧
⎨
⎪

⎩⎪

,

,

, .

(7.21)

 If the parameters s and t can be restricted to the range [0, 1], then a mapping
between s , t and the texture coordinates u , v can be established:

 s t u v, , .()↔ () (7.22)

 Thus, a mapping between each point location and the texture coordinates
can be established as well:

 x y z u v, , , .()↔ () (7.23)

 For objects that cannot be represented by parametric surfaces, intermediate
parametric objects, such as sphere, cylinder, and cube, are utilized. A mapping
between each point on the original surface and the parametric surface can be
established through various projections. The texture coordinates for a point
on the parametric surface is used as the texture coordinates for its correspond-
ing point on the original surface.

 In addition to increasing color variations, texture mapping has also been
used to change the geometric appearance either directly or indirectly. Displace-
ment mapping changes the vertex positions directly based on a displacement
or height map. Bump mapping does not change the object geometry directly,
but changes the vertex normals based on a bump map so that the rendered
surface appears more rugged and thus more realistic. Figure 7.25 (a) shows an
example of bump mapping. The plane appears rusty because of the effects of
bump mapping. Texture mapping can also be used for modeling perfectly

208 VISUALIZATION

refl ective surfaces. Environment mapping uses images of surrounding environ-
ment as textures for the object so that the object appears perfectly refl ective.
Various environment mapping methods have been developing, such as spheri-
cal maps and cubic maps. Figure 7.25 (b) shows an example of environmental
mapping.

 VISUALIZATION SOFTWARE AND TOOLS

 Various levels of software and tools have been developed to facilitate visual-
ization development. These software and tools form a hierarchical or layered
visualization architecture as illustrated in Figure 7.26 . At the bottom of the
hierarchy is the computer graphics hardware, which was discussed earlier in
this chapter. Computer graphics hardware is constructed using VLSI circuits,
and many graphics computations are directly implemented by hardware,
such as matrix operations, lighting, and rasterization. Hardware implemen-
tations greatly reduce the time needed for complex computations, and, as a
result, we see less nonresponsive visualizations. On top of graphics hardware
are device drivers, which control graphics hardware directly and allow easy
access to graphics hardware through its function calls. Low - level graphics
libraries, such as OpenGL and Direct3D , are built on top of device drivers,
and they perform fundamental graphics operations, such as geometry defi ni-
tion and transformations. The low - level graphics libraries are foundations
of computer graphics, and they provide the core capabilities needed to build
any graphics applications. However, it still takes a lot of effort to build com-
plex applications using the low - level graphics libraries directly. To address
this issue, high - level libraries were developed to encapsulate low - level librar-

(a) (b)

 Figure 7.25 Other texture mapping methods include (a) bump mapping and (b) environment
mapping (courtesy of OpenSceneGraph).

VISUALIZATION SOFTWARE AND TOOLS 209

ies so that it takes less time to develop visualizations. In addition, high - level
libraries provide many advanced functionalities that are not available in
low - level libraries. Finally, application programmers call the high - level librar-
ies instead of the low - level libraries. This section fi rst introduces the two
most important low - level libraries, namely, OpenGL and Direct3D. It then
discusses several popular high - level libraries. Finally, several case studies are
described.

 Low - Level Graphics Libraries

 Low - level graphics libraries are dominated by two application programming
interfaces (APIs), namely, OpenGL and Direct3D. OpenGL is a high -
performance cross - platform graphics API that is available on a wide variety
of operating systems and hardware platforms, while Direct3D mainly works
on Microsoft Windows operating systems and hardware, for example, Xbox
360 game console, and it is the standard for game development on Microsoft
Windows platforms. Most graphics card manufacturers provide both OpenGL
and Direct3D drivers for their products.

 O pen GL OpenGL [12] was originally introduced by Silicon Graphics, Inc.
in 1992, and it is now the industry standard for high - performance professional

Device drivers

Open GL

Direct 3D

High-level libraries

Application

program

Graphics hardware

 Figure 7.26 Visualization system architecture.

210 VISUALIZATION

graphics, such as scientifi c visualization, CAD, 3D animation, and visual
simulations. OpenGL is a cross - platform API that is available on all operating
systems (e.g., Windows, Linux, UNIX, Mac OS, etc.) and many hardware
platforms (e.g., personal computers, supercomputers, cell phones, PDAs , etc.).
OpenGL provides a comprehensive set of functions (about 150 core functions
and their variants) for a wide range of graphics tasks, including modeling,
lighting, viewing, rendering, image processing, texture mapping, program-
mable vertex and pixel processing, and so on. OpenGL implements a graphics
pipeline based on a state machine and includes programmable vertex and pixel
shaders via GLSL. The OpenGL Utility Library (GLU) is built on top of
OpenGL and is always included with any OpenGL implementation. GLU
provides high - level drawing functions that facilitate and simplify graphics
programming, such as high - level primitives, quadric surfaces, tessellation,
mapping between world coordinates and screen coordinates, and so on.
OpenGL is a graphics library only for rendering, and it does not support
windows management, event processing, and user interactions directly.
However, any user interfacing libraries that provide such capabilities can be
combined with OpenGL to generate interactive computer graphics, such as
Window Forms, QT, MFC, and GLUT. OpenGL is also the standard tool used
for computer graphics instruction, and many good references are available
 [1,13 – 16] . Figure 7.27 shows screen captures of two programming assignments
in the course Visualization I offered by the Modeling and Simulation graduate
program at Old Dominion University. OpenGL is used as the teaching tool
in this course.

 D irect 3 D Direct3D is a 3D graphics API developed by Microsoft for its
Windows operating systems and Xbox series game consoles. Direct3D was

(a) (b)

 Figure 7.27 Example assignments. Two examples of programming assignments in a graduate
course in Visualization offered at Old Dominion University: (a) visualization of 2D Gaussian
distribution and (b) visualization of real terrain downloaded from U.S. Geological Survey (USGS).
OpenGL was used to develop visualizations in the (chapter) author ’ s course, Visualization I .

VISUALIZATION SOFTWARE AND TOOLS 211

fi rst introduced in 1995, and early versions of Direct3D suffered from poor
performance and usability issues. However, Microsoft has been continuously
improving Direct3D, and now it has evolved into a powerful and fl exible
graphics API that is the dominant API for game development on Windows
Platforms. Direct3D is based on Microsoft ’ s Component Object Model (COM)
technology, and it has a graphics pipeline for tessellation, vertex processing,
geometry processing, texture mapping, rasterization, pixel processing, and
pixel rendering. Direct3D is designed to exploit low - level, high - performance
graphics hardware acceleration, and one of its major uses is for game develop-
ment on personal computers. This is different from OpenGL, which is a more
general - purpose 3D graphics API that is used by many professional applica-
tions on a wide range of hardware platforms. The vertex shader and pixel
shader in the Direct3D graphics pipeline are fully programmable using the
HLSL, and Direct3D does not provide a default fi xed function pipeline.
Direct3D supports two display modes: full - screen mode and windowed mode.
In full - screen mode, Direct3D generates outputs for the entire display at full
resolution, and the windowed mode generates outputs that are embedded in
a window on the display. Similar to OpenGL, Direct3D is a constantly evolv-
ing graphics API and new features are introduced continually. At the time of
writing of this chapter, the latest version is Direct3D 10 for Windows Vista.
A third programmable shader, the geometry shader, is included in Direct3D
10 for geometric topology processing. Although Direct3D is less frequently
used for computer graphics instruction, many good reference books are avail-
able [17 – 20] .

High-Level Graphics Libraries

 Although both OpenGL and Direct3D are powerful and fl exible graphics
APIs, they are still low - level libraries, and it takes substantial effort to develop
complex and advanced applications using these APIs directly. Thus, high - level
graphics libraries have been developed that encapsulate low - level APIs so that
sophisticated applications can be developed easily and quickly. Here we briefl y
describe several of them: OpenSceneGraph, XNA Game Studio, and Java3D.

OpenSceneGraph OpenSceneGraph is an open source, cross - platform 3D
graphics library for high - performance visualization applications [21] . It encap-
sulates OpenGL functionalities using object - oriented programming language
C++ and provides many optimizations and additional capabilities. The core of
OpenSceneGraph is a scene graph, which is a hierarchical data structure
(graph or tree structure) for organization and optimization of graphics objects
for the purpose of fast computation and rapid application development. Users
of OpenSceneGraph do not need to implement and optimize low - level graph-
ics functions and can concentrate on high - level content development rather
than low - level graphics details. OpenSceneGraph is not simply an object -
 oriented encapsulation of OpenGL; it provides many additional capabilities

212 VISUALIZATION

such as such as view - frustum culling, occlusion culling, level of detail nodes,
OpenGL state sorting, and continuous level of detail meshes. It supports a
wide range of fi le formats via a dynamic plug - in mechanism for 3D models,
images, font, and terrain databases. The two lead and most important devel-
opers of OpenSceneGraph are Don Burns and Robert Osfi eld, with contribu-
tions from other users and developers, including the author of this chapter.
OpenSceneGraph is now well established as the leading scene graph technol-
ogy that is widely used in visual simulation, scientifi c visualization, game
development, and virtual reality applications. Figure 7.28 illustrates several
applications developed using OpenSceneGraph.

 XNA Game Studio Microsoft XNA Game Studio is an integrated develop-
ment environment to facilitate game development for Windows PC, Xbox 360
game console, and Zune media player. The target audience of XNA Game

(a) (b)

(c) (d)

 Figure 7.28 Screen captures of applications developed using OpenSceneGraph: (a) Vizard,
courtesy of WorldViz LLC; (b) Priene the Greek Ancient City in Asia Minor, courtesy of the
Foundation of the Hellenic World; (c) ViresVIG, courtesy of VIRES Simulatiuonstechnologie
Gmbh; and (d) Pirates of the XXI Century, courtesy of !DIOsoft company.

VISUALIZATION SOFTWARE AND TOOLS 213

Studio is academics, hobbyists, and independent and small game developers
and studios. XNA Game Studio consists of two major components: XNA
Framework and a set of tools and templates for game development. XNA
Framework is an extensive set of libraries for game development based on the
.NET Framework. It encapsulates low - level technical details so that game
developers can concentrate on content and high - level development. XNA
provides templates for common tasks, such as games, game libraries, audio,
and game components. It also provides utilities for cross - platform develop-
ment, publishing, and deployment. The games developed using XNA can be
played on PC, Xbox 360, and Zune with minimal modifi cations. In addition,
XNA provides an extensive set of tutorials and detailed documentations,
which greatly reduce the learning curve and the time needed for complex
game development. Microsoft also maintains and supports XNA Creators
Club Online [22] , a Web site that provides many samples, tutorials, games,
utilities, and articles. Developers can sell games developed by them to Xbox
Live, the world ’ s largest online game community with about 17 million sub-
scribers. Figure 7.29 shows several applications developed using XNA. A
series of books on XNA have been published [23 – 25] .

 Java 3 D Java is a revolutionary programming language that is independent
of any hardware and software platforms; that is, exactly the same Java program

(a) (b)

(c) (d)

 Figure 7.29 Games developed using XNA: (a) racing, (b) role playing, (c) puzzle, (d) robot
games (game courtesy of Microsoft XNA).

214 VISUALIZATION

can run on different hardware and software platforms. The foundation of the
Java technology is the Java virtual machine (JVM). Java source programs are
fi rst compiled into bytecode, which is a set of instructions similar to assembly
language code. The JVM then compiles the bytecode into native CPU instruc-
tions to be executed by the host CPU. Java programs can run as stand - alone
applications or applets in Internet browsers with minor modifi cations. Java
3D is a graphics API for the Java platform that is built on top of OpenGL or
Direct3D. Java 3D was not part of the original Java distribution but was
introduced as a standard extension. Java 3D is a collection of hierarchical
classes for rendering of 3D object and sound. The core of Java 3D is also a
scene graph, a tree data structure for organization of 3D objects and their
properties, sounds, and lights for the purpose of fast rendering. All the objects
in Java 3D are located in a virtual universe, and they form a hierarchical
structure in the form of a scene graph. Java 3D also includes many utility
classes that facilitate rapid visualization development, such as content loaders,
geometry classes, and user interactions. Java 3D is widely used for game
development on mobile platforms, such as cell phones and PDAs, and online
interactive visualizations. Java 3D is now an open source project with contri-
butions from individuals and companies [26] . Figure 7.30 shows the screen
captures of several demos provided by Java 3D.

 Advanced Visualization Tools

 Both the low - level and high - level graphics libraries discussed in the previous
sections are intended for software development, and they require signifi cant

(a) (b)

 Figure 7.30 Screen captures of Java 3D. (a) Phong shading and (b) bump mapping.

VISUALIZATION SOFTWARE AND TOOLS 215

programming skills and experience. Since visualization is such a prevalent
component in almost all applications, many software packages have been built
so that users with less or no programming experience can make use of visual-
ization for various purposes, such as 3D modeling, scientifi c visualization, and
animations. This section briefl y introduces three software packages that are
widely used: MATLAB, Maya, and Flash.

MATLAB MATLAB is a high - level computing language and interactive envi-
ronment for numeric computation, algorithm development, data analysis, and
data visualization. It is the most widely used tool for teaching science, technol-
ogy, engineering, and mathematics (STEM) in universities and colleges and for
research and rapid prototype development in the industry. The core of
MATLAB is the MATLAB language, which is a high - level language optimized
for matrix, vector, and array computations. It provides many toolboxes for
various applications, including math and optimization, statistics and data analy-
sis, control system design and analysis, signal processing and communications,
image processing, test and measurement, computational biology, computa-
tional fi nance, and databases. The MATLAB desktop environment consists of
a set of tools that facilitate algorithm development and debugging. Users of
MATLAB can build applications with graphic user interfaces. MATLAB pro-
vides powerful visualization capabilities, and it has an extensive set of functions
for matrix and vector visualization (such as line plot, bar graph, scatter plot,
pie chart, and histogram), graph annotation and presentation, 3D visualization
(such as mesh, surface, volume, fl ow, isosurface, and streamline), displaying
images of various formats (such as jpeg, tiff, and png), as well as camera and
lighting controls. The major advantage of using MATLAB for visualization is
simplicity and rapid implementation. For many scientifi c and engineering appli-
cations, the visualization capabilities provided by MATLAB are suffi cient. In
other applications, MATLAB can be used to develop prototype visualizations
in order to obtain quick understanding of the problem. Then, a full - featured
stand - alone application can be developed, which does not need MATLAB in
order to implement and run the visualizations. MATLAB is a product of
MathWorks. Figure 7.31 shows two MATLAB visualization examples.

Maya Maya is the industry standard for 3D modeling, animation, visual
effects, and rendering. It is widely used in almost every industry that involves
3D modeling and visual effects, including game development, motion pictures,
television, design, and manufacturing. Maya has a complicated but customiz-
able architecture and interface to facilitate the application of specifi c 3D
content workfl ows and pipelines. It has a comprehensive set of 3D modeling
and texture mapping tools, including polygons, nonuniform rational B - spline
(NURBS), subdivision surfaces, and interactive UV mapping. Realistic ani-
mations can be generated using Maya ’ s powerful animation capabilities,
such as key frame animation, nonlinear animation, path animation, skinning,

216 VISUALIZATION

inverse kinematics, motion capture animation, and dynamic animation. Using
advanced particle systems and dynamics, Maya can implement realistic and
sophisticated visual effects and interactions between dynamic objects, such as
fl uid simulation, cloth simulation, hair and fur simulation, and rigid body and
soft body dynamics. Maya includes a large collection of tools to specify mate-
rial and light properties for advanced rendering. Programmable shaders using
high level shading languages such as Cg, HLSL, and GLSL can be handily
developed in Maya. In addition to Maya ’ s graphic user interface, developers
can access and modify Maya ’ s existing features and introduce new features
using several interfaces, including Maya Embedded Language (MEL), Python,
Maya API, and Maya Python API. A Maya Personal Learning Edition (PLE)
is available for learning purposes. Maya is a product of Autodesk. Figure 7.32
shows a screen capture of Maya. The building rendered in Maya is Virginia
Modeling, Analysis, and Simulation Center (VMASC) in Suffolk, VA.
VMASC also has laboratories and offi ces on the main campus of Old Dominion
University in Norfolk, VA.

 Flash Flash is an advanced multimedia authoring and development environ-
ment for creating animations and interactive applications inside Web pages.
It was originally a product of Macromedia but was recently acquired by
Adobe. Flash supports vector graphics, digital images and videos, and rich
sound effects, and it contains a comprehensive set of tools for creating, trans-
forming, and editing objects, visual effects, and animations for different hard-
ware and software platforms. Animations can be developed quickly using
optimized animation tools, including object - based animation, motion presets,
motion path, motion editor, and inverse kinematics. Procedural modeling and
fi ltering can be used to generate various visual effects more quickly and easily.
2D objects can be animated in 3D space using 3D transformation and rotation

1

0.5

0

10
10

10

5
5

5

0 0

0

–5 –5

–5

–10 –10

–10
2

0
–2

(a) (b)

–2
–3

–1
0

1
2

3

 Figure 7.31 Visualizations in MATLAB. (a) Visualization of the sinc function and (b) contour plot.

CASE STUDIES 217

tools. In addition to the graphic authoring environment, Flash has its own
scripting language, ActionScript, which is an object - oriented programming
language that allows for more fl exibilities and control in order to generate
complex interactive Web applications. Flash applications can run inside Web
pages using plug - ins, such as Flash player. Flash can also embed videos and
audio in Web pages, and it is used by many Web sites, such as YouTube. Flash
is currently the leading technology for building interactive Web pages, and it
now integrates well with other Adobe products, such as Adobe Photoshop
and Illustrator. Many interactive applications including games built using
Flash are available on the Internet. Figure 7.33 shows a screen capture of
Flash.

CASE STUDIES

 As the number 1 search engine on the Internet, Google has developed a series
of products that make heavy uses of visualizations. Here we briefl y introduce
two popular Google products: Google Earth and Google Maps.

Google Earth

Google Earth is a stand - alone application that is freely available from Google
 [27] . As its name indicates, it provides comprehensive information about

Figure 7.32 A screen capture of Maya.

218 VISUALIZATION

Earth. It integrates satellite imagery, maps, terrain, 3D buildings, places of
interest, economy, real - time display of weather and traffi c, and many other
types of geographic information [27] . Google Earth is a powerful tool that can
be used for both commercial and educational purposes. Two versions of
Google Earth are available: Google Earth and Google Earth Pro. Figures
 7.34 – 7.37 shows several screen captures of Google Earth.

Google Maps

Google Maps is an online application that runs inside Internet browsers [28] .
In addition to road maps, it can also display real - time traffi c information,
terrain, satellite imagery, photos, videos, and so on. It can fi nd places of
interest through incomplete search and provide detailed driving directions.
Users can conveniently control the travel route through mouse operations.
Figures 7.38 – 7.41 illustrate several uses of Google maps.

Figure 7.33 A screen capture of Adobe Flash (one frame in an animation is shown).

CASE STUDIES 219

Figure 7.34 Google Earth.

Figure 7.35 Google Earth 3D display. Google Earth can display 3D buildings in many places
in the world. Shown here are the buildings in lower Manhattan, NY.

Figure 7.37 Google Earth can display many types of real -time information. Shown is the traffi c
information in Hampton Roads, VA. Green dots represent fast traffi c and red for slow traffi c.

Figure 7.36 Google Earth display of 3D terrains (image is part of the Grand Canyon).

CASE STUDIES 221

Figure 7.38 Google Maps provides many types of information, such as detailed driving direc-
tions shown here.

Figure 7.39 Google Maps driving routes. Users of Google Maps can easily change driving
route by dragging waypoints to the desired locations.

Figure 7.40 Google Maps places of interest.

Figure 7.41 Google Maps provides street views that enable users to have virtual tours of the
streets that are constructed from real pictures of the streets.

CONCLUSION 223

CONCLUSION

 This chapter introduced fundamentals of computer graphics theories. GPUs
have evolved into sophisticated computing architectures that contain more
transistors and are more powerful than the CPUs. The increasing program-
mable capabilities provided by the latest GPUs require better understanding
of GPU architectures. In addition, GPUs are increasingly being used for
general - purpose computations. Transformations based on matrix computa-
tions are the foundation of computer graphics, and the use of homogeneous
coordinate system unifi es the representations for different transformations.
The 3D computer graphics is based on the synthetic camera model that mimics
real physical imaging systems. The synthetic camera must be positioned and
oriented fi rst, and different projections are developed to con fi gure its viewing
volume. Colors can be generated and represented using three primary colors.
Various models have been developed for different lights and material refl ec-
tion properties. Shading models are used to computethe color for points inside
polygons. Texture mapping is an important technique in modern computer
graphics, and it greatly increases visual complexity but with only moderate
increase in computational complexity.

 This chapter also discussed various types of software and tools to facil-
itate visualization development. OpenGL and Direct3D are the two dominant
low - level graphics libraries. OpenGL is the industry standard for high -
performance, cross - platform professional applications, while Direct3D is
the tool of choice for game development on Microsoft Windows Platform
and Xbox 360 game consoles. High - level graphics libraries encapsulate low -
 level libraries and provide additional functionalities and optimizations.
OpenSceneGraph is an open source and cross - platform 3D graphics library,
and it is the leading scene graph technology for high - performance visualiza-
tion applications. XNA Game Studio is an integrated development environ-
ment to facilitate game development for Windows PC, Xbox 360, and Zune.
Java 3D is also a scene graph, and it is widely used for mobile application and
online applications. Advanced visualization tools that require less program-
ming skills were also discussed in this chapter, including MATLAB, Maya,
and Flash.

 Highlighted were case studies of two popular Google software packages:
Google Earth and Google Maps. Google Earth is a comprehensive visual
database of Earth, while Google Maps provides many advanced capabil-
ities for travel and planning purposes. Several examples were included to
illustrate the uses of Google Earth and Google Maps. As can been from these
two examples, visualization plays an increasingly important role in people ’ s
daily life. Visualization is especially important for modeling and visualization
professionals, and in - depth understanding of visualization theories and tech-
niques is essential in developing effective and effi cient modeling and simula-
tion applications.

224 VISUALIZATION

REFERENCES

 [1] Angel E . Interactive Computer Graphics: A Top - Down Approach Using OpenGL .
 5th ed . Boston : Pearson Education ; 2008 .

 [2] Shirley P . Fundamentals of Computer Graphics . 2nd ed . Wellesley, MA : A K
Peters; 2005 .

 [3] Foley JD , van Dam A , Feiner SK , Hughes JF . Computer Graphics: Principles
and Practice, Second Edition in C . Reading, MA : Addison - Wesley Publishing
Company ; 1996 .

 [4] Lengyel E . Mathematics for 3D Game Programming and Computer Graphics .
 2nd ed . Hingham, MA : Charles River Media ; 2004 .

 [5] Van Verth JM , Bishop LM . Essential Mathematics for Games and Interactive
Applications: A Programmer ’ s Guide . Amsterdam : Morgan Kaufman Publishers ;
 2004 .

 [6] Fernando R . GPU Gems: Programming Techniques, Tips and Tricks for Real -
 Time Graphics . Boston : Addison - Wesley ; 2004 .

 [7] Pharr M , Fernando R . GPU Gems 2: Programming Techniques for High -
 Performance Graphics and General - Purpose Computation . Boston : Addison -
 Wesley ; 2005 .

 [8] Nguyen H . GPU Gems 3 . Boston : Addison - Wesley ; 2007 .
 [9] Fatahalian K , Houston M . GPUs: A closer look . ACM Queue , March/April 2008 ,

pp. 18 – 28 .
 [10] Nickolls J , Buck I , Garland M , Skadron K . Scalable parallel programming with

CUDA . ACM Queue , March/April 2008 , pp. 40 – 53 .
 [11] Khronos Group . OpenCL: The Open Standard for Heterogeneous Parallel

Programming. Available at http://www.khronos.org/developers/library/overview/
opencl_overview.pdf . Accessed May 2009 .

 [12] OpenGL Architecture Review Board, Shreiner D , Woo M , Neider J ,
 Davis T . OpenGL Programming Guide Sixth Edition: The Offi cial Guide to
Learning OpenGL . Version 2.1. Boston : Addison - Wesley ; 2007 .

 [13] Wright RS , Lipchak B , Haemel N . OpenGL SuperBible: Comprehensive Tutorial
and Reference . 4th ed . Boston : Addison - Wesley ; 2007 .

 [14] Rost RJ . OpenGL Shading Language . 2nd ed . Boston : Addison - Wesley ; 2006 .
 [15] Munshi A , Ginsburg D , Shreiner D . OpenGL ES 2.0 Programming Guide .

 Boston : Addison - Wesley ; 2008 .
 [16] Kuehne R , Sullivan JD . OpenGL Programming on Mac OS X: Architecture,

Performance, and Integration . Boston : Addison - Wesley ; 2007 .
 [17] Luna FD . Introduction to 3D Game Programming with DirectX 10 . Sudbury,

MA : Jones & Bartlett Publishers ; 2008 .
 [18] Luna FD . Introduction to 3D Game Programming with DirectX 9.0c: A Shader

Approach . Sudbury, MA : Jones & Bartlett Publishers ; 2006 .
 [19] Walsh P . Advanced 3D Game Programming with DirectX 10.0 . Sudbury, MA :

 Jones & Bartlett Publishers ; 2008 .
 [20] McShaffry M . Game Coding Complete . Boston : Charles River Media ; 2009 .
 [21] OpenSceneGraph . Available at www.openscenegraph.org . Accessed May 2009 .

REFERENCES 225

 [22] Microsoft. XNA Creators Club Online. Available at creators.xna.com . Accessed
May 2009 .

 [23] Grootijans R . XNA 3.0 Game Programming Recipes: A Problem - Solution
Approach . Berkeley, CA : Apress ; 2009 .

 [24] Lobao AS , Evangelista BP , de Farias JA , Grootjans R . Beginning XNA 3.0
Game Programming: From Novice to Professional . Berkeley, CA : Apress ; 2009 .

 [25] Carter C . Microsoft XNA Game Studio 3.0 Unleashed . Indianapolis, IN : Sams ;
 2009 .

 [26] Java 3D . Available at java3d.dev.java.net . Accessed 2009 May.
 [27] Google Earth . Available at http://earth.google.com . Accessed May 2009 .
 [28] Google Maps . Available at http://maps.google.com . Accessed May 2009 .

227

Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains,
Edited by John A. Sokolowski and Catherine M. Banks
Copyright © 2010 John Wiley & Sons, Inc.

8
M&S METHODOLOGIES:
A SYSTEMS APPROACH

TO THE SOCIAL SCIENCES

Barry G. Silverman, Gnana K. Bharathy, Benjamin Nye,
G. Jiyun Kim, Mark Roddy, and Mjumbe Poe

 Most multiagent models of a society focus on a region ’ s living environment
and its so - called political, economic, social/cultural, and infrastructural systems.
The region of interest might entail several states, a single state, and/or substate
areas. Such models often support analysts in understanding how the region
functions, and how changed conditions might alter its dynamics. However,
these models do little or nothing to support analysts in answering critical ques-
tions regarding the region ’ s key actors and between these key actors and the
environmental elements they infl uence. And, these actors can be important.
In some scenarios, they strongly infl uence the allocation of resources, fl ow of
services, and mood of the populace. In other areas, such as those involving
leadership survival, they often tend to dominate the situation.

 Needless to say, personal interaction/behavioral modeling entails getting
inside the head of specifi c leaders, key followers, and groups/factions, and bring-
ing to bear psych – socio – cultural principles, rather than physics – engineering
ones.

 Recognizing the importance of behavioral modeling to crisis management,
modeling and simulation (M & S) researchers are currently working to get a
handle on sociocognitive modeling. There are many approaches that are being
included:

228 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

 (1) Cognitive Modeling. This approach is often attempted when studying
an individual and his or her decision making. It is most often used to
study microprocesses within the mind, though it has also been scaled
to crew or team level applications. It can offer deep insights into what
is driving a given individual ’ s information collection and processing and
how to help or hurt his or her decision cycle.

 (2) Ethnographic Modeling. This is the main approach used in anthropol-
ogy to study what motivates peoples of a given culture or group. This
approach focuses on descriptive modeling of relations and relationships,
morals and judgment, mobilization stressors, human biases and errors,
and emotional activations such as in cognitive appraisal theories.

 (3) Social Agent Systems. Sociological complexity theorists tend to use
agent approaches to show how microdecisions of individual agents can
infl uence each other and lead to the emergence of unanticipated mac-
robehaviors of groups, networks, and/or populations. Traditionally, the
microdecision making of the agents is shallow, and it sacrifi ces cognitive
and/or ethnographic modeling depths in order to compute macrobe-
havior outcomes.

 (4) Political Strategy Modeling. In the rational actor theory branch of
political science, classical game theory was successful in the Cold War
era where two adversaries squared off in a confl ict involving limited
action choices, symmetrical payoff functions, and clear outcomes. To
date, this approach has not borne fruit in trying to model net - centric,
asymmetric games.

 (5) Economic Institution Modeling. This is concerned with applying
mathematical formalisms to represent public institutions (defense, reg-
ulators, education, etc.) and private sectors/enterprises (banking, man-
ufacturing, farming, etc.), and to try and explain the economies and
services of both developed and developing nations. Agents who make
the producing, selling, distribution, consuming, and so on decisions are
not modeled themselves, but rather a black box approach is the classical
method where macrobehavior data are fi t to regressive type curves and
models. In this discipline, it is acceptable for institutional theories to
be modeled with no evidence or observations behind them at all.

 These are representative paradigms drawn from the major disciplines of
what are normally considered the social sciences, that is, psychology, sociol-
ogy, anthropology, political science, and economics, respectively [1] . Each of
these disciplines typically has several competing paradigms accepted by
researchers in those fi elds, in addition to those sketched above. These para-
digms and disciplines each offer a number of advantages, but alone, they
each suffer from serious drawbacks as well. The world is not unidisciplinary
(nor uniparadigm), though it tends to be convenient to study it that way. The
nature of scientifi c method (reductionism) over time forces a deepening and

SIMULATING STATE AND SUBSTATE ACTORS WITH CountrySIM 229

narrowness of focus; knowledge silos evolves and it becomes diffi cult for indi-
viduals in different disciplines (or even in the same discipline) to see a unifying
paradigm.

 This chapter focuses on research at the University of Pennsylvania on
applying the systems approach to the social sciences. Our research agenda is
to try and to synthesize the best theories and paradigms across all the social
science disciplines, to provide a holistic modeling framework. There is no
attempt to endorse a given theory but to provide a framework where all the
theories might ultimately be tested. This is a new approach to social system
modeling, though it makes use of tried and true systems engineering princi-
ples. Specifi cally, a social system is composed of many parts that are systems
themselves. The parts have a functionality that needs to be accurately cap-
tured and encapsulated, though precision of a part ’ s inner workings is less
important than studying the whole. Provided a part ’ s functionality is ade-
quately captured, interrelation between the parts is of prime importance, as
is studying the synergies that emerge when the parts interoperate. A challenge
of social systems is that there are many subsystems that are themselves pur-
poseful systems — many levels of functionality from the depths of the cognitive
up to the heights of the economic institutions and political strategies — and one
must fi nd ways to encapsulate them in hierarchies, so that different levels may
be meaningfully studied.

 This chapter provides an overview of these important new developments.
It begins by (1) elaborating on the goals of our behavioral modeling frame-
work, (2) delving into the underpinning theory as well as its limitations, (3)
providing some examples of games based on the theory, (4) describing imple-
mentation considerations, and (5) discussing how leader/follower models
might be incorporated in or interfaced with comprehensive political, military,
economic, social, informational (psyops), and infrastructure (PMESII) models
in other chapters. We conclude with a wrap - up and way ahead.

SIMULATING STATE AND SUBSTATE ACTORS WITH CountrySIM:
SYNTHESIZING THEORIES ACROSS THE SOCIAL SCIENCES

 We had three specifi c goals in developing both the underlying (FactionSim)
framework and its country modeling application we describe here as
CountrySim . One aim of this research is to provide a generic game simulator
to social scientists and policymakers so that they can use it to rapidly mock
up a class of confl icts (or opportunities for cooperation) commonly encoun-
tered in today ’ s world. Simply put, we have created a widely applicable
game generator (called FactionSim), where one can relatively easily recreate
a wide range of social, economic, or political phenomenon so that an analyst
can participate in and learn from role - playing games or from computational
experiments about the issues at stake. Note that this game generator can be
thought of as a kind of agent - based modeling framework. However, this is

230 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

quite different from existing agent - based models because it is a framework
that is designed for implementing highly detailed, cognitive agents in realistic
social settings. This sociocognitive agent framework is called PMFserv . We
have departed from the prevailing “ Keep It Simple Stupid ” (KISS) paradigm
that is dominant in social science modeling because we see no convincing
methodological or theoretical reasons why we should limit ourselves to simple
agents and simple models, when interesting problems can be better analyzed
with more complex models, that is, with realistic agents. We do understand
the problems of complex models, and this issue will be discussed below.

 Our second aim is to create plausible artifi cial intelligence (AI) models of
human beings and, more specifi cally, leader and follower agents based on
available fi rst principles from relevant disciplines in both natural and social
sciences. We want our PMFserv agents to be as realistic as possible so that
they can help analysts explore the range of their possible actions under a
variety of conditions, thereby helping others to see more clearly how to infl u-
ence them and elicit their cooperation. A related benefi t of having realistic
agents based on evidence from video and multiplayer online games is that if
the agents have suffi cient realism, players and analysts will be motivated to
remain engaged and immersed in role - playing games or online interactive
scenarios. A “ catch - 22 ” of the fi rst two aims is that, agent - based simulation
games will be more valuable the more they can be imbued with realistic leader
and follower behaviors, while the social sciences that can reliably contribute
to this undertaking are made up of many fragmented and narrow specialties,
and few of their models have computational implementations.

 The third aim is to improve the science by synthesizing best - of - breed social
science models with subject matter expert (SEM) knowledge so the country
model merger can be tested in agent - based games, exposing their limitations
and showing how they may be improved. In the social sciences and particularly
in economics and, to a lesser extent, in political science, there seems to be an
emerging consensus that a theory should be developed with mathematical
rigor typically using a rational choice or some other approach (such as pros-
pect or poliheuristic approaches) and tested using best available data (prefer-
ably large - N). It is also true that there is a resurgent interest in conducting
experimental studies. Although we probably are not the fi rst ones to point out
this possibility, the idea of using realistic agent - based simulation to test com-
peting theories in the social sciences looks like an attractive addition to these
approaches. Especially when the availability of data is limited or the quality
of data is poor, or when experimentations using human subject is either dif-
fi cult or impossible, simulations may be the best choice. Simulators such as
PMFserv can serve as virtual petri dishes where almost unlimited varieties of
computational experimentations are possible and where various theories can
be implemented and tested to be computationally proved (i.e., to yield “ gen-
erative ” proofs). These are only some of the virtues and possibilities of having
a versatile simulator like PMFserv. In this discussion, we will limit these
experiments to our CountrySim applications in Iraq and Bangladesh.

SIMULATING STATE AND SUBSTATE ACTORS WITH CountrySIM 231

Literature Survey

 Our collection of country models, CountrySim, can best be described as a set
of complex agent - based models that use hierarchically organized and cogni-
tive – affective agents whose actions and interactions are constrained by various
economic, political, and institutional factors. It is hierarchically organized in
the sense that the underlying FactionSim framework consists of a country ’ s
competing factions, each with its own leader and follower agents. It is cogni-
tive – affective in the sense that all agents are “ deep ” PMFserv agents with
individually tailored and multi - attribute utility functions that guide a realistic
decision - making mechanism. CountrySim, despite its apparent complexity, is
an agent - based model that aims to show how individual agents interact to
generate emergent macrolevel outcomes. CountrySim ’ s user - friendly inter-
face allows variables to be adjusted and results to be viewed in multiple ways.
In this section, we briefl y overview the fi eld of agent - based modeling of social
systems. For a more in - depth review, read the National Research Council ’ s
(NRC) Behavioral Modeling and Simulation or Ron Sun ’ s Cognition and
Multi - Agent Interactions [2,3] .

Agent - based modeling is a computational method of studying how interac-
tions among agents generate macrolevel outcomes with the following two
features:

 (1) Multiple interacting entities — from agents representing individuals to
social groupings — compose an overall system

 (2) Systems exhibit emergent properties from the complex interactions of
various entities

 Interactions are complex in the sense that the emergent macrolevel out-
comes cannot be inferred by, for example, simply combining the characteris-
tics of the composing entities. Since the 1990s, agent - based modeling has been
recognized as a new way of conducting scientifi c research [4] . Agent - based
modeling is based on a rigorous set of deductively connected assumptions
capable of generating simulated data that is, in turn, amenable to inductive
analysis. However, it does not rigorously deduce theorems with mathematical
proofs or provide actual data that are obtained from reality.

 Recently, agent - based modeling has received more attention thanks to
books such as Malcolm Gladwell ’ s hugely successful Tipping Point , where
agent - based modeling was presented as the best available method for studying
rare and important political and economic events such as riots and government
and economic collapses [5] . Indeed, agent - based modeling is known to be
particularly deft at estimating the probability of such unusual large - scale
emergent events. Our CountrySim currently exhibits around 80 percent
accuracy in retrodicting various events of interest (EOI) involving politico -
 economic instabilities.

232 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

 Agent - based models can be categorized according to their respective struc-
tural features. For example, the NRC ’ s commissioned study on behavioral
M & S recently pointed out fi ve dimensions along which agent - based models
can be categorized. The fi ve dimensions are:

 (1) number of agents
 (2) level of cognitive sophistication
 (3) level of social sophistication
 (4) the means of agent representation (rules versus equations)
 (5) use of grid [2]

 For the purpose of our review, we emphasize the fi rst three dimensions.
The distinction between the use of rules and the use of equations in agent
representation seems to be increasingly blurred given the increasing prolifera-
tion of the combined use of rules and equations and given that equations can
arguably be construed as a particular kind of rules. For example, our
CountrySim uses both rules and equations for agent representation. The use
of a grid also seems to be a distinction of limited signifi cance given the pre-
dominance of grid - based models in the earlier stages of agent - based modeling
development and given that modelers no longer have to make an either - or
choice regarding grids. CountrySim, for example, is at the same time grid -
 based and not grid - based in that it uses a particular cellular automata, PS - I
(Political Science Identity; [25]), to overcome computational constraints in
terms of the number of agents. Hence, the fi rst three dimensions identifi ed by
the NRC seem to provide the most germane distinctions. Figure 8.1 locates
various well - known existing agent - based models along the three dimensions.

 The fi rst dimension is the level of cognitive sophistication, which shows
signifi cant variation from model to model. A famous model using agents with
little cognitive sophistication is the residential segregation model devised by
Nobel laureate Thomas Schelling . In Schelling ’ s model, agents could have
either black or white identities, and their decision making was limited to a
single decision concerning whether or not to stay in a particular neighborhood,
based on a simple rule concerning the neighborhood ’ s color composition (i.e.,
when the percentage of neighbors of the opposite color exceeds certain thresh-
old, move; otherwise, stay). Schelling ’ s model can be easily implemented in
agent - based modeling toolkits such as Swarm, Repast, and NetLogo. The
agents that are used in these modeling toolkits are usually low on the cognitive
sophistication dimension and tend to follow simple rules and use some sort of
cellular automata.

 In contrast, highly sophisticated cognitive agents can be modeled based on
a computational implementation of one or another overarching theory of
human cognition. This approach requires modeling the entire sequence of
information - processing and decision - making steps human beings take from
initial stimuli detection to responses via specifi c behavior. Two examples of

purely cognitive agents are atomic components of thought or adaptive charac-
ter of thought (ACT - R) and state, operator, and results (SOAR) agents. ACT - R
is currently one of the most comprehensive cognitive architectures that ini-
tially focused on the development of learning and memory and nowadays
increasingly emphasizes the sensory and motor components (i.e., the front and
back end of cognitive processing) [6 – 9] . SOAR is another sophisticated cogni-
tive architecture that can be used to build highly sophisticated cognitive
agents. SOAR is a computational implementation of Newell ’ s unifi ed theory
of cognition and focuses on solving problems [10] . Agents using SOAR archi-
tecture are capable of reactive and deliberative reasoning and are capable of
planning.

 More recently, various efforts have been made to improve and complement
these purely cognitive agents by including some aspects of the affective phe-
nomena that are typically intertwined with human cognition. The effects of
emotions on decision making and, more broadly, human behavior and the
generation of emotion through cognitive appraisal are most frequently com-
putationally implemented. Two examples are our own PMFserv and method-
ology for analysis and modeling of individual differences (MAMID). MAMID
is an integrated symbolic cognitive – affective architecture that models high -
 level decision making. MAMID implements a certain cognitive appraisal
process to elicit emotions in response to external stimuli and evaluates the
effects of these emotions on various stages of decision making [11] .

 Our own PMFserv is a commercial off - the - shelf (COTS) human behavior
emulator that drives agents in simulated game worlds and in various agent -
 based models including FactionSim and CountrySim. This software was devel-
oped over the past 10 years at the University of Pennsylvania as an architecture
to synthesize many best available models and best practice theories of human

Cognitive

sophistication

Social

sophistication

Number of

agents

PMFserv

MAMID

SOAR

ACT-R

CountrySim

FactionSim

Swarm

Repast

NetLogo

 Figure 8.1 Categories of agent - based models.

SIMULATING STATE AND SUBSTATE ACTORS WITH CountrySIM 233

234 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

behavior modeling. PMFserv agents are unscripted. Moment by moment, they
rely on their microdecision - making processes to react to actions as they unfold
and to plan out responses. A performance moderator function (PMF) is a
micromodel covering how human performance (e.g., perception, memory, or
decision making) might vary as a function of a single factor (e.g., event stress,
time pressure, grievance, etc.). PMFserv synthesizes dozens of best available
PMFs within a unifying mind – body framework and thereby offers a family of
models where microdecisions lead to the emergence of macrobehaviors within
an individual. For each agent, PMFserv operates its perception and runs its
physiology and personality/value system to determine coping style, emotions
and related stressors, grievances, tension buildup, and impact of rumors and
speech acts, as well as various collective and individual action decisions, in
order to project emergent behaviors. These PMFs are synthesized according
to the interrelationships between the parts and with each subsystem treated
as a system in itself. When profi ling an individual, various personality and
cultural profi ling instruments are utilized. These instruments can be adjusted
with Graphic User Interface (GUI) sliders and with data from Web interviews
concerning parameter estimates from a country, leader, or area expert.
PMFserv agents include a dialog engine and users can query the agents to
learn their personality profi les, their feelings about the current situation, why
they made various decisions, and what is motivating their reasoning about
alliances/relations.

 A signifi cant feature of CountrySim is the way this fi rst dimension, the level
of cognitive sophistication, is intricately linked to the third dimension, the
number of agents. In general, the more cognitively sophisticated the agents in
an agent - based model, the smaller the number of agents the model can accom-
modate, given the computational constraints of processing multiple cogni-
tively sophisticated agents in a timely manner [2] . For example, the
sophistication of the agents used in ACT - R, SOAR, and MAMID means that
these models are limited to no more than 10 – 20 agents. Indeed, no existing
model except PMFserv has been used to build models of artifi cial social
systems particularly to monitor and forecast various political and economic
instabilities of interest to military and business end users. In FactionSim and
CountrySim, PMFserv agents are skillfully sedimented to build various artifi -
cial social systems. Our cognitive – affective PMFserv agents are used to model
leaders and other infl uential agents of a social system of interest using
FactionSim and/or CountrySim, while follower agents are represented either
by a couple of archetypical PMFserv agents or by numerous simple agents in
a cellular automata (e.g., PS - I) that is intended to represent a physical and
social landscape. In our latest version of CountrySim, the sophisticated leader
agents from FactionSim and the simple follower agents from PS - I are dynami-
cally interconnected so that leader agent decisions affect follower agents ’
actions and vice versa. Unless the processing speed of computers increases
dramatically over the next few years, our method seems to be one of the more
reasonable ways to get around the problem of using cognitively sophisticated
agents to build artifi cial social systems.

 The second dimension, the level of social sophistication, is also intricately
linked to the third dimension, the number of agents, as well as to the fi rst
dimension, the level of cognitive sophistication. In general, the level of social
sophistication is relatively low for small or large agent models while relatively
high for midsized agent populations [2] . This relationship is intuitive given
that sophisticated social behavior requires some level of cognitive sophistica-
tion, while cognitive sophistication beyond a certain level is limited by the
aforementioned computational constraints. Agent - based models built using
toolkits such as Swarm, Repast, and NetLogo generally tend to exhibit slightly
higher social sophistication than models made using highly cognitively sophis-
ticated agents based on ACT - R, SOAR, and MAMID. The former set of
models is usually far less computationally constrained and can better represent
spatial relationships among agents. It is certainly true that cognitively sophis-
ticated agents can better represent multidimensional social behavior and
network effects so long as they can be combined in large numbers to build
large - scale artifi cial social systems. Thus, to maximize the dimension of social
sophistication, the best options appear to be a midsized population model with
moderately cognitively sophisticated agents or a hybrid model (using both
cognitively sophisticated and simple agents) as in the case of FactionSim and
CountrySim.

 The NRC ’ s review of agent - based modeling points out three major limita-
tions on this third way of conducting research. The three limitations are found
in the following three realms of concern:

 (1) degree of realism
 (2) model trade - offs
 (3) modeling of actions [2]

 With regard to the fi rst of these (degree of realism), we believe that our
particular approach to agent - based modeling, highlighted by our recent effort
in building CountrySim, has achieved a level of realism that has no precedent.
We use realistic cognitive – affective agents built by combining best available
principles and conjectures from relevant sciences. The rules and equations that
govern the interactions of these agents are also derived from the best available
principles and practices, with particular attention to their realism. When popu-
lating our virtual countries with agents and institutions, we triangulated three
sources:

 (1) Existing country databases from the social science community and
various government agencies and nongovernmental organizations

 (2) Information collected via automated data extraction technology from
the Web and various news feeds

 (3) Surveys of SEMs

 This approach has yielded the best possible approximations for almost all
parameter values of our model [12] .

SIMULATING STATE AND SUBSTATE ACTORS WITH CountrySIM 235

236 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

 Scholars in more tradition - bound research communities such as economet-
rics and game theory may point out that our approach violates the prevailing
KISS paradigm and commits the sin of “ overfi tting. ” As mentioned previously,
we simply depart from this prevailing paradigm because we see no convincing
methodological or theoretical reasons for adhering to it. There is an equally
important and convincing emerging paradigm named “ Keep It Descriptive
Stupid ” (KIDS) that provides an alternative framework for building realistic
and complex models of social systems [13] . This approach emphasizes the need
to make models as descriptive as possible and accepts simplifi cation only when
evidence justifi es it. The concern regarding overfi tting is also misdirected given
that, unlike in econometrics, data are not given a priori in agent - based model-
ing, and the addition of new model parameters or rules and equations increases
the number of simulation outcomes that can be generated instead of simply
fi tting the model to the given data [2] .

 With regard to the second concern (regarding model trade - offs) and the
third concern (regarding the modeling of actions), we again believe that our
particular approach to agent - based modeling, highlighted by our recent effort
in building CountrySim, has good theoretical and practical justifi cation. It is
true that using cognitively sophisticated agents limits the modeling of large -
 scale interactions among numerous agents with an entire range of possible
interactions. Also, when using simple agents, we can only conduct high - level
exploratory analyses at a high level of abstraction without gaining detailed
insights or being able to evaluate specifi c impacts of particular actions as
required by various PMSEII studies. We overcome this trade - off by simultane-
ously using both sophisticated and simple agents and by linking FactionSim
and CountrySim to a cellular automata such as PS - I.

 Concerning the modeling of actions, we overcome the need to model
actions at a reductively abstract level (attack vs. negotiate) or a highly detailed
level (seize a particular village using a particular type of mechanized infantry
vs. provide a specifi c amount of money and years of education to the village ’ s
unemployed in return for them not joining a particular local extremist group)
by building a model that can account for these two vastly different levels of
implementable actions. Our solution is to combine a higher - level CountrySim
and a lower - level VillageSim (also known as NonKin Village) that can be
linked to each other in order to serve the particular needs of different audi-
ences, from a military or a business perspective.

Technical Underpinnings: Behavioral Game Theory

 Game theory, analytic game theory, in particular, has been employed for many
years to help understand confl icts. Unfortunately, analytic game theory has a
weak record of explaining and/or predicting real - world confl ict — about the
same as random chance according to Armstrong [14] and Green [15] . In the
fi eld of economics, Camerer pointed out that the explanatory and predictive
powers of analytic game theory are being improved by replacing prescriptions

from rational economics with descriptions from the psychology of monetary
judgment and decision making [16] . This has resulted in “ behavioral game
theory ” that adds in emotions, heuristics, and so on. We pursue the same
approach and believe the term “ behavioral game theory ” is broad enough to
cover all areas of social science, not just economics.

 In particular, the military, diplomatic, and intelligence analysis community
would like for (behavioral) game theory to satisfy an expanding range of
scenario simulation concerns. Their interest goes beyond mission - oriented
military behaviors, to also include simulations of the effects that an array of
alternative diplomatic, intelligence, military, and economic (DIME) actions
might have upon the political, military, economic, social, informational
(psyops), and infrastructure (PMESII) dimensions of a foreign region. The
goal is to understand factional tensions and issues, how to prevent and end
confl icts, and to examine alternative ways to infl uence and possibly shape
outcomes for the collective good.

 Our research is aimed at supporting this. Specifi cally, we focus on the fol-
lowing questions: How can an analyst or trainee devise policies that will infl u-
ence groups for the collective good? And, what must a sociocultural game
generator encompass?

Political, Social, and Economic “Games”

 Figure 8.1 attempts to portray a fairly universal class of leader – follower games
that groups often fi nd themselves in and that are worthy of simulation studies.
Specifi cally, the vast majority of confl icts throughout history ultimately center
around the control of resources available to a group and its members. This
could be for competing groups in a neighborhood, town, region, nation, or
even between nations. Further, it applies equally to social, political, and/or
economic factions within these geographic settings. That is, this principle of
resource - based intergroup rivalry does not obey disciplinary boundaries even
though theories within single disciplines inform us about some aspect of the
game. Analysts would need an appropriate suite of editors and a generator to
help them rapidly mock up such confl ict scenarios and analyze what outcomes
arise from different courses of action/policies. We describe this game intui-
tively here and more fully in subsequent sections.

 Specifi cally, the sociocultural game centers on agents who belong to one or
more groups and their affi nities to the norms, sacred values, and interrela-
tional practices (e.g., social and communicational rituals) of those groups.
Specifi cally, let us suppose there are N groups in the region of interest, where
each group has a leader archetype and two follower archetypes (loyalists and
fringe members). We will say more about archetypes shortly, and there can
certainly be multiple leaders and followers in deeper hierarchies, but we stick
in this discussion to the smallest subset that still allows one to consider beliefs
and affi nities of members and their migration to more or less radical positions.
There is an editable list of norms/value systems from which each group ’ s

SIMULATING STATE AND SUBSTATE ACTORS WITH CountrySIM 237

238 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

identity is drawn. The range across the base of Figure 8.2 shows an example
of a political spectrum for such a list, but these could just as easily be different
parties in a common political system, diverse clans of a tribe, different groups
at a crowd event, sectors of an economy, and so on. Each entry on this list
contains a set of properties and conditions that defi ne the group, its practices,
and entry/egress stipulations. The authority of the leader in each group is also
indicated by a similarly edited list depicted illustratively across the top of
Figure 8.2 .

 While a number of assumptions made by the classical analytic game theory
are defensible (well - ordered preferences, transitivity), others are meant for
mathematical elegance. Without assumptions doing most of the “ heavy lifting, ”
it is impossible to develop mathematically tractable models [17] . This is the
 “ curse of simplicity. ” Simple or stylized game models are unable to encode
domain information, particularly the depth of the social system. For example,
human value systems are almost always assumed, hidden, or at the best,
shrunk for the purpose of mathematical elegance. Yet, human behavior is vital
to the confl ict – cooperative game behavior.

 While mathematical convenience is one explanation, there is more involved.
Many modeling platforms would simply not allow value systems to be
made explicit, and there is no modeling process that would allow one to
revisit the values. As computational power increases to accommodate more

Leader(s)

Loyal Followers

“Rival” Leaders

Fringe Followers

Prospective Followers

(and their “leaders”)

Enemy’s Fringe Fs

Enemy Loyal Fs

Enemy Leader(s)

Real* and Perceived

Assets/Resources

• Goods

• Law/Mil

• Popular Support

Real* and Perceived

Assets/Resources

• Goods

• Law/Mil

• Popular Support

Real* and Perceived

Assets/Resources

• Goods

• Law/Mil

• Popular Support

A: e.g., theocrat*

B: e.g., secular*

C: e.g., fundamentalist*

Group Values*: Secular Theocrat Fundamental Autocrat Anarchy

Grand Strategy

Category*

SPIN - Get (buy) support
for/against
group and action

FORM PACT with
another group to become
more powerful (more of
each tank) against C
• Contract Terms

Militaristic Attack on C,
spoils to A, Brag

Economic War on C,

spoils to A, Brag

Improve Life for A, Brag

Improve Life for B, Brag

Defend Economically:

Protect/Secure/Defend,
Whine About C

Defend Militarily
Protect/Secure/Defend,
Whine About C

Sub Tasks/

Missions*

Recruit
Pay (ongoing)

....

Negotiate
Offer
Haggle
Abide
Violate

..

Build, Recon,
Move, Attack,

Assassinate,

..Block Goods

Take Jobs
Deny Infrastr

Ban Trade,
Boycott, Limit
Jobs-InGroup

Fortfy border,
Patrol, Intel,
No Privacy

Give Goods

Provide Jobs

Build Infrastr

Leader Type*: Elected Tribal Dictator Religious

G
rie

v
a
n

c
e

M
e
m

b
e
rs

h
ip

G
rie

v
a
n

c
e

M
e
m

b
e
rs

h
ip

G
rie

v
a
n

c
e

M
e
m

b
e
rs

h
ip

S
p

e
e
c
h

 A
c
ts

P
h

y
s
ic

a
l/
P

o
li
ti

c
a
l

A
c

ts

 Figure 8.2 Overview of the basic leader – follower game. * , editable list.

complex models, social system modelers are beginning to address this curse
of simplicity.

 Even though such models cannot be solved mathematically, we can fi nd
solutions through validated simulation models with deep agents. If one
could fi nd clusters of parameters that pertain to a corresponding game
model, we can also start talking about correspondence between game theo-
retic models and cognitively deep simulation models. There is room for a lot
of synergy.

 Now, let us return to the cognitively detailed game. The resources of each
group are illustrated along the left side of Figure 8.2 and are summarized for
brevity into three tanks that serve as barometers of the health of that aspect
of the group ’ s assets — (1) political goods available to the members (jobs,
money, foodstuffs, training, health care etc.); (2) rule of law applied in the
group as well as level and type of security available to impose will on other
groups; and (3) popularity and support for the leadership as voted by its
members. In a later section, we will see that many more resources can be
modeled, but for the discussion here, we will start with this minimal set of
three. Querying a tank in a culture game will return current tank level and
the history of transactions or fl ows of resources (in/out), who committed that
transaction, when, and why (purpose of transactional event).

 To start a game, there are initial alignments coded manually, though these
will evolve dynamically as play unfolds. Specifi cally, each group leader, in turn,
examines the group alignments and notices loyal in - group (A), resistant out -
 group (C), and those “ undecideds ” in middle (B) who might be turned into
allies. Also, if there are other groups, they are examined to determine how
they might be enlisted to help infl uence or defend against the out - group and
whatever alliance it may have formed. Followers ’ actions are to support their
leader ’ s choices or to migrate toward another group they believe better serves
their personal value system. Actions available to leader of A are listed in the
table on the right side of Figure 8.2 as either speech acts (spin/motivate,
threaten, form pact, brag) or more physical/political acts. Of the latter, there
are six categories of strategic actions. The middle two tend to be used most
heavily by stable, peaceful groups for internal growth and development. The
upper two are economic and militaristic enterprises and campaigns taken
against other groups, while the lower two categories of actions are defensive
ones intended to barricade, block, stymie the inroads of would be attackers.
The right - hand column of the action table lists examples of specifi c actions
under each of these categories — the exact list will shift depending on whether
the game is for a population, organizational, or small group scenario. In any
case, these actions require the spending of resources in the tanks, with pro-
ceeds going to fi ll other tanks. Thus, the culture game is also a resource alloca-
tion problem. Leaders who choose successful policies will remain in power,
provide benefi ts for their followers, and ward off attackers. Analysts and
trainees interacting with this game will have similar constraints to their policies
and action choices.

SIMULATING STATE AND SUBSTATE ACTORS WITH CountrySIM 239

240 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

 The lead author spent much of 2004 assembling a paper - based version of
Figure 8.2 as a role - playing diplomacy game and play - testing it with analysts
 [18] . The goal of the game is to help players to experience what the actual
leaders are going through and, thereby, to broaden and deepen their under-
standing, help with idea generation, and sensitize them to nuances of infl uenc-
ing leaders in a given scenario. The mechanics of the game place the player
at the center of the action, and play involves setting objectives, fi guring out
campaigns, forming alliances when convenient, and backstabbing when neces-
sary. This is in the genre of the diplomacy or risk board games, though unlike
diplomacy, its rapidly reconfi gurable to any world confl ict scenario.

 After completing the mechanics and play - testing, three implementations of
the game were created: (1) a software prototype called LeaderSim (or Lsim)
that keeps world scenarios and action sets to the simplest possible, so that we
can easily build and test all of the core ideas of the theory [19] ; (2) a scaled - up
version called Athena ’ s Prism that has been delivered as a fully functioning
computer game in mid - 2005, though AI opponent features are continually
being added [18] ; and (3) a fl eshed out version called FactionSim that adds
public and private institutions (agencies) that manage the resources and run
the services of a given faction or government minister [20] . This FactionSim
version also includes group hierarchies and many more layers of leader and
follower agents who decide on their own whether to do a given leader ’ s
bidding (e.g., go to war, work in a given sector, vote for his or her reelection,
etc.). This last version is still under development, though we discuss elements
of it in subsequent sections of this paper and have working examples of it that
plug into third - party simulators to run the minds and behavior of agents in
those worlds.

Social Agents, Factions, and the FactionSim Test Bed

 This section introduces FactionSim, an environment that captures a globally
recurring sociocultural “ game ” that focuses upon intergroup competition for
control of resources (security, economic, political, etc., assets). The FactionSim
framework facilitates the codifi cation of alternative theories of factional inter-
action and the evaluation of policy alternatives. FactionSim is a tool that
allows confl ict scenarios to be established in which the factional leader and
follower agents all run autonomously; use their groups ’ assets, resources, and
institutions; and freely employ their microdecision making as the situation
requires. Macrobehaviors emerge as a result. This environment thus imple-
ments PMFserv within a game theory/PMESII campaign framework. One or
more human players interact with FactionSim and attempt to employ a set of
DIME actions to infl uence outcomes and PMESII effects.

 To set up a FactionSim game one simply profi les the items overviewed in
this section. Types of parameters for typical social system models in PMFserv
entities are given below. These may be edited at the start, but they all evolve
and adapt dynamically and autonomously as a game plays out. In addition,

there are other parameters that are automatically generated (e.g., the 22 emo-
tions of each agent, relationship levels, models of each other, etc.). Profi ling
includes:

 (1) Agents (decision - making individual actors)
 • value system/goals, standards, and preference (GSP) tree: hierarchi-

cally organized values such as short - term goals, long - term prefer-
ences and likes, and standards of behavior including sacred values
and cultural norms

 • ethno – linguistic – religious – economic/professional identities
 • level of education, level of health, physiological/stress levels
 • level of wealth, savings rate, contribution rate
 • extent of authority over each group, degree of membership in each

group
 • personality and cultural factor sets (conformity, assertivity, humani-

tarianism, etc.)
 (2) Groups/factions

 • philosophy, sense of superiority, distrust, perceived injustices/
transgressions

 • leadership, membership, other roles
 • relationship to other groups (in - groups, out - groups, alliances, atone-

ments, etc.)
 • barriers to exit and entry (saliences)
 • group level resources such as political, economic, and security

strengths
 • institutional infrastructures owned by the group
 • access to institutional benefi ts for the group members (level available

to group)
 • fi scal, monetary, and consumption philosophy
 • disparity, resource levels, assets owned/controlled

 (3) Region ’s resources
Security model (force size, structure, doctrine, training, etc.)

 • power - vulnerability computations [19]
 • Skirmish model/Urban Lanchester model (probability of kill)

Economy model (dual sector — Lewis - Ranis - Fei (LRF) model) [21]
 • formal capital economy (Solow growth model)
 • undeclared/black market [22]

Political model (loyalty, membership, voting, mobilization, etc.) [23]
 • follower social network [4,24,25]
 • info propagation/votes/small world theory [26]

SIMULATING STATE AND SUBSTATE ACTORS WITH CountrySIM 241

242 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

 (4) Institutions available to each group (public works, protections, health/
education, elections, etc.)
• capital investment, capacity for service, # of jobs
• effectiveness, level of service output
• costs of operation, depreciation/damage/decay
• level of corruption (indicates usage vs. misuse), group infl uence

 Now, with this framework in mind, let us look at the different types of
actors required to construct the kind of social system models we have built.
Frequently, we create two different types of individual actors:

 (1) Individually named personae, such as leaders, who could be profi led.
 (2) Archetypical members of the society or of a particular group whose

model parameters are dependent on societal level estimates. *

 These individuals then have the following types of action choices (at the
highest level of abstraction):

 (1) Leader - actions (A) = {Leader - actions (target) = {Speak (seek - blessing,
seek - merge, mediate, brag, threaten), Act (attack - security, attack -
 economy, invest - own - faction, invest - ally - faction, defend - economy,
defend - security)}

 (2) Follower - actions(target) = {Go on Attacks for, Support (econ), Vote
for, Join Faction, Agree with, Remain - Neutral, Disagree with, Vote
against, Join Opposition Faction, Oppose with Non - Violence(Voice),
Rebel - against/Fight for Opposition, Exit Faction}}

 Despite efforts at simplicity, stochastic simulation models for domains
of this sort rapidly become complex. If each leader has nine action choices
 “ on each of the other (three) leaders, ” then he or she has 729 (=9 3) action
choices on each turn (and this omits considering different levels of funding
each action). Each other leader has the same, so there are 729 3 (∼ 387 million)
joint action choices by others. Hence, the strategy space for a leader consists
of all assignments of his or her 729 action responses to each of the 729 3 joint
action choices by the other three. This yields a total strategy set with cardinal-

 * For each archetype, what is interesting is not strictly the mean behavior pattern, but what
emerges from the collective. To understand that, one expects to instantiate many instances
of each archetype where each agent instance is a perturbation of the parameters of the set of
PMFs whose mean values codify the archetypical class of agent they are drawn from. This means
that any computerization of PMFs should support the stochastic experimentation of behavior
possibilities. It also means that individual differences, even within instances of an archetype,
will be explicitly accounted for.

ity 387 million raised to 729, a number impossibly large to explore. As a
result, FactionSim provides an Experiment Dashboard that permits inputs
ranging from one course of action to a set of parameter experiments the
player is curious about. All data from PMFserv and the sociocultural game is
captured into log fi les. At present, we are fi nalizing an after - action report
summary module, as well as analytic capabilities for design of experiments,
for repeated Monte Carlo trials, and for outcome pattern recognition and
strategy assessment.

The Economy and Institutional Agencies

 This section overviews the version of the economic models implemented
within FactionSim as of late 2007 beginning with a macroview and moving to
individual institutions. At the macro - level, the framework of the previous
section makes it fairly straightforward to implement ideas such as the Nobel
Prize - winning LRF model or “ dual sector theory. ” This argues that a develop-
ing nation often includes a small, modern technology sector (faction) run by
elites. They exploit a much larger, poor agrarian faction, using them for near -
 free labor and preventing them from joining the elites. This gives rise to the
informal economy faction, which provides black market income and jobs, and
which may also harbor actor intent on chaos (rebellion, insurgency, coup, etc.).
Whether or not there is malicious intent to overthrow the current government
and elites, the presence of the informal sector weakens the formal economy
(elite faction) by drawing income and taxes away from it, and by potentially
bribing its institutions and actors to look the other way.

 We set up many of our country models with these types of factions. In the
balance of this section, we examine how the institutions of a single faction
work and may be infl uenced. The discussion focuses on public institutions to
keep it brief, but we also model private ones and business enterprises that the
actors may manage, work at, get goods and services from, and so on. Also, we
will examine how one can substitute more detailed, third - party models of
these institutions and enterprises without affecting the ability of our cognitive
agents to interact with them. Thus, the models discussed in this section are
defaults, and one can swap in other models without affecting how the actors
think through their resource - based, ethnocultural confl icts.

 The economic system currently in FactionSim is a mixture of neoclassical
and institutional political economy theories. Institutions are used as a mediat-
ing force that control the effi ciency of certain services and are able to be
infl uenced by groups within a given scenario to shift the equitableness of their
service provisions. Political sway may be applied to alter the functioning of
the institution, embedding it in a larger political – economy system inhabited
by groups and their members. However, the followers of each group represent
demographics on the order of millions of people. To handle the economic
production of each smaller demographic, a stylized Solow growth model
is employed [27] . The specifi c parameter values of this model depend on the

SIMULATING STATE AND SUBSTATE ACTORS WITH CountrySIM 243

244 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

status of the followers. Each follower ’ s exogenous Solow growth is embedded
inside a political economy, which endogenizes the Solow model parameters.
Some parameters remain exogenous, such as savings rate, which is kept
constant through time. As savings rates are modeled after the actual demo-
graphics in question and the time frame is usually only a few years, fi xing the
parameter seems reasonable.

 Each follower demographic ’ s production depends on their constituency
size, capital, education, health, employment level, legal protections, access to
basic resources (water, etc.), and level of government repression. These factors
parameterize the Solow - type function, in combination with a factor represent-
ing technology and exogenous factors, to provide a specifi c follower ’ s eco-
nomic output. The economic output of followers is split into consumption,
contribution, and savings. Consumption is lost for the purposes of this model.
Savings are applied to capital to offset depreciation. Contribution represents
taxation, tithing, volunteering, and other methods of contributing to group
coffers. Both followers and groups have contributions, with groups contribut-
ing to any supergroups they belong to. Contributions are the primary source
of growing groups ’ economy resources.

 The unit of interaction is the institution as a whole, defi ned by the interac-
tions between it with groups in the scenario. An institution ’ s primary function
is to convert funding into services for groups. Groups, in turn, provide service
to members. Groups, including the government, provide funding and infra-
structure usage rights. In turn, each group has a level of infl uence over the
institution, which it leverages to change the service distribution. Infl uence can
be used to increase favoritism (e.g., for one ’ s own group), but it can also be
used to attempt to promote fairness. The distribution of services is represented
as a preferred allotment (as a fraction of the total) toward each group.
Institutions are also endowed with a certain level of effi ciency. Effi ciency is
considered the fraction of each dollar that is applied to service output, as
opposed to lost in administration or misuse.

 The institutions currently modeled as of end of 2007 are public works,
health, education, legal protections, and elections. Public works provide basic
needs, such as water and sanitation. Health and education are currently
handled by a single institution, which handles health care and K - 12 schools.
Legal protections represent the law enforcement and courts that enforce laws.
Their service is the expectation to protection of full rights under law, as well
as to basic human rights. The electoral institution establishes the process by
which elections are performed, and handles vote counting and announcement
of a winner.

 The electoral institution ’ s function occurs only periodically, and favoritism
results from tampering with ballot counting. Elections are implemented in
tandem with PS - I, a cellular automata that allows incorporations of numerous
followers and the geography of a particular country, which handles the district -
 level follower preference formation and transformation (see Lustick et al.
 [25]). The electoral institution receives the actual vote results for each party

leader. The electoral institution handles electoral systems effects (variations
of the fi rst past the post, plurality, and hybrid systems), vote tampering (i.e.,
corruption), and districting effects (i.e., gerrymandering). We envision our
later releases to include strategic AI leader agents that maximize their respec-
tive political power vis - à - vis other AI leaders and human agent (analyst)
through the districting effects.

Modeling Agent Personality, Emotions, Culture, and Reactions

 Previous sections of this chapter presented a framework for implementing
theories of political science, economics, and sociology within an agent - based
game engine. The discussion thus far omitted treatment of the actors who
populate these worlds — run the groups, inhabit the institutions, and vote and
mobilize for change. These are more on the domain of the psychological and
anthropological fi elds. In this section, we introduce PMFserv, a COTS human
behavior emulator that drives agents in simulated game worlds. This software
was developed over the past 10 years at the University of Pennsylvania as an
architecture to synthesize many best - of - breed models and best practice theo-
ries of human behavior modeling. PMFserv agents are unscripted, but use
their microdecision making, as described below, to react to actions as they
unfold and to plan out responses.

 A PMF is a micromodel covering how human performance (e.g., percep-
tion, memory, or decision making) might vary as a function of a single factor
(e.g., sleep, temperature, boredom, grievance, etc.). PMFserv synthesizes
dozens of best - of - breed PMFs within a unifying mind – body framework and
thereby offers a family of models where microdecisions lead to the emergence
of macrobehaviors within an individual. None of these PMFs are “ home-
grown ” ; instead, they are culled from the literature of the behavioral sciences.
Users can turn on or off different PMFs to focus on particular aspects of inter-
est. These PMFs are synthesized according to the interrelationships between
the parts and with each subsystem treated as a system in itself.

 The unifying architecture in Figure 8.4 shows how different subsystems are
connected. For each agent, PMFserv operates what is sometimes known as an
observe, orient, decide, and act (OODA) loop. PMFserv runs the agents per-
ception (observe) and then orients all the entire physiology and personality/
value system PMFs to determine levels of fatigues and hunger, injuries and
related stressors, grievances, tension buildup, impact of rumors and speech
acts, emotions, and various mobilizations and social relationship changes since
the last tick of the simulator clock. Once all these modules and their param-
eters are oriented to the current stimuli/inputs, the upper - right module (deci-
sion making/cognition) runs a best response algorithm to try to determine or
decide what to do next. The algorithm it runs is determined by its stress and
emotional levels. In optimal times, it is in vigilant mode and runs an expected
subjective utility algorithm that reinvokes all the other modules to assess what
impact each potential next step might have on its internal parameters.

SIMULATING STATE AND SUBSTATE ACTORS WITH CountrySIM 245

246 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

 When very bored, it tends to lose focus (perception degrades), and it runs
a decision algorithm known as unconfl icted adherence mode. When highly
stressed, it will reach panic mode, its perception basically shuts down and it
can only do one of two things: (1) cower in place or (2) drop everything and
fl ee. In order to instantiate or parameterize these modules and models,
PMFserv requires that the developer profi les individuals in terms of each of
the module ’ s parameters (physiology, stress thresholds, value system, social
relationships, etc.). Furthermore, the architecture allows users to replace any
or all of these decision models (or any PMFs) with ones they prefer to use.
PMFserv is an open, plug - in architecture. *

 This is where an agent (or person) compares the perceived state of the real
world to its value system and appraises which of its values are satisfi ed or
violated. This in turn activates emotional arousals. For the emotion model, we
have implemented one as described by Silverman et al. [28] . To implement a

Group Institution

Follower

Political

Influences

Others’

influences

Others’

access

(Others’

service)

(Contributions

to others)

Current

service

Contributions

- Education

- Health

- Law/Rights

···

Service

access

Others’

funding

Economy

Resource

% Allotted

 Figure 8.3 Asset fl ow in an institutional political economy.

 * It is worth noting that because our research goal is to study best - of - breed PMFs, we avoid com-
mitting to particular PMFs. Instead, every PMF explored in this research must be readily replace-
able. The PMFs that we synthesized are workable defaults that we expect our users will research
and improve on as time goes on. From the data and modeling perspective, the consequence of
not committing to any single approach or theory is that we have to come up with ways to readily
study and then assimilate alternative models that show some benefi t for understanding our phe-
nomena of interest. This means that any computer implementation we embrace must support
plug - in/plug - out/override capabilities, and that specifi c PMFs as illustrated in Figure 8.3 should
be testable and validatable against fi eld data such as the data they were originally derived from.

Stimuli

Biology module/stress

Personality,

culture,

emotion

Memory

Decision making

Response

T
BR = E [Â P U(st, at)]··

t = 1+

-

Perception module Expression

Social module,

relations,

trust

Ally Adversary

 Figure 8.4 PMFserv: an open architecture for agent cognitive modeling.

SIMULATING STATE AND SUBSTATE ACTORS WITH CountrySIM 247

person ’ s value system, this requires every agent to have GSP trees fi lled out.
GSP trees are multi - attribute value structures where each tree node is weighted
with Bayesian importance weights. A preference tree represents an agent ’ s
long - term desires for world situations and relations (for instance, no weapons
of mass destruction, an end to global warming, etc.) that may or may not be
achieved within the scope of a scenario. Among our agents, this set of “ desires ”
translates into a weighted hierarchy of territories and constituencies.

 As an illustration of one of the modules in Figure 8.3 and of some of the
best - of - breed theories that PMFserv runs, let us consider “ cognitive appraisal ”
(personality, culture, emotion module) — the bottom - left module in Figure 8.4
also expanded in Figure 8.5 .

 The standards tree defi nes the methods an agent is willing to employ to
attain his or her preferences. The standard tree nodes that we use merge
several best - of - breed personality and culture profi ling instruments such as,
among others, Hermann traits governing personal and cultural norms, stan-
dards from the GLOBE study, top - level guidelines related to the economic
and military doctrine, and sensitivity to life (humanitarianism) [29,30] .
Personal, cultural, and social conventions render the purely Machiavellian
action choices inappropriate (“ one should not destroy weak allies simply
because they are currently useless ”). It is within these sets of guidelines that

248 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

many of the pitfalls associated with shortsighted AI can be sidestepped.
Standards (and preferences) allow for the expression of strategic mindsets.

 Finally, the goal tree covers short - term needs and motivations that drive
progress toward preferences. In the Machiavellian - and Hermann - profi led
world of leaders, the goal tree reduces to the duality of growing/developing
versus protecting the resources in one ’ s constituency [29,31] . Expressing goals
in terms of power and vulnerability provides a high - fi delity means of evaluat-
ing the short - term consequences of actions (Fig. 8.5). For nonleader agents
(or followers), the goal tree also includes traits covering basic Maslovian type
needs.

 This has been an abbreviated discussion of the internals of the cognitive
layer, the PMFserv framework. The workings of each module are widely pub-
lished and will not be repeated here. Elsewhere in other publications we have
discussed how these different functions are synthesized to create the whole
(PMFserv) [12,20,28,32] . For example, among other things, Silverman et al.
reviewed how named leaders are profi led within PMFserv, and how their
reasoning works to fi gure out vulnerability and power relative to other groups,
to form/break alliances, and to manage their careers and reputations [32] .
Likewise, it also describes the way in which archetypical follower agents
autonomously decide things like emotional activations, social mobilization,
group membership, and motivational congruence with a given leader or group.
It explains how they attempt to satisfy their internal needs (physiological,
stress, emotive, social, etc.), run their daily lives, carry out jobs and missions,
and otherwise perform tasks in the virtual world. It also reviews the many

Similarities

Differences

Leader GSP tree shred
(pro constitution)

Insurgent leader GSP tree shred

Legend:

Let

where
Leafs = set of all leaf nodes of a

GSP tree
we = multiplicative weight from

tree root to child node of entity e

Example:
GSP-Congruence: = 0.37

,

2

2 2

_

()

1

f l

l f
Leafs

l f
Leafs Leafs

GSP Congruence

w w

w w

=

−
−

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑

∑ ∑

 Figure 8.5 GSP tree structure, weights, and emotional activations for opposing leaders.

best - of - breed PMFs and models that are synthesized inside an agent to facili-
tate leader – follower reasoning.

 The National Research Council of the National Academies indicated that
as of 2007, there were no frameworks that integrate the cognitive with the
social layer agent modeling [2] . Dignum et al. suggested several intriguing
ideas for doing this, but so far have not completed that implementation [33] .
So, the PMFserv – FactionSim symbiosis offers a unique innovation by itself.
Further, we know of no environments other than CountrySim that attempt to
bring the cognitive and social agent ideas together with a landscape agent
model for modeling state and substate actors as we do in the CountrySim
generator described in the next section (Fig. 8.6).

 Modeling Methodology

 In the ensuing section, we will briefl y outline how the models are built. In
recent years, modeling methodologies have been developed that help to con-
struct models, integrate heterogeneous models, elicit knowledge from diverse
sources, and also test, verify, and validate models [34] . A diagrammatic rep-
resentation of the process is given in Figure 8.7 . The details of the process are

Ministries/

services

CentralGov

BNP

M
ili

ta
ry

R
e
lig

io
u
s
 r

ig
h
t

B
u
s
in

e
s
s

C
o
m

m
u
n
is

t

S
tu

d
e
n
t

AL CHT

PSI: Population model

Small world social

network theory:

Influential people in

the country affect

simple agents

(followers)

 Figure 8.6 Overview of the components of a CountrySim model: Bangladesh shown as an
example of political science application. BNP, Bangladeshi National Party; AL, Awani League;
CHT, Chittagong Hill Tract.

SIMULATING STATE AND SUBSTATE ACTORS WITH CountrySIM 249

250 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

beyond the scope of this paper, but can be found elsewhere [12,18] . We recap
the salient features briefl y here.

 These models are knowledge - based systems, and, to a signifi cant extent,
the modeling activity involves eliciting knowledge from SEMs as well as
extracting knowledge from other sources such as databases and event data,
consolidating the information to build a model of the social system.

 We designed and tested the knowledge engineering - based model building
process (KE process) to satisfy the following functional requirements:

 (1) Systematically transform empirical evidence, tacit knowledge, and
expert knowledge into data for modeling

 (2) Reduce human errors and cognitive biases (e.g., confi rmation bias)
 (3) Verify and validate the model as a whole
 (4) Maintain the knowledge base over time

 Conceptualize Model, Plan, and Analyze Requirements (Drill Down) The
modeling problem is characterized based on the specifi c objective (type and
purpose of the system envisaged) and the nature of the domain (how much
and what information is available, as given by the typology based on, e.g.,

Start

Conceptualize model, plan, and analyze requirements (drill down)

Implement theories/models as needed

Struturing the model:

developing cognitive, personality, and

culture structures (GSP)

Acquire and organize and

bifurcate information

Training/model

building data

Estimate weights/

parameters

Estimate model

parameters

Triangulate evidence to

disconfirm hypothesis

(differential diagnosis)

Integrate, test, and verify model

T
e
s
t/
va

lid
a
ti
o
n
 d

a
ta

Validate model

Analyze sensitivity and explore decision space

Maintain knowledge base End

Incorporate contexts

in perception

 Figure 8.7 Model construction process.

personality). In general, the objective of the modeling problem, along with
the context, provides what needs to be accomplished and serves to defi ne the
method to go about it.

 At this stage, we clarify the objectives, learn about the contexts surrounding
the model, immerse ourselves in the literature, consult SEMs, and ultimately
build a conceptual model of the modeling problem.

Review/Implement Theories/Models The basic theories necessary to
describe the social systems are implemented in the framework. However, in
some cases, additional theories may have to be incorporated, as has been the
case with economic growth model implementing Solow in the current case
 [27] . We reviewed our framework to verify whether the framework is capable
of describing the identifi ed mechanism by allowing for the same pathways to
exist in our model. It must be noted that while we implement theories, we do
not hard code the dynamics of agent behavior into the framework. The latter
is emergent.

Structuring the Model The cognitive structure of the agent world being
modeled is represented with values (in turn consisting of GSP) and contexts
and will consist of entities such as agents, groups/factions, and institutions.
The generic structure has evolved over a long period of research, has been
built collaboratively with an expert as well as using empirical materials, and
does not change between countries.

 For each country, the country experts select the confi guration of actors,
groups, and institutional parameters and provide values to those parameters.

Acquire and Organize and Bifurcate Information Once we have the
conceptual model, we determine the general requirements of such a model as
well as broad - brush data requirements. In a separate paper, we have discussed
key issues involved in obtaining data from event databases and automated
extraction techniques, as well as employing SEMs [12] .

 A number of databases contain surveys. There were two diffi culties we
faced in using these data for our purpose. First, it was hard to fi nd a one - to -
 one correspondence between a survey questionnaire item and a parameter of,
say, our GSP tree, when the surveys were not designed with our parameters
in mind. The unit of analysis for these public opinion surveys were countries,
while, for our joint sociocognitive PMFserv/FactionSim framework, the appro-
priate unit of analysis is at the faction level. Both these diffi culties were not
insurmountable; we selected survey questionnaire items that can serve as
proxy measures for our parameters of interest. By cross - tabulating and sorting
the data according to properties that categorize survey respondents into spe-
cifi c groups that match our interests, we also obtained what was close to
faction level information for a number of parameters.

 While the existing country databases and event data from Web scraping
are good assets for those of us in the M & S community who are committed to

SIMULATING STATE AND SUBSTATE ACTORS WITH CountrySIM 251

252 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

using realistic agent types to populate our simulated world, they are useful as
supplementary sources of information. A more direct source of parameter
information is SMEs, who are experts in the countries they study. We, there-
fore, designed an extensive survey to elicit knowledge from SMEs. Through
the survey, we elicited SMEs to provide this information in our preferred
format for our countries of interest.

 However, there are three main diffi culties associated with using SMEs to
elicit the information we need. First, SMEs themselves, by virtue of being
human, have biases and can make mistakes and errors [3,35] . More impor-
tantly, being a country expert does not mean that one has complete and
comprehensive knowledge; a country expert does not know everything there
is to know about a country. Second, eliciting SME knowledge requires signifi -
cant fi nancial and human resources and limit the number of SMEs that can
be employed on the same country. Third and fi nally, simply fi nding SMEs for
a particular country of interest may by itself pose a signifi cant challenge. This
short supply of expertise, a high cost of employing SMEs, and potential SME
biases and errors mean that SME knowledge itself requires verifi cation. This
verifi cation of SME input may be provided by triangulating multiple SME
estimates against each other as well as against estimates from databases and
event data.

Estimate Model Parameters After eliciting the expert input, we verify
critical pieces of information by pitting against other sources of information
such as database and event data. For this, we build an evidence table by orga-
nizing the empirical evidence or expert input by breaking statements into
simpler units with one theme (replicate if necessary), adding additional fi elds
(namely, reliability and relevance), and then sorting. The organized informa-
tion is then assessed for reliability and relevance.

 Any specifi c reliability info is used to identify and tag for further investiga-
tion and sensitivity analysis. The technique could be used in conjunction with
other KE techniques even when an expert is involved in providing the infor-
mation. In order to ensure separation of model building (training and verifi ca-
tion) and validation data, the empirical materials concerned are divided into
two different parts. One part is set aside for validation. The model is con-
structed and verifi ed out of the remaining part.

 With respect to consolidation of inputs from diverse sources and to deter-
mine the model parameters through rigorous hypothesis testing, essence of
two techniques are employed. We describe these in terms of eliciting weights
in GSP trees in the earlier Figure 8.4 . However, the same approach is also
used for eliciting all the parameters of the CountrySim:

 (1) Differential Diagnosis/Disconfi rming Evidence . Typically, a modeler
would tend to build a model by confi rming his or her evidence/data
based on satisfying strategy. This is a cognitive bias in humans. Instead,
a novel strategy or tool for disconfi rming hypotheses embraces the

scientifi c process. In developing the GSP tree structure, the structure
of the tree is considered as a hypothesis, and a paper spreadsheet - based
tool is used to disconfi rm the hypothesis (also known as differential
diagnosis) against the evidence.

 (2) Determining the Weights . The simplest way for SMEs to holistically
assign the weights is based on intuitive assessment after reading a his-
torical account. In this KE process, the weights of the nodes are semi-
quantitatively assessed against every other sibling node at the same
level, through a pair - wise comparison process. The assessment process
itself is subjective and involves pair - wise comparison. Incorporation of
pair - wise comparison caters to the fact that, at a given time, the human
mind can comfortably and reliably compare only two attributes. This
also helps eliminate inconsistent rankings within the same groups, pro-
vides more systematic processes for assessment of weights, and leaves
an audit trail in the process. This process could be used with empirical
evidences, expert input, or a combination of the techniques.

 Finally, we construct the models of agents, factions, and institutions, and
then integrate them all to make the consolidated model of the country. In
summary, databases, Web scraped event data, and SMEs are each not entirely
suffi cient, but in unison, they can provide a signifi cantly more accurate picture,
provided a rigorous process is employed to integrate their knowledge together.
For additional details, a stylized example of how model building is carried out
has been given in Silverman et al. [12] and Bharathy [34] .

Incorporate Contexts in Perception In our architecture, which imple-
ments situated ecological psychology, the knowledge about the environment
and contexts is imbued in the environment (or contexts). The agents them-
selves know nothing a priori about the environment or the actions that they
can take within that environment, but archetypical microcontexts (pTypes)
are identifi ed and incorporated in the environment. We mark up the context
in which decisions are occurring through a semantic mark up. The details of
the PMFserv architecture can be found in the published literature [28] .

Integrate, Test, and Verify Model Since our intention is to model instabil-
ity in countries, we defi ne aggregate metrics or summary outputs of instability
from default model outputs (such as decision by agents, levels of resources,
emotions, relationships, membership in different factions, etc.). The direct (or
default or base) outputs from the CountrySim model include decisions by
agents, levels of emotions, resources, and so on. These parameters are tracked
over time and recorded in the database. The aggregate metrics (summary
outputs) are called EOIs. EOIs reveal a high - level snapshot of the state of the
confl ict.

 Once the models were constructed, these were verifi ed through a hierarchi-
cal and life cycle - based inspection, against the specifi cations. Over the training

SIMULATING STATE AND SUBSTATE ACTORS WITH CountrySIM 253

254 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

period, simulated EOIs were fi t to real EOIs. Specifi cally, the weights in func-
tions transforming indicators to EOIs were fi tted for the training period and
then employed to make out - of - sample predictions in the test period.

Validate Model The intention is to calibrate the model with some training
data, and then see if it recreates a test set (actually validation). Considering
that the decision space is path - dependent and the history is only a point in the
complex space, other counterfactuals (alternative histories) might be expected
to emerge. In carrying out a detailed validation process, we primarily aim to
create correspondence with historical scenarios or higher - level outcomes with
respect to:

 (1) Descriptive and naturalistic models of human micro - or individual
behavior to test if a model recreates a historical situation

 (2) Low mutual entropy of emerging macrobehaviors in simulated worlds
versus real ones

 (3) Model alignment to confi rm whether any outcomes of the existing,
abstract, higher - level models relating to multistate could be reproduced
or correlated by mutual entropy, provided another independent model
could be found.

 Some of the potential validation techniques are as follows:

 (1) Concept validation and preliminary face validation exercises
 (2) Detailed validation exercises, such as correspondence testing against an

independent set of historical/literature evidence, model docking, a
modifi ed Turing test, cross - validation between experts, use of SMEs,
or assessment or interrogation of human subjects for stylized cases, as
appropriate.

 In the ensuing example case study, we show statistical correspondence with
testing data (independent set of data set aside for validation).

Analyze Sensitivity and Explore Decision Space In the Monte Carlo
analysis, one uses domain knowledge and the evidence tables created for dif-
ferential diagnosis to select a large subset of variables. Based on this initial
list, one should carry out the sensitivity analysis with respect to those param-
eters to determine which have signifi cant uncertainty associated with them, as
well as those that were most signifi cant for policy making.

Maintain Knowledge Base A country model must be maintained and
the actions, institutions, and so on updated at key intervals. Additionally,
we continuously improve (by design as well as by learning through feedback

THE CountrySIM APPLICATION AND SOCIOCULTURAL GAME RESULTS 255

loops) strategies, instruments, and steps that are taken for the management
of models, including refi ning and reusing, as well as monitoring through a
spiral development.

 This knowledge engineering - based modeling process has been tested by
applying it to several real - world cases that we address.

THE CountrySIM APPLICATION AND
SOCIOCULTURAL GAME RESULTS

 FactionSim and PMFserv have been, or currently are being, deployed in a
number of applications, game worlds, and scenarios. A few of these are listed
below. To facilitate the rapid composition of new casts of characters, we have
created an integrated development environment (IDE) in which one knowledge
engineers named and archetypical individuals (leaders, followers, suicide
bombers, fi nanciers, etc.) and assembles them into casts of characters useful
for creating or editing scenarios.

 Many of these previous applications have movie clips, tech reports, and
validity assessment studies available at www.seas.upenn.edu/ ∼ barryg/hbmr .
Several historical correspondence tests indicate that PMFserv mimics deci-
sions of the real actors/population with a correlation of approximately 80
percent [32,36] . In 2008, we have applied the framework to model 12 repre-
sentative countries across Asia (e.g., China, India, Russia, Bangladesh, Sri
Lanka, Thailand, North Korea, etc.). We codifi ed this into a generic applica-
tion for generating country models that we call CountrySim. The CountrySim
collection of country models can best be described as a set of complex agent -
 based models that use hierarchically organized and cognitive – affective agents
whose actions and interactions are constrained by various economic, political,
and institutional factors. It is hierarchically organized in the sense that the
underlying FactionSim framework consists of a country ’ s competing factions,
each with its own leader and follower agents. It is cognitive – affective in the
sense that all agents are “ deep ” PMFserv agents with individually tailored and
multi - attribute utility functions that guide a realistic decision - making mecha-
nism. CountrySim, despite its apparent complexity, is an agent - based model
that aims to show how individual agents interact to generate emergent mac-
rolevel outcomes. CountrySim ’ s user - friendly interface allows variables to be
adjusted and results to be viewed in multiple ways. It is very easy in CountrySim
to trace inputs through to outputs or vice versa, examine an output and trace
it back to the inputs that may have caused it.

 For a given state being modeled, CountrySim uses FactionSim (and
PMFserv) typically to profi le 10s of signifi cant ethnopolitical groups and a few
dozen named leader agents, ministers, and follower archetypes. These cogni-
tively detailed agents, factions, and institutions may be used alone or atop of

256 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

another agent model that includes 10,000s of lightly detailed agents in popula-
tion automata called PSI. Figure 8.4 shows the architecture of a typical country
model, in this case Bangladesh. We will describe its structure more fully in the
Bangladesh section, but here let us focus on how the PMFserv agents are
organized into FactionSim groups and roles. Further, there is a bridge to the
PSI population substrate through which the cognitively detailed PMFserv
agents pass on their DIME actions and decisions that affect 10,000s of simple
agents in the landscape. This PSI landscape is the topic of several published
papers, and we will describe it only from the viewpoint of the services it pro-
vides to CountrySim [25] . Specifi cally, PSI organizes the simple agents in a
spatial distribution similar to how identities and factions are geographically
oriented in the actual country. This provides detail about regime extent and
reach, and about message propagation delays that FactionSim alone omits.
The FactionSim and PSI landscape agents thus are bridged together, and a
two - way interaction ensues in which FactionSim leaders, ministers, and infl u-
ential follower archetypes tend to make decisions that affect the landscape
agents. In the sociopolitical context of CountrySim, the landscape then propa-
gates the impacts and returns simple agent statistics that FactionSim uses to
update faction resources and memberships, count votes for elections, and in

Table 8.1 Past PMFserv applications

 Domestic Applications International Applications

 (1) Consumer modeling
 Buyer behavior
 Ad campaign

 (2) Pet world
 Pet behavior

 (3) Gang members
 Hooligans

 (4) Crowd scenes
 Milling
 Protesting
 Rioting
 Looting

 (1) Models of selected countries (Bangladesh, Sri Lanka,
Thailand, and Vietnam) including major factions, its
leaders, decisions as well as summary confl ict
indicators such as rebellion, insurgency, domestic
political crisis, intergroup violence, and state
repression

 (2) Intifadah recreation (leaders, followers) —
Roadmap sim

 (3) Somalia crowds — Black Hawk Down (males, females,
trained militia, clan leaders)

 (4) Ethnic village recreations (tribal, political, and
economic factions at the street level for tactical
DIME_PMESII training)

 (5) Iraq DIME - PMESII sim — seven ethnic groups,
parliament (leaders and 15,000 followers)

 (6) Urban Resolve 2015 — Sim - Red (multiple insurgent
cell members/roles/missions)

 (7) State instability modeling 12 representative nations
across Asia

 (8) Interstate, world diplomacy game (Athena ’ s Prism);
many world leaders profi led

part determine some of the well - being and instability indicators used in our
overall summary metric forecasts and computations.

 CountrySim, as just described, offers a capability that is unique for analysts
in at least three dimensions. It does of course support the exploration of pos-
sible futures and sensitivity experiments; however, that alone is not unique to
our approach. In terms of novelty, CountrySim elicits the qualitative models
of SMEs of a given nation and permits them to run a quantized version of
their model. These SME models tend to differ from traditional statistical (or
even AI models) models and often incorporate insights into the personality
and underlying motivations of the leaders involved, insights about the cultural
traits and ethnopolitical group cleavages, and local knowledge about the
history of grievances and transgressions at play. Eliciting this permit us to
better understand each SME ’ s models, observe its performance, track its
forecasts, and help to improve it over time. CountrySim offers a uniquely
transparent drill - down capability where one can trace potential causalities by
working backward from summary outcome EOIs to indicators and events that
are summed up in those indicators. Further, one can fi nd the agents that pre-
cipitated those events and query them through a dialog engine to inspect their
rationale and motivations that lead them to the action choices they made. This
is very helpful to analysts trying to diagnose potential causes and fi nd ways
that might better infl uence outcomes. Finally, CountrySim is able to integrate
best - of - breed theories and practices from the social and behavioral sciences
and engineering into the simulator components — in fact, components are built
exclusively by synthesizing social science theories. The SME mental models
are elicited as parameterizations of these best practice scientifi c theories/
models. As such, we provide a pathway for studying the underlying social sci-
ences including their strengths, gaps, and needs for further research.

Case Study: CountrySim Applied to Iraq

 During the spring of 2006 and well before the “ surge ” in U.S. troops, fi ve
student teams assembled a total of 21 PMFserv leader profi les across seven
real - world factions so that each faction had a leader and two subfaction
leaders. The seven factions — government (two versions — CentralGov and
LoclGov), Shia (two tribes), Sunnis, Kurds, and Insurgents — could be deployed
in different combinations for different scenarios or vignettes. The leader and
group profi les were assembled from open source material and followed a
rigorous methodology for collecting evidence, weighing evidence, considering
competing and incomplete evidence, tuning the GSP trees, and testing against
sample data sets [8] . This Iraqi CountrySim model did not include a PSI popu-
lation layer. The PMFserv agents provided all the decision making, action
taking, and opinion/voting feedback.

 Validation testing of these models was run at a military organization for
2 weeks in May 2006. They assembled 15 SMEs across areas of military,
diplomatic, intel, and systems expertise. Within each vignette, the SMEs

THE CountrySIM APPLICATION AND SOCIOCULTURAL GAME RESULTS 257

258 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

attempted dozens of courses of action across the spectrum of possibilities
(rewards, threats, etc.). A popular course of action of the diplomats was to
 “ sit down ” with some of the persuadable leaders and have a strong talk with
them. This was simulated by the senior diplomat adjusting that leader ’ s per-
sonality weights (e.g., scope of doing good, treatment of out - groups, etc.) to
be what he or she thought might occur after a call from President Bush or
some other infl uential leader. The SME team playing the multinational coali-
tion presented their opinions at the end of each vignette. The feedback indi-
cated that the leader and factional models corresponded with SME knowledge
of their real - life counterparts. They accepted the profi ling approach as best in
class and invited us onto the team for the follow on.

 Here we show an illustrative policy experiment on four factions initially
organized into two weak alliances (dyads):

 (1) CentralGov trying to be secular and democratic with a Shia tribe
squarely in their alliance but also trying to embrace all tribes,

 (2) a Shia tribe that initially starts in the CentralGov ’ s dyad but has fun-
damentalist tendencies,

 (3) a secular Sunni tribe that mildly resents CentralGov but does not
include revengists,

 (4) Insurgents with an Arab leader trying to attract Sunnis and block Shia
control.

 Each faction has a leader with two rival subleaders (loyal and fringe) and
followers as in Figure 8.1 — all 12 are named individuals, many are known in
the United States. This is a setup that should mimic some of the factional
behaviors going on in Iraq, although there are dozens of political factions
there in actuality. Figure 8.3 summarizes the outcomes of three sample runs
(mean of 100 trials each) over a 2 - year window. The vertical axis indicates
the normalized fraction of the sum across all security tanks in these factions,
and thus the strip chart indicates the portion of the sum that belongs to
each faction. Rises and dips correspond either to recruiting and/or to battle
outcomes between groups. The independent variable is how much outside
support is reaching the two protagonists — CentralGov and Insurgents. When
CentralGov and Insurgents are externally supported (3A), CentralGov aids
the Shia militia economically, while the Shia battle the Insurgents. Fighting
continues throughout the 2 - year run. A takeaway lesson of this run seems
to be that democracy needs major and continuous outside help, as well as
luck in battle outcomes and some goodwill from tribes for it to take root.
When only the Insurgents are supported (3B), the CentralGov is crippled
by Insurgent attacks and civil war prevails. When the borders are fully closed
and no group receives outside support (3C), the insurgency ultimately fails,
but the CentralGov becomes entirely reliant upon the Shia group for military
strength — a puppet government. These runs suggest the elasticity of confl ict

with respect to outside support is positive, and with no interference, the
country seems able to right itself, although we in the West might not like the
outcome. Of course, these runs only include four of the many factions one
could set up and run, plus due to page limits, we only displayed the effects of
actions upon the security tank, and not other resources of the factions.

 FactionSim, with the help of PMFserv, is able to help the analyst to gener-
ate and understand why (space limits prevent us from showing the drill - down
diagrams, so we summarize them briefl y here). The agents and factions in our
runs fi ght almost constantly and are more likely to attack groups with which
they have negative relationships and strong emotions. Relationship and emo-
tions also factor into the formation of alliances. For example, across all runs,
CentralGov has a friendly relationship toward the Shia, who are moderately
positive back. This leads to CentralGov giving aid to the Shia and consistently
forming an ally. Likewise, the Sunni secular has slight positive feelings toward
the Insurgents and is more likely to assist them, unless others are more power-
ful. Finally, some action choices seem to have purely emotional payoffs. For
example, from an economic perspective, the payoff from attacking an enemy
with zero economy is zero — a wasted turn. Yet in run 2c, when the Insurgents
fail, the Shia still occasionally attack them simply because the Insurgents are
their enemy. This seems to be a case where emotional payoffs are at least as
important as economic payoffs (Fig. 8.8).

Case Study: CountrySim Applied to Bangladesh

 The previous case showed a CountrySim model assembled by laypersons from
open literature, which was shown to pass the validity assessment of a panel of
experts who accepted it as similar to the personalities and ethnic factions they
knew in the country. Since that time, we added a Web interview front end so
that experts can fi ll in their own country models themselves. The Bangladesh
model shown earlier in Figure 8.4 was input by an SME we contracted as a
consultant for 12 h of his time. One can see his model has the government,
military, the two major political groups (Bangladeshi National Party, Awami
League) that have alternated being in power, and a minority ethnic group that
formerly had threatened a rebellion but which is now appeased (i.e., Chittagong
Hill Tract). This model is interesting since it quantizes the SMEs ’ qualitative
model into FactionSim and PMFserv parameter sets. Thus, the SME had to
fi ll in all the parameters of each group and leader and archetypical follower.
We also separately contracted for a political scientist (Lustick and some assis-
tants) to fi ll in the population layer within PSI.

 As mentioned previously, CountrySim also includes viewers on the back
end that help to summarize performance metrics and allow the user to drill in
and trace outcomes back to the Web interview inputs. We present some
example results here to illustrate how the model performs and how one may
follow a thread from outcome back to input, and to see how it is validated.

THE CountrySIM APPLICATION AND SOCIOCULTURAL GAME RESULTS 259

CentralGov

Shia

Shia

Insurgent

CentralGov

Sunni

secular

Sunni

secular

Insurgent

0.4

0.35

0.3

F
ra

c
ti
o
n
 o

f
to

ta
l

0.25

0.2

0.15

0.1

0.4

0.45

0.35

0.3

F
ra

c
ti
o
n
 o

f
to

ta
l

0.25

0.2

0.15

0.1

0.05

Shia

Insurgent

CentralGov

Sunni

secular

0.4

0.45

0.35

0.3

F
ra

c
ti
o
n
 o

f
to

ta
l

0.25

0.2

0.15

0.1

0.05

0
0 5 10 15 20 25 30 35 40 45 50 55 60 65

Tick number

70 75 80 85 90 95 100105

 Figure 8.8 Military power of Iraqi factions under alternate DIME actions (mean of 100 runs).

Since our intention for Bangladesh is to model instability, we defi ne aggregate
metrics or summary outputs of instability from default model outputs. The
direct (or default or base) outputs from the CountrySim model include deci-
sions by agents, levels of emotions, relationships, membership in different
factions, levels of resources, and so on. These parameters are tracked over
time and recorded in the output database.

 All forecasts are aggregations of week - by - week activity in the model (i.e.,
52 ticks/year over 3 years). Our country forecasts, in turn, aggregate these into
quarterly statistics. To do this, raw events are summarized into indicators (e.g.,
all fi ghtback decisions taken by members of the separatist faction in a given
quarter are added into the rebellion indicator). Many such midlevel indicators
then get aggregated into highest level performance metrics called EOIs. EOIs
reveal a high - level snapshot of the state of the country. Specifi cally, CountrySim
generates several EOI scores important to instability such as the four we now
defi ne, among others:

 (1) Rebellion is an organized opposition whose objective is to seek auton-
omy or independence. (Secession, or substantial devolution of power,
occurs when rebellion is successful.)

 (2) Insurgency is an organized opposition by more than one group/faction,
whose objective is to usurp power or change regime by overthrowing
the central government by extra legal means.

 (3) Domestic political crisis is the signifi cant opposition to the government
but not to the level of rebellion or insurgency.

 (4) Intergroup violence is violence between ethnic or religious groups that
is not specifi cally directed against the government and not carried out
by the government.

 In carrying out a detailed validation process, we primarily aim to create
correspondence with historical scenarios or higher - level outcomes. The results
of the likelihood of occurrence of EOIs were compared with EOIs obtained
(with the same defi nitions) from Ground Truth from an independent data
provider (University of Kansas [UK], 2008). The initial values of the Ground
Truth are machine extracted and coded event set (built using a complex logis-
tic regression model) obtained from the UK. These initial estimates were
further augmented by human inspection (UK+) at the University of
Pennsylvania. In the results shown below, we have compared the simulated
output against the Ground Truth values for each of the EOI over the valida-
tion period (every quarter in 2004 – 2006 periods).

 In a complex, stochastic system (such as a real country), a range of coun-
terfactuals (alternate futures) are possible. Our simulated outputs are likeli-
hood estimates and are shown as a band (with max, mean, and min) to account
for counterfactuals resulting from multiple runs, while the Ground Truth
values are shown as binary points (the diamonds indicated for each quarter).

THE CountrySIM APPLICATION AND SOCIOCULTURAL GAME RESULTS 261

262 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

Although we generate and display the multiple futures (from multiple runs),
in metrics and calculations, we only employ the mean values across alternative
histories. We cast mean likelihood estimates from multiple runs into a binary
prediction by employing threshold systems, consisting of:

 • a single threshold line (1Threshold)
 • a double threshold system with upper and lower bounds (2Threshold)

 In the fi gures, we display threshold values of 0.5 for single threshold system
and 0.65 and 0.35 for double threshold systems. Based on these Ground
Truths and Threshold Systems, we calculated our metrics such as precision,
recall, and accuracy for multicountry, multiyear study.

 As can be seen in Figure 8.9 , there is a high degree of correlation between
our prediction and that of the Ground Truths. The details are given in the
fi gure for each EOI as follows:

 (1) Upper Left. EOI rebellion has a very low likelihood of occurrence in
both real as well as simulated outputs. The government forged a treaty
agreement with the CHT tribe, once a separatist group in Bangladesh.
There is nothing in the way of separatist confl ict in Bangladesh today.
Both Ground Truth and CountrySim agree with this estimate.

 (2) Upper Right. Our model shows an increasing likelihood of coup or
military takeover in Bangladesh circa 2006. Actual insurgency (i.e.,
military takeover) occurred in the fi rst quarter of 2007. The simulated
likelihood of EOI (after applying threshold) is a quarter off from the
EOI. Although CountrySim model does not get the timing of the insur-
gency, the CountrySim agents are acting up, so some indications of this
about to occur is refl ected. Note that Ground Truth does not reveal
any indications of events occurring.

 (3) Lower Left. The likelihood of domestic political crisis is estimated
to be high in Bangladesh (circa 2004, 2006), which corresponded to
internal political tensions, horse trading in the country, and culminat-
ing in the military coup. Right after the forecast period, the domestic
political crisis leads to riots and a military takeover in the fi rst quarter
of 2007.

 (4) Lower Right. Intergroup violence also shows a limited occurrence for
Bangladesh, except toward the end of 2005. During the latter part of
2005, the violent activities by religious extremists such as the JMJB
Group against other factions and the government occurred.

 With the double threshold system (with 2/3 – 1/3 thresholds), the likelihood
estimates at or above the upper threshold are classifi ed as 1, while those at or
below the lower threshold are classifi ed as 0. It must be acknowledged that
when one imposes a 2Threshold System (with a conservative 1/3 – 2/3 band)

upon the predictions, a number of likelihood estimates fall in the middle
region. We have ignored all cases that might be classifi ed as uncertain or in
the middle band and then proceeded to calculate the above metrics. With
2/3 – 1/3 thresholds, our accuracies are at about 87 percent, the precision and
recall are lower at about 66 and 81 percent, respectively, for Bangladesh.
This shows that with the 2Threshold System, about 40 percent of CountrySim

Table 2: EOI Summary Metrics

Metric
Accuracy Precision Recall

Mean for

Bangladesh—

with two thresholds

at 0.65–0.35

87% 66% 81%

0.00

0.20

0.40

0.60

0.80

1.00

L
ik

e
lih

o
o
d
 (

re
b
e
lli

o
n
)

1 2 3 4 5 6 7 8 9 101112

Time (Qtrs since Jan '04)

Chart for Country=Bangladesh

0.00

0.20

0.40

0.60

0.80

1.00

L
ik

e
lih

o
o
d
 (

in
s
u
rg

e
n
c
y
)

1 2 3 4 5 6 7 8 9 101112

Time (Qtrs since Jan '04)

Chart for Country=Bangladesh

0.00

0.20

0.40

0.60

0.80

1.00

L
ik

e
lih

o
o
d
 (

d
o
m

e
s
ti
c
 p

o
lit

ic
a
l
c
ri

s
is

)

1 2 3 4 5 6 7 8 9 101112

Time (Qtrs since Jan '04)

Chart for Country=Bangladesh

0.00

0.20

0.40

0.60

0.80

1.00

L
ik

e
lih

o
o
d
 (

in
te

rg
ro

u
p
 v

io
le

n
c
e
)

1 2 3 4 5 6 7 8 9 1011 12

Time (Qtrs since Jan '04)

Chart for Country=Bangladesh

Legends

Mean (EOI)

Max (EOI)

Min (EOI)

EOI Ground Truth (UK+)

2Threshold_Upper (shown at 0.65)

2Threshold_Lower (shown at 0.35)

1Threshold (shown in the middle at 0.5)

Note 1: The government indicated that only

59% of the forecasts were outside the middle

range. Hence, the model could not make

forecasts 41% of the time.

 Figure 8.9 CountrySim quarterly forecasts for Bangladesh (mean, upper, and lower bands on
12 Monte Carlo runs) compared with Ground Truth (UK+) statistical forecasts (triangle shapes)
for 2004 – 2006.

THE CountrySIM APPLICATION AND SOCIOCULTURAL GAME RESULTS 263

264 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

predictions fall in the middle range for Bangladesh. This could be simply
interpreted as limited discriminatory power of the model for Bangladesh. One
can improve the discriminatory power of the model by designing the EOI
calculator to separate the EOI likelihood outcomes into two binary bands (i.e.,
use a single threshold system at 50 percent). Detailed consideration of all the
threshold issues deserves a paper of its own.

 In order to get a quantitative relationship between CountrySim and Ground
Truth forecasts, we make use of a relative operating characteristic (ROC)
curve. The ROC plots the relationship between the true positive rate (sensitiv-
ity or recall) on the vertical and the false positive rate (1 - specifi city) on the
horizontal. Any predictive instrument that performs along the diagonal is no
better than chance or coin fl ipping. The ideal predictive instrument sits along
the y - axis.

 The consolidated ROC curve for Bangladesh is plotted in Figure 8.10 . In
the two threshold forms presented, it was diffi cult to present the ROC curve
for the model due to elimination of those cases that fell in the middle band of
uncertainty. There were not enough recall and specifi city data points to con-
struct an ROC curve for Bangladesh using the two threshold systems. Instead,
we present the ROC curve based on the single threshold system. This curve
shows that the CountrySim largely agrees with the Ground Truth. In fact, its
accuracy measured relative to Ground Truth is 80+ percent, while its precision
and recall were listed at the base of Figure 8.10 .

 In closing, these results show that the agent approach offers nearly the same
performance as statistical models, but brings to bear a greater transparency,
explainability, and means to draw understanding of the underlying dynamics
that are driving behaviors. This is possible since one can drill down to the

1.2

1.2

1.0

1.0

0.8

0.8

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 (
b
e
c
a
ll)

0.6

0.6

0.4

0.4

0.2

0.2
0.0

0.0

Overall ROC

 Figure 8.10 Relative operating characteristic (ROC) curve for CountrySim (Bangladesh).

CONCLUSIONS AND THE WAY FORWARD 265

events that each CountrySim agent participated in and then fi nd that agent
and interview him about what motivated him and why he did what he did (via
the dialog engine).

CONCLUSIONS AND THE WAY FORWARD

 Four lessons are learned from our current efforts to build SimCountries using
FactionSim/PMFserv in order to monitor and assess political instabilities in
countries of interest. The fi rst lesson is the need to speed up the maturation
process of the social sciences so that there will be a suffi cient set of theories
that are close to being fi rst principles that are widely accepted by social scien-
tists. Our PMFserv ’ s biology and physiology modules are based on proven fi rst
principles from the medical and natural sciences. However, our social, cogni-
tive appraisal, and cognition modules in PMFserv and the leader – follower
dynamics in FactionSim — to name just a few from an extensive list of imple-
mentations — are built by computationally implementing what we consider to
be best - of - breed models based on recommendations from social science SMEs.
Without a set of fi rst principles, the best we can do is to rely on these recom-
mendations. However, this constraint is something that is clearly beyond our
control, and we are painfully aware of the possibility of never obtaining such
a neat and tidy set of fi rst principles from the social sciences.

 A related second lesson that we learned is the need to expedite the process
of developing our own more formalized and computationally implementable
theories and conjectures in political science. This challenge is less acute with
regard to economics, since this domain is already more mathematized. Albert
Hirschman ’ s exit, voice, loyalty framework was suggested by many as the
best - of - breed model for us to capture and computationally implement the
leader – follower dynamics in FactionSim. However, this framework was never
a formalized model or a theory developed with computational implementation
in mind. Further, it is only a small piece of the explanation of what drives
loyalty. Hence, computational implementation required that we take addi-
tional steps, converting the theory into a computationally implementable one
with the necessary formalizations and adding in other theories that comple-
ment and extend it (e.g., motivational congruence, mobilization, perceived
injustice, etc.). We are eager to see social science theories become formalized
as much as possible so that our new kind of political science — using simulators
with realistic AI agents — can truly take off without being hampered by a slow
process of formalization.

 The third lesson that we learned has to do with the need to develop a state -
 of - the art toolset that would allow an analyst who uses an AI simulator like
ours to construct realistic profi les for all the actors and issues at play in a given
confl ict region of interest. Currently, it is possible for an analyst who inti-
mately understands a particular confl ict scenario — with its key actors, fac-
tional member profi les, resource distributional factors (such as greed), and

266 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

disputed issues and grievances — to use the available agent - based modeling
editors to manually mock up a new scenario within a matter of days. However,
we would like to speed and enhance this process with a state - of - the - art data
extraction and model parameter generator that will query the analyst regard-
ing his or her region of interest in order to zoom in on the particular questions
to be investigated, and the specifi c corpus of texts, data sets, and Web sites to
be scraped for the relevant data. This issue is an exciting new frontier for the
M & S community, and our most up - to - date efforts are reported in another
paper [20] .

 The fourth lesson that we learned is to increase the multidisciplinary nature
of social sciences and to educate the new generation of sociopolitical analysts
to be able to intelligently use these exciting toolsets that are being developed
outside of the social sciences. We do not expect social scientists to be computer
scientists and engineers and spend excessive time and energy in tasks they are
not trained for, such as software development. Instead, we are suggesting that
the new generation of sociopolitical scientists should receive the training they
need to be informed users of these toolsets, just as they learn to use statistical
software such as SPSS, R, or STATA to conduct regression analysis. We
believe there is tremendous potential in our AI M & S technology for all
aspects of political science. We are currently building virtual countries for a
specifi c purpose of monitoring and assessing political instabilities. However,
in so doing, we are required to construct a realistic social system of practical
values to analysts complete with a minimal set of leader and follower agents,
groups, institutions, and more. We have delved into the vast archive of politi-
cal science literature in all conceivable areas. Consequently, we have created
a tool that will be of interest and practical use to a very wide user base.

 M & S hold great promise, especially when combined with toolsets that allow
analysts and policymakers with a modicum of training in M & S software to
conduct experiments that provide them with useful information. A fi fth lesson
learned is that our agent - based approach offers statistical performance nearly
on a par with regression models, yet has the added benefi t that it permits one
to drill down into details of what is causative and what emerged from the
action decisions of the stakeholders. It seems that if the world is expected to
be unchanging and one needs no deeper insights, that regression models might
be preferred as they give slightly more accurate forecasts. However, if the
world is unstable, and avoiding and understanding potential surprises are
important, then the agent - based approach holds the prospect that one can
interview the agents, examine their grievances and motivations, and trace
outcomes back through to input parameters that one can then experiment with
to see how to improve and otherwise infl uence the society. This is a new
capability that logistic regression does not support.

 As suggested in our introduction, we believe that these new tools set a new
standard for rigor and provide a new methodology for testing hypotheses. This
new methodology is particularly useful with regard to problems that are math-
ematically intractable or diffi cult to research “ empirically ” because of the poor

CONCLUSIONS AND THE WAY FORWARD 267

quality or unavailability of data. In addition, this kind of political science truly
opens up a way to conduct counterfactual analyses. The ultimate value of this
new approach lies in providing policymakers and analysts with a cutting - edge
toolset that will improve their intelligence capability.

 As a fi nal thought, we conjecture about how business might also benefi t
from the types of agent - based models we offer here. Our joint CountrySim,
FactionSim, and PMFserv framework has a large variety of military and busi-
ness applications. Let us briefl y present three of the more obvious ones. First,
our CountrySim is arguably the best available country - level agent - based
model for military users wishing to monitor, assess, and forecast various politi-
cal developments of interest such as insurgencies, rebellions, civil wars, and
other forms of intrastate political crises. In fact, CountrySim was built pre-
cisely for this purpose. It represents a synthesis of all the best available social
science and area studies theories and information, expert inputs based on
expert surveys, and state - of - the - art and cutting - edge agent - based modeling
and systems approach methodologies. It has undergone multiple rounds of
revision and improvement. As mentioned previously, our four existing virtual
countries (Bangladesh, Sri Lanka, Thailand, and Vietnam) all have shown
better than 80 percent accuracy in retrodicting the past political trajectories
of these countries. We are now in the process of preparing for the challenge
of forecasting the future political developments of these countries. It is of
course impossible to predict the future with pinpoint accuracy. We emphasize
that our goal is to generate reasonably accurate forecasts of possible political
developments in our countries of interest: for example, the probability of a
military coup in country X in the year 2010 expressed as a percentage, along
the same lines as forecasting the percent chance of rain in Philadelphia tomor-
row. Having the ability to monitor, assess, and ultimately forecast political
developments should aid our military ’ s capacity to anticipate and prepare for
the futures that may be harmful to the national interest of the United States.
Second, CountrySim is arguably the best available toolset for military users
to conduct DIME - PMESII and other forms of computational counterfactual
experiments. Sometimes political instabilities outside our borders can have
signifi cant impacts on our nation ’ s well - being and require our intervention
along diplomatic, informational, military, and economic lines. The need for
timely and well - targeted intervention is particularly true in the age of global-
ization. In our virtual countries, our military and diplomatic users can compu-
tationally implement and experiment with specifi c kinds of interventions to
aid their planning for future contingencies. When considering costly types of
military and economic intervention, planning well and anticipating as many
possibilities as possible using the best tools and the best available information
become crucial, and we provide this crucial capacity. Third, we are increas-
ingly aware that politics and business are inseparably interlinked, and this
linkage is especially pronounced in certain parts of the world. It seems that
the less economically developed a country, the greater the interdependence
between these two realms. As the events of the past six months have shown,

268 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

however, the same interdependence may also emerge in advanced economies:
When the private sector falters, business turns to government for help. In
many ways, government is the biggest business of any country. A toolset that
allows one to monitor, assess, and forecast a country ’ s political future is there-
fore a tremendous asset to investors and entrepreneurs doing business abroad.
Our technology also makes it possible to build detailed virtual economies of
a variety of countries around the world, tailoring them for business and eco-
nomic applications. In sum, the military and business applications of our
framework are limited only by our users ’ imagination.

REFERENCES

 [1] Cioffi - Revilla C , O ’ Brien S . Computational Analysis in US Foreign and Defense
Policy. Paper presented at the First International Conference on Computational
Cultural Dynamics. University of Maryland, College Park, MD, August 27 – 28,
2007.

 [2] National Research Council . Behavioral Modeling and Simulation: From
Individuals to Societies . Washington, DC : The National Academies Press ; 2008 .

 [3] Tetlock P . Expert Political Judgment: How Good Is It? How Can We Know?
 Princeton, NJ : Princeton University Press ; 2005 .

 [4] Axelrod R . Advancing the art of simulation in the social sciences . In Simulating
Social Phenomena . Conte R , Hegselmann R , Terna P (Eds.). Berlin : Springer ;
 1997 , pp. 21 – 40 .

 [5] Gladwell M . The Tipping Point: How Little Things Can Make a Big Difference .
 Boston : Little, Brown, and Company ; 2000 .

 [6] Anderson JR . The Architecture of Cognition . Cambridge, MA : Harvard
University Press ; 1983 .

 [7] Anderson JR . The Adaptive Character of Thought . Hillsdale, NJ : Lawrence
Erlbaum Associates ; 1990 .

 [8] Anderson JR . Rules of the Mind . Hillsdale, NJ : Lawrence Erlbaum Associates ;
 1993 .

 [9] Anderson JR , Bothell D , Byrne MD , Douglass S , Lebiere C , Qin Y . An inte-
grated theory of the mind . Psychological Review , 111 (4): 1036 – 1060 ; 2004 .

 [10] Newell A . Unifi ed Theories of Cognition . Cambridge, MA : Harvard University
Press; 1990 .

 [11] Hudlicka E . Modeling effects of behavior moderators on performance: Evaluation
of the MAMID methodology and architecture . Proceedings of the 2003
Conference on Behavior Representation in Modeling and Simulation (BRIMS) .
Scottsdale, AZ; 2003 .

 [12] Silverman BG , Bharathy GK , Kim GJ . Challenges of country modeling with
databases, news feeds, and expert surveys . In Agents, Simulation, Applications .
 Uhrmacher A , Weyns D (Eds.). Boca Raton, FL : Taylor and Francis ; 2009 .

 [13] Edmonds B , Moss S . From KISS to KIDS — an ‘ anti - simplistic ’ modelling approach .
 In Lecture Notes in Artifi cial Intelligence . Vol. 3415 . Multi - Agent Based Simulation
2004. Davidsson P . et al. (Eds.). Springer ; 2005 , pp. 130 – 144 .

REFERENCES 269

 [14] Armstrong JS . Assessing game theory, role playing and unaided judgment .
International Journal of Forecasting , 18 : 345 – 352 ; 2002 .

 [15] Green KC . Forecasting decisions in confl ict situations: A comparison of game
theory, role playing and unaided judgment . International Journal of Forecasting ,
 18 : 321 – 344 ; 2002 .

 [16] Camerer C . Behavioral Game Theory . Princeton, NJ : Princeton University Press ;
 2003 .

 [17] de Marchi S . Computational and Mathematical Modeling in the Social Sciences .
 Cambridge, UK : Cambridge University Press ; 2005 .

 [18] Silverman BG , et al. Athena ’ s Prism — A diplomatic strategy role playing
simulation for generating ideas and exploring alternatives . In Proceedings of the
First International Conference on Intelligence Analysis . MacLean, VA : MITRE ;
 2005 .

 [19] Johns M . Deception and Trust in Complex Semi - Competitive Environments .
Dissertation, University of Pennsylvania; 2006 .

 [20] Silverman BG , Bharathy GK , Nye B , Smith T . Modeling factions for ‘ effects
based operations ’ : Part II — Behavioral game theory . Journal of Computational
 & Mathematical Organization Theory , 14 (2): 120 – 155 ; 2008 .

 [21] Lewis WA . Economic development with unlimited supplies of labour . Manchester
School , 28 (2): 139 – 191 ; 1954 .

 [22] Harrod RF . A second essay in dynamic theory . Economic Journal , 70 : 277 – 293 ;
 1960 .

 [23] Hirschman AO . Exit, Voice, and Loyalty . Cambridge, MA : Harvard University
Press; 1970 .

 [24] Epstein JM . Modeling civil violence: An agent - based computational approach .
Proceedings of the National Academy of Sciences of the United States of America ,
 99 (3): 7243 – 7250 ; 2002 .

 [25] Lustick IS , Miodownik D , Eidelson R J . Secessionism in multicultural states:
Does sharing power prevent or encourage it? American Political Science Review ,
 98 (2): 209 – 229 ; 2004 .

 [26] Milgram S . The small world problem . Psychology Today , 1 : 60 – 67 ; 1967 .
 [27] Solow RM . A Contribution to the theory of economic growth . Quarterly Journal

of Economics , 70 (1): 65 – 94 ; 1956 .
 [28] Silverman BG , Johns M , Cornwell J . Human behavior models for agents in

simulators and games: Part I — Enabling science with PMFserv . Presence ,
 15 (2): 139 – 162 ; 2006 .

 [29] Hermann MG . Who becomes a political leader? Leadership succession, genera-
tional change, and foreign policy . Annual Meeting of the International Studies
Association. Honolulu, HW; 2005 .

 [30] House RJ , et al. Culture, Leadership, and Organizations: The GLOBE Study of
62 Societies . Thousand Oaks, CA : Sage Publications ; 2004 .

 [31] Machiavelli N . The Prince . Skinner Q , Price R (Eds.). Cambridge, UK : Cambridge
University Press ; 1988 .

 [32] Silverman BG , Bharathy GK , Nye B , Eidelson RJ . Modeling factions for ‘ effects
based operations ’ : Part I — Leader and follower behaviors . Journal of
Computational & Mathematical Organization Theory , 13 (4): 379 – 406 ; 2007 .

270 M&S METHODOLOGIES: A SYSTEMS APPROACH TO THE SOCIAL SCIENCES

 [33] Dignum F , Dignum V , Sonenberg L . Exploring congruence between organiza-
tional structure and task performance: A simulation approach . Available at
 http://people.cs.uu.nl/dignum/papers/ooop-dignum-fi nal.pdf .

 [34] Bharathy GK . Agent - Based Human Behavior Modeling: A Knowledge
Engineering- Based Systems Methodology for Integrating of Social Science
Frameworks for Modeling Agents with Cognition, Personality & Culture. PhD
Dissertation, University of Pennsylvania; 2006.

 [35] Heuer RJ Jr . Psychology of Intelligence Analysis . Washington, DC : Center for
the Study of Intelligence, Central Intelligence Agency ; 1999 .

 [36] Silverman BG , Bharathy GK , O ’ Brien K . Human behavior models for agents in
simulators and games: Part II — Gamebot engineering with PMFserv . Presence ,
 15 (2); 2006 .

271

Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains,
Edited by John A. Sokolowski and Catherine M. Banks
Copyright © 2010 John Wiley & Sons, Inc.

9

MODELING
HUMAN BEHAVIOR

Yiannis Papelis and Poornima Madhavan

Human behavior is the collective set of actions exhibited by human beings,
either individually or in groups of various sizes and compositions. Modeling
human behavior is an interdisciplinary fi eld that aims at developing models
that refl ect or even replicate reality, given a set of appropriate initial condi-
tions. The fi eld is quickly gaining momentum and has wide ranging and diverse
applications in civilian and military domains. Because of the widespread uti-
lization of human behavior models, it is important to have a fi rm grasp on the
theoretical underpinnings of the fi eld and what such models can provide; it is
also important to recognize the associated limitations. As human beings, we
are familiar with our own and others ’ behavior and tend to confuse this famil-
iarity with a reliable and generalizable scientifi c process. We are also accus-
tomed to the predictive power of physics - based models and tend to presume
that human behavior models possess similar abilities of predicting behavior,
something that is rarely true [1] . It is thus important to realize the nature of
the complexity of human behavior and try to address it when developing
analytic models.

 The issues that affect human behavior modeling vary greatly depending on
the level of required behaviors and the overall size of the population being
modeled. At the physical level , human behavior is driven by physiology and

272 MODELING HUMAN BEHAVIOR

automated processes, whereas at the tactical level , decision making and emo-
tions are the primary drivers for our short - term actions. At the highest level,
strategic behaviors involve longer planning and complex decision making
according to intuition, emotions, and experience. At the same time, there are
signifi cant differences between modeling individuals or groups and even
further differences that depend on the size of the group that is modeled. It is
thus benefi cial to defi ne a taxonomy within which to classify behavioral model-
ing approaches and identify related challenges. Tables 9.1 and 9.2 present a
classifi cation of human behavior modeling organized according to the level of
cognitive processing involved in the behavior as well as the size of the popula-
tion being modeled, along with examples.

 The issues associated with each classifi cation vary greatly, as is the maturity
of the related research. For example, models at the physical level are based
on empirical research that can often be validated and thus have predictive
value. Similarly, individual - based models are typically less challenging than
group - or society - level models because of the complexity introduced by the
interactions among individuals and the chaotic nature of evolutionary behav-

Table 9.1 Human behavior modeling issues

 Individual Group Society

 Strategic High - level decision
making based on
intuition and emotion

 Interaction dominant
models, collective
intelligence

 Changes to
culture, political
situations

 Tactical Concrete decision making;
short - term emotions
affect decisions

 Social infl uence,
emotional
refl ection,
collaboration

 Communication -
 dominant
models

 Physical Reactive models based on
stimulus – response,
physiology, motor skills

 Physics - based
interactions

 Population
dynamics

Table 9.2 Example applications

 Individual Group Society

 Strategic Persistent virtual
reality characters

 Economics models,
fi nancial markets

 Insurgency modeling,
effect of sanctions

 Tactical Route selection;
obstacle
avoidance;
procedural
tasks

 Crowd behaviors,
traffi c simulation,
war games,
computer - generated
teams

 Public opinion polling,
consumer models,
social simulation

 Physical Reaction time, skills
assessment

 Crowd movement
simulation

 Disease spreading,
population aging

BEHAVIORAL MODELING AT THE PHYSICAL LEVEL 273

iors. On the other hand, tactical and strategic behaviors are harder to model
due to the adaptive and unpredictable nature of human behavior. When incor-
porating larger populations, the complexity drastically increases to the point
where such models are diffi cult, if not impossible to validate. It is interesting
to note that despite these apparent limitations, such models are in widespread
use in both civilian and military applications. The reasons for this popularity
are many. The output of such models is easy to understand because simula-
tions using such models often resemble real life. When presented through
means that obscure the source of the results, it is often impossible to differ-
entiate simulation from real life. For example, results of military simulations
presented with the same tools used during actual operations obscure the
source of the displayed data. Another reason for the popularity of tactical
models is the ability to change input parameters and rerun the simulation
obtaining a new answer for the what - if scenario. Iterative use of models in
such a manner supports exploratory analysis that helps us gain an intuitive
feel for the modeled situation. And even though such models elude validation
on a strictly scientifi c basis, it is often possible to perform sensitivity analysis
and identify broad trends as opposed to exact predictions. For example, a
war - gaming simulation may help a planner realize that increasing the number
of armored vehicles has a positive effect on the outcome of a scenario, but it
cannot pinpoint the exact number of vehicles required to win the battle with
a certain probability. By simulating models of human behavior, we seek to
understand, not necessarily predict, the aggregate behavior of an inherently
complex system for which we have no better model.

 In summary, the issues and techniques used for implementing human
behavior models vary greatly depending on the scope and size of population,
and it is thus important to put each approach in the appropriate context. The
remainder of this module summarizes material in the context of the taxonomy
illustrated in Tables 9.1 and 9.2 .

BEHAVIORAL MODELING AT THE PHYSICAL LEVEL

 The physical level of behavior provides the most opportunity for modeling
using strict scientifi c and engineering approaches. By assuming simple and
constant motivation functions, such as “ seeking to a goal, ” “ avoiding an obsta-
cle, ” “ operating a vessel, ” or “ tracking a lane, ” models can predict measurable
actions that are primarily physical in nature and depend on physiological or
psychological principles [2] . Decisions are done at an instinctive or reactive
level, and emotions have little impact on the process; instead, performance is
governed by the level of workload, fatigue, situational awareness, and other
similar factors. Some modeling efforts treat a human being as a limited capac-
ity processor that can selectively parallel process but with specifi c penalties
for splitting attention among many tasks [3] . Based on such assumptions,
models can use laws of physics, experimental data, or other “ hard ” facts about

274 MODELING HUMAN BEHAVIOR

human performance that yield predictive operational models of human behav-
ior [4] . On a more practical basis, fuzzy logic is often used to simulate human
control tasks. Fuzzy logic is a theory of developing controllers that utilize
fuzzy variables, a concept derived from fuzzy sets [5,6] . A fuzzy variable takes
on approximate as opposed to exact values; for example, when driving a
vehicle, we may refer to the speed as fast or slow, in lieu of an exact number,
that is, 53.5 mph. Even though fuzzy logic is often used as a means to obtaining
better control (e.g., in a thermostat), it provides a good basis for mimicking
human physical behavior because it simulates our perception of the world,
which is approximate and not exact. As a contrast to that approach, it is also
possible to build traditional control systems that simulate human control tasks,
as shown by Gabay and others who developed an experimental approach to
obtaining parameters for a traditional control system that mimics the perfor-
mance of a human being in closed - loop tracking tasks [7] . Similar models exist
that predict human performance while operating a vehicle, piloting a plane,
or performing general tasks.

BEHAVIORAL MODELING AT THE TACTICAL AND
STRATEGIC LEVEL

 The tactical level of behavior modeling focuses on human behavior when
seeking short - term goals. The difference between physical and higher behav-
ior levels is rooted in the complexity of the goal and duration of the activity
being modeled. Whereas physical behavior models assume singular and/or
simple goals and focus on human capabilities, higher - level behaviors have
more complicated goals that take longer to achieve and involve decision
making at various levels. For example, consider the task of driving. At the
physical level, one would model the ability of a driver to track the lane of a
road. At the tactical level, however, one would model a passing maneuver or
a lane change, including the decision making involved in selecting the particu-
lar maneuver. Furthermore, a strategic level of behavior would focus on route
selection, or even the choice between driving versus taking an alternative
means of transport.

 When modeling higher - level behaviors, there are two broad schools of
thought. One considers human beings as rational operators that attempt to
maximize a utility function or achieve a specifi c goal. Such models ignore the
effect of emotion and instead concentrate on rational decision making using
deterministic or stochastic approaches. The second school of thought consid-
ers human beings as quasi - rational entities that still pursue a specifi c utility
function, but frequently make suboptimal decisions and exhibit actions that
can act contrary to their stated goals and can even reach the level of self -
 destructive behavior [8,9] .

 Rational decision making is by far easier to model and simulate than quasi -
 rational behavior. Behaviors stemming from rational thought are by their
nature algorithmic and procedural and often represent skills for which humans

BEHAVIORAL MODELING AT THE TACTICAL AND STRATEGIC LEVEL 275

train, that is, driving an automobile, fl ying a plane, being a soldier, being a
participant in a team sport, and so on. Techniques for developing such models
include state machines, rule - based systems (RBSs), and pattern recognition,
among others. Modifi cations that add stochastic variation to behavior can be
blended into the baseline approaches and because such variation is not driven
by emotions, traditional statistical approaches can be used to enhance and
fi ne - tune rational decision models. It is also possible to incorporate limits that
refl ect how excessive demands may stress human mental and physical capabili-
ties, effectively blending the physical and tactical levels of behavior into a
singular model. The inclusion of physics - or psychology - based perception
models can further enhance the overall behavior model by reducing the quality
of data used for decision making. More advanced models utilize processes that
attempt to simulate experience and intuition. Intuition in particular, which
refers to the ability of a human being of recognizing something without a full
understanding of how this recognition takes place, is a key characteristic of
strategic decision making. Research has shown that such decision making is
rooted in pattern matching based on prior knowledge, as a result, technical
approaches to construct models that exhibit strategic decision making depend
on knowledge databases, pattern matching using neural networks, hidden
Markov models (HMMs), and similar techniques [10] .

Quasi - rational behavior models are more challenging to develop. The pro-
cesses that govern suboptimal decision making are an active topic of research
and not yet fully understood. Such processes are complex and depend on a
variety of current and expected outcome emotions, and on the context within
which choices are made [8,11,12] . Lacking strict constraints that are based on
optimizing functions, it is tempting to substitute stochastic decision making as
a means to simulate quasi - rational behavior. However, suboptimal decisions
are not random decisions; it is just that they are governed by processes that
we do not yet fully understand and thus cannot model on a fi rst - principle basis.
Suboptimal decisions are also not intuitive decisions; in fact, as discussed
earlier, it has been shown that intuitive behavior is rooted in fact - based experi-
ence and pattern matching. Nevertheless, it is possible to develop models that
capture some of the better understood factors involved in quasi - rational
behavior. For example, we can use models that simulate emotional state, with
actions being a side effect or result of the current emotional state [13] . By
simulating emotions and letting the emotional state control the actions exhib-
ited by the model, behavior is by defi nition suboptimal as it is detached from
goal seeking, yet driven by processes that conform to reality. In general, for
models requiring fi delity at strategic levels of behavior, the challenge lies in
simulating irrationality and other abstract and suboptimal decision - making
processes that are not strictly driven by goal - seeking human behavior traits.

Lumped versus Distributed Models

 The issues that differentiate the physical, tactical, and strategic behavior
models are further amplifi ed when considering the incorporation of multiple

276 MODELING HUMAN BEHAVIOR

entities into the simulation. The treatment so far has concentrated on models
of an individual human; we now look at the issues involved when modeling
multiple humans.

 First, let us defi ne the difference between lumped and distributed models
in human behavioral modeling. The notion of a lumped model originates in
electrical engineering and refers to studying a circuit assuming that each
element is an infi nitesimal point in space and all connections are perfect, thus
their effect on the circuit need not be considered. The assumption here is that
the effects of the connections are either small, or are taken into account in
the element model. Lumped systems are typically modeled by using differen-
tial equations. In human behavior modeling, a lumped model is one that treats
modeling of multiple entities as a unifi ed model that ignores the specifi c inter-
actions, or presumes that such interactions are factored into the singular
model. As in other disciplines, such models typically involve differential equa-
tions that represent the change of system variables over time. Examples
include population dynamics and disease spreading [14,15] . Lumped system
models are powerful when considering that they operate independently of the
size of the population they model. At the same time, their weakness lies in
assumption that interpopulation interactions are captured by the basic model,
something that is not always the case. In fact, lumped models of human behav-
ior implicitly presume that motivation and thus behavior remain largely con-
stant. For example, consider the limited capacity population equation
developed by the eighteenth century mathematician Verhulst [16] :

p r p

K p
K

t t
t

+ = ⋅
−

1 .

 The equation provides a model that predicts the size of the population at
a particular time (p t +1) given the population at a prior time (p t), the growth
rate (r), and the maximum population size (K). Note that numerous factors
such as reproductive choice, socioeconomic prosperity, state of medical care,
and so on, are implicitly factored into the growth rate, thus making this a
lumped model.

 Let us contrast this with a distributed system. Much like lumped systems,
the notion of a distributed system originates in engineering, where systems are
represented by taking into account variations of elements not only over time
but over other variables; in the case of electrical engineering, connections are
imperfect having fi nite impedances; in the case of mechanical engineering, the
twist of a rod or link along its length is not lumped into the model; instead, it
is taken into account explicitly. In basic engineering modeling, distributed
systems utilize partial differential equations to capture changes over time as
well as changes over spatial variables. In human behavior modeling, one can
approach distributed system modeling in two ways. One is by subscribing to
Nagel ’ s reductionism theory , which states that one way to understand the
behavior of multiple entities is to understand a single entity and then coalesce

TECHNIQUES FOR HUMAN BEHAVIOR MODELING 277

that knowledge predicting the behavior of multiple entities [17] . Nagel pro-
posed this theory to suggest that a generalized approach to science can be
achieved by reducing complex theories into more fundamental theories, pro-
vided that there are explicit linkages between the two theories that allow us
to transition the knowledge from the reduced to the more complex one.

 This approach is parallel to augmenting the basic equations governing the
aggregate behavior of a population with additional factors, constructing
complex models by combining simpler ones. Surely, use of partial differential
equations can be construed as one way to achieve this, as is the use of ad hoc
modeling equations that incorporate additional factors into the model. Another
school of thought, which contradicts Nagel ’ s reductionism theory, is that
superposition of behaviors is not adequate; instead, the interactions among
entities themselves create fundamentally new rules and laws that apply to the
aggregate behavior of the group and such laws do not exist when dealing with
a single entity. As stated in Artifi cial Intelligence , “ Often the most effi cient
way to predict and understand the behavior of a novel complex system is to
construct the system and observe it ” [18] . By using agent - based modeling, a
topic that is covered in Chapters 1 and 8 in this book, we can address the limi-
tations of lumped models in human behavior simulation and study the effect
of individual behavioral models on the evolutionary behavior of populations
of varying size. Of course, agent - based modeling can become computationally
expensive as the size of the population grows. For studying phenomena that
depend on population sizes that exceed current computing capacity, lumped
models may be the only practical approach. It is important to note that the
taxonomy presented in Table 9.1 differentiates between group - level and soci-
ety - level modeling, that is, a refl ection of practical limitations that make
lumped system models the only viable alternative for simulating entities whose
size approaches whole societies (i.e., millions of entities or more). It is conceiv-
able that computational advances in the near future will support practical
agent - based modeling or arbitrarily large populations, fusing the group - and
society - level classifi cations.

 The remainder of the chapter summarizes various techniques utilized in
building human behavior models. These techniques apply to individual or
multiagent simulations.

TECHNIQUES FOR HUMAN BEHAVIOR MODELING

Fuzzy Logic Control

 As indicated earlier, the use of fuzzy logic is targeted primarily at building
controllers that can better handle control tasks for which traditional control
approaches fail. This typically occurs in nonlinear or adaptive systems, which,
due to their dynamic nature, violate the assumptions of linearity on which
classical control approaches depend. Fuzzy logic controllers on the other
hand, respond better to such systems because they mimic human adaptability

278 MODELING HUMAN BEHAVIOR

associated with control tasks. Fuzzy controllers depend on fuzzy logic, which
in turn is based on multivalued logic supporting variables that can take values
between conventional evaluations. For example, consider a binary variable
representing “ yes ” or “ no ” ; it can have only two valuations 0 and 1 (or any
other pairs of numbers); however, there is no way to represent “ maybe. ” A
fuzzy variable on the other hand, can have any value between “ yes ” and “ no, ”
including “ maybe, ” “ possibly, ” “ not likely, ” and so on. The ability to classify
variables in humanlike terms is benefi cial, if for no other reason for it makes
sense. For example, if one is asked the question: “ What is the room tempera-
ture, ” the most typical answers are qualitative; for example, one may answer:
 “ It is fi ne, ” or “ it is cold ” or “ it is pretty hot ” ; rarely does one reply by stating:
 “ The temperature is 79.4 degrees Fahrenheit. ” If our goal is to build a tem-
perature controller that acts humanlike, then using fuzzy variables provides a
natural way to deal with valuations that conform to human interpretation. At
the same time, using such variables provides little value unless a corresponding
theory allows manipulation and effective use of such variables when solving
a problem. It is the development of the theory of fuzzy sets [5] that provided
the mathematical tools necessary to handle fuzzy variables and operationalize
control strategies, and in turn can facilitate modeling human behavior.

 In the same way that traditional set theory defi nes set operations (union,
difference, etc.), fuzzy set theory provides associated operators that allow
computer manipulation of fuzzy variables. Fuzzy logic makes it possible to
create mathematical formulations that allow computer - based handling of
humanlike interpretations of the world, and as such, provides a fundamental
tool for building control systems that simulate human behavior at the physical
(or control) level.

 To better understand how fuzzy logic can be used to simulate human behav-
ior, we must fi rst provide some basic principles associated with fuzzy set
theory. A core concept associated with fuzzy set theory is partial membership.
In traditional set theory, an element either belongs to a set or it does not. In
fuzzy sets, it is possible to assign partial membership to a set. The membership
variable is a variable whose range is inclusively between 0 and 1, and it rep-
resents the degree to which an element belongs to a set. Let us look at an
example that demonstrates how we can to apply partial membership to the
velocity of a vehicle. Let us assume that set F contains velocities that are
considered fast . In traditional set theory, we would pick a threshold, let us say
75 mph, and any speed greater than or equal to that threshold would be con-
sidered fast, thus belonging to the set, whereas any speed below that would
not be considered fast; that is, it would not belong to set F . Figure 9.1 depicts
this membership variable for this threshold when using traditional set theory
logic. The membership variable (i.e., the variable representing if a speed
belongs to the set) is binary, taking the value of 0 or 1 exclusively.

 Notice the conceptual discontinuity associated with this defi nition. A person
driving at 74.9 mph is not traveling fast, but a person driving 75 mph is traveling
fast. This defi nition is unnatural and inconsistent with how we view things. A

TECHNIQUES FOR HUMAN BEHAVIOR MODELING 279

more natural way to classify speed is to provide a transition range, let us say
starting at 70 mph and ending at 80 mph. A person driving below 70 is surely
not going fast, and a person driving above 80 is defi nitely going fast. Any speed
between 70 and 80 would be considered borderline, with an ever - increasing
bias toward fast as we approach the upper end of the range; in fuzzy set
nomenclature, as the speed approaches 80 mph, the membership to the set of
driving fast will also increase. Figure 9.2 depicts the fuzzy set membership
based on this defi nition.

 Note that the membership to the “ fast ” set now varies between 0 and 1; for
example, when driving 73 mph, the membership variable would be 0.3.

 The basic operations applied to traditional sets can also be applied to fuzzy
sets. Consider two sets whose membership profi les are shown in Figure 9.3 ;
set A represents velocities that are “ about the speed limit ” and set B repre-
sents velocities that are “ safe, ” defi ned as more than about 60 and less than
about 75.

 The intersection of these sets is any velocity that complies with membership
to set A and set B. The union of these sets is any velocity that complies with
membership to set A or set B. The membership function for the intersection
and union of these sets is shown in dashes in Figure 9.4 . Similarly, it is possible
to defi ne set subtraction and set negation.

 Having established the basic tools associated with the fuzzy set theory, let
us now see how we can model a controller using fuzzy logic. Our goal is to

Membership

Velocity75 mph

0

1

 Figure 9.1 Binary set membership.

Membership

Velocity

70 mph

0

1

80 mph

 Figure 9.2 Fuzzy set membership.

280 MODELING HUMAN BEHAVIOR

simulate how a human would control the environment in order to achieve a
goal. We represent this effort as a set of rules, written as if - then statements
and using qualitative descriptions both for the observations of the environ-
ment but also for the actions that need to be taken to maintain the desired
control. In fuzzy logic nomenclature, these rules are referred to as the linguis-
tic rules . Let us use a simple example to demonstrate the process. The example
is of a driver controlling the speed of a vehicle to maintain a safe and legal
speed, provided the speed limit is 65 mph. In order to apply fuzzy logic, we
must fi rst identify the variables that will be observed and the qualitative assess-
ment of these variables. Then, we need to defi ne the control actions, again
using fuzzy terms, and fi nally we must provide the linguistic rules.

 The variable to be controlled is the speed of our vehicle, and we create
three rough assessments (fuzzy sets) of the speed, as follows:

 (1) legal speed — from about 45 mph to about 65 mph
 (2) too slow — any speed below about 45 mph
 (3) risky — any speed above about 70 mph

 Note that even though these defi nitions mention specifi c values for the
velocity, terms such as “ about ” create a qualitative or fuzzy defi nition. Figure
 9.5 depicts one possible defi nition of the three fuzzy sets mentioned above.
The controller designer has a choice on how to operationalize the defi nition
of “ about ” by appropriately shaping the membership functions for each of

Velocity72

0

1

Velocity60

0

1

Set A

About 75

Set B

Safe

7578 58 77

 Figure 9.3 Example of fuzzy sets.

77
7858 60 75

0

1

72
77

7858 60 75

0

1

72

A and B A or B

 Figure 9.4 Intersection and union of fuzzy sets A and B.

TECHNIQUES FOR HUMAN BEHAVIOR MODELING 281

these fuzzy sets. The steeper the boundaries of the membership function,
the less fuzzy the defi nition. For example, the risky speed could be defi ned
as starting at 63 mph and reaching full membership at 65 mph; this would
provide an earlier but more gradual transition into the risky zone. Also, it is
not mandatory that the fuzzy set defi nitions utilize linear segments. Other
curves could also be used; for example, a bell curve could be used to represent
 “ about. ” To keep matters simple in the example, we use linear segments as
shown in Figure 9.5 .

 After defi ning the input sets, the next step involves defi ning fuzzy sets that
capture possible actions. Car speed is controlled through the use of either the
throttle or the brake pedal. Gentle deceleration can often be achieved by
releasing the throttle and letting friction reduce the speed, and the brake pedal
can always be used to provide authoritative deceleration. In this example, we
defi ne a single variable that ranges from − 100 to 100, with − 100 referring to
maximum braking and 100 referring to maximum acceleration; the advantage
of this assignment is that a value of 0 indicates that neither pedal is pressed
and the vehicle is coasting. We now build three fuzzy sets, each representing
possible actions, as follows:

 (1) gentle speed up — gradually increase speed with no urgency
 (2) maintain speed — current speed is acceptable
 (3) slow down — must reduce speed immediately

 The defi nition of these fuzzy sets is depicted in Figure 9.6 .
 A few notes are warranted with regard to the specifi c defi nitions shown in

Figure 9.6 . The gentle acceleration action is centered at 50 percent of throttle;
this implies some system - specifi c knowledge regarding the throttle setting that
will keep the car traveling at near the speed limit. When a human drives, such
assessments are made instinctively and automatically. When building a fuzzy
controller, such calibration can be done experimentally, but the overall design
is not dependent on precise selection on this value. A second issue to note is
that these actions have areas of overlapping control. For example, a setting of
0 percent can belong to the “ maintain speed ” or “ slow down ” action. Such
overlaps are perfectly acceptable and, in fact, are very common as the control-
ler will eventually blend the affects of these actions according to the member-
ship of the corresponding input variables. Finally, note that the slow down

40 50

0

1

Legal

60 70 40 50

0

1

Too

slow

60 70 40 50

0

1

Risky

60 70 75

 Figure 9.5 Intersection and union of fuzzy sets A and B.

282 MODELING HUMAN BEHAVIOR

action uses a more complicated shape than the triangles used for the other
two actions. As mentioned earlier, the selection of the particular shape should
depend on the associated meaning of the action and is not constrained in any
particular shape. In this case, the sharp rise on the right side implies that even
though small throttle inputs can be considered part of the “ slow down ” set,
the proportional membership value is very small compared with applying the
brake pedal.

 The fi nal step in the defi nition of the fuzzy control algorithm involves the
linguistic rules. We will use three rules as follows:

 • Rule 1: If speed is legal, then maintain speed.
 • Rule 2: If speed is too slow, then gently speed up.
 • Rule 3: If speed is risky, then slow down.

 Few simple rules are used here in order to keep the example manageable.
Additional variables could be defi ned (e.g., another variable may be the
current acceleration) and rules involving arbitrary predicates can be used; for
example, a more complicated rule could be: “ If speed is risky and acceleration
is positive, then decelerate briskly. ” Once the implementation has been auto-
mated, adding new rules and variables can be done with relative ease as their
treatment is uniform.

 At a conceptual level, simulating human control behavior using fuzzy logic
is done by using a measured value of each fuzzy variable, determining the
fuzzy sets to which the actual value belongs, and then determining which
actions are affected by these “ active ” fuzzy sets. This process was outlined in
Mamdani and Assilian [19] . Actions that contain active sets in their predicate
are referred to as “ fi ring. ” Once the fi ring actions have been identifi ed, their
contribution to the eventual control input is calculated according to the degree
of membership that each rule provides. One way to visually explain this
process is by creating a “ rules chart, ” which on the horizontal axis contains
the input fuzzy sets and on the vertical axis contains the action fuzzy sets. The
rules chart for our example system is shown in Figure 9.7 , which uses different
line styles to separate among the input and action fuzzy sets. Also, vertical
lines have been drawn to show the ranges of each input fuzzy set, and hori-

0% Brake

and throttle

0

1

Gentle

accel

100%

Brake

100%

Throttle

0% Brake

and throttle

100%

Brake

100%

Throttle

0% Brake

and throttle

100%

Brake

100%

Throttle

0

1

0

1

5% 45%25% 75% 15%
–100%

–25% 0%0%50%

Maintain

speed

Slow

down

 Figure 9.6 Fuzzy sets for possible actions.

TECHNIQUES FOR HUMAN BEHAVIOR MODELING 283

zontal lines have been drawn to show the application area of each action. Note
that each input fuzzy set creates a horizontal region; in this case, the “ too
slow ” input covers any speed below 50 mph, the “ legal ” input covers the region
from 40 to 70 mph, and fi nally the “ risky ” input covers any speed over 65 mph.

 Given the rules chart, the mapping between variables and rules can be
interpreted as the rectangular region that overlaps the input range and the
corresponding rule range. Figure 9.8 illustrates these three regions, one per
rule. The upper - right region represents rule 3, the middle region represents
rule 2, and the lower - left region represents rule 1. Note that rules overlap,
indicating that there are situations where a given speed may belong to more
than one input set. Correspondingly, more than one of the rules will fi re in
order to produce the fi nal action, which will consist of a blend of each of the
actions associated with the fi ring rules.

 Let us now look more specifi cally at how the controller works by assuming
that the current speed of the car is 73 mph. This speed can only belong to the
 “ risky ” input set, so the only rule that can fi re is rule 3. We determine this by
observing that this is the only rule that references the “ risky ” input in its
predicate. If additional rules referenced the risky group, they would also fi re.
Next, we determine the degree of membership of this value to the “ risky ” set.
Given the visual defi nition of the fuzzy sets, calculating the membership value
can be done by inspecting the rightmost shape of Figure 9.5 , but of course,
it can also be programmed on a digital computer. In this case, by inspection,
we determine that the value of membership of the 73 - mph speed to the risky

40 50 60 70

Legal

RiskyToo slow

S
lo

w
 d

o
w

n

M
a
in

ta
inG

. a
c
c
e
l

Legal

Risky

Too slow

Slow down

Gentle accel

Maintain

Speed

0
%

 B
ra

ke

a
n

d
 th

ro
ttle

1
0

0
%

B
ra

ke

1
0

0
%

T
h

ro
ttle

 Figure 9.7 Rules chart for fuzzy controller example.

284 MODELING HUMAN BEHAVIOR

fuzzy set is 0.8. This membership value is the link between the observation
and the action. We use that same value to slice the action set and produce a
new set that represents all possible actions with a maximum membership of
0.8. Figure 9.9 depicts both of these operations. First, a vertical line is placed
at 73 mph to determine the membership; note that the rule 3 region is inter-
sected by this line, something that we have already determined. Then, a verti-
cal line is drawn parallel to the action axis at a membership value of 0.8 and
the “ slow down ” set is reduced by this value. Visually, this yields the cross-
hatched pattern as the applicable subset of the “ slow down ” action.

 At this point, the fuzzy controller is suggesting that the appropriate action
is refl ected by the fuzzy set associated with the “ slow down ” action as reduced
by the membership value of 0.8; however, this is still a fuzzy set, and in order
to control the vehicle, it is necessary to perform a last step that de - fuzzyfi es
the set and produces a specifi c control input. The traditional approach for this
step is to utilize the center of gravity of the fuzzy set, as shown in Figure 9.10 .
The intercept between the centroid and the action axis yields the fi nal control
value; in this case, this value is approximately 24 percent, braking.

 A more complicated (and much more common) situation occurs when the
input variable intersects more than one of the input sets, and in turn, fi res
more than a single action. Let us look at such an example when the input
speed is 67 mph. Drawing a vertical line at 67 mph, we observe that it intersects
both the legal and risky speed regions; so driving at 67 mph is both “ legal ” and
 “ risky. ” Specifi c membership values can be calculated by computing the inter-

40 50 60 70

Legal

RiskyToo slow

S
lo

w
 d

o
w

n

Speed

0
%

 B
ra

ke

a
n

d
 th

ro
ttle

1
0

0
%

B
ra

ke

1
0

0
%

T
h

ro
ttle

M
a
in

ta
inG

. a
c
c
e
l

 Figure 9.8 Rules overlaid in rules chart.

TECHNIQUES FOR HUMAN BEHAVIOR MODELING 285

cept between the 67 - mph line and the membership profi le functions. Figure
 9.11 depicts the intercepts, which occur at 0.2 for the risky set and 0.4 for the
legal set. To determine which rules fi re, we can either inspect the rules and
identify the ones that include the risky or legal sets in their predicate or graphi-
cally identify which region the 67 - mph line intersects in the rules chart shown
in Figure 9.9 . Both approaches yield rule 1 and rule 3 as the rules that fi re in
this situation. To determine the value applied to the slicing of each of the
actions, we select the membership value of legal for the maintain speed action
(in this case a value of 0.4) and the membership value of risky for the slow
down action (in this case a value of 0.2).

 Figure 9.12 illustrates the appropriate regions and the application of the
membership values to the two fi ring actions. The resultant action sets are
shown on the right side of the fi gure. As in the previous example, the fi nal

40 50 60 70

Actual speed

= 73 mph

Membership

value = 0.8

0

1

1
0

0
%

T
h

ro
ttle

0
%

 B
ra

k
e

a
n

d
 th

ro
ttle

1
0

0
%

B
ra

k
e

10

0.8

0.8

Firing rule

 Figure 9.9 Rules overlaid in rules chart.

100%

Brake 0% Brake and

throttle
Final control

value

 Figure 9.10 Final control value.

286 MODELING HUMAN BEHAVIOR

control output can be derived by selecting the centroid of the union of the
fuzzy action sets. In this case, this value indicates a slight application of the
brake, which is consistent with the earlier solution that demanded larger brake
application due to the higher speed.

 As demonstrated by the above examples, fuzzy logic can be used to build
controllers that mimic the operation of human beings including the interpreta-
tion of input data, specifi cation of linguistic rules that select control actions,
and correlation of action intensity with root cause of the disturbance. This last
feature is a critical component of fuzzy logic control. Whereas classical control
approaches utilize differential equations to develop control commands that
depend on specifi c assumptions about the system under control, fuzzy logic
controllers utilize an arbitrary number of linguistic rules, each of which can
handle a portion of the controlled system ’ s performance envelope. This resem-
bles low - level human behavior; we can easily switch between control strategies
and manage to adapt along with a system, hence, the attractiveness of fuzzy
logic for building humanlike control algorithms. Finally, note that even though

Risky

Legal

Speed
40 50 60 70 75

Speed = 67

0.2

0.4

 Figure 9.11 Input intercepts for the second example.

0
%

 B
ra

k
e

a
n
d
 th

ro
ttle

1
0
0
%

B
ra

k
e

Risky

Legal

Speed
40 50 60 70 75

Speed = 67

0.2

0.4

Maintain

0.4

Slow down

0.2

Final control

value

0% Brake

and throttle
100%

Brake

 Figure 9.12 Rules chart illustrating controller operation.

TECHNIQUES FOR HUMAN BEHAVIOR MODELING 287

Follow

Pull-out Accelerate

Pull-in

ahead
Done

Decelerate
Pull-in

behind

the examples shown here focus on the low - level control, it is possible to apply
fuzzy logic in higher - level decision - making processes; in fact, any area that can
be defi ned in terms of fuzzy sets and formulated as a closed - loop control
problem described by linguisitc rules can benefi t from the direct or indirect
application of fuzzy logic theory.

 Finite - State Machines (FSM s)

 Another very popular technique used for building human behavior models is
FSMs. A state machine consists of a set of states, a set of transitions among
these states, and a set of actions. Actions are associated with states and along
with transitions govern the behavior of the modeled entity. Each state and
associated actions represent a distinct behavior phase that the entity can
exhibit. The transitions control when the mode of operation changes based on
external factors. Sometimes, a set of initialization and termination functions
are associated with each state; the initialization function executes once when
a state fi rst takes control, and the termination function executes once when a
state losses control.

 The use of FSMs for modeling human behavior is better explained by con-
structing an example. In this case, we will use the example of the behavior of
a driver that is attempting to pass the vehicle ahead while driving along a
two - lane road and each lane having opposite direction. For state machines
with relatively few states, a directed graph can be used to depict the structure
of the state machine, so we will use this technique here. Figure 9.13 illustrates
a directed graph representing the behavior.

 There are seven states and eight transitions. Table 9.3 contains the meaning
of each state along with the actions associated with each state.

 Transitions control when the entity will change from one state to the other.
Depending on the exact formalism used, transitions can be associated with the
occurrence of singular external events or can contain complex logic for deter-
mining when states change. In the model described, transitions are generalized
Boolean functions that can contain arbitrarily complex logic that eventually
evaluates to true or false. Table 9.4 contains a sample of transitions and their
associated logic as would apply to this example.

 Figure 9.13 Directed graph representing passing state machine.

288 MODELING HUMAN BEHAVIOR

Table 9.3 Finite-state machine for passing maneuver

 State Meaning Action

 Follow Maintain appropriate
distance behind the lead
vehicle.

 Control vehicle to maintain desired
following distance. Track the lane.

 Pull - out Veer to the opposite lane
traffi c in order to
prepare for passing.

 Accelerate and at the same time steer
to place vehicle on opposite lane;
remain behind the lead vehicle.

 Accelerate Now at the opposite lane;
the goal is to drive
ahead of the vehicle
being passed.

 Accelerate rapidly to pass; track the
opposite lane.

 Pull - in ahead Remain ahead of the
vehicle being passed and
drive back on the lane.

 Maintain desired speed and steer
back onto own lane.

 Done Maneuver is completed. Drive as usual.
 Decelerate Maneuver is aborted – –

slow down to get back
behind the lead vehicle.

 Decelerate slower than other vehicle;
track the opposite lane.

 Pull - in behind Maneuver is aborted – – get
back behind the lead
vehicle.

 Maintain appropriate following
distance. Steer to place vehicle
back onto own lane.

Table 9.4 Logic for selected transitions in passing maneuver

 Transition Logic

 Follow → pull - out Following distance less than a threshold and no
oncoming traffi c exists.

 Pull - out → accelerate Vehicle has shifted to oncoming lane and no oncoming
traffi c exists.

 Pull - out → pull - in behind Oncoming traffi c exists.
 Accelerate → pull - in ahead Rear bumper of own vehicle has moved ahead of front

bumper of vehicle being passed.
 Accelerate → decelerate Oncoming traffi c exists and front bumper of own vehicle

is ahead of rear bumper of vehicle being passed.
 Accelerate (pull - in behind Oncoming traffi c exists and front bumper of own vehicle

is behind rear bumper of vehicle being passed.

 There are few noteworthy items in the above example:

 (1) The entity implementing this behavior can only be at one state at any
given time, so states can be traversed in a fi nite number of sequences
within the directed graph. Because of the fi nite number of states, there
are a fi nite number of nonoverlapping paths through the system.

TECHNIQUES FOR HUMAN BEHAVIOR MODELING 289

 (2) The model as described so far is not associated with any particular
execution style; this model could execute with discrete - event or con-
tinuous time simulation semantics. FSMs are very effective tools that
can be used independent of the execution semantics — of course, the
implementation details will vary depending on the actual execution
semantics.

 (3) The actions described in Table 9.3 resemble to some degree the descrip-
tion of the state itself. This is common as the essence of each state is
captured in the actions or activities implemented by the entity while in
that state. The state names serve as shorthand descriptions of the activi-
ties that the entity will engage while in the state.

 (4) It is generally expected that among the transitions emanating from a
state, no more than one will evaluate to true at any given time. If none
of the transitions are true, the current state remains current.

 Even though not explicitly specifi ed, most state machines have a designated
start and end state, which provides for a clean start and end points in simulat-
ing the behavior.

 Details on the approach used for action implementation have been inten-
tionally ignored so far, primarily to avoid unnecessary details. However, the
discussion would not be complete without addressing various techniques for
incorporating actions into a human behavior model implemented using state
machines. First, let us assume that this state machine will execute by using
continuous time semantics. Furthermore, let us assume that the state machine
is represented by the two data structures listed in Figure 9.14 :

 The fi rst data structure represents transitions. It contains a Boolean func-
tion that evaluates if the transition should take place and also contains an
integer variable that refers to the target state. Note that depending on the
programming language semantics, the target variable could be a pointer, refer-
ence, or similar construct that can be used to refer to another data structure.

Transition
Function evaluate();
Integer target;

End Data Structure Transition

StateEntry
Procedure activation();
Procedure termination();
Procedure actions();
Set transitions of type Transition

End Data Structure StateEntry

 Figure 9.14 Transition and state data structures.

290 MODELING HUMAN BEHAVIOR

The second data structure represents states. It contains three procedures,
one that is called when the specifi c state fi rst takes over, another that is called
when the state loses control, and fi nally one that is called while the state is
active. Finally, the state contains a set of transitions, completing the FSM
defi nition.

 Figure 9.15 lists a typical execution loop that can be used to execute an
arbitrary state machine, provided that the variable FSM represents an array
of StateEntry data structures that has been properly initialized to refl ect the
structure of the state machine.

 Implicit in the above pseudocode segment is the assumption that all proce-
dures and functions have access to the global clock as well as all the data
representing the virtual environment within which the agent exhibiting this
behavior resides.

 Let us get back to addressing the issue of action implementation. In this
particular example, we are dealing with a driving behavior so we need to
account for one additional issue that is specifi c to driving, namely using a
realistic model of the movement of the vehicle. It turns out that the complexity
of precisely controlling a vehicle increases as the fi delity of the vehicle model
increases. This is because vehicle dynamics are nonlinear and thus less ame-
nable to traditional closed - loop control techniques. Whereas we can select the
fi delity of the movement model for a simulated vehicle, when the simulated
human behavior must control an actual vehicle we have no such control
 [20,21] . This would be a perfect application of fuzzy control as described
earlier. To simplify matters here, let us assume that the vehicle model is purely
kinematic and thus can be controlled by directly providing the desired accel-
eration and direction of travel. A set of Newtonian equations can then handle
the actual time - based motion of the vehicle that will comply exactly to the
commands of the behavior model.

 Given the aforementioned assumptions, we will review two approaches for
action implementation, one in which control is embedded in the tactical level

state = initState;
call FSM[state].activation();

for time = 0 to endTime
call FSM[state].actions();
for each transition i emanating from FSM[state]

B = FSM[state].transition[i].evaluate();
If (b = true)

call FSM[state].termination();
State = FSM[state].transition[i].target
call FMS[state].activation();

endif
endfor

endfor

 Figure 9.15 Typical state machine execution loop.

TECHNIQUES FOR HUMAN BEHAVIOR MODELING 291

directly, and one in which control is implemented by a different but coexecut-
ing model. Even though the differences may appear subtle when viewed at
the implementation level, they refl ect the difference between the physical and
tactical level of behavior described earlier.

 Using embedded control, the action procedure associated with each state
is responsible for generating the desired acceleration and direction of travel.
That means that the logic embedded in the behavioral model must perform
calculations to determine the desired acceleration and travel. For example,
while in the pull - out state, the acceleration should ensure that the own vehicle
does not collide with the lead vehicle and that the track of the vehicle is per-
forming a gradual shift in lane position. In effect, the action procedure must
not only defi ne but also implement the low - level behavior that the entity
exhibits while in the specifi c state.

 When using external control implementation, the action procedure need
only specify what it needs done, not how. The low - level implementation of
the control would be done elsewhere; in this case, a separate vehicle control
model would be tasked with the implementation. For example, a possible
vocabulary of commands may include “ Follow Vehicle X, ” “ Change Lane to
L0, ” and so on. This approach decouples the state machine implementation
from the specifi c issues associated with the physical control of the underlying
vehicle.

 Both approaches have advantages and disadvantages, although using an
external control implementation is recommended for all but the simplest
behavior models. Whereas using embedded control provides for a more cen-
tralized representation of the state machine and tends to reduce the initial
effort of developing the system, it also mixes numerous details associated
with the low - level physical control into the upper behavior levels. That is con-
trary to general behavior traits that tend to remain constant across different
physical interactions. Except for extreme situations, the general behavioral
traits of a human driver do not change when driving different automobiles;
our writing style does not change when we use a different pen and a capable
shooter maintains a high hit ratio independent of the weapon in use. This
is because motor skills are generally independent of our decision making,
and thus an implementation that mimics this separation of higher - level behav-
iors from lower - level motor skills is better able to match the overall human
behavior.

State Machine Limitations, Extensions, and Alternatives

 Despite their usefulness and widespread use, state machines have signifi cant
limitations. At a conceptual level, because the set of states is fi nite, the possible
set of behaviors is also fi nite; an agent build using an FSM never learns! The
fi eld of machine learning focuses on developing approaches that aim to address
this limitation, and some of this material will be covered in the pattern recog-
nition section [22] .

292 MODELING HUMAN BEHAVIOR

 Another limitation of FSMs is state - space explosion. As the number of non-
mutually exclusive behaviors increases, the number of states that must be used
to capture all permutations of managing such behavior increases exponentially.
For example, consider an FSM that implements a defensive soccer player who
must guard a specifi c portion of the playing fi eld and also pursue the ball
beyond the specifi c area when other teammates are beyond range. Because
these behaviors are not mutually exclusive, we must implement three states,
one for handling area coverage, one for handling ball pursuit, and one for han-
dling both. A state diagram representing this FSM is shown in Figure 9.16 .

 Now consider adding a third behavior, that of guarding a specifi c opponent.
The number of states will now be more than double, because all basic permu-
tation of behaviors must be implemented. The revised diagram is shown in
Figure 9.17 ; note that only a subset of the possible transitions is included in
the diagram.

 Simple combinatorial analysis shows that the number of states required to
implement N nonmutually exclusive behaviors is 2 N , something that can
quickly become unmanageable. Even when behaviors are mutually exclusive,
the number of states and associated transitions required to model complex
behaviors quickly escalates.

 There are several ways to address this limitation, primarily by extending
the basic formalism of an FSM. Work in domain - specifi c modeling has extended

Guard area

Pursue ball
Pursue ball and

guard area

 Figure 9.16 Soccer player state machine.

Pursue ball and

opponent and guard

area
Guard area and

opponent

Pursue ball and

guard opponent

Guard

opponent

Guard area

Pursue ball
Pursue ball and

guard area

 Figure 9.17 Extended soccer player state machine.

TECHNIQUES FOR HUMAN BEHAVIOR MODELING 293

basic state machines to include hierarchy and concurrency as well as domain -
 specifi c extension for enhancing the ability of controlling behavior [23] .
Hierarchical state machines include the notion of state containment , whereas
one or more states are nested inside a superstate. The ability to provide hier-
archical specifi cations signifi cantly reduces the number of states and decom-
poses the problem in manageable pieces. Concurrency is another useful
extension that allows more than one states to be active at the same time. The
code associated with each active state executes during each time step. This
allows isolated implementation of individual behaviors since they can all be
active at the same time. The only added complexity of this approach is that
when it comes to the control of the associated agent, it is possible to have
contradictory commands. Looking back in the soccer player example, an
implementation that utilizes concurrent states would contain only three states
as shown in Figure 9.18 . Because the states are now concurrent, there is no
need to code transitions; the associated code executes at each time step.
However, there can only be a single point of control for the physical layer,
and thus a layer is inserted between the output of concurrent state machines
and the fi nal physical layer; the task of this layer is to fuse the multiple control
inputs into a single and operationally logical control outcome.

 As shown in Cremer et al., it is possible to implement the fusion logic by
using a conservative approach that simply selects the least aggressive control
input [23] . That, however, necessitates that control inputs are subject to an
ordering relationship, something that is not always possible. Specifi cally, in
the soccer example shown in Figure 9.18 , if the pursue ball behavior requests
that the player seeks to point A but the guard area behavior requests that the
player runs to point B, there is no automatic way to compare aggressiveness.
In such cases, domain - specifi c handling must be implemented, something that
tends to create ad hoc and nongeneralizable solutions.

 An alternative to concurrent states is the use of context - based reasoning as
described in Gonzalez et al. [24,25] . Contexts are “ heavyweight ” states that

Guard

opponent
Guard area Pursue ball

Control fusion

Final control outcome

 Figure 9.18 Fusing concurrent state control.

294 MODELING HUMAN BEHAVIOR

are effectively prioritized through a series of sentinel functions that determine
if a particular context should be engaged. A sentinel function associated with
each context is sequentially engaged in context priority order. The sentinel
function assesses the situation and if it determines that its context can handle
it, it engages the context; otherwise, the next sentinel function is called. Once
engaged, a context gives up control voluntarily when it considers its task com-
pleted, or it can be preempted by a higher priority context, since the sentinel
functions are consulted on a continuous basis. A possible implementation of
the soccer behavior using context - based reasoning is depicted in Figure 9.19 .
Note that a default behavior is always present and will engage if none of the
other contexts engage in order to provide some reasonable, although purpose-
less, behavior. An example of combining the formalism of hierarchical state
machines and context - based reasoning for guiding an autonomous vehicle in
an urban environment is described in Patz et al. [26] .

 Finally, a formalism that incorporates hierarchy, concurrency, communica-
tion, and a fl exible visual specifi cation language is statecharts [27,28] . As ini-
tially presented, statecharts target discrete - event systems but can easily be
extended to support behavior modeling in discrete time simulations. Because
they support concurrent execution, referred to as AND states in statechart
nomenclature, they address state - space explosion; in addition, statecharts
support hierarchy, where states can belong to other states and are only active
when the parent state is active. Statecharts also formalize the notion of activity
functions associated with each state and the general form of transitions as
Boolean functions that are driven by either external events or internal logic.
Statecharts also introduce communication in the form of broadcast events,
which are events that are received by more than one concurrent state machine

Guard

opponent

Guard area

Pursue ball

Applicable?

Applicable?

Applicable?

Y

N

N

Y

Y

Default

N

 Figure 9.19 Context - based reasoning implementation of a soccer player.

TECHNIQUES FOR HUMAN BEHAVIOR MODELING 295

and result in transitions of the same name in all superstates. Statecharts were
initially developed to support practical specifi cation of real - time systems, but
are used extensively for numerous applications including human behavior
modeling.

RBSs

 The RBSs paradigm is an alternative approach to developing human behavior
models. At its core, an RBS is rather simple, consisting of a set of rules,
working memory, and an inference engine. The rules are pairs of if - then state-
ments that each encodes a distinct condition and rational action both of whose
domain is application specifi c. All associated data reside on the working
memory, which initially presents the input of the external world, effectively a
snapshot of the situation that an agent must handle. A rule fi res when the if
portion is true. When a rule fi res, the action portion of the rule can have an
arbitrary effect on the working memory. The inference engine engages when
multiple rules are eligible to fi re and implements a confl ict resolution scheme
to select the one rule that fi res. This process continues until a terminal rule
fi res or until no rule is eligible to fi re. At that point, it is typical that the con-
tents of the working memory represent the best information available about
the system. An alternative interpretation of the function of the RBS for behav-
ior modeling is the association with actions with each rule, allowing the infer-
ence engine to act as a means by which to select appropriate actions based on
current conditions.

 Originally, the RBS paradigm was used in expert systems whose goal was
to mimic the decision making of an expert when faced with facts relevant to
the area of expertise. Automated medical diagnosis is the most common
example of the use of RBS in expert systems. Beyond expert systems, however,
an RBS can be used to implement behavior (1) by associating actions with
each rules or (2) by associating actions with the terminal state of the working
memory. At each time step, an RBS is initialized by encoding the situation
facing the agent; the rules are evaluated with the inference engine used to
select which rules take priority in case of confl icts. In the former variation,
each rule fi ring corresponds to an action that is part of the behavior that the
agent exhibits. In the latter variation, the state of the working memory at
the end provides the best possible assessment of the situation at hand, and the
appropriate activity is engaged to manage the physical aspect of the behavior.
Note that this is similar to how the physical model obeys the commands of
the currently active state in an FSM. Figure 9.20 illustrates the structure of
an RBS used for behavior modeling, structured according to the latter
variation.

 RBS have several benefi ts when used to represent human behavior. Because
there needs to be no linkage between rules, it is possible to add an arbitrary
number of rules to a system without having to worry about explicit dependen-
cies among them. Each rule represents a small amount of knowledge that can

296 MODELING HUMAN BEHAVIOR

be used to improve the understanding of the situation, and any number of
such rules can be added during development. This scalability is a signifi cant
advantage for behaviors that must handle a wide range of situations and for
behaviors whose defi nition is evolving during development. Another advan-
tage of RBS for representing behavior is the fact that behavior need not
always be deterministic. In fact, the basic paradigm does not specify specifi c
constraints for the order in which rules are evaluated or the order that they
execute. Modifi cations of the inference engine can be used to create variations,
either stochastic or situation - based that lead to an agent taking a slightly dif-
ferent course of action when presented with what seems to be identical situ-
ations. Both of these reasons have made RBS a popular architecture for
building the logic used for nonplayer characters in games.

 By far the most comprehensive implementation of RBSs is Soar , a cognitive
architecture for developing intelligent behaviors that is based on RBS [29] .
Some notable extensions to the basic RBS paradigm include the use of mul-
tiple level memory and explicit treatment of perception, cognition, and motor
skills as part of the overall architecture. In effect, the Soar architecture not
only supports the physical, tactical, and strategic behavior levels, but also
includes the input portion of an agent ’ s behavior, which controls the fl ow of
information from the environment to the cognitive engine. Finally, Soar
includes a limited learning mechanism that can increase the available rules
dynamically, thus simulating learning and adaptation. The Soar architecture
implementation is in the public domain, and extensive user communities
provide materials supporting its use [30,31] . Soar has been used extensively in
constructing behaviors for military simulations and computer - generated forces
and games [32] .

 Pattern Recognition

 We will now discuss pattern recognition as it applies to simulation of human
behavior. Broadly speaking, pattern recognition is defi ned as the conversion

Rule-based system

Working

memory

Behavior

Inference

engine

Rule

action

Terminal

rule ?

Behavior

implementation

Sensing and

perception

Eligible

rules

Selected

rule

Y

N

Modifications

 Figure 9.20 Structure of an RBS used for behavior modeling.

TECHNIQUES FOR HUMAN BEHAVIOR MODELING 297

of raw data into meaningful and contextualized data structures that can be
used for further processing. Pattern recognition relates to human behavior
modeling in two ways: fi rst as a means to simulate or replace sensory inputs
and second as a means of actual decision making.

 The former relation is focused on understanding the world through sensing
stimuli, using pattern matching algorithms that focus on visual imagery,
sounds, and so on. Despite popularized visions of humanoid robots that can
 “ see ” and “ hear, ” the ability to recognize speech or reliably react to visual
stimuli is not as related to human behavior modeling as may initially appear.
For example, data fed into a decision - making algorithm used in a game or
military simulation does not need to be generated by a visual recognition task;
similarly, recognizing speech may be convenient for a human operator but
does not signifi cantly affect the process of developing human behavior models
that depend on audio stimuli. In effect, behavior modeling focuses on the
decision - making and cognitive issues, whereas this class of pattern recognition
technologies imitates human sensory inputs.

 The latter relationship, which is focused on recognizing emerging patterns
as a means to decide on the course of action, is more interesting as it relates
to human behavior modeling. As mentioned earlier, it has been shown that a
signifi cant portion of human behavior is rooted in consciously or uncon-
sciously recognizing patterns and tapping in stored memories of prior actions
when faced with such patterns as a means for deciding the beset course of
action. It thus makes sense to pursue human behavior modeling approaches
that utilize pattern recognition as the primary driver for decision making. In
this context, pattern recognition is a much higher - level process than sensory -
 type pattern matching, and it is better equated with situational awareness and
intuition.

 As a way to demonstrate the differences between sensory pattern recogni-
tion and higher - level situational awareness recognition, consider modeling the
behavior of a member of a sports soccer team. The low - level pattern recogni-
tion tasks would be engaged in identifying the position and future trajectory
of the ball and remaining players. The higher - level pattern recognition task,
on the other hand, would try to identify possible opponent offensive maneu-
vers or weakness in the current formation of the opponent as a means to
decide on appropriate future actions. In effect, the player continuously assesses
the situation by trying to identify known patterns formed by assessing the
current situation. Any action taken in response to the current situation yields
an outcome, which in turn affects the situation, thus closing the loop. A simpli-
fi ed depiction of this process is shown in Figure 9.21 . Note that this process
resembles the architecture of RBSs, with one rule stored per pattern and the
associated action tied to recognition of the particular pattern.

 In addition to supporting a meaningful approach to modeling human
behavior, pattern matching also provides the opportunity of encoding knowl-
edge. The information used to represent known patterns, typically referred
to as exemplars or templates, can be augmented with new patterns and

298 MODELING HUMAN BEHAVIOR

associated rules. Depending on the techniques used for pattern recognition,
it is also possible to reiterate or reject templates based on the success of the
recognition tasks, in effect simulating learning by experience, or by example.
In addition to mimicking how human beings learn, pattern recognition has
several advantages over other techniques used for behavior modeling. Because
learning occurs by example, it is not necessary to develop explicit rules that
describe the patterns. In fact, it is not even necessary to be explicitly aware of
the specifi c features that comprise a situation, it is only enough to have enough
examples to train the algorithm to recognize the pattern.

 Let us now summarize two related but distinct techniques used for pattern
recognition. The fi rst is artifi cial neural networks (ANNs) and the second is
HMMs. They both share traits that support learning and ruleless specifi cation
of patterns, but take a different mathematical approach.

 ANN s ANNs are an information processing paradigm inspired by human
brain physiology [33,34] . ANNs consist of a large number of interconnected
elements, referred to as neurons, a term borrowed from biology and refers to
a single cell that can process and transmit information using electrical signals.
In living organisms, neurons work together to perform recognitions tasks.
Input stimuli is provided as input to neurons which in turn produce output
signals that are routed to other neurons, eventually reaching a terminal output
that controls higher cognitive functions. Neurons are interconnected through
synapses; these connections govern the eventual output, given a specifi c set of
inputs. In a similar manner, ANNs are constructs that mimic the interconnec-
tion and operation of neurons. The ability of ANNs to recognize patterns is
stored in the structure and strength of the interconnections among the indi-
vidual neurons.

 A key aspect of neural networks is that the connections and connection
strengths can evolve based on received signals; in biologic neurons, electro-
chemical processes create new connections and adjust the strength of such
connections, and in ANNs, a variety of algorithms are used to adjust the

Pattern

recognition
Situation

Action Outcome

Pattern

memory

 Figure 9.21 Simplifi ed model of pattern - recognition - driven actions.

TECHNIQUES FOR HUMAN BEHAVIOR MODELING 299

weights and connections. The important point is that in both biologic and
artifi cial neural networks, this process of adjusting connections and weights
represents learning. Depending on the type of learning, the network either
automatically reconfi gures itself to identify patterns that appear frequently or
can be trained to identify specifi c patterns of interest. The former is referred
to as supervised learning, while the latter is referred to as unsupervised learn-
ing. The ability to train by example combined with the ability of adaptive
learning makes ANNs an attractive technique for model human behavior.

 Figure 9.22 depicts the structure of an artifi cial neuron, where X i refers
to inputs, W i refers to weights associated with each input, and F is the summa-
tion function F W Xi ii

n= =∑ 1 that generates the output. A neuron fi res when
the output value exceeds a prespecifi ed threshold. ANNs consist of multiple
neurons by connecting the output of each neuron to the input of one or more
other neurons creating a network. There are two primary ANN architectures:
the feed - forward and the feedback.

 The feed - forward network supports only forward connections, whereas the
feedback network allows the creation of loops within the network. Feed -
 forward networks are often organized in one or more layers as shown in Figure
 9.23 . Any number of hidden layers may exist, but as long as there is no loop
in the directed graph formed by the network, the network remains a feed -
 forward network.

W1

W2

Wn

Output
FInputs

x1

x2

xn

...

 Figure 9.22 Operational illustration of an artifi cial neuron.

Hidden layers

Inputs
Output

 Figure 9.23 Feed - forward ANN with hidden layers.

300 MODELING HUMAN BEHAVIOR

 Feed - forward networks are static, in the sense that once an input is pre-
sented, they produce an output in the form of a binary signal. Feedback net-
works on the other hand exhibit dynamic behavior since the looped connections
create a time - evolving system that changes as the output of the network is fed
back into the input.

 For each problem domain, effective use of an ANN involves two key steps:

 (1) Identifi cation of the mapping between problem domain and ANN input
 (2) Training of the ANN

 In the fi rst step, it is necessary to convert the domain - specifi c knowledge
and awareness into specifi c inputs that can be provided to the ANN. This
requires the development of a mapping between world observations and
inputs. Let us take a simple example of a generic team sport where the oppos-
ing team ’ s position affects our short - term strategy. Figure 9.24 depicts two
formations that are important to identify: a defensive stance (on the left) and
an offensive stance (on the right).

 A straightforward way for encoding such pattern is to overlay a grid over
the playing fi eld and mark the respective grid point as 1 when an opponent is
present or 0 when an opponent is absent. The grid can then be represented
by an occupancy matrix as shown in Figure 9.25 ; the occupancy matrix can
then serve as the input to the ANN.

 Once the problem domain has been mapped into ANN inputs, the ANN
must be trained. Training an ANN is performed by using a set of inputs called
the training set. The idea is that once trained with the training set, the ANN
will then be able to recognize patterns that are identical or similar to the pat-
terns in the training set.

 As indicated earlier, there are two approaches to training an ANN. In
supervised training, the ANN is provided with specifi c patterns and the appro-
priate answer. Note that depending on the ANN topology, each pattern may

Opponent

side

Defensive

stance

Offensive

stance

 Figure 9.24 Example of coding.

TECHNIQUES FOR HUMAN BEHAVIOR MODELING 301

require its own ANN for recognition, or a composite ANN can be trained for
multiple patterns. In either case, training involves adjusting the weights to
ensure that the output of the network matches, as much as possible, the correct
answer. A variation of this approach is reinforcement learning, in which the
ANN is given guidance as to the degree of correctness of each answer it pro-
duces as opposed to a strict comparison with the known correct answers. The
overall approach is called supervised because it resembles a teacher supervis-
ing a student during learning. In the example shown in Figures 9.24 and 9.25 ,
the matrices refl ecting the defensive and offensive stances would be used to
train the ANN so that when either formation (or any formation that resembles
them) appears, appropriate action can be taken.

 Extending the example even further, another possible way to utilize an
ANN is by trying to identify formations that lead to goal scoring. For example,
by using games recorded a priori, the formation of the opposing team can be
sampled at regular intervals along with the outcome of the formation in terms
of scoring or failing to score a goal during a short period after the formation.
The ANN can then be trained with a training set that consists of observed
formations with the correct answer being the goal scoring outcome. Once the
ANN has been trained, its output can be used to identify formations that lead
to the opposite team scoring a goal, which in turn can be used to initiate spe-
cifi c defensive maneuvers or other action whose aim is to counteract the
opposing team.

 In unsupervised learning, the ANN is provided with streams of inputs, and
the weights are adjusted so that similar patterns yield similar answers. Unlike
supervised learning, unsupervised learning does not require a correct answer
to be associated with each input pattern in the training set. Instead, the ANN
is sequentially exposed to all inputs in the training set and the weights are
adjusted in an iterative manner so that the output will be correlated highly
with similar patterns in the training set. Unsupervised learning is useful
because it inherently explores similarities in the structure of the input data
and through the association of similar output scores clusters inputs into similar
groups, in effect organizing the inputs into categories. Unsupervised learning

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0 0

0 0 0 0

0 1 1 0

1 0 0 1

0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 Figure 9.25 Illustration of mapping environment into ANN input.

302 MODELING HUMAN BEHAVIOR

is often used in data mining applications, whose goal is to make sense of large
sequences of data for which no known or obvious pattern exists. Unsupervised
learning provides less utility for pragmatic human behavior modeling because
it is diffi cult to associate actions without a priori knowledge of possible out-
comes. An alternative to pure unsupervised learning is to utilize a hybrid
approach, where the initial training is done in a supervised manner, but unsu-
pervised learning is used to refi ne the ANN. The advantage of this approach
is that the supervised portion provides the necessary associations between
recognized patterns and actions, while the unsupervised learning acts as a
self - calibrating mechanism that adapts to slight variations to known patterns
that occur after the initial training has taken place.

 There are several approaches used for implementing ANN training. The
most straightforward approach is to use an error - correcting rule that utilizes
the error signal, that is, the difference between the correct answer and the
actual output of the ANN, as a means for changing the weights. Possibly the
oldest approach for training ANNs was published in Hebb, and it is referred
to as the Bebbian rule [35] . It uses fi rings of neurons (caused by the training
set) to perform local changes to the ANN weights. Other approaches include
Boltzmann learning, which is derived from thermodynamic principles [36] A
summary of various training approaches in tutorial form, along with further
examples of ANN usage, is given in Hertz et al. and Haykin [33,34] .

HMMs An alternative paradigm for pattern recognition as it relates to
human behavior modeling is the HMM. Similar to an ANN, an HMM can be
used to recognize patterns following a period of successful training from a
training set. What is attractive about the HMM, however, is that the model
itself often has a structural resemblance to the system being modeled. Also,
the HMM can be used as a generator of behavior, not just a recognizer of
patterns, and as such is worth some independent coverage.

 The formal defi nition of an HMM involves several constructs. First, an
HMM consists of a set S of N states, much like a state machine. The system
changes states based on probabilities that dictate the chance of the system
transitioning from one state to another. These probabilities are specifi ed in
the state transition probability matrix A , which is an N × N matrix whose
element (i , j) contains the probability that the state will transition from state
i to state j . Unlike state machines though, the actual states and transitions of
an HMM cannot be directly observed. Instead, we can only observe symbols
emitted by the system while at a given state. For a given HMM, there is a set
V containing M observable symbols; typically, this set of symbols is referred
to as the model alphabet. The symbols emitted by each state is governed by
the observation symbol probability distribution function, defi ned as a set B
containing the probability that a given symbol will be emitted by the system
while on a given state. The specifi cation of an HMM becomes complete after
providing the initial state of an HMM, symbolized by π . In summary, an HMM
is specifi ed by the following elements:

TECHNIQUES FOR HUMAN BEHAVIOR MODELING 303

S S S S

V v v v

A a a P q S q S

N

M

ij ij t j t i

= { }
= { }
= { } = = =[]+

1 2

1 2

1

, , , ;

, , , ;

, ;

…
…

BB b k b k P v t q S

P q S
j j k t j

i i i

= (){ } () = =[]
= { } = =[]

, @ ;

, .π π π 1

 In the above, q t represents the state of the system at time t . Given an HMM,
we observe a series of symbols emitted by the system being modeled; this
sequence is represented by the set O: O = { O 1 , O 2 , … , O T }, where T is the
number of observations. This notation is established in Rabiner, which also
provides an excellent tutorial on HMMs along with the core algorithms associ-
ated with their use [37] .

 It is interesting to note the resemblance of an HMM to a human performing
a specifi c mechanical task. We know that a person ’ s actions are driven by what
is in his or her mind loosely operating according to a sequence that can be
encoded in a state machine. At the same time, we cannot directly observe the
person ’ s mind; this is refl ected by the hidden portion of the model. Instead,
we can only observe the person ’ s actions, a fact which is refl ected in the model
by the emitted symbols. Finally, the probabilistic nature of the state transitions
and emitted symbols refl ects the inherent variation of human task perfor-
mance and provides a natural mechanism for specifying varying levels of
accuracy while driven by a single motivation.

 HMMs have been used for a wide range of applications that benefi t from
their similarity to human actions. In speech recognition, HMMs are used to
detect individual words by detecting sequences of phonemes that together
form words; by training the model, it is possible to obtain recognition that is
independent of accents or other phonetic variations [38] . Similar approaches
are used in various other pattern recognition fi elds, such as character recogni-
tion and gesture recognition [39,40] . When it comes to human behavior model-
ing, HMMs are a useful tool for recognizing high - level patterns, much like
ANNs, but also for generating realistic behavior. Before explaining the spe-
cifi c approach, let us summarize the basic issues associated with an HMM
formulation. As described in Rabiner, there are three basic procedures that
need to be addressed while working with HMMs [37] . The fi rst is evaluating
or recognizing a sequence. The second procedure involves training the HMM
so it recognizes a given class of observation sequences. Finally, the last pro-
cedure involves producing a sequence of observations that is the best match
for the model. The mathematical treatment of each of these procedures is
explained in Rabiner and will not be repeated here [37] . However, we will
discuss how each of them relates to human behavior modeling.

 The evaluation or recognition procedure assumes that a model is given and
seeks to compute the probability that the observed sequence was generated
by the model. The forward – backward procedure can be used to effi ciently
compute this probability, providing a recognizer with the same utility as an

304 MODELING HUMAN BEHAVIOR

ANN [41] . When using HMMs, one model would be used to detect each
required pattern. Figure 9.26 demonstrates how to use multiple HMM detec-
tors, loosely related to the earlier example on team sports formation detection.
The fi rst step involves the conversion of world observations in a sequence of
symbols consistent with the HMM alphabet. The issues associated with this
step are similar to when using ANN and will not be repeated here. The
observed sequence is then run through the recognition algorithm for multiple
HMMs, each calibrated to recognize a particular series of formations. The
resultant probabilities can then be compared and the maximum probability
can be used to arbitrate among the outputs, thus yielding the best estimate for
the current situation.

 One key difference between ANN and HMMs is that HMM utilize sequence
of observations versus a single observation used in ANNs. In the aforemen-
tioned example, the observation sequence refl ects a series of formations that
is identifi ed not only by detecting isolated player placement but also by the
specifi c sequence that these formations appear. Conceivably, the series of
subformations would refl ect sequential states from the opposing team ’ s play-
book; consistent with the HMM paradigm, states are not visible directly,
instead only observable through the actions of the opposite team.

 The conceptual issues associated with the training process are similar to the
issues encountered when training ANNs. Given a set of observations, we seek
to adjust the model so that it recognizes these observations. In mathematics
terms, we seek to adjust the model in order to maximize the probability of the
observation sequence, given the model. The classical solution to this problem
is to use the Baum – Welch iterative procedure, which yields a model that locally
maximizes the probability of detection [42] . Here, the term “ locally ” indicates
that as an iterative algorithm, the Baum – Welch approach cannot guarantee
that the fi nal model will be globally optimal. In practice, it is necessary to have
input observations that provide enough variation but do not contain large
distinct clusters of data, as the model may be trained for a specifi c cluster.

HMM 1
detector

HMM 2
detector

HMM k
detector

...
...

ArgMax

Detected
situationWorld-to-

symbol
conversion

1

2

3

n

O

O

O

O

()1|P O l

()2|P O l

()| nP O l

 Figure 9.26 Use of HMMs for situational awareness.

HUMAN FACTORS 305

Unlike ANN, when training an HMM we can only provide observation
sequences that we wish to recognized; there is no equivalent concept of super-
vised or unsupervised learning. Once trained, the resultant HMM can be used
for recognition as indicated in Figure 9.26 .

 The last procedure associated with HMMs is the generation of a state
sequence based on observations. As in the other problems, straightforward
application of the mathematics is computationally expensive, and alternative
algorithms have been developed to produce equivalent results. In this case,
the Viterbi algorithm is used to generate a sequence of state transitions that
best match an observation [43,44] . Stated simply, this procedure seeks to
unhide the model operation based on an observation. Assuming the structure
of the model is known, and given an observation, this procedure will provide
a series of state transitions that maximize the probability of generating the
same observation sequence as the one observed. Possible applications of this
technique include the reverse engineering of observed behavior into a proba-
bilistic sequential model.

 The ability of HMMs to adjust based on observations can be used in ways
beyond straightforward recognition of patterns. In fact, the trainability of
HMMs can be leveraged for purposes of encoding knowledge and creating
behavioral models that have an inherent ability of learning from experience.
For example, the work described in Shatkay and Kaelbling extends the basic
HMM model with odometry information as a means to facilitate an autono-
mous robot learn about its environment [45] . In this case, each state loosely
represents the state of the robot near a position in the map, and transitions
represent traveling between these confi gurations. The HMM model is aug-
mented by an odometric relation matrix that represents the spatial relation-
ship between such states. In this context, observations refl ect the movement
of a robot; the probabilistic nature of observations compensates for the noisy
measurements provided by sensors. By extending the HMM model with
domain - specifi c information, this example demonstrates how the ability of an
HMM to learn based on observations in this case can be leveraged for envi-
ronment discovery and mapping.

HUMAN FACTORS

 In recent years, researchers have begun to use several computational modeling
techniques to describe, explain, predict, and demonstrate human behavior and
performance, particularly in environments embodying time pressure, stress
and close coupling between humans and machines. Such attempts can be clas-
sifi ed loosely into the fi eld of human factors . Modeling efforts in this fi eld are
usually based on data collected in traditional human factors behavioral experi-
ments in laboratory - based simulators and in the actual task environments.
These models aim to extend the value of empirical results by making engineer-
ing predictions and attempting to explain phenomena related to basic human

306 MODELING HUMAN BEHAVIOR

performance variables in contexts ranging from human – computer interaction
(HCI), workplace design, driving, health care, military and defense, and avia-
tion. One example of such modeling techniques are discrete - event simulation
packages such as Arena, ProModel, and Microsaint that are used to generate
stochastic predictions of human performance unfolding in real time. The ulti-
mate goal is the integration of cognitive modeling techniques with physical
and mathematical modeling techniques and task analysis to generate compre-
hensive models of human performance in the real world.

 Research in the newly emerged fi eld of augmented cognition (AugCog) has
demonstrated great potential to develop more intelligent computational
systems capable of monitoring and adapting the systems to the changing cogni-
tive state of human operators in order to minimize cognitive bottlenecks and
improve task performance. Limitations in human cognition are due to intrinsic
restrictions in the number of mental tasks that a person can execute at one
time, and this capacity itself may fl uctuate from moment to moment depend-
ing on a host of factors including mental fatigue, novelty, boredom, and stress.
As computational interfaces have become more prevalent in society and
increasingly complex with regard to the volume and type of information pre-
sented, it is important to investigate novel ways to detect these bottlenecks
and devise strategies to understand and improve human performance by effec-
tively accommodating capabilities and limitations in human information pro-
cessing and decision making.

 The primary goal of incorporating modeling and simulation techniques in
studying human behavior, therefore, is to research and develop technologies
capable of extending, by an order of magnitude or more, the information
management capacity of individuals working with modern day computing
technologies. This includes the study of methods for addressing cognitive
bottlenecks (e.g., limitations in attention, memory, learning, comprehension,
visualization abilities, and decision making) via technologies that assess the
user ’ s cognitive status in real time. A computational interaction employing
such novel system concepts monitors the state of the user, through behavioral,
psychophysiological, and/or neurophysiological data acquired from the user
in real time, and then adapts or augments the computational interface to sig-
nifi cantly improve its performance on the task at hand based on a series of
complex computations.

 At the most general level, human behavior modeling has the explicit goal
of utilizing methods and designs that harness computation and explicit knowl-
edge about human limitations to open bottlenecks and address the biases and
defi cits in human cognition. This can be done through continual background
sensing, learning, and inferences to understand trends, patterns, and situations
relevant to a user ’ s context and goals. At its most basic level, at least four
variables are critical — a method to determine and quantify current user state,
a technique to evaluate change of state in cognitive terms, a mechanism to
translate the change in cognition into computational terms, and an underlying
computational architecture to integrate these components. In order to under-

HUMAN FACTORS 307

stand better the cognitive variables that drive the modeling process, it is fi rst
important to begin with a clear understanding of the basic process of human
information processing.

Model of Human Information Processing

 Human information processing theory addresses how people receive, store,
integrate, retrieve, and use information. There are a few basic principles of
information processing that most cognitive psychologists agree with:

 (1) The mental system has limited capacities; that is, bottlenecks in the fl ow
and processing of information occur at very specifi c points.

 (2) A control mechanism is required to oversee the encoding, transforma-
tion, processing, storage, retrieval, and utilization of information. This
control mechanism requires processing power and varies as a function
of the diffi culty of the task.

 (3) Sensory input is combined with information stored in memory in order
to construct meaning. Stimuli that have been associated with some
meaning lead to more detailed processing eventually leading to action
execution.

 (4) Information fl ow is typically two way — environmental stimuli infl uence
information processing; processed information in turn leads to action
execution, which alters environmental stimuli.

 A comprehensive model of human information processing recently pro-
posed provides a useful framework for analyzing the different psychological
processes used in interacting with systems as described below [46] .

Stage 1: Sensory Processing . At this stage, environmental events gain initial
access to the brain. Any incoming information is temporarily prolonged and
stored in the short - term sensory store (STSS). The STSS typically prolongs the
experience of a stimulus for durations as short as 0.5 s (visual stimuli) to as
long as 2 – 4 s (auditory stimuli). If the human is distracted during this brief
period, the information is permanently lost from the system.

Stage 2: Perception . Raw sensory relayed from the STSS must next be inter-
preted, or given meaning, through the stage of perception. At this stage, infor-
mation processing proceeds automatically and rapidly, and requires minimal
attention. Also, perception is driven both by raw sensory input (called “ bot-
tom - up ” processing) as well as inputs and expectations derived from long - term
memory (called “ top - down ” processing). The speed and relative automaticity
of perception is what distinguishes it from the next stage of “ cognition, ” which
is discussed below.

Stage 3: Cognition and Memory . Cognitive operations generally require
more time, mental effort, and attention. This is because cognition comprises
reasoning, thinking, rehearsal, and several mental transformations, all of

308 MODELING HUMAN BEHAVIOR

which are carried out in a temporary memory store known as working memory.
Processes in working memory are highly vulnerable to disruption when atten-
tion is diverted to other activities. If information is processed uninterrupted
at this stage, it is permanently stored in long - term memory and drives response
selection and action execution.

Stage 4: Response Selection and Execution . The understanding of the situa-
tion, achieved through perception and augmented by cognitive transforma-
tions, often triggers an action transformation — the selection of a response. It
is important to note that the mere selection of a response depicts the stage of
decision making. Actual execution of the response requires coordination of
muscles for controlled movement to assure that the goal is correctly obtained.

 Across all stages of perception to cognition to response selection and execu-
tion, the presence of continuous feedback and attention is an important deter-
minant of accuracy of information processing. In the section below, we will
now discuss how these human information processing variable can be trans-
lated into improvements in human interaction with technology.

HUMAN–COMPUTER INTERACTION

 An increasing portion of computer use is dedicated to supporting intellectual
and creative enterprise. The media is so fi lled with stories about computers
that raising public consciousness of these tools seems unnecessary. However,
humans in large part are still uncomfortable interacting with computers. In
addition to perceived system complexities, humans are subject to the underly-
ing fear of making mistakes, or might even feel threatened by a computer that
is “ smarter than ” the user. These negative perceptions are generated, in part,
by poor designs, hostile and vague error messages, unfamiliar sequences of
actions, or deceptive anthropomorphic style [47] .

 Human – computer interaction (HCI) is the detailed study of the interaction
between people (users) and computers [48,49] . It is often regarded as the
intersection of computer science, behavioral sciences, design, and several other
fi elds of study such a communication, business, and language. Interaction
between users and computers occurs at the user interface, which includes both
software and hardware. Because HCI studies a human and a machine in con-
junction, it draws from supporting knowledge on both the machine and the
human side. On the machine side, techniques in computer graphics, operating
systems, programming languages, and development environments are relevant.
On the human side, communication theory, graphic and industrial design dis-
ciplines, linguistics, cognitive psychology, and human factors are relevant.

 HCI differs from human factors, a closely related fi eld, in that in the former
there is more of a focus on users working with computers rather than other
kinds of machines or designed artifacts, and an additional focus on how to
implement the (software and hardware) mechanisms behind computers to

HUMAN–COMPUTER INTERACTION 309

support HCI. HCI also differs with ergonomics in that in HCI there is less of
a focus on repetitive work - oriented tasks and procedures, and much less
emphasis on physical stress and the physical form or industrial design of physi-
cal aspects of the user interface, such as the physical form of keyboards
and mice.

 The ultimate goal of HCI is to improve the interaction between users and
computers by making computers more usable and receptive to the user ’ s
needs. Specifi cally, HCI is concerned with:

 (1) Methodologies and processes for designing interfaces (i.e., given a task
and a class of users, design the best possible interface within given
constraints [47] , optimizing for a desired property such as learning
ability or effi ciency of use)

 (2) Methods for implementing interfaces (e.g., software toolkits, effi cient
algorithms)

 (3) Techniques for evaluating and comparing interfaces
 (4) Developing new interfaces and interaction techniques
 (5) Developing descriptive and predictive models and theories of

interaction

 Two areas of study, however, have substantial overlap with HCI even as
the focus of inquiry shifts [47] . In computer - supported cooperative work
(CSCW), emphasis is placed on the use of computing systems in support of
the collaborative work of a group of people. In the study of personal informa-
tion management (PIM), human interactions with the computer are placed in
a larger informational context. People may work with many forms of informa-
tion, some computer - based, others not (e.g., whiteboards, notebooks, sticky
notes, refrigerator magnets) in order to understand and effect desired changes
in their world. In the next section, we examine different methods for demys-
tifying HCI and the reasons for its inception.

User Interface

 In the 1950s, the approach to system design was primarily one of comparing
human and machine attributes. Function allocation was accorded based on the
strengths of each [50] . For example, humans are better at complex decision -
 making tasks that involve using information from past experience; on the
other hand, machines are better at performing large tasks of a monotonous
nature such as multiplying six - digit numbers! This allocation of function that
attempts to capitalize on the strengths of each entity is known as “ compensa-
tory ” principle. Fitts ’ list that delineated strengths of each (humans vs.
machines) was initially known as men are best at - machines are best at (MABA -
 MABA). In the modern day, this has been changed to the more politically
correct humans are best at - machines are best at (HABA - MABA) [51] .

310 MODELING HUMAN BEHAVIOR

Human Strengths Based on the HABA - MABA model, human strengths
have been identifi ed as:

 (1) Speed — Humans can work fast for short bursts when feeling energetic.
However, human reaction times are typically much slower than
machines.

 (2) Accuracy — Humans are capable of accurate performance when atten-
tion to detail is a requirement. However, it is diffi cult to sustain high
levels of accuracy for long periods of time.

 (3) Repetitive actions — Humans are better than machines at applying past
experience and learning when a task is to be performed repeatedly;
however, humans are easily prone to boredom and fatigue.

 (4) Perceptual skills — Humans possess excellent perceptual skills,
especially applicable to tasks that require pattern detection and
interpretation.

 (5) Memory — Human memory is very situation dependent. Information
that is meaningful to the individual is remembered and recalled with
alarming clarity; however, human memory is often selective and not
always reliable.

 (6) Decision making — Humans are particularly good at using rules of thumb
or “ heuristics ” under time pressure and resource deprivation; addition-
ally, humans are very good at extrapolating from past experience.

 (7) Intelligence — It is no secret that human intelligence has been identifi ed
as superior to any other species.

Computer Strengths Based on the HABA - MABA model, machine
strengths have been identifi ed as:

 (1) Speed — Machines can work fast for long periods of time. Machine reac-
tion times are typically much faster than humans.

 (2) Accuracy — Machines are capable of maintaining high standards of
accuracy when programmed accurately. However, they are prone to
catastrophic breakdowns in accuracy when faced with new situations
or design glitches.

 (3) Repetitive actions — Machines are excellent at repeating actions in a
consistent manner.

 (4) Memory — Machine memory is very reliable in that all items stored in
memory can be accessed quickly; machine memory is limited but typi-
cally has large capacity.

 (5) Decision making — Machines typically function on a rule - based
approach; they are good at deductive reasoning, but perform poorly in
new situations.

 (6) Intelligence — Machine intelligence is limited to what it is hardwired to
do by the designer.

HUMAN–COMPUTER INTERACTION 311

Desired Interaction between Humans and Computers Although the
above list provides very clear distinctions between humans and computers, the
distinctions are oversimplifi ed and somewhat sterile. Generally, machines
evolve much faster than suggested by the list above; at the same time, human
performance can be progressively improved to overcome the aforementioned
shortcomings via training and experience. Furthermore, the list above is an
oversimplifi cation in that although some tasks are more effi ciently performed
by a human, there are often compelling reasons for using a machine to perform
them (e.g., moving hazardous material). On the other hand, humans are
unique in that they have an affective (emotional, motivational) component in
most of their activities, which may well provide an additional reason for allo-
cating work to humans versus machine. In summary, allocation of functions
based purely on the strengths and weaknesses of humans and machines is a
very limited approach, which rarely works on its own [52] . It is more important
to create a degree of synergistic activity or collaboration between systems and
humans such that the two can work as “ teammates. ”

 “ Computer consciousness ” in the general public is a possible solution to
creating the abovementioned synergy between humans and computers.
Exploratory applications of HCI where such consciousness can be created
include World Wide Web browsing, search engines, and different types of
scientifi c simulation [47,48] . Creative environments include writing work-
benches, artist or programmer workstations, and architectural design systems.
Collaborative interfaces enable two or more people to work together, even if
the users are separated by time and space, through the use of electronic text,
voice, and video mail; through electronic meeting systems that facilitate face -
 to - face meetings; or through groupware that enables remote collaborators to
work concurrently on a document, map, spreadsheet, or image. In these tasks,
users may be knowledgeable in the work domain but novices in underlying
computer concepts. One of the most effective solutions to humans ’ lack of
knowledge has been the creation of “ point - and - click ” direct manipulation
(DM) representations of the world of action, supplemented by keyboard
shortcuts. In the next section, we discuss two popular metaphors for imple-
menting effective HCI — DM and dialog boxes.

Metaphors and Designing for HCI

 DM is a style of human machine interaction design, which features a natural
representation of task objects and actions promoting the notion of people
performing a task themselves (directly) not through an intermediary like a
computer. DM is based on the principle of virtuality — a representation of
reality that can be physically manipulated. A similar concept was conveyed
by the principle of transparency — the user should be able to apply intellect
directly to the task; that is, the user should feel involved directly with the
objects to be manipulated rather than communicate with an intermediary [53] .
DM essentially involves continuous representation of objects of interest, and

312 MODELING HUMAN BEHAVIOR

rapid, reversible, incremental actions and feedback. The intention is to allow
a user to directly manipulate objects presented to them, using actions that
correspond at least loosely to the physical world. Having real - world metaphors
for objects and actions make it easier for a user to learn and use an interface
(thereby making the interface more natural or intuitive). Rapid, incremental
feedback allows a user to make fewer errors and complete tasks in less time,
because they can see the results of an action before completing the action. An
example of DM is resizing a graphic shape, such as a rectangle, by dragging
its corners or edges with a mouse [48] .

 DM is a topic to which computer science, psychology, linguistics, graphic
design, and art all contribute substantially. The computer science foundation
areas of computer architecture and operating systems provide us with an
understanding of the machines upon which human – computer interface styles
such as DM are implemented. This understanding allows us to determine
capabilities and limitations of computer platforms, thereby providing bound-
aries for realistic HCI designs. As with any computer application develop-
ment, DM interface development benefi ts greatly from the computer science
foundation areas of algorithms and programming languages. The specialized
fi eld of computer graphics can also make a key contribution.

 A DM interface possesses several key characteristics. As mentioned earlier,
a visual representation of objects and actions is presented to a person in con-
trast to traditional command line languages. The visual representation usually
takes the form of a metaphor related to the actual task being performed. For
example, computer fi les and directories are represented as documents and fi le
cabinets in a desktop publishing system. The module used to permanently
delete documents from a computer (the “ recycle bin ”) physically resembles
an actual trash dumpster into which “ waste ” materials can be dragged and
dropped. The use of metaphors allows a person to tap their analogical reason-
ing power when determining what actions to take when executing a task on
the computer [54] . For example, this property is drawn upon heavily by
desktop metaphors in their handling of windows like sheets of paper on a desk.
This enhances the impression that the person is performing the task and is in
control at all times.

 Given a thoughtful design and strong implementation, an interactive system
employing DM principles can realize many benefi ts. Psychology literature
cites the strengths of visual representations in terms of learning speed and
retention. DM harnesses these strengths resulting in systems whose operation
is easy to learn and use and diffi cult to forget [55] . Because complex syntax
does not have to be remembered and analogical reasoning can be used, fewer
errors are made than in traditional interfaces. In situations where errors are
unavoidable, they are easily corrected through reversible actions. Reversible
actions also foster exploration because the fear of permanently damaging
something has been diminished. This increases user confi dence and mastery
and improves the overall quality of HCI.

HUMAN–COMPUTER INTERACTION 313

Dialog Box Manipulation In graphic user interfaces, a dialog box is a
special window used in user interfaces to display information to the user, or
to get a response if needed [56] . They are so called because they form a dialog
between the computer and the user — either informing the user of something
or requesting input from the user, or both. It provides controls that allow the
user to specify how to carry out an action. Dialog boxes are classifi ed as modal
or modeless, depending on whether they block interaction on the application
that triggered the dialog or not. Different types of dialog boxes are used for
different sorts of user interaction. The simplest type of dialog box is the alert
that displays a message and requires only an acknowledgment (by clicking
 “ OK ”) that the message has been read. Alerts are used to provide simple
confi rmation of an action, or include program termination notices or inten-
tional closing by the user.

 When used appropriately, dialog boxes are a great way to give power and
fl exibility to the program. When misused, dialog boxes are an easy way to
annoy users, interrupt their fl ow, and make the program feel indirect and
tedious to use. Dialog boxes typically demand attention, especially when they
are modal; furthermore, since they pop out unexpectedly on some portion of
the screen, there is a danger that they will obscure relevant information.
Therefore, they are most effective when design characteristics match usage
requirements.

 A dialog box ’ s design is largely determined by its purpose (to offer options,
ask questions, provide information or feedback), type (modal or modeless),
and user interaction (required, optional response, or acknowledgment). Its
usage is largely determined by the context (user or program initiated), prob-
ability of user action, and frequency of display [57] .

Characteristics of “Effective” Dialog Boxes Modal dialog boxes that
are typically used to signal critical system events should have the following
characteristics:

 (1) Displayed in a window that is separate from the user ’ s current
activity.

 (2) Require interaction — can break the user ’ s fl ow such that users must
close the dialog box before continuing work on the primary task.

 (3) Use a delayed commit model — changes are not made until explicitly
committed.

 (4) Have command buttons that commit to a specifi c action (e.g., shutdown
program, report error).

 Modeless dialog boxes that are used to signal repetitive and less critical
incidents should have these characteristics:

 (1) Displayed in context using a task pane or with an independent window.

314 MODELING HUMAN BEHAVIOR

 (2) Do not require interaction — users can switch between the dialog box
and the primary window as desired and can delay response.

 (3) Can use an immediate commit model — changes are made immediately.
 (4) Have standard command buttons (e.g., OK, yes, close) that close the

window.

 Overall, the primary criterion for dialog box design must ensure that
they are distinct enough for users to distinguish them from the background.
However, at the same time, they should be minimally disruptive visually.
The key among these requirements is that they should be accompanied by a
meaningful title, be consistent in style and layout (margins, font, white space,
justifi cation), and must be controlled entirely by DM (or point - and - click
mechanisms).

Documenting Interface Design Storyboards are graphic organizers such
as a series of illustrations or images displayed in sequence for the purpose of
previsualizing a motion picture, animation, motion graphic, or interactive
media sequence, including Web site interactivity. Although traditionally used
in the motion picture industry, the term storyboard has more recently come
to be used in the fi elds of Web development, software development, and
instructional design to present and describe user interfaces and electronic
pages in written format as well as via audio and motion [58] .

 Storyboards are typically created in a multiple step process. They can be
created by hand drawing or digitally on the computer. If drawing by hand, the
fi rst step is to create or download a storyboard template. These appear like a
blank comic strip, with space for comments and dialog. Then a thumbnail
storyboard is sketched. “ Thumbnails ” are rough sketches, not much bigger
than a thumbnail. This is followed by the actual storyboarding process wherein
more detailed and elaborate storyboard images are created.

 The actual storyboard can be created by professional storyboard artists on
paper or digitally by using 2D storyboarding programs. Some software appli-
cations even supply a stable of storyboard - specifi c images making it possible
to quickly create shots that express the designer ’ s intent for the story. These
boards tend to contain more detailed information than thumbnail storyboards
and convey components of mood, emotions, personality, and other psycho-
logical variables [59] . If needed, 3D storyboards can be created (called “ tech-
nical previsualizations ”). The advantage of 3D storyboards is that they show
exactly what the fi nal product will look like. The disadvantage of 3D is the
amount of time it takes to build and construct the storyboard.

 The primary advantage of using storyboards to HCI is that it allows the
user to experiment with changes in the storyline to evoke stronger reaction or
interest. Flashbacks, for instance, are often the result of sorting storyboards
out of chronological order to help build suspense and interest. The process of
visual thinking and planning allows a group of people to brainstorm together,

HUMAN–COMPUTER INTERACTION 315

placing their ideas on storyboards and then arranging the storyboards on the
wall [59] . This fosters more ideas and generates consensus inside the group
leading to more effective HCI.

Prototypes are common. During the process of design, there is great uncer-
tainty as to whether a new design will actually do what is desired to do. A
prototype is often used as part of the product design process to allow engineers
and designers the ability to explore design alternatives, test theories, and
confi rm performance prior to starting production of a new product. The cre-
ation of prototypes is based on the counterintuitive philosophy that the easiest
way to build something is to fi rst build something else! In general, an iterative
series of prototypes will be designed, constructed, and tested as the fi nal design
emerges and is prepared for production [60] . With rare exceptions, multiple
iterations of prototypes are used to progressively refi ne the design. A common
strategy is to design, test, evaluate, and then modify the design based on the
analysis of the prototype.

 In many products, it is common to assign the prototype iterations in Greek
letters. For example, a fi rst iteration prototype may be called an “ Alpha ”
prototype. Often, this iteration is not expected to perform as intended and
some amount of failures or issues are anticipated. Subsequent prototyping
iterations (Beta, Gamma, etc.) will be expected to resolve issues and perform
closer to the fi nal production intent.

 In many product development organizations, prototyping specialists are
employed — individuals with specialized skills and training in general fabrica-
tion techniques that can help bridge between theoretical designs and the
fabrication of prototypes. There is no general agreement on what constitutes
a “ good prototype, ” and the word is often used interchangeably with the word
 “ model, ” which can cause confusion. In general, “ prototypes ” fall into four
basic categories:

 (1) Proof - of - principle prototypes (also called “ breadboards ”) are used to
test some aspect of the intended design without attempting to exactly
simulate the visual appearance, choice of materials, or intended manu-
facturing process. Such prototypes can be used to demonstrate “ behav-
ioral ” characteristics of a particular design such as range of motion,
mechanics, sensors, architecture, and so on. These types of prototypes
are generally used to identify which design options will not work, or
where further development and testing are necessary.

 (2) Form study prototypes allow designers to explore the basic size, look,
and feel of a product without simulating the actual function, behavior,
or exact physical appearance of the product. They can help assess
ergonomic factors and provide insight into gross visual aspects of the
product ’ s fi nal form. Form study prototypes are often hand - carved or
machined models from easily sculpted, inexpensive materials (e.g., ure-
thane foam), without representing the intended color, fi nish, or texture.
Due to the materials used, these models are intended for internal

316 MODELING HUMAN BEHAVIOR

decision making and are generally not durable enough or suitable for
use by representative users or consumers.

 (3) Visual prototypes capture the intended design aesthetic and simulate
the exact appearance, color, and surface textures of the intended
product but will not actually embody the functions or “ behaviors ” of
the fi nal product. These prototypes are suitable for use in market
research, executive reviews and approval, packaging mock - ups, and
photo shoots for sales literature.

 (4) Functional prototypes (also called “ working prototypes ”) are, to the
greatest extent practical, attempt to simulate the fi nal design, aesthet-
ics, materials, and functionality of the intended design all in one
package. The functional prototype may be reduced in size (scaled
down) in order to reduce costs. The construction of a fully working
full - scale prototype is the engineer ’ s fi nal check for design fl aws and
allows last minute improvements to be made before larger production
runs are ordered.

Characteristics and Limitations of Prototypes Engineers and prototyp-
ing specialists seek to understand the limitations of prototypes to exactly
simulate the characteristics of their intended design. First, a degree of skill
and experience is necessary to effectively use prototyping as a design verifi ca-
tion tool [61] . Second, it is important to realize that by their very defi nition,
prototypes will represent some compromise from the fi nal production design.
Due to differences in materials, processes, and design fi delity, it is possible
that a prototype may fail to perform acceptably, whereas the production
design may have been sound. A counterintuitive idea is that prototypes may
actually perform acceptably, whereas the fi nal production design may be
fl awed since prototyping materials and processes may occasionally outperform
their production counterparts.

 Although iterative prototype testing can possibly reduce the risk that the
fi nal design may not perform acceptably, prototypes generally cannot elimi-
nate all risk. There are pragmatic and practical limitations to the ability of a
prototype to match the intended fi nal performance of the product and some
allowances and engineering judgments are often required before moving
forward with a production design. Building the full design is often expensive
and can be time - consuming, especially when repeated several times. As an
alternative, “ rapid prototyping ” or “ rapid application development ” tech-
niques are used for the initial prototypes, which implement part, but not all,
of the complete design. This allows designers and manufacturers to rapidly
and inexpensively test the parts of the design that are most likely to have
problems, solve those problems, and then build the full design.

Unifi ed Modeling Diagrams Unifi ed Modeling Language (UML) is a stan-
dardized general - purpose modeling language in the fi eld of software engineer-

HUMAN–COMPUTER INTERACTION 317

ing. UML includes a set of graphic notation techniques to create abstract
models of specifi c systems. UML is an open method used to specify, visualize,
construct, and document the artifacts of an object - oriented software - intensive
system under development. UML offers a standard way to write a system ’ s
blueprints including conceptual components such as business processes. In
addition, UML can also help document concrete variables such as program-
ming language statements, database schemas, and reusable software compo-
nents. UML combines the best practice from data modeling concepts and
component modeling. It can be used with all processes, throughout the soft-
ware development cycle, and across different implementation technologies.
UML is extensible and models may be automatically transformed to other
representations (e.g., Java) by means of transformation languages.

 Typically UML diagrams represent two different views of a system
model [62] :

 (1) Static (or structural) view emphasizes the static structure of the system
using objects, attributes, operations, and relationships. Structure dia-
grams emphasize what components must be incorporated in the system
being modeled. Since structure diagrams represent the structure of a
system, they are used extensively in documenting the architecture of
software systems:
 • Class diagram describes the structure of a system by showing the

system ’ s classes, their attributes, and the relationships among the
classes.

 • Component diagram depicts how a software system is split into com-
ponents and shows the dependencies among these components.

 • Composite structure diagram describes the internal structure of a class
and the collaborations that this structure makes possible.

 • Deployment diagram serves to model the hardware used in system
implementations and the execution environments and artifacts
deployed on the hardware.

 • Object diagram shows a complete or partial view of the structure of
a modeled system at a specifi c time.

 • Package diagram depicts how a system is split up into logical group-
ings by showing the dependencies among these groupings.

 (2) Dynamic (or behavioral) view emphasizes the dynamic behavior of the
system by showing collaborations among objects and changes to the
internal states of objects. Behavior diagrams emphasize what must
happen in the system being modeled. Since behavior diagrams illustrate
the behavior of system, they are used extensively to describe the func-
tionality of software systems:
 • Activity diagram represents the business and operational step - by - step

workfl ows of components in a system. An activity diagram shows the
overall fl ow of control.

318 MODELING HUMAN BEHAVIOR

 • State machine diagram is a standardized notation to describe many
systems, from computer programs to business processes.

 • Use case diagram shows the functionality provided by a system in
terms of actors, their goals represented as use cases, and any depen-
dencies among those use cases.

 Although UML is a widely recognized and used modeling standard, it is
frequently criticized for being gratuitously large and complex. In addition,
weak visualizations that employ line styles that are graphically very similar
frequently disrupt learning, especially when required of engineers lacking the
prerequisite skills. As with any notational system, UML is able to represent
some systems more concisely or effi ciently than others. Thus, a developer
gravitates toward solutions that reside at the intersection of the capabilities of
UML and the implementation language. This problem is particularly pro-
nounced if the implementation language does not adhere to orthodox object -
 oriented doctrine, as the intersection set between UML and implementation
language may be that much smaller. Lastly, UML has been proven to be aes-
thetically inconsistent due to the arbitrary mixing of abstract notation (2D
ovals, boxes, etc.) that make UML appear jarring and visually disruptive to
the user.

Web Design A Web site is a collection of information about a particular
topic or subject. Designing a Web site is defi ned as the arrangement and cre-
ation of Web pages, each page presenting some information of relevance to
the primary theme of the Web site. There are many aspects (primarily design
concerns) in the process of Web design, and due to the rapid development of
the Internet new aspects constantly emerge [63] . For typical commercial Web
sites, the basic aspects of design are the following:

 • Content: Information on the site should be relevant to the site and should
target the area of the public that the Web site is concerned with.

 • Usability: The site should be user - friendly, with the interface and naviga-
tion simple and reliable.

 • Appearance: The graphics and text should include a single style that fl ows
throughout, to show consistency. The style should be professional, appeal-
ing, and relevant.

 • Visibility: The site must be easy to fi nd by typing in common keywords
via most major search engines and advertisement media.

 Web site design crosses multiple disciplines of information systems, HCI,
and communication design. Typically, the observable content (e.g., page
layout, graphics, text, audio, etc.) is known as the “ front end ” of the Web site.
The “ back end ” comprises the source code, invisible scripted functions,
and the server - side components that process the output from the front end.

HUMAN–COMPUTER INTERACTION 319

Depending on the size of a Web development project, it may be carried out
by a multiskilled individual or may represent collaborative efforts of several
individuals with specialized skills. As in any collaborative design, there are
confl icts between differing goals and methods of Web site designs. Some of
the ongoing challenges in Web design are discussed below.

Form versus Function Frequently, Web designers may pay more attention
to how a page “ looks ” while neglecting other important functions such as the
readability of text, the ease of navigating the site, or ease of locating the site
 [64] . As a result, the user is often bombarded with decorative graphics at the
expense of keyword - rich text and relevant text links. Assuming a false dichot-
omy that form and function are mutually exclusive overlooks the possibility
of integrating multiple disciplines for a collaborative and synergistic solution.
In many cases, form follows function. Because some graphics serve commu-
nication purposes in addition to aesthetics, how well a site works may depend
on the graphic design ideas in addition to the professional writing consider-
ations [64] .

 To be optimally accessible, Web pages and sites must conform to certain
accessibility principles. Some of the key accessibility principles most relevant
to HCI can be grouped into the following main points:

 (1) Use semantic markup that provides a meaningful structure to the
document (i.e., Web page). Semantic markup also refers to semanti-
cally organizing the Web page structure and publishing Web services
description accordingly so that they can be recognized by other Web
services on different Web pages. Standards for semantic Web are set by
the Institute of Electrical and Electronics Engineers (IEEE).

 (2) Provide text equivalents for any nontext components (e.g., images,
multimedia).

 (3) Use hyperlinks that make sense when read out of context (e.g., avoid
 “ Click Here ” ; instead, have the user click on a meaningful word that is
relevant to the context).

 (4) Author the page so that when the source code is read line - by - line by
user agents (such as screen readers), it remains intelligible.

Liquid versus Fixed Layouts On the Web, the designer generally has little
to no control over several factors, including the size of the browser window,
the Web browser used, the input devices used (mouse, touch screen, keyboard,
number pad, etc.), and the size, design, and other characteristics of the fonts
users have available (installed) on their own computers [65] . Some designers
choose to control the appearance of the elements on the screen by using spe-
cifi c width designations. When the text, images, and layout do not vary among
browsers, this is referred to as fi xed - width design. Advocates of fi xed - width
design argue for the designers ’ precise control over the layout of a site and
the placement of objects within pages.

320 MODELING HUMAN BEHAVIOR

 Other designers choose a more liquid approach, wherein content can be
arranged fl exibly on users ’ screens, responding to the size of their browsers ’
windows. Proponents of liquid design prefer greater compatibility with users ’
choice of presentation and more effi cient use of the screen space available.
Liquid design can be achieved by setting the width of text blocks and page
modules to a percentage of the page, or by avoiding specifying the width for
these elements altogether, allowing them to expand or contract naturally in
accordance with the width of the browser. It is more in keeping with the origi-
nal concept of HTML, that it should specify, not the appearance of text, but
its contextual function, leaving the rendition to be decided by users ’ various
display devices.

 Web page designers (of both types) must consider how their pages will
appear on various screen resolutions [66] . Sometimes, the most pragmatic
choice is to allow text width to vary between minimum and maximum values.
This allows designers to avoid considering rare users ’ equipment while still
taking advantage of available screen space.

Adobe Flash (formerly Macromedia Flash) is a proprietary, robust graphics
animation or application development program used to create and deliver
dynamic content, media (such as sound and video), and interactive applica-
tions over the Web via the browser. Many graphic artists use Flash because it
gives them exact control over every part of the design, and anything can be
animated as required. Flash can use embedded fonts instead of the standard
fonts installed on most computers.

 Criticisms of Flash include the use of confusing and nonstandard user inter-
faces, the inability to scale according to the size of the Web browser, and its
incompatibility with common browser features (such as the back button). An
additional criticism is that the vast majority of Flash Web sites are not acces-
sible to users with disabilities (for vision - impaired users). A possible HCI -
 relevant solution is to specify alternate content to be displayed for browsers
that do not support Flash. Using alternate content will help search engines to
understand the page and can result in much better visibility for the page.

CONCLUSION

 Based on human behavior taxonomy, several levels of human behavior were
identifi ed, and a variety of tools and techniques supporting modeling of this
behavior were presented in this section. These techniques include fuzzy logic,
for low - level humanlike control of external processes, and state machines,
RBSs, and pattern recognition methods for higher - level behaviors. It is impor-
tant to note that these tools and techniques are not meant to work in isolation;
in fact, comprehensive solutions for behavior modeling often utilize multiple
techniques at the same time. As an extreme example that utilizes all of the
aforementioned approaches, consider the simulation of an intelligent agent
that involves movement within a vehicle, maybe a car or boat. Any of the state

REFERENCES 321

machine paradigms can be used to contextualize the behavior of the agent
according to some goal. Pattern recognition techniques can be used to assess
the state of the outside environment, which, combined with an RBS, can
produce decisions that are in turn forwarded to a low - level controller that
utilizes fuzzy logic to control a realistic simulation of the vehicle. At the end,
it is important to be aware of the relative merits of each approach and utilize
each in a way that maximizes its usefulness.

 Several computational modeling techniques are engaged to describe,
explain, predict, and characterize human behavior — this effort fi nds its place
in the fi eld of human factors. A number of modeling methods are used and
with that comes a variety of human information processing. Numerous soft-
ware programs exist to enhance and document interface and Web design.

REFERENCES

 [1] Skinner BF . Science and Human Behavior . New York : B.F. Skinner Foundation ;
 1965 .

 [2] Nina KV . Measurement of human muscle fatigue . Journal of Neuroscience
Methods , 74 : 219 – 227 ; 1997 .

 [3] Posner MI , Petersen SE . The attention system of the human brain . Annual
Review of Neuroscience , 13 : 25 – 42 ; 1990 .

 [4] Gawron V . Human Performance Measures Handbook . New York : Lawrence
Erlbaum Associates ; 2000 .

 [5] Zadeh LA . Fuzzy sets . Information & Control , 8 (3): 338 – 353 ; 1965 .
 [6] Zadeh LA . The role of fuzzy logic in modeling, identifi cation and control . In

Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers , World Scientifi c
Series in Advances in Fuzzy Systems. Zadeh LA , Klir GJ , Yuan B (Eds.).
Vol. 6 . River Edge, NJ : World Scientifi c Publishing Co. ; 1996 , pp. 783 – 795 .

 [7] Gabay E , Merhav SJ . Identifi cation of a parametric model of the human operator
in closed - loop control tasks . IEEE Transactions on Systems, Man, and Cybernetics ,
 SMC - 7 : 284 – 292 ; 1997 .

 [8] Lee D . Neural basis of quasi - rational decision making . Current Opinion in
Neurobiology , 16 : 1 – 8 ; 2006 .

 [9] James CA . Irrationality in philosophy and psychology: The moral implications
of self - defeating behavior . Journal of Consciousness Studies , 5 (2): 224 – 234 ; 1998 .

 [10] Klein G . The Power of Intuition . New York : Bantam Dell ; 2004 .
 [11] Mellers B , Schwartz A , Ritov I . Emotion - based choice . Journal of Experimental

Psychology General , 128 : 332 – 345 ; 1999 .
 [12] Coricelli G , Critchley HD , Joffi ly M , O ’ Doherty JP , Sirigu A , Dolan RJ . Regret

and its avoidance: A neuroimaging study of choice behavior . Nature Neuroscience ,
 8 : 1255 – 1262 ; 2005 .

 [13] Mehrabian A . Pleasure - arousal - dominance: A general framework for describing
and measuring individual differences in temperament . Current Psychology:
Developmental, Learning, Personality, Social , 14 : 261 – 292 ; 1996 .

322 MODELING HUMAN BEHAVIOR

 [14] Preston SH , Heuveline P , Guillot M . Demography: Measuring and Modeling
Population Processes . New York : Blackwell Publishers ; 2001 .

 [15] Allen LJS . An Introduction to Stochastic Processes with Applications to Biology .
 Upper Saddle River, NJ : Prentice Hall ; 2003 .

 [16] Verhulst PF . Notice sur la loi que la population pursuit dans son accroissement .
Correspondance Math é matique et Physique , 10 : 113 – 121 ; 1838 .

 [17] Nagel E . The Structure of Science: Problems in the Logic of Scientifi c Explanation .
 New York : Harcourt Brace ; 1961 .

 [18] Simon HA . Artifi cial intelligence: An empirical science . Artifi cial Intelligence ,
 77 : 95 – 127 ; 1995 .

 [19] Mamdani EH , Assilian S . An Experiment in linguistic synthesis with a fuzzy logic
controller . International Journal of Man - Machine Studies , 7 : 1 – 13 ; 1974 .

 [20] DARPA Urban Challenge Web site. Available at http://www.darpa.mil/
grandchallenge/index.asp . Accessed May 10, 2009 .

 [21] Journal of Field Robotics , Special issue on the 2007 DARPA Urban Challenge,
I, II, and III , 25 (8 – 10); 2008 .

 [22] Anderson JR , Michalski RS , Carbonell JG , Mitchell TM (Eds.). Machine
Learning: An Artifi cial Intelligence Approach . New York : Morgan Kaufmann ;
 1983 .

 [23] Cremer J , Kearney J , Papelis YE . HCSM: A framework for behavior and sce-
nario control in virtual environments . ACM Transactions on Modeling and
Computer Simulation , 5 (3): 242 – 267 ; 1995 .

 [24] Gonzalez AJ , Ahlers R . Context - based representation of intelligent behavior
in training simulations . Transactions of the Society for Computer Simulation
International , 15 (4): 153 – 166 ; 1998 .

 [25] Gonzalez AJ , Stensrud BS , Barrett G . Formalizing context - based reasoning: A
modeling paradigm for representing tactical human behavior . International
Journal of Intelligent Systems , 23 (7): 822 – 847 ; 2008 .

 [26] Patz BJ , Papelis YE , Pillat R , Stein G , Harper D . A practical approach to robotic
design for the DARPA Urban Challenge . Journal of Field Robotics , 25 (8): 528 –
 566 ; 2008 .

 [27] Harel D , Pnueli A , Lachover H , Naamad A , Politi M , Sherman R , Shtull -
 Trauring A , Trakhenbrot M . STATEMATE: A working environment for the
development of complex reactive systems . IEEE Transactions on Software
Engineering , 16 (4): 403 – 414 ; 1990 .

 [28] Harel D . STATECHARTS: A visual formalism for complex systems . Science of
Computer Programming , 8 : 231 – 274 ; 1987 .

 [29] Laird JE , Newell A , Resenbloom PS . Soar: An architecture for general intelli-
gence . Artifi cial Intelligence , 7 : 289 – 325 ; 1991 .

 [30] University of Michigan Soar Web site. Available at http://sitemaker.umich.edu/
soar/home . Accessed May 10, 2009 .

 [31] University of Southern California Soar Web site. Available at http://www.isi.edu/
soar/soar-homepage.html . Accessed May 10, 2009 .

 [32] Taylor G , Wray R . Behavior design patterns: Engineering human behavior
models . Behavior Representation in Modeling and Simulation . Alexandria, VA :
 SISO ; 2004 .

REFERENCES 323

 [33] Hertz J , Krogh A , Palmer RG . Introduction to the Theory of Neural Computation .
 Reading, MA : Addison - Wesley ; 1991 .

 [34] Haykin S . Neural Networks: A Comprehensive Foundation . New York : Macmillan
College Publishing ; 1994 .

 [35] Hebb DO . The Organization of Behavior . New York : John Willey & Sons ; 1949 .

 [36] Anderson AA , Rosenfeld E . Neurocomputing: Foundations of Research .
 Cambridge, MA : MIT Press ; 1988 .

 [37] Rabiner LR. A tutorial on hidden Markov models and selected applications in
speech recognition . Proceedings of the IEEE , 77 (2): 257 – 286 ; 1989 .

 [38] Jiang H , Li X , Liu C . Large margin hidden Markov models for speech recogni-
tion . IEEE Transaction on Audio, Speech and Language Processing , 14 (5): 1587 –
 1595 ; 2006 .

 [39] Arica N , Yarman - Vural F . An overview of character recognition focused on
off - line handwriting . IEEE Transaction on Systems, Man, and Cybernetics. Part
C: Applications and Reviews , 31 (2): 216 – 233 ; 2001 .

 [40] Lee HK , Kim JH . An HMM - based threshold model approach for gesture rec-
ognition . IEEE Transactions on Pattern Analysis and Machine Intelligence ,
 21 (10): 961 – 973 ; 1999 .

 [41] Baum LE , Petrie T . Statistical inference for probabilistic functions of fi nite state
Markov chains . Annals of Mathematical Statistics , 37 : 1554 – 1563 ; 1966 .

 [42] Baum LE , Petrie T , Soules A , Weiss N . A maximization technique occurring in
the statistical analysis of probabilistic functions of Markov chains . Annals of
Mathematical Statistics , 41 (1): 164 – 171 ; 1970 .

 [43] Viterbi AJ . Error bounds for convolutional codes and an asymptotically optimal
decoding algorithm . IEEE Transactions on Information Theory , IT - 13 : 260 – 269 ;
 1967 .

 [44] Forney GD . The Viterbi algorithm . Proceedings of the IEEE , 61 : 268 – 278 ; 1973 .

 [45] Shatkay H , Kaelbling LP . Learning geometrically - constrained hidden Markov
models for robot navigation: Bridging the topological - geometrical gap . Journal
of Artifi cial Intelligence Research , 16 : 167 – 207 ; 2002 .

 [46] Wickens CD , Hollands JG (Eds.). Engineering Psychology and Human
Performance . Upper Saddle River, NJ : Prentice Hall ; 2000 .

 [47] Shneiderman B . Universal usability: Pushing human - computer interaction
research to empower every citizen . Communications of the ACM , 43 (5): 84 – 91 ;
 2000 .

 [48] Shneiderman B , Plaisant C (Eds.). Designing the User Interface: Strategies for
Effective Human - Computer Interaction . College Park, MD : Pearson Education ;
 2005 .

 [49] Myers BA . A brief history of human - computer interaction technology .
Interactions , 5 (2): 44 – 54 ; 1998 .

 [50] Fitts PM . Engineering psychology and equipment design . In Handbook of
Experimental Psychology . Stevens SS (Ed.). New York : Wiley ; 1951 .

 [51] Noyes J (Ed.). Designing for Humans . New York : Psychology Press ; 2001 .

 [52] Marchionini G , Sibert J . An agenda for human - computer interaction: Science
and engineering serving human needs . SIGCHI Bulletin , 23 (4): 17 – 31 ; 1991 .

324 MODELING HUMAN BEHAVIOR

 [53] Rutlowski C . An introduction to the human applications standard computer
interface, part I: Theory and principles . Byte , 7 (11): 291 – 310 ; 1982 .

 [54] Shneiderman B . Direct manipulation: A step beyond programming languages .
IEEE Computer , 16 (8): 57 – 69 ; 1983 .

 [55] Irani P , Ware C . Diagramming information structures using 3D perceptual prim-
itives . ACM Transactions on Computer - Human Interaction , 10 (1): 1 – 19 ; 2003 .

 [56] Raskin J (Ed.). The Humane Interface . Reading, MA : Addison - Wesley ; 2000 .
 [57] Galitz WO (Ed.). The Essential Guide to User Interface Design: An Introduction

to GUI Design Principles and Techniques . 2nd ed. New York : John Wiley &
Sons ; 2002 .

 [58] Tribus M (Ed.). Quality First: Selected Papers on Quality and Productivity
Improvement . 4th ed. National Society of Professional Engineers; 1992 .

 [59] Jones I . Storyboarding: A method for bootstrapping the design of computer -
 based educational tasks . Computers & Education , 51 (3): 1353 – 1364 ; 2008 .

 [60] Christensen BT , Schunn CD . The role and impact of mental simulation in design .
Applied Cognitive Psychology , 23 (3): 327 – 344 ; 2009 .

 [61] Schafroth D , Bouabdullah S , Bermes C , Siegwart R . From the test benches
to the fi rst prototype of the muFLY micro helicopter . Journal of Intelligent &
Robotic Systems , 54 : 245 – 260 ; 2009 .

 [62] Zimmermann A (Ed.). Stochastic Discrete Event Systems: Modeling, Evaluation,
Applications . Berlin : Springer Verlag ; 2007 .

 [63] Savoy A , Salvendy G . Foundations of content preparation for the web . Theoretical
Issues in Ergonomics Science , 9 (6): 501 – 521 ; 2008 .

 [64] Chevalier A , Fouquereau N , Vanderonckt J . The infl uence of a knowledge - based
system on designers ’ cognitive activities: A study involving professional web
designers . Behaviour & Information Technology , 28 (1): 45 – 62 ; 2009 .

 [65] Chevalier A , Chevalier N . Infl uence of profi ciency level and constraints on
viewpoint switching: A study in web design . Applied Cognitive Psychology , 23 (1):
 126 – 137 ; 2009 .

 [66] van Schaik P , Ling J. Modeling user experience with web sites: Usability, hedonic
value, beauty and goodness . Interacting with Computers , 20 (3): 419 – 432 ; 2008 .

325

Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains,
Edited by John A. Sokolowski and Catherine M. Banks
Copyright © 2010 John Wiley & Sons, Inc.

10
VERIFICATION,

VALIDATION,
AND ACCREDITATION

Mikel D. Petty

 Verifi cation and validation (V & V) are essential prerequisites to the credible
and reliable use of a model and its results. As such, they are important aspects
of any simulation project and most developers and users of simulations have
at least a passing familiarity with the terms. But what are they exactly,
and what methods and processes are available to perform them? Similarly,
what is accreditation, and how does it relate to V & V? Those questions are
addressed in this chapter. * Along the way, three central concepts of verifi ca-
tion, validation, and accreditation (VV & A) will be identifi ed used to unify
the material.

 This chapter is composed of fi ve sections. This fi rst section motivates the
need for VV & A and provides defi nitions necessary to their understanding.
The second section places VV & A in the context of simulation projects
and discusses overarching issues in the practice of VV & A. The third section

 * This chapter is an advanced tutorial on V & V. For a more introductory treatment of the same
topic, see Petty [1] ; much of this source ’ s material is included here, though this treatment is
enhanced with clarifi cations and expanded with additional methods, examples, and case studies.
For additional discussion of VV & A issues and an extensive survey of V & V methods, see Balci
 [2] . For even more detail, a very large amount of information on VV & A, including concept docu-
ments, method taxonomies, glossaries, and management guidelines, has been assembled by the
U.S. Department of Defense Modeling and Simulation Coordination Offi ce [3] .

326 VERIFICATION, VALIDATION, AND ACCREDITATION

categorizes and explains a representative set of specifi c V & V methods and
provides brief examples of their use. The fourth section presents three more
detailed case studies illustrating the conduct and consequences of VV & A. The
fi nal section identifi es a set of VV & A challenges and offers some concluding
comments.

MOTIVATION

 In the civil aviation industry in the United States and in other nations, a com-
mercial airline pilot may be qualifi ed to fl y a new type of aircraft after training
to fl y that aircraft type solely in fl ight simulators (the simulators must meet
offi cial standards) [4,5] . Thus, it is entirely possible that the fi rst time a pilot
actually fl ies an aircraft of the type for which he or she has been newly quali-
fi ed, there will be passengers on board, that is, people who, quite understand-
ably, have a keen personal interest in the qualifi cations of that pilot. The
practice of qualifying a pilot for a new aircraft type after training only with
simulation is based on an assumption that seems rather bold: The fl ight simula-
tor in which the training took place is suffi ciently accurate with respect to its
recreation of the fl ight dynamics, performance, and controls of the aircraft
type in question that prior practice in an actual aircraft is not necessary.

 Simulations are often used in situations that entail taking a rather large risk,
personal or fi nancial, on the assumption that the model used in the simulation
is accurate. Clearly, the assumption of accuracy is not made solely on the basis
of the good intentions of the model ’ s developers. But how can it be established
that the assumption is correct, that is, that the model is in fact suffi ciently
accurate for its use? In a properly conducted simulation project, the accuracy
of the simulation, and the model upon which the simulation is based, is
assessed and measured via V & V, and the suffi ciency of the model ’ s accuracy
is certifi ed via accreditation. V & V are processes, performed using methods
suited to the model and to an extent appropriate for the application.
Accreditation is a decision made based on the results of the V & V processes.
The goals of VV & A are to produce a model that is suffi ciently accurate to be
useful for its intended applications and to give the model credibility with
potential users and decision makers [6] .

BACKGROUND DEFINITIONS

 Several background defi nitions are needed to support an effective explanation
of VV & A. * These defi nitions are based on the assumption that there is some

 * A few of the terms to be defi ned, such as model and simulation , are likely to have been defi ned
earlier in this book. They are included here for two reasons: to emphasize those aspects of the
defi nitions that are important to VV & A and to serve those readers who may have occasion to
refer to this chapter without reading its predecessors.

BACKGROUND DEFINITIONS 327

real - world system, such as an aircraft, which is to be simulated for some known
application, such as fl ight training.

 A simuland is the real - world item of interest. It is the object, process, or
phenomenon to be simulated. The simuland might be the aircraft in a fl ight
simulator (an object), the assembly of automobiles in a factory assembly line
simulation (a process), or underground water fl ow in a hydrology simulation
(a phenomenon). The simuland may be understood to include not only the
specifi c object of interest, but also any other aspects of the real world that
affect the object of interest in a signifi cant way. For example, for a fl ight simu-
lator, the simuland could include not just the aircraft itself but weather phe-
nomena that affect the aircraft ’ s fl ight. Simulands need not actually exist in
the real world; for example, in combat simulation, hypothetical nonexistent
weapons systems are often modeled to analyze how a postulated capability
would affect battlefi eld outcomes. *

 A referent is the body of knowledge that the model developers have about
the simuland. The referent may include everything from quantitative formal
knowledge, such as engineering equations describing an aircraft engine ’ s
thrust at various throttle settings, to qualitative informal knowledge, such as
an experienced pilot ’ s intuitive expectation for the feeling of buffet that occurs
just before a high - speed stall.

 In general terms, a model is a representation of something else, for example,
a fashion model representing how a garment might look on a prospective
customer. In modeling and simulation (M & S), a model is a representation of
a simuland. * * Models are often developed with their intended application in
mind, thereby emphasizing characteristics of the simuland considered impor-
tant for the application and de - emphasizing or omitting others. Models may
be in many forms, and the modeling process often involves developing several
different representations of the same simuland or of different aspects of the
same simuland. Here, the many different types of models will be broadly
grouped into two categories: conceptual and executable . Conceptual models
document those aspects of the simuland that are to be represented and those
that are to be omitted. * * * Information contained in a conceptual model may
include the physics of the simuland, the objects and environmental phenom-
ena to be modeled, and representative use cases. A conceptual model will also

 * In such applications, the term of practice used to describe a hypothetical nonexistent simulands
is notional .
 * * Because the referent is by defi nition everything the modeler knows about the simuland, a
model is arguably a representation of the referent, not the simuland. However, this admittedly
pedantic distinction is not particularly important here, and model accuracy will be discussed with
respect to the simuland, not the referent.
 * * * The term conceptual model is used in different ways in the literature. Some defi ne a conceptual
model as a specifi c type of diagram (e.g., UML class diagram) or documentation of a particular
aspect of the simuland (e.g., the classes of objects in the environment of the simuland and their
interactions), whereas others defi ne it more broadly to encompass any nonexecutable documenta-
tion of the aspects of the simuland to be modeled. It is used here in the broad sense, a use of the
term also found in Sargent [9] .

328 VERIFICATION, VALIDATION, AND ACCREDITATION

document assumptions made about the components, interactions, and param-
eters of the simuland [6] . Several different forms or documentation, or com-
binations of them, may be used for conceptual models, including mathematical
equations, fl owcharts, Unifi ed Modeling Language (UML) diagrams [7] , data
tables, or expository text. The executable model , as one might expect, is a
model that can be executed. * The primary example of an executable model
considered here is a computer program. Execution of the executable model is
intended to simulate the simuland as detailed in the conceptual model, so the
conceptual model is thereby a design specifi cation for the executable model,
and the executable model is an executable implementation of the conceptual
model.

Simulation is the process of executing a model (an executable model, obvi-
ously) over time. Here, “ time ” may mean simulated time for those models
that model the passage of time, such as a real - time fl ight simulator, or event
sequence for those models that do not model the passage of time, such as the
Monte Carlo simulation [6,8] . For example, the process of running a fl ight
simulator is simulation. The term may also refer to a single execution of a
model, as in “ During the last simulation, the pilot was able to land the aircraft
successfully. ” * *

 The results are the output produced by a model during a simulation. The
results may be available to the user during the simulation, such as the out -
the - window views generated in real time by a fl ight simulator, or at the end
of the simulation, such as the queue length and wait time statistics produced
by a discrete - event simulation model of a factory assembly line. Regardless of
when they are available and what form they take, a model ’ s results are very
important as a key object of validation.

 A model ’ s requirements specify what must be modeled, and how accurately.
When developing a model of a simuland, it is typically not necessary to rep-
resent all aspects of the simuland in the model, and for those that are repre-
sented, it is typically not necessary to represent all at the same level of detail
and degree of accuracy. * * * For example, in a combat fl ight simulator with
computer - controlled hostile aircraft, it is generally not required to model
whether the enemy pilots are hungry or not, and while ground vehicles may

 * The executable model may also be referred to as the operational model , for example, in
Banks et al. [6] .
 * * In practice, the term simulation is also often used in a third sense. The term can refer to a large
model, perhaps containing multiple models as subcomponents or submodels. For example, a large
constructive battlefi eld model composed of various submodels, including vehicle dynamics, inter-
visibility, and direct fi re, might be referred to as a simulation. In this chapter, this third sense of
simulation is avoided, with the term model used regardless of its size and number of component
submodels.
 * * * The omission or reduction of detail not considered necessary in a model is referred to as
abstraction . The term fi delity is also often used to refer to a model ’ s accuracy with respect to the
represented simuland.

BACKGROUND DEFINITIONS 329

be present in such a simulator (perhaps to serve as targets), their driving
movement across the ground surface will likely be modeled with less detail
and accuracy than the fl ight dynamics of the aircraft. With respect to V & V,
the requirements specify which aspects of the simuland must be modeled, and
for those to be included, how accurate the model must be. The requirements
are driven by the intended application.

 To illustrate these defi nitions and to provide a simple example, which will
be returned to later, a simple model is introduced. In this example, the simu-
land is a phenomenon, specifi cally gravity. The model is intended to represent
the height over time of an object freely falling to the earth. A mathematical
(and nonexecutable) model is given by the following equation:

 h t t vt s() = − + +16 2 ,

where

 t = time elapsed since the initial moment, when the object began falling
(seconds);

 v = initial velocity of the falling object (feet/second), with positive values
indicating upward velocity;

 s = initial height of the object (feet);
 − 16 = change in height of the object due to gravity (feet), with the negative

value indicating downward movement;
 h (t) = height of the object at time t (feet).

 This simple model is clearly not fully accurate, even for the relatively
straightforward simuland it is intended to represent. Both the slowing effect
of air resistance and the reduction of the force of gravity at greater distances
from the earth are absent from the model. It also omits the surface of the
earth, so applying the model with a value of t greater than the time required
for the object to hit the ground will give a nonsensical result.

 An executable version of this model of gravity follows, given as code in the
Java programming language. This code is assuredly not intended as an example
of good software engineering practices, as initial velocity v and starting height
 s are hard coded. Note that the code does consider the surface of the earth,
stopping once before a nonpositive height is reached; so in that particular way,
it has slightly more accuracy than the earlier mathematical model.

 // Height of a falling object
 public class Gravity
 {
 public static void main (String args[])
 {
 double h, s = 1000.0, v = 100.0;
 int t = 0;
 h = s;

330 VERIFICATION, VALIDATION, AND ACCREDITATION

 while (h > = 0.0)
 {
 System.out.println(“ Height at time ” + t + “ = ” + h);
 t++;
 h = (- 16 * t * t) + (v * t) + s;
 }
 }
 }

 Executing this model, that is, running this program is simulation. The
results produced by the simulation are shown in both graphic and tabular form
in Figure 10.1 . The simulation commences with the initial velocity and height
hard coded into the program, for example, the object was initially propelled
upward at 100 ft/s from a vantage point 1000 ft above the ground. After that
initial impetus, the object falls freely. The parabolic curve in the fi gure is not
meant to suggest that the object is following a curved path; in this simple
model, the object may travel only straight up and straight down along a verti-
cal trajectory. The horizontal axis in the graph in the fi gure is time, and the
curve shows how the height changes over time.

 VV & A DEFINITIONS

 Of primary concern in this chapter are verifi cation and validation . These terms
have meanings in a general quality management context as well as in the
specifi c M & S context, and in both cases, the latter meaning can be understood
an M & S special case of the more general meaning. These defi nitions, as well
as that of the related term accreditation , follow.

 In general quality management, verifi cation refers to a testing process that
determines whether a product is consistent with its specifi cations or compliant
with applicable regulations. In M & S, verifi cation is typically defi ned analo-
gously, as the process of determining if an implemented model is consistent
with its specifi cation [10] . Verifi cation is also concerned with whether the
model as designed will satisfy the requirements of the intended application.

500

1000

t

h

5 10

t h

1 1084
0 1000

2 1136
3 1156
4 1144
5 1100
6 1024
7 916
8 776
9 604

10 400
11 164

500

1000

t

h

5 10

t h

1 1084
0 1000

2 1136
3 1156
4 1144
5 1100
6 1024
7 916
8 776
9 604

10 400
11 164

t h

1 1084
0 1000

2 1136
3 1156
4 1144
5 1100
6 1024
7 916
8 776
9 604

10 400
11 164

 Figure 10.1 Results of the simple gravity model.

VV&A DEFINITIONS 331

Verifi cation examines transformational accuracy, that is, the accuracy of trans-
forming the model ’ s requirements into a conceptual model and the conceptual
model into an executable model. The verifi cation process is frequently quite
similar to that employed in general software engineering, with the modeling
aspects of the software entering verifi cation by virtue of their inclusion in the
model ’ s design specifi cation. Typical questions to be answered during verifi ca-
tion include:

 (1) Does the program code of the executable model correctly implement
the conceptual model?

 (2) Does the conceptual model satisfy the intended uses of the model?
 (3) Does the executable model produce results when needed and in the

required format?

 In general quality management, validation refers to a testing process that
determines whether a product satisfi es the requirements of its intended cus-
tomer or user. In M & S, validation is the process of determining the degree to
which the model is an accurate representation of the simuland [10] . Validation
examines representational accuracy, that is, the accuracy of representing the
simuland in the conceptual model and in the results produced by the execut-
able model. The process of validation assesses the accuracy of the models. *
The accuracy needed should be considered with respect to its intended uses,
and differing degrees of required accuracy may be refl ected in the methods
used for validation. Typical questions to be answered during validation include:

 (1) Is the conceptual model a correct representation of the simuland?
 (2) How close are the results produced by the executable model to the

behavior of the simuland?
 (3) Under what range of inputs are the model ’ s results credible and useful?

Accreditation , although often grouped with V & V in the M & S context in
the common phrase “ verifi cation, validation, and accreditation, ” is an entirely
different sort of process from the others. V & V are fundamental testing pro-
cesses and are technical in nature. Accreditation, on the other hand, is a deci-
sion process and is nontechnical in nature, though it may be informed by
technical data. Accreditation is the offi cial certifi cation by a responsible
authority that a model is acceptable for use for a specifi c purpose [10] .
Accreditation is concerned with offi cial usability, that is, the determination
that the model may be used. Accreditation is always for a specifi c purpose,
such as a particular training exercise or analysis experiment, or a particular
class of applications.

 * Validation is used to mean assessing a model ’ s utility with respect to a purpose, rather than its
accuracy with respect to a simuland, in Cohn [11 , pp. 200 – 201]. That meaning, which has merit in
a training context, is not used here.

332 VERIFICATION, VALIDATION, AND ACCREDITATION

 Models should not be accredited for “ any purpose, ” because an overly
broad accreditation could result in a use of a model for an application for
which it has not been validated or is not suited. The accrediting authority
typically makes the accreditation decision based on the fi ndings of the V & V
processes. Typical questions to be answered during accreditation include:

 (1) Are the capabilities of the model and requirements of the planned
application consistent?

 (2) Do the V & V results show that the model will produce usefully accurate
results if used for the planned application?

 (3) What are the consequences if an insuffi ciently accurate model is used
for the planned application?

 To summarize these defi nitions, note that V & V are both testing processes,
but they have different purposes. * The difference between them is often sum-
marized in this way: Verifi cation asks “ Was the model made right, ” whereas
validation asks “ Was the right model made? ” [2,12] . Continuing this theme,
accreditation asks “ Is the model right for the application? ”

V&V AS COMPARISONS

 In essence, V & V are processes that compare things. As will be seen later, in
any verifi cation or validation process, it is possible to identify the objects of
comparison and to understand the specifi c verifi cation or validation process
based on the comparison. This is the fi rst of the central concepts of this
chapter. The defi ning difference between V & V is what is being compared.
Figure 10.2 illustrates and summarizes the comparisons. In the fi gure, the
boxes represent the objects or artifacts involved in a simulation project. * * The
solid arrows connecting them represent processes that produce one object or
artifact by transforming or using another. The results, for example, are pro-
duced by executing the executable model. The dashed arrows represent com-
parisons between the artifacts.

 Verifi cation refers to either of two types of comparison to the conceptual
model. The fi rst comparison is between the requirements and the conceptual
model. In this comparison, verifi cation seeks to determine if the requirements

 * V & V are concerned with accuracy (transformational and representational, respectively), which
is only one of several aspects of quality in a simulation project; others include execution effi ciency,
maintainability, portability, reusability, and usability (user - friendliness) [2] .
 * * Everything in the boxes in Figure 10.2 is an artifact in the sense used in Royce [13] , that is, an
intermediate or fi nal product produced during the project, except the simuland itself, hence the
phrase objects or artifacts . Hereinafter, the term artifacts may be used alone with the understand-
ing that it includes the simuland. Of course, the simuland could itself be an artifact of some earlier
project; for example, an aircraft is an artifact, but in the context of the simulation project, it is not
a product of that project.

PERFORMING VV&A 333

of the intended application will be met by the model described in the concep-
tual model. The second comparison is between the conceptual model and the
executable model. The goal of verifi cation in this comparison is to determine
if the executable model, typically implemented as software, is consistent and
complete with respect to the conceptual model.

 Validation likewise refers to either of two types of comparisons to the simu-
land. The fi rst comparison is between the simuland and the conceptual model.
In this comparison, validation seeks to determine if the simuland and, in par-
ticular, those aspects of the simuland to be modeled, have been accurately and
completely described in the conceptual model. The second comparison is
between the simuland and the results. * The goal of validation in this compari-
son is to determine if the results, which are the output of a simulation using the
executable model, are suffi ciently accurate with the actual behavior of the
simuland, as defi ned by data documenting its behavior. Thus, validation com-
pares the output of the executable model with observations of the simuland.

 PERFORMING VV & A

 V & V have been defi ned as both testing processes and comparisons between
objects or artifacts in a simulation project, and accreditation as a decision

Requirements

Modeling

Simuland

Conceptual

model
Results

ImplementationExecution

Requirements

analysis

Verification

Accreditation

Validation

Transformation

Comparison
Executable

model

Validation

Verification

Requirements Simuland

Conceptual

model
Results

Executable

model

 Figure 10.2 Comparisons in verifi cation, validation, and accreditation.

 * To be precise, the results are not compared with the simuland itself but to observations of the
simuland. For example, it is not practical to compare the height values produced by the gravity
model with the height of an object as it falls; rather, the results are compared with data document-
ing measured times and heights recorded while observing the simuland.

334 VERIFICATION, VALIDATION, AND ACCREDITATION

regarding the suitability of a model for an application. This section places
VV & A in the context of simulation projects and discusses overarching issues
in the practice of VV & A.

VV&A within a Simulation Project

 V & V do not take place in isolation; rather, they are done as part of a simula-
tion project . To answer the question of when to do them within the project, it
is common in the research literature to fi nd specifi c V & V activities assigned
specifi c phases of a project (e.g., Balci [12]). * However, these recommenda-
tions are rarely consistent in detail, for two reasons. First, there are different
types of simulation projects (simulation studies, simulation software develop-
ment, and simulation events are examples) that have different phases and
different V & V processes. * * Even when considering a single type of simulation
project, there are different project phase breakdowns and artifact lists in
the literature. For examples, compare the differing project phases for simula-
tion studies (given in References 2 , 3 , 9 , and 14), all of which make sense
in the context of the individual source. Consequently, the association of
verifi cation and verifi cation activities with the different phases and compari-
son with the different artifacts inevitably produces different recommended
processes. * * *

 * Simulation project phase breakdowns are often called simulation life cycles , for example, in
Balci [2] .
 * * A simulation study is a simulation project where the primary objective is to use simulation to
obtain insight into the simuland being studied. The model code itself is not a primary deliverable,
and so it may be developed using software engineering practices or an implementation language
that refl ect the fact that it may not be used again. A simulation software development project is
one where the implemented executable model, which may be a very large software system, is the
primary deliverable. There is an expectation that the implemented executable model will be used
repeatedly, and most likely modifi ed and enhanced, by a community of users over a long period
of time. In this type of project, proper software engineering practices and software project man-
agement techniques (e.g., [13]) move to the forefront. A simulation event is a particular use of an
existing model, or some combination of models, to support a specifi c objective, for example, the
use of an operational - level command staff training model to conduct a training exercise for a
particular military headquarters. In simulation events, software development is often not an issue
(or at least not a major one), but event logistics, scenario development, database preparation, and
security can be important considerations.
 * * * Further complicating the issue is that there are two motivations for guidelines about perform-
ing V & V found in the literature. The fi rst motivation is technical effectiveness; technically moti-
vated discussions are concerned with when to perform V & V activities and which methods to use
based on artifact availability and methodological characteristics, with an ultimate goal of ensuring
model accuracy. The second motivation is offi cial policies; policy - motivated discussions relate
offi cial guidelines for when to perform V & V activities and how much effort to apply to them
based on organizational policies and procedures, with an ultimate objective of receiving model
accreditation. Of course, ideally, the two motivations are closely coupled, but the distinction
should be kept in mind when reviewing V & V guidelines. In this chapter, only technical effective-
ness is considered.

PERFORMING VV&A 335

 Nevertheless, it is possible to generalize about the different project phase
breakdowns. Figure 10.2 can be understood as a simplifi ed example of such a
breakdown, as it suggests a sequence of activities (the transformations) that
produce intermediate and fi nal products (the artifacts) over the course of the
simulation project. The more detailed phase breakdowns cited earlier differ
from Figure 10.2 in that they typically defi ne more project phases, more
objects and artifacts, and more V & V comparisons between the artifacts than
those shown in the fi gure. * Going further into an explanation and reconcilia-
tion of the various simulation project types and project phase breakdowns
detailed enough to locate specifi c V & V activities within them is beyond the
scope of this chapter. In any case, although the details and level of granularity
differ, the overall concept and sequence of the breakdowns are essentially the
same.

 Despite the differences between the various available simulation project
phase breakdowns found in the literature, and the recommendations for when
to perform V & V within the project, there is an underlying guideline that is
common across all of them: V & V in general, and specifi c V & V comparisons
in particular, should be conducted as soon as possible. (Two of the 15 “ prin-
ciples of VV & A ” in Balci [2] get at this idea.) But when is “ as soon as possi-
ble? ” The answer is straightforward: As soon as the artifacts to be compared
in the specifi c comparison are available. For some verifi cation activities, both
the conceptual model (in the form of design documents) and the executable
model (in the form of programming language source code) are needed. For
some validation activities, the results of the simulation, perhaps including
event logs and numerical output, as well as the data representing observations
of the simuland, are required. The detailed breakdowns of V & V activity by
project phase found in the literature are consistent with the idea that V & V
should proceed as soon as the artifacts to be compared are available, assigning
to the different project phases specifi c V & V activities and methods (methods
will be discussed later) that are appropriate to the artifacts available in that
phase.

 In contrast to V & V, accreditation is not necessarily done as soon as pos-
sible. Indeed, it can be argued that accreditation should be done as late as
possible, so that the maximum amount of information is available about the
accuracy of the model and its suitability for the intended application. However,
just how late is “ as late is possible ” may depend on programmatic consider-
ations as much as on technical ones; for example, a decision about the suit-
ability of a model for an application may be needed in order to proceed with

 * For example, Balci [2] identifi es the conceptual model and the communicative model , both of
which are forms or components of the conceptual model in Figure 10.2 , and includes a verifi cation
comparison between them. He also identifi es the programmed model and the experimental model ,
both of which are forms or components of the executable model in Figure 10.2 , and includes
another verifi cation comparison between them.

336 VERIFICATION, VALIDATION, AND ACCREDITATION

the next phase of model implementation. The accrediting authority should
weigh the risks of accrediting an unsuitable model against those of delaying
the accreditation or not accrediting a suitable one. Those risks are discussed
later.

 Risks, Bounds of Validity, and Model Credibility

 V & V are nontrivial processes, and there is the possibility that they may not
be done correctly in every situation. What types of errors may occur during
V & V, and what risks follow from those errors? Figure 10.3 summarizes the
types of V & V errors and risks. *

 In the fi gure, three possibilities regarding the model ’ s accuracy are
considered; it may be accurate enough to be used for the intended application
(“ valid ”), it may not be accurate enough (“ not valid ”), or it may not be
relevant to the intended application. Two possibilities regarding the
model ’ s use are considered; the model ’ s results may be accepted and used
for the intended application, or they may not. The correct decisions are, of
course, when a valid model is used or when an invalid or irrelevant model is
not used.

 A type I error occurs when a valid model is not used. For example, a valid
fl ight simulator is not used to train and qualify a pilot. This may be due to

Model

not valid

Model

valid

Model

not relevant

Results

not accepted,

model not used

Results

accepted,

model used

Correct

Type II error

Use of

invalid model;

incorrect V&V;

model user’s risk;

more serious error

Correct

Type I error

Nonuse of

valid model;

insufficient V&V;

model builder’s risk;

less serious error

Type III error

Use of

irrelevant model;

accreditation mistake;

accreditor’s risk;

more serious error

Correct

 Figure 10.3 Verifi cation and validation errors.

 * The fi gure is adapted from a fl owchart that shows how the errors might arise found in
Balci [2] . A similar table appears in Banks et al. [6] .

PERFORMING VV&A 337

insuffi cient validation to persuade the accrediting authority to certify the
model. A type I error can result in model development costs that are entirely
wasted if the model is never used or needlessly increased if model develop-
ment continues [2] . Additionally, whatever potential benefi ts that using the
model might have conferred, such as reduced training costs or improved deci-
sion analyses, are delayed or lost. The likelihood of a type I error is termed
model builder ’ s risk [15] .

 A type II error occurs when an invalid model is used. For example, an
invalid fl ight simulator is used to train and qualify a pilot. This may occur
when validation is done incorrectly but convincingly, erroneously persuading
the accrediting authority to certify the model for use. A type II error can
result in disastrous consequences, such as an aircraft crash because of an
improperly trained pilot or a bridge collapsing because of faulty analyses of
structural loads and stresses. The likelihood of a type II error is termed model
user ’ s risk [15] .

 A type III error occurs when an irrelevant model, that is, one not appropri-
ate for the intended application, is used. This differs from a type II error,
where the model is relevant but invalid; in a type III error, the model is in fact
valid for some purpose or simuland, but it is not suitable for the intended
application. For example, a pilot may be trained and qualifi ed for an aircraft
type in a fl ight simulator valid for some other type. Type III errors are distress-
ingly common; models that are successfully used for their original applications
often acquire an unjustifi ed reputation for broad validity, tempting project
managers eager to reduce costs by leveraging past investments to use the
models inappropriately. Unfortunately, the potential consequences of a type
III error are similar, and thus similarly serious, to those of a type II error. The
likelihood of a type III error is termed model accreditor ’ s risk .

 Reducing validation risk can be accomplished, in part, by establishing a
model ’ s bounds of validity. The goal of V & V is not to simply declare “ the
model is valid, ” because for all but the simplest models, such a simple and
broad declaration is inappropriate. Rather, the goal is to determine when (i.e.,
for what inputs) the model is usefully accurate, and when it is not, a notion
sometimes referred to as the model ’ s bounds of validity. The notion of bounds
of validity will be illustrated using the example gravity model. Consider these
three versions of a gravity model:

 (1) h (t) = 776;
 (2) h (t) = (− 420/9) t + 1864;
 (3) h (t) = − 16 t2 + vt + s .

 In these models, let v = 100 and s = 1000.
 The results (i.e., the heights) produced by these models for time values

from 0 to 11 are shown in Figure 10.4 . Model (1) is an extremely simple and
low - fi delity model; it always returns the same height regardless of time. It
corresponds to the horizontal line in the fi gure. Essentially by coincidence, it

338 VERIFICATION, VALIDATION, AND ACCREDITATION

is accurate for one time value (t = 8). Model (2) is a slightly better linear model,
corresponding to the downward sloping line in the fi gure. As can be seen
there, model (2) returns height values that are reasonably close to correct over
a range of time values (from t = 5 to t = 10). Model (3) is the original example
gravity model, which is quite accurate within its assumptions of negligible air
resistance and proximity to the surface of the earth.

 Assume that the accuracy of each of these three models was being deter-
mined by a validation process that compared the models ’ results with observa-
tions of the simuland, that is, measurements of the height of objects moving
under gravity. If the observations and validation were performed only for a
single time value, namely t = 8, model (1) would appear to be accurate. If the
observations were performed within the right range of values, namely
5 ≤ t ≤ 10, then the results of model (2) will match the observations of the
simuland fairly well. Only validation over a suffi cient range of time values,
namely 0 ≤ t ≤ 11, would reveal model (3) as the most accurate.

 These three models are all rather simple, with only a small range of possible
inputs, and the accuracy of each is already known. Given that, performing
validation in a way that would suggest that either model (1) or model (2) was
accurate might seem to be unlikely. But suppose the models were 1000 times
more complex, a level of complexity more typical of practical models, with a
commensurately expanded range of input values. Under these conditions, it
is more plausible that a validation effort constrained by limited resources or
data availability could consider models (1) or (2) to be accurate.

t

h(t)

500

1000

5 10

(1)

(2)

(3)

8

 Figure 10.4 Results from three models of gravity.

PERFORMING VV&A 339

 Two related conclusions should be drawn from this example. The fi rst is
that validation should be done over the full range of input values expected in
the intended use. Only by doing so would the superior accuracy of model (3)
be distinguished from model (2) in the example. One objective of validation
is to determine the range of inputs over which the model is accurate enough
to use, that is, to determine the bounds of validity. This is the second central
concept of this chapter. In the example, there were three models to choose
from. More often, there is only one model and the question is thus not which
model is most accurate, but rather when (that is, for what inputs) the one
available model is accurate enough. In this example, if model (2) is the only
one available, an outcome of the validation process would be a statement that
it is accurate within a certain range of time values.

 The second conclusion from the example is that fi nding during validation
that a model is accurate only within a certain range of inputs is not necessarily
a disqualifi cation of the model. It is entirely possible that the intended use of
that model will only produce inputs within that range, thus making the model
acceptable. In short, the validity of a model depends on its application. This is
the third central concept of this chapter. However, even when the range of
acceptable inputs found during validation is within the intended use, that range
should be documented. Otherwise, later reuse of the model with input values
outside the bounds of validity could unknowingly produce inaccurate results.

Model credibility can be understood as a measure of how likely a model ’ s
results are to be considered acceptable for an application. VV & A all relate to
credibility, V & V are processes that contribute to model credibility, and
accreditation is an offi cial recognition that a model has suffi cient credibility
to be used for a specifi c purpose. Developing model credibility requires an
investment of resources in model development, verifi cation, and validation; in
other words, credibility comes at a cost.

 Figure 10.5 suggests the relationship between model cost, credibility, and
utility. * In the fi gure, model credibility increases along the horizontal axis,
where it notionally varies from 0 percent (no credibility whatsoever) to 100
percent (fully credible). The two curves show how model credibility as the
independent variable relates to model utility (how valuable the model is to its
user) and model cost (how much it costs to develop, verify, and validate the
model) as dependent variables. The model utility curve shows that model
utility increases with model credibility, that is, a more credible model is thus a
more useful one, but that as credibility increases additional fi xed increments of
credibility produce diminishing increments of utility. In other words, there is a
point at which the model is suffi ciently credible for the application, and adding
additional credibility through the expenditure of additional resources on devel-
opment, verifi cation, and validation is not justifi ed in terms of utility gained.

 * The fi gure is adapted from Balci [2] (which in turn cites References 16 and 17 ; it also appears
in Sargent [9]).

340 VERIFICATION, VALIDATION, AND ACCREDITATION

 The model cost curve shows that additional credibility results in increased
cost, and moreover, additional fi xed increments of credibility come at progres-
sively increasing cost. In other words, there is a point at which the model has
reached the level of credibility inherent in its design, and beyond that point,
adding additional credibility can become prohibitively expensive. Simulation
project managers might prefer to treat cost as the independent variable and
credibility as the dependent variable; Figure 10.5 shows that relationship as
well through a refl ection of the credibility and cost axes and the cost curve.
The refl ected curve, showing credibility as a function of cost, increases quickly
at fi rst and then fl attens out, suggesting that the return in credibility reaches
a point of diminishing returns for additional increments of cost.

 It is up to the simulation project manager to balance the projects require-
ments for credibility (higher for some applications than for others) against the
resources available to achieve it, and to judge that utility that will result from
a given level of credibility.

 V & V METHODS

 The previous section discussed when to do V & V, and how much effort to
expend on them. The model developer must also know how to do them. A
surprisingly large variety of techniques, or methods, for V & V exist. The meth-
odological diversity is due to the range of simulation project types, artifacts
produced during the course of simulation projects, subjects (simulands) of
those projects, and types of data available for those subjects. Some of the

Model credibility

M
o

d
e

l
c

o
s

t

M
o

d
e

l
u

ti
li

ty

0% 100%

Cost

Utility

 Figure 10.5 Relationship between model cost, credibility, and utility.

V&V METHODS 341

methods (especially verifi cation methods) come from software engineering,
because the executable models in simulation projects are almost always real-
ized as software, while others (especially validation methods) are specifi c to
M & S, and typically involve data describing the simuland. However, all of the
methods involve comparisons of one form or another.

 Over 90 different V & V methods, grouped into four categories (informal,
static, dynamic, and formal), are listed and individually described in Balci [2]
(and that list, while extensive, is not complete). * Repeating each of the indi-
vidual method descriptions here would be pointlessly duplicative. Instead, the
four categories from that source will be defi ned, and representative methods
from each category will be defi ned. For some of those methods, examples of
their use will be given.

Informal Methods

Informal V & V methods are more qualitative than quantitative and generally
rely heavily on subjective human evaluation, rather than detailed mathemati-
cal analysis. Experts examine an artifact of the simulation project, for example,
a conceptual model expressed as UML diagrams, or the simulation results, for
example, variation in service time in a manufacturing simulation, and assess
the model based on that examination and their reasoning and expertise.
Informal methods inspection , face validation , and the Turing test are defi ned
here; other informal methods include desk checking and walkthroughs [2] .

Inspection Inspection is a verifi cation method that compares project arti-
facts to each other. In inspection, organized teams of developers and testers
inspect model artifacts, such as design documents, algorithms, physics equa-
tions, and programming language code. Based on their own expertise, the
inspectors manually compare the artifacts being inspected with the appropri-
ate object of comparison, for example, programming language code (the
executable model) might be compared with algorithms and equations (the
conceptual model). The persons doing the inspection may or may not be
the developers of the model being inspected, depending on the resources of
the project and the developing organization. Inspections may be ad hoc or
highly structured, with members of an inspection team assigned specifi c roles,
such as moderator, reader, and recorder, and specifi c procedure steps used in
the inspection [2] . The inspectors identify, assess, and prioritize potential
faults in the model.

Face Validation Face validation is a validation method that compares simu-
land behavior to model results. In face validation, observers who may be poten-
tial users of the model and/or subject matter experts with respect to the

 * See Balci [18,19] for earlier versions of the categorization with six categories instead of four.

342 VERIFICATION, VALIDATION, AND ACCREDITATION

simuland review or observe the results of a simulation (an execution of the
executable model). Based on their knowledge of the simuland, the observers
subjectively compare the behavior of the simuland as refl ected in the simula-
tion results with their knowledge of the behavior of the actual simuland under
the same conditions, and judge whether the former is acceptably accurate.
Differences between the simulation results and the experts ’ expectations
may indicate model accuracy issues. Face validation is frequently used in inter-
active real - time virtual simulations where the experience of a user interacting
with the simulation is an important part of its application. For example, the
accuracy of a fl ight simulator ’ s response to control inputs can be evaluated by
having an experienced pilot fl y the simulator through a range of maneuvers. *

 While face validation is arguably most appropriate for such interactive
simulations, it is often used as a validation method of last resort, when a short-
age of time or a lack of reliable data describing simuland behavior precludes
the use of more objective and quantitative methods. While moving beyond
face validation to more objective and quantitative methods should always be
a goal, face validation is clearly preferable to no validation at all.

 As an example, face validation was used to validate the Joint Operations
Feasibility Tool (JOFT), a model of military deployment and sustainment
feasibility developed by the U.S. Joint Forces Command Joint Logistics
Transformation Center [20] . JOFT was intended to be used to quickly assess
the feasibility of deployment transportation for military forces to an area of
operations and logistical sustainment for those forces once they have been
transported. The process of using JOFT had three basic stages. First, based
on a user - input list of military capabilities required for the mission, JOFT
identifi es units with those capabilities, and the user selects specifi c units.
Second, the user provides deployment transportation details, such as points
of embarkation and debarkation, type of transportation lift, and time avail-
able. JOFT then determines if the selected force can be deployed within the
constraints and provides specifi c information regarding the transportation
schedule. Third, given the details of the initial supplies accompanying the
units, the supplies available in the area of operations, a rating of the expected
operations tempo and diffi culty of the mission, and a rating of the expected
rate of resupply, JOFT calculates the sustainment feasibility of the force and
identifi es supply classes for which sustainment could be problematic.

 JOFT was assessed using a highly structured face validation by a group of
logistics subject matter experts. * * Several validation sessions, with different
groups of experts participating in each session were conducted, all with this
procedure:

 * However, the utility of face validation in such applications is called into question in Grant and
Galanis [21] , where it is asserted that subject matter experts often perform a task in a manner
different from the way they verbalize it.
 * * Some sources might classify this validation method as a Delphi test [22] (a method that does
not appear in the list of Balci [2]).

V&V METHODS 343

 (1) The procedure and intent for the assessment session was explained to
the experts.

 (2) The experts were given a tutorial briefi ng and a live demonstration of
the JOFT software.

 (3) The experts used JOFT hands - on for two previously developed plan-
ning scenarios.

 (4) The experts provided written feedback on the JOFT concepts and
software.

 A total of 20 experts participated in the assessment in four different ses-
sions. Collectively, they brought a signifi cant breadth and depth of military
logistics expertise to the validation. Of the 20 experts, 17 were currently or
had previously been involved in military logistics as planners, educators, or
trainers. The remaining three were current or former military operators, that
is, users of military logistics.

 The experts ’ assessments were secured using questionnaires. Categories of
questions asked the experts to validate JOFT ’ s accuracy and utility in several
ways:

 (1) Suitability for its intended uses (e.g., plan feasibility “ quick look ”
analysis).

 (2) Accuracy of specifi c features of the JOFT model (e.g., resource con-
sumption rate).

 (3) Utility within the logistical and operational planning processes.

 The face validation of JOFT compared the model ’ s estimates of deploy-
ment transportation and logistical sustainment feasibility with the expecta-
tions of experts. The face validation was quite effective at identifying both
strengths and weaknesses in the model. This was due both to the high degree
of structure and preparation used for the validation process and the expertise
of the participating subject matter experts. The test scenarios were carefully
designed to exercise the full range of the model ’ s functionality, and the ques-
tionnaires contained questions that served to secure expert assessment of its
validity in considerable detail. The effectiveness of face validation as a valida-
tion method is often signifi cantly enhanced by such structure.

The Turing Test The Turing test is an informal validation method well
suited to validating models of human behavior, a category of models that can
be diffi cult to validate [23,24] . The Turing test compares human behavior
generated by a model to the expectations of human observers for such behav-
ior. First proposed by English mathematician Alan Turing as a means to
evaluate the intelligence of a computer system [25] , it can be seen as a special-
ized form of face validation. In the Turing test as conventionally formulated,
a computer system is said to be intelligent if an observer cannot reliably

344 VERIFICATION, VALIDATION, AND ACCREDITATION

distinguish between system - generated and human - generated behavior at a
rate better than chance. * When applied to the validation of human behavior
models, the model is said to pass the Turing test and thus to be valid if expert
observers cannot reliably distinguish between model - generated and human -
 generated behavior. Because the characteristic of the system - generated behav-
ior being assessed is the degree to which it is indistinguishable from
human - generated behavior, this test is clearly directly relevant to the assess-
ment of the realism of algorithmically generated behavior, perhaps even more
so than to intelligence as Turing originally proposed.

 The Turing test was used to experimentally validate the semiautomated
force (SAF) component of the SIMNET (Simulator Networking) distributed
simulation system, a networked simulation used for training tank crews in
team tactics by immersing them in a virtual battlefi eld [26] . In general, SAF
systems (also known as computer - generated force, or CGF, systems) use algo-
rithms that model human behavior and tactical doctrine supported by a human
operator to automatically generate and control autonomous battlefi eld enti-
ties, such as tanks and helicopters [24] . In the SIMNET SAF validation, two
platoons of soldiers fought a series of tank battles in the SIMNET virtual
battlefi eld. In each battle, one of the platoons defended a position against
attacking tanks controlled by the other platoon of soldiers, the automated
SAF system, or a combination of the two. Each of the two platoons of soldiers
defended in two different battles against each of the three possible attacking
forces, for a total of 12 battles. The two platoons of soldiers had no contact
with each other before or during the experiment other than their encounters
in the virtual battlefi eld. Before the experiment, the soldiers were told that
the object of the test was not to evaluate their combat skills but rather to
determine how accurately they could distinguish between the human and SAF
attackers. When asked to identify their attackers after each battle, they were
not able to do so at a rate signifi cantly better than random chance. Thus, the
SIMNET SAF system was deemed to have passed the Turing test and thus to
be validated [26] .

 Although the Turing test is widely advocated and used for validating models
of human behavior, its utility for that application is critically examined in
Petty [27] , where it is argued that in spite of a number of claims of its effi cacy
by experts, the Turing test cannot be relied upon as the sole means of
validating a human behavior generation algorithm. Examples are given
that demonstrate that the Turing test alone is neither necessary nor suffi cient
to ensure the validity of the algorithm. However, if attention is given to the

 * In Turing ’ s original form of the test, which he called the Imitation Game , a human interrogator
conducts a question and answer session with two hidden respondents, one of whom may be either
a human or a computer system. The interrogator ’ s goal is to determine which of the two respon-
dents is the man and which is the woman. The computer system is said to have passed the test if
the interrogator is no more likely to give the correct answer when the computer system is one of
the respondents than when both are humans.

V&V METHODS 345

questions of who the appropriate observers are and what information about
the generated behavior is available to them, a well - designed Turing test can
signifi cantly increase confi dence in the validity, especially in terms of realism,
of a behavior generation algorithm that passes the test. Such an application
of the Turing test, with its results analyzed by an appropriate statistical hypoth-
esis test, was used as a complement to another validation method in evaluating
a computer model of decision making by military commanders [28] .

Static Methods

Static V & V methods involve assessment of the model ’ s accuracy on the basis
of characteristics of the model and executable model that can be determined
without the execution of a simulation. Static techniques often involve analysis
of the programming language code of the implemented model, and may be
supported by automated tools to perform the analysis or manual notations or
diagrams to support it. Static methods are more often performed by develop-
ers and other technical experts, as compared with informal methods, which
depend more on subject matter experts. Static methods data analysis and
cause – effect graphing are defi ned here; other static methods include interface
analysis and traceability assessment [2] .

Data Analysis Data analysis is a verifi cation method that compares data
defi nitions and operations in the conceptual model to those in the executable
model. Data analysis ensures that data are properly defi ned (correct data
types, suitable allowable data ranges) and that proper operations are applied
to the data structures in the executable model. Data analysis includes data
dependency analysis (analyzing which data variables depend on which other
variables) and data fl ow analysis (analyzing which variables are passed between
modules in the executable model code).

Cause–Effect Graphing Cause – effect graphing is a validation method that
compares cause - and - effect relationships in the simuland to those in the con-
ceptual model. Causes are events or conditions that may occur in the simuland,
and effects are the consequences or state changes that result from the causes.
For example, lowering fl aps in a fl ight simulator (a cause) will change the fl ight
dynamics of the aircraft, increasing both drag and lift (the effects). Note that
effects may themselves be causes of further effects; for example, the additional
drag caused by lowering fl aps will then cause a slowing of the aircraft. In
cause – effect graphing, all causes and effects considered to be important in the
intended application of the model are identifi ed in the simuland and in the
conceptual model and compared; missing and extraneous cause – effect rela-
tionships are corrected. Causes and effects are documented and analyzed
through the use of cause – effect graphs, which are essentially directed graphs
where causes and effects, represented by nodes in the graph, are connected
by the effects that related them, represented by directed edges.

346 VERIFICATION, VALIDATION, AND ACCREDITATION

Petri nets are a graphic or diagrammatic notation widely used for a variety
of modeling applications, including control systems, workfl ow management,
logistics supply chains, and computer architectures. Cause – effect graphing was
used as the basis for a tool that automatically generates test cases for the vali-
dation of Petri net models; in effect, cause – effect graphing is used by this tool
to support the validation of any Petri net model [29] .

Dynamic Methods Dynamic V & V methods assess model accuracy by exe-
cuting the executable model and evaluating the results. The evaluation may
involve comparing the results with data describing the behavior or the simu-
land or the results of other models. Because the comparisons in dynamic
methods are typically of numerical results and data, dynamic methods are
generally objective and quantitative. Dynamic methods sensitivity analysis ,
predictive validation , and comparison testing are defi ned here; other dynamic
methods include graphic comparisons and assertion checking [2] . An impor-
tant subcategory of dynamic methods is statistical validation methods.
Examples of statistical comparison methods applicable to validation include
regression analysis , hypothesis testing , goodness - of - fi t testing, time series analy-
sis , and confi dence interval testing ; the former two are defi ned here.

Sensitivity Analysis Sensitivity analysis is a validation method that com-
pares magnitude and variability in simuland behavior to magnitude and vari-
ability in the model results. It is an analysis of the range and variability in
model results. A test execution of the model is arranged so as to cause the
inputs to the model to vary over their full allowable range. The magnitude
and variability of the results produced are measured and compared with the
magnitude and variability of the simuland ’ s behavior over the same range of
input values. Differences could suggest invalidity in the model; if there are
signifi cant differences for some input values but not for others, this could
suggest invalidity for some specifi c ranges of inputs.

 If suffi cient data regarding the simuland is available, sensitivity analysis can
be conducted by comparing the response surfaces of the model and the simu-
land for appropriately chosen independent variables (the input values) and
dependent variables (the output results); the sign and magnitude of the dif-
ference between the two response surfaces can be calculated and analyzed
 [30] . Beyond validation, sensitivity analysis can also be used to evaluate model
response to errors in the input and to establish which inputs have the greatest
impact on the results, information which can focus efforts and establish accu-
racy requirements when preparing model input data [31] .

Predictive Validation Predictive validation is a validation method that com-
pares specifi c outcomes in simuland behavior to corresponding outcomes in
the model results. Predictive validation may be used when available informa-
tion about the behavior of the simuland includes corresponding input and

V&V METHODS 347

output values; that is, historical or experimental data are available that show
how the simuland behaved under well - established conditions. Given such
data, the model is executed with the same inputs, and its results are compared
with the historical or experimental data. * For example, the airspeed of an
aircraft at different altitudes and throttle settings in a fl ight simulator can be
compared with actual fl ight test for the aircraft being modeled, if the latter is
available. Similarity or dissimilarity between the simuland ’ s behavior and the
simulation ’ s results suggest validity or invalidity. The actual comparison may
be done in a variety of ways, some of which are considered validation methods
in their own right (e.g., statistical methods); this is certainly acceptable and
strengthens the validation power of the method.

 Predictive validation is a valuable method, not only because it is based on
a direct comparison between simuland behavior and model results, but also
because it can be applied in some circumstances where other methods would
be problematic. For some simulands, it is convenient to exercise the system
and take measurements specifi cally for use during validation. For other actual
systems, exercising the actual system is infeasible due to danger, expense,
and impracticality. Combat, for example, clearly falls into the latter category;
fi ghting a battle in order to collect data to validate a model of combat is not
an option. However, combat models can be validated by using them to predict
(or retrodict) the outcomes of historical battles and comparing the model ’ s
results with the historical outcomes. Once the outcome of a historical battle
have been documented to a level of detail and accuracy suffi cient for validation
(often an unexpectedly diffi cult task) and the model results have been gener-
ated for the same scenario, the two sets of results can be compared. Several
of the methods already discussed may be used to make the comparison.

 Predictive validation was used in this way to validate three separate combat
models in unrelated validation efforts that compared model results to histori-
cal outcomes. The Ironside model [32] and the alternative aggregate model
 [33] are both two - sided, stochastic, constructive models of combat with inter-
nal representations at the entity level (e.g., individual tanks are represented
at some degree of detail). COMAND is theater - level representation of naval
air campaigns, focused on the representation of command and control [34] .
Ironside was validated by using it to retrodict the outcome of the Battle of
Medenine (March 6, 1943, North Africa). The alternative aggregate model
was validated by using it to retrodict the outcome of the Battle for Noville
(December 19 – 20, 1944, Belgium). COMAND was validated by using it to
retrodict the outcome of the Falkland Islands campaign (April 2 – June 20,
1982).

 * The method is called predictive validation because the model is executed to “ predict ” the simu-
land ’ s behavior. However, because the events being predicted by the model are in the past, some
prefer to call the process retrodiction and the method retrodictive validation .

348 VERIFICATION, VALIDATION, AND ACCREDITATION

 In addition to their use in validating combat models, the common element
of these battles is that they are well documented, an essential prerequisite for
the predictive validation method. The validation of Ironside found that the
model produced results that were reliably different from the historical outcome
 [35] . The validation of the alternative aggregate model found, after some
adjustment to the model during testing, that the model produced results that
were reasonably close to the historical outcome [33] . The validation of
COMAND was mostly successful and revealed the strengths and the weak-
nesses of the model [34] .

Comparison Testing Comparison testing is a dynamic verifi cation method
that can be used when multiple models of the same simuland are available.
The models are executed with the same input, and their results are compared
with each other. Even if neither of the two models can be assumed to be
accurate, comparing their results is useful nonetheless, because differences
between the two sets of results suggest possible accuracy problems with the
models [2] .

 As an example, comparison testing was used to verify C 2 PAT, a queuing
theory - based, closed - form model of command and control systems [36] .
C2 PAT is intended to allow analysis and optimization of command and control
system confi gurations. C 2 PAT models command and control systems as a
network of nodes representing command and control nodes connected by
edges that represent communications links. A set of cooperating agents,
known as servers, located at the network nodes exchange information via the
connecting links. When a unit of command and control information, known
as a job, arrives at a node, that node ’ s server processes it and passes informa-
tion to connected nodes. Processing time at a node is determined by exponen-
tial and nonexponential distributions, and various priority queuing disciplines
are used to sequence jobs waiting at nodes to be served. Preemption in the
job queues, something likely to happen in command and control systems, is
also modeled. C 2 PAT models the dynamic response of the command and
control system in response to time - varying job arrival rates, determining
response and delay times for both individual nodes and for threads of job
execution. C 2 PAT ’ s queuing theory - based model is analytic, computing values
for the parameters of interest in the system using closed - form, queuing theory
equations.

 To verify C 2 PAT, two additional distinct versions of the model were imple-
mented: a time - stepped model written in a discrete - event programming envi-
ronment and an event - driven model written in a general - purpose programming
language. Unlike C 2 PAT, the additional models were stochastic and numeri-
cal, simulating the fl ow of information in the command and control system
over time using random draws against probability distributions describing
service and delay times.

 A series of progressively more complicated test networks were developed.
The three models were executed for those test networks and their results

V&V METHODS 349

compared. Differences between the results were identifi ed and analyzed, and
revisions were made to the appropriate model. The direct comparison of
results was quite effective at discovering and focusing attention on potential
model accuracy problems. The verifi cation process proved to be iterative, as
each comparison would reveal issues to resolve, often leading to revisions to
one or another of the three models, necessitating an additional run and com-
parison. The verifi cation effort was ultimately essential to successful modeling
in C 2 PAT [36] .

 A case study of the model comparison method, comparing the theater
missile defense capabilities of the EADSIM and Wargame 2000, reports some
of the statistical issues involved [37] .

Regression Analysis Regression analysis is a multipurpose statistical tech-
nique that can be used as a dynamic validation method. In general, regression
analysis seeks to determine the degree of relatedness between variables, or to
determine the extent that variation in one variable is caused by variation in
another variable [38] . When directly related values can be identifi ed, regres-
sion analysis compares specifi c model result values to simuland observation
values.

 As an example, regression analysis was used to validate a model of space-
craft mass [39] . The spacecraft propulsion system sizing tool (SPSST) model
predicts the mass of the propulsion system of automated exploration space-
craft. The propulsion system can account for as much as 50 percent of a
spacecraft ’ s total mass before liftoff. The SPSST model is intended to support
engineering trade studies and provide quick insight into the overall effect of
propulsion system technology choices on spacecraft mass and payload. The
mass prediction is calculated using physics - based equations and engineering
mass estimation relationships. Inputs to the model include mission profi le
parameters, such as velocity change and thermal environment, and selected
options for nine subsystems, including main propellant tanks, main propellant
pressure system, and main engines. The model outputs predicted mass for the
overall spacecraft propulsion system, both with and without propellant (called
wet mass and dry mass , respectively), as well as for the spacecraft subsystems,
for the given mission.

 To validate the SPSST model, mass, mission, and subsystem option data
were collected for 12 existing spacecraft, including Mars Odyssey, Galileo, and
Cassini. The SPSST model was used to predict the propulsion system and
subsystem masses for these spacecraft, given the characteristics of these space-
craft and their missions as input. The resulting values for wet mass, dry mass,
and subsystem mass predicted by the model were compared with the actual
spacecraft mass values using linear regression. When the 12 pairs of related
predicted and actual wet mass values were plotted as points, they fell quite
close to a line, suggesting accuracy in the model. The computed coeffi cient of
regression statistic for wet mass was R2 = 0.998; the statistic ’ s value close to 1
confi rmed the model ’ s accuracy for this value. Figure 10.6 shows the actual

350 VERIFICATION, VALIDATION, AND ACCREDITATION

and predicted wet mass values for the 12 spacecrafts. Similar results were
found for dry mass, though here the statistic ’ s values was somewhat lower,
R2 = 0.923. On the other hand, the subsystem predictions were not nearly as
consistent; the model did well on some subsystems, such as propellant tanks,
and not as well on others, such as components.

 Regression analysis provided a straightforward and powerful validation
method for the SPSST model. When model results provide values that can be
directly paired with corresponding simuland values, regression analysis may
be applicable as a validation method.

Hypothesis Testing In general, a statistical hypothesis is a statistical state-
ment about a population, which is evaluated on the basis of information
obtained from a sample of that population [38] . Different types of hypothesis
tests exist (e.g., see Box et al. [40]). They can be used to determine if a sample
is consistent with certain assumptions about a population or if two populations
have different distributions based on samples from them. Typically, when a
hypothesis test is used for validating a model, the results of multiple simula-
tions using the model are treated as a sample from the population of all pos-
sible simulations using that model for relevant input conditions. Then an
appropriate test is selected and used to compare the distribution of the model ’ s
possible results to the distribution of valid results; the latter may be repre-
sented by parameters or a sample from a distribution given as valid.

 As an example, hypothesis testing was use to validate a behavior generation
algorithm in a SAF system [41,42] . The algorithm generated reconnaissance
routes for ground vehicles given assigned regions of terrain to reconnoiter.
The intent of the algorithm was that a ground vehicle moving along the gener-
ated route would sight hostile vehicles positioned in the terrain region and
would do so as early as possible. Sighting might be blocked by terrain features,

Figure 10.6 Actual and predicted spacecraft wet mass values for the SPSST model validation.

V&V METHODS 351

such as ridges or tree lines. The algorithm considered those obstacles to sight-
ing in the terrain and planned routes to overcome them.

 The algorithm was validated by comparing routes planned by the algorithm
for a variety of terrain regions with routes planned by human subject matter
experts (military offi cers) for the same terrain regions. * To quantify the com-
parison, a metric of a route ’ s effectiveness was needed. A separate group of
human subject matter experts were asked to position hostile vehicles on each
of the test terrain regions. Each of the routes was executed, and the time at
which the reconnaissance vehicle moving along the route sighted each hostile
vehicle was recorded. The sighting times for corresponding ordinal sightings
were compared (i.e., the k th sighting for one route was compared with the k th
sighting for the other route, regardless of which specifi c vehicles were sighted).

 A Wilcoxon signed - rank test was used to compare the distributions of the
sighting times for the algorithm ’ s and the human ’ s routes. This particular
statistical hypothesis test was chosen because it does not assume a normal
distribution for the population (i.e., it is nonparametric), and it is appropriate
for comparing internally homogenous sample data sets (corresponding sight-
ings were compared) [38] . Using this test, the sighting times for the algorithm ’ s
routes were compared with the sighting times for each of the human subject
matter experts ’ routes. Because the algorithm was intended to generate human
behavior for the reconnaissance route planning task, the routes generated by
the human subject matter experts were assumed to be valid.

 The conventional structure of a hypothesis test comparing two distributions
is to assume that the two distributions are the same, and to test for convincing
statistical evidence that they are different. This conventional structure was
used for the validation; the algorithm ’ s routes and the humans ’ routes were
assumed to be comparable (the null hypothesis), and the test searched for
evidence that they were different (a two - sided alternative hypothesis). The
Wilcoxon signed - rank test did not reject the null hypothesis for the sighting
time data, and thus did not fi nd evidence that the algorithm ’ s routes and the
humans ’ routes were different. Consequently, it was concluded that the routes
were comparable, and the algorithm was valid for its purpose.

 Subsequent consideration of the structure of the hypothesis test suggested
the possibility that the test was formulated backward. After all, the goal of
the validation was to determine if the algorithm ’ s routes were comparable
to the humans ’ routes, and that comparability was assumed to be true in the
null hypothesis of the test. This formulation is a natural one, as it is consistent
with the conventional structure of hypothesis tests. * * However, such an

 * The terrain regions chosen for the algorithm were selected to present the route planners (algo-
rithm and human) with a range of different densities of sight - obstructing terrain elevation and
features.
 * * Indeed, a textbook validation example using a t - test formulates the test in the same way, with
the null hypothesis assuming that the model and simuland have the same behavior [6, p. 368].

352 VERIFICATION, VALIDATION, AND ACCREDITATION

assumption means that, with respect to the validation goal, the fi nding of
comparability was weaker than it might have been. * In such tests, it should
be understood that rejecting the null hypothesis is evidence that the two differ,
but failing to reject is not necessarily evidence that they are the same [23, 37] .

 In retrospect, it might have been preferable to formulate the null hypoth-
esis to be the opposite of the validation goal, that is, that the algorithm ’ s and
the humans ’ routes were not comparable, and the test should have been used
to check for convincing statistical evidence that they were comparable.
Hypothesis testing can be a powerful validation tool, but care must be used
in structuring the tests.

 As another example, a different hypothesis test was used to validate a
model of human walking [43] . The algorithm to be validated, which used a
precomputed heading chart data structure, generated both routes and move-
ment along those routes for synthetic human characters walking within rooms
and hallways in a virtual - world simulation. The goal was for the algorithm to
produce routes that resembled those followed by humans in the same situa-
tions, so validity in this example can be understood as realism. The desired
similarity included both the actual route traversed and the kinematics (accel-
eration and deceleration rates, maximum and average speed, and turn rate)
of the character ’ s movement along the route.

 The validity of the routes generated by the algorithm was evaluated using
quantitative metrics that measured different aspects of the differences between
the algorithm routes and the human routes. Three numerical error metrics
that measured route validity were defi ned: (1) distance error, the distance
between the algorithm ’ s route and a human ’ s route at each time step, averaged
over all time steps required to traverse the route; (2) speed error, the differ-
ence between the speed of the moving character (on the algorithm ’ s route)
and the moving human (on a human ’ s route) at each time step, averaged over
all time steps; and (3) area error, the area between the algorithm ’ s route and
a human ’ s route on the plane of the fl oor.

 To acquire data that the algorithm ’ s routes and movements could be com-
pared with, observations of human subjects walking routes were recorded. A
total of 30 human routes were measured in two situations that varied by room
confi guration and destination. Because the algorithm ’ s routes were intended
to mimic human movements, the routes recorded for the human subjects were
assumed to be realistic (i.e., valid). For each of these 30 route situations, routes
were also generated by the algorithm to be validated as well as a recent version
of the well - known and widely used A * route planning algorithm [44] .

 Each of the two algorithms ’ (the new algorithm and the A * algorithm)
routes were compared with the human routes by calculating values for the
three error metrics for each of the algorithms ’ routes with respect to the cor-
responding human routes. The error metric values for the two algorithm ’ s

 * The “ backward ” Wilcoxon signed - rank test was formulated by this chapter ’ s author. This
example, with its self - admitted shortcoming, is deliberately included for its instructional value.

V&V METHODS 353

routes that corresponded to a single human route were compared statistically
using paired - sample t - tests [38] . For the distance error and area error metrics,
the new algorithm was signifi cantly more realistic than the A * algorithm.
There was no signifi cant difference for the speed error metric. The hypothesis
tests showed that the new algorithm ’ s routes was more similar to the human
routes (i.e., more realistic, or more valid) than the conventional A * algorithm
for the walking movement application. Note that, as in the previous hypothesis
testing example, quantitative metrics that measured the pertinent behavior of
the model had to be defi ned; this is often an important step in applying a
statistical hypothesis test to validation.

 In the context of validating a discrete - event simulation model of queue
lengths in a notional bank, a t - test was also used to compare the average
customer delay observed in the bank with the average delay in the model ’ s
results [6] .

Formal Methods

Formal V & V methods employ mathematical proofs of correctness to establish
model characteristics. Statements about the model are developed using a
formal language or notation and manipulated using logical rules; conclusions
derived about the model are unassailable from a mathematical perspective.
However, formal methods are quite diffi cult to apply in practice, as the com-
plexity of most useful models is too great for current tools and methods to
deal with practically [2] . Nevertheless, useful results can be achieved using
formal methods in some highly constrained situations. Formal methods induc-
tive assertions and predicate calculus are defi ned here; other formal methods
include induction and proof of correctness [2] .

Inductive Assertions The inductive assertions verifi cation method com-
pares the programming language code for the executable model to the descrip-
tions of the simuland in the conceptual model. It is closely related to techniques
from program proving. Assertion statements, which are statements about the
input - to - output relations for model variables that must be true for the execut-
able model to be correct, are associated with the beginning and end of each
of the possible execution paths in the executable model. If it can then be
proven for each execution path that the truth of beginning assertion and the
execution of the instructions along the path imply the truth of the ending
assertion, then the model is considered to be correct. The proofs are done
using mathematical induction.

Predicate Calculus Predicate calculus is a validation method that compares
the simuland to the conceptual model. * Predicate calculus is a formal logic
system that allows the creation, manipulation, and proof of formal statements

 * Predicate calculus is also known as fi rst - order predicate calculus and predicate logic .

354 VERIFICATION, VALIDATION, AND ACCREDITATION

that describe the existence and properties of objects. Characteristics of both
the simuland and the conceptual model can be described using predicate cal-
culus. One procedure of predicate calculus is the proving of arguments, which
can demonstrate that one set of properties of the object in question, if true,
together implies additional properties. The goal of the method is that by
describing properties of the simuland and conceptual model using predicate
calculus, it can be possible to prove that the two are consistent.

Selecting and Applying V&V Methods

 The specifi c methods to be applied to a given model depend on many factors,
including model type, availability of simuland data for comparison, and
ease of conducting multiple executions of the model. The model developer
should examine previous V & V efforts for similar models for possible appli-
cable methods. It should not be assumed that the process of V & V for any
given model will always use exactly one of these methods. More often, per-
forming V & V on a large complex model, or even a simpler one, will involve
multiple methods (e.g., separate methods will be used for verifi cation and
for validation). For example, V & V of the Joint Training Confederation,
a large distributed system assembled from multiple constructive models
that supports command and battle staff training, used at least four different
methods (event validation, face validation, sensitivity analysis, and submodel
testing) [45] . *

VV&A CASE STUDIES

 This section presents three VV & A case studies of greater length than the
examples in the previous section. Each is intended to illustrate some aspect
of the proper (and improper) conduct of VV & A.

Case Study: The U.S. Army ’s Virtual Targets Center (VTC)
Validation Process

 V & V activities are not executed in isolation, but rather in the context of a
project or process of model development. The requirements of a specifi c
model development process often drive the timing and methods used to
perform V & V, and conversely, V & V results as they are produced can deter-
mine the sequence of events within the process. Both of those effects are
present in the validation process described in this case study, which is intended

 * Interestingly, the event validation method appears in early versions of Balci ’ s taxonomy of V & V
methods (e.g., [18]) but not in later versions (e.g., [2]). Event validation compares identifi able
events or event patterns in the model and simuland behaviors [18] .

VV&A CASE STUDIES 355

to illustrate how validation should be integrated into the process of model
development and use.

Virtual Targets New and enhanced weapon systems are often tested with
M & S, using digital virtual models of the targets they are intended to engage.
Those target models must be detailed, accurate, and authoritative if the testing
that uses them is to be credible. The U.S. Army ’ s VTC is developing a library
of extremely detailed, highly accurate, and carefully validated digital virtual
target models. * The VTC develops virtual target models of a wide variety of
military targets, including armored vehicles, mounted weapon systems, and air
vehicles including helicopters, aerial targets, and unmanned aircraft. Figure
 10.7 is an example of such a target. The detailed virtual target models provide
the base from which appropriately confi gured models can be prepared to
provide inputs into physics - based simulations to produce high - fi delity predic-
tions of the target ’ s observable signatures in the infrared (IR), radio frequency
(RF), or visual frequency ranges. The virtual target models, and the signature
predictions generated from them, are subsequently used by weapon system
developers, test and evaluation engineers, and trainers in various ways within
the simulations employed in those communities [46] . The models are reusable
and are freely available to qualifi ed users via an online accessible repository. * *

 * The VTC is a collaborative activity of two U.S. Army organizations: the System Simulation and
Development Directorate ’ s End Game Analysis Functional Area of the Aviation and Missile
Research, Development, and Engineering Center and the Program Manager – Instrumentation,
Targets, and Threat Simulators Target Management Offi ce of the Program Executive Offi ce –
 Simulation, Training, and Instrumentation.
 * * The VTC model library currently has approximately 15,000 target models of approximately
400 distinct target items. (There may be multiple target models per target item to allow for varia-
tions in confi guration, damage states, color, etc.) Approximately 4000 – 4500 model downloads
have occurred per year since the VTC effort began in 1999.

Figure 10.7 Example target: BM -21 Grad truck -mounted multiple rocket launcher.

356 VERIFICATION, VALIDATION, AND ACCREDITATION

 A target model is a digital representation of the geometry of a target item
(such as a truck or helicopter). The various surfaces, panels, protrusions, and
parts of the target item are represented as facets with attributes that include
their three - dimensional spatial coordinates relative to the overall target equip-
ment item, material type, and refl ectivity. The geometry data are stored using
standard engineering geometry fi le formats. The development of a new target
model may begin from a previously existing geometry fi le (such as a computer -
 aided design, or CAD, fi le for the target item) developed for some other
application. If such a fi le is not available, it may be necessary to acquire the
target item geometry directly by taking measurements from an actual physical
example or from available photographs or design drawings of the target item.
The resulting geometry data fi le might typically comprise 2 million facets, with
some models comprised of up to 15 million facets. In any case, once acquired,
the geometry fi le constitutes an unvalidated target model.

Validation Process The process employed by the VTC to validate an unval-
idated target model has eight steps, illustrated in Figure 10.8 . The steps of that
process are described next; the description and the fi gure are adapted from
the U.S. Army ’ s VTC [47] .

Step (1) Request Validation. The validation process begins with a request for
validation support to validate a particular target model from the appropriate
intelligence production center or project offi ce. The request is accompanied
by information needed in the validation process, including the following:

 (1) Baseline description and technical details of the target item.
 (2) Characteristics that distinguish the target item from similar items of its

type (e.g., how does this truck differ from other trucks).
 (3) Features that signifi cantly affect the target item ’ s RF, IR, and visual

signatures.
 (4) Authoritative signature data for the target item in the frequency ranges

of interest; these referent data will serve as comparison data during the
validation — the source of these data will be discussed later.

 (5) Authorization for assistance from subject matter experts in the valida-
tion process.

Step (2) Prepare Model. Because the target model to be validated may come
from a variety of sources, the validation process begins with a reengineering
of the model. It is subdivided into its major components (e.g., turret and hull
for a tank) and existing parent – child component relationships are checked.
The geometry is examined for defects such as intersecting or misaligned facets.
The components and attributes of the digital model are compared with the
target descriptions provided in the request.

Step (3) Reconstitute Model. Once the underlying geometry model has been
prepared, the virtual target model is “ reconstituted, ” that is, converted, from

VV&A CASE STUDIES 357

the base fi le format to a fi le format appropriate to the intended application of
the model. This step is necessary because the virtual target model may be input
to RF signature prediction, IR signature prediction, or visualization simula-
tions depending on application, each of which requires a different input fi le
format.

 Step (4) Check Model Confi guration. Confi guration refers to the positioning
of articulated or movable portions of the target item, such as azimuth
angle of a tank turret or the elevation status (up for launch or down for trans-
port) of a truck - mounted rocket launcher. The confi guration of the virtual
target model must match the confi guration of the actual target item used to
collect the authoritative signature data. The target model ’ s confi guration is
adjusted to match the confi guration of the hardware item at the time signature
data were collected.

(1) Request validation

(4) Check model configuration

(2) Prepare model

(3) Reconstitute model

(5) Predict target signature

(6) Compare signatures

OK?

(7) Review comparison

OK?

(8) Submit validation report

No

No

Yes

Yes

(1) Request validation

(4) Check model configuration

(2) Prepare model

(3) Reconstitute model

(5) Predict target signature

(6) Compare signatures

OK?

(7) Review comparison

OK?

(8) Submit validation report

No

Yes

 Figure 10.8 VTC validation process fl owchart (adapted from U.S. Army VTC, 2005).

358 VERIFICATION, VALIDATION, AND ACCREDITATION

Step (5) Predict Target Signature. The prepared, reconstituted, and checked
target model produced in the preceding steps is input to signature prediction
software, which generates output predicting the target ’ s signature using the
geometry and other target attribute information in the target model and its
own physics - based models. The signature prediction software used and the
nature of its output depend on the signature of interest (RF, IR, or visual). *
For example, Figure 10.9 is a visualization of the RF scatter produced for the
BM - 21 [46] .

Step (6) Compare Signatures. The predicted signature generated by the
signature predication software is compared with the authoritative signature
provided as part of the validation request. (The methods used to compare the
signatures will be discussed later.) If the predicted and authoritative signatures
are found to be suffi ciently close, the process continues at step (7); if the sig-
natures are not suffi ciently close, the process reverts to step (2) to correct the
model.

Step (7) Review Comparison. Subject matter experts review the results of
comparing the predicted and authoritative signatures. They confi rm that
correct authorization signature data were used, that the comparison was con-
ducted using an appropriate method, and that the differences between the
signatures were within acceptable tolerances. If the experts judge the com-
parison to be acceptable, the process continues at step (8); if the signatures
are not suffi ciently close, the process reverts to step (2) to correct the model.

 * RF signature prediction may be done using the Xpatch software; Xpatch is distributed by the
U.S. Air Force Research Laboratory. IR signature prediction may be done using the MuSES
software; MuSES is a proprietary software product of ThermoAnalytics, Inc.

Figure 10.9 Example of a predicted RF signature (U.S. Army RDECOM, 2009).

VV&A CASE STUDIES 359

Step (8) Submit Validation Report. A report documenting the virtual target
model and the validation process is prepared. The report includes identifi ca-
tion of the signature prediction software used, the results of the signature
comparison, the intended uses for the target model assumed during validation,
and any limitations to its use (bounds of validity) found during validation. The
report is submitted to the validating authority and the target model is made
available for authorized use.

Validation Comparison In step (6) of the validation process, the target
item ’ s refl ectance or emissions signature in the frequency range of interest
is compared with an authoritative signature in the same frequency range
provided with the validation request. The authoritative signature consists
of measurements taken under controlled conditions from an actual physical
example of the modeled target item. For example, for an RF signature,
measurements would typically be taken by irradiating the target item with
a radar beam of an appropriate frequency and measuring the target item ’ s
radar refl ection using sensors. The target item would be positioned on a large
turntable, allowing measurements to be conveniently taken across the full
range of azimuth angles, for a given elevation angle, by rotating the turntable
between measurements.

 The comparison of the predicted signature (model data) to the authorita-
tive signature (referent data) is conducted using previously agreed upon
methods, metrics, and tolerances. The specifi c comparison method depends
on the frequency range. For example, for RF signatures, the plot of the pre-
dicted signature (radar cross section) must be within bands established either
by multiple authoritative signature data sets or within a predetermined range
of a single authoritative data set. Figure 10.10 illustrates an RF comparison. *
The upper graph shows radar cross - section values for both the referent data
(black line) and the model data (gray line) at each azimuth angle. The lower
graph shows the difference between the two data sets, again at each azimuth
angle. If the difference between the two exceeds a given magnitude at a given
number of azimuth angles, the model is not validated; the specifi c error toler-
ances depend on the model ’ s intended application and are set in advance by
subject matter experts.

 For IR signatures, temperature differences between the predicted signature
and the authoritative signature at appropriate areas of interest must be within
specifi ed tolerances. For visual signatures, a human observer must be able to
recognize target features on the predicted signature (which will be a visual
image) that are also recognizable on the target item.

 * The data values in the fi gure, while meant to be typical, are notional and do not correspond to
any particular target item or target model signatures.

360 VERIFICATION, VALIDATION, AND ACCREDITATION

 Case Study Conclusions The VTC validation process exemplifi es how
a validation comparison must be set within the context of an overall process
of model development and validation, and how the development process and
the validation comparison can affect each other. Although the details will
differ across projects and models, the essential idea is broadly applicable;
effective validation depends on proper positioning of validation within the
development process and response of the development process to validation
fi ndings.

 Finally, it is worth addressing a question raised by this case study that
applies more generally. One might wonder, if an authoritative signature is
available (as it must be to perform the validation as described here), why it is
necessary to bother with the predicted signature at all? In other words, why
not simply use the authoritative signature for the target item and forgo the
development and validation of the target model? The answer is that measuring
a signature for an actual physical target item is time - consuming and expensive,
and typically can only be done for a single, or limited number of, target item
confi gurations and elevation angles. However, information about the target
item ’ s signature is very likely to be needed by model users for multiple
confi gurations and elevation angles. Once the target model has been validated
for a given confi guration and elevation angle using the available referent data
as described in this case study, the model can be used to predict signatures
at other confi gurations and elevation angles with increased confi dence and
reliability.

C
ro

s
s
s
e

c
ti
o

n 0.25

0.20

0.15

0 90 180 270

Azimuth (degrees)

Predicted (model)
Authoritative (referent)

360

D
if
fe

re
n

c
e

0.04

0.02

–0.02

–0.04

–0.06

0.00

0 90 180 270

Azimuth (degrees)

360

 Figure 10.10 Example of an RF signature comparison.

VV&A CASE STUDIES 361

Case Study: The Crater Model and the Columbia Disaster

 As noted earlier, one objective of validation is to establish the range of input
values for which a model ’ s results can be considered usefully valid, that is, to
determine the model ’ s bounds of validity. This case study examines a well -
 known tragedy that included, as one aspect of a much larger chain of events,
instances where models were used outside their validated bounds. The content
of this case study is based largely on Gehman et al. [48] .

The Columbia Disaster National Aeronautics and Space Administration ’ s
(NASA) fi rst space - worthy space shuttle Columbia fl ew for the fi rst time
in April 1981. Its fi nal fl ight, designated STS - 107, was a 17 - day multidisci-
plinary earth science and microgravity research mission. On February 1, 2003,
Columbia broke up over Texas during reentry, killing the entire seven -
member crew.

 The damage that ultimately caused the loss occurred at the beginning of
the mission, approximately 82 s after launch. A suitcase - sized piece of the
foam insulation from the shuttle ’ s external fuel tank broke off and struck the
leading edge of Columbia ’ s left wing. The foam fragment was later estimated
to weigh approximately 1.2 lb and have a volume of approximately 1200 in 3 .
It was estimated to have impacted the wing at a relative velocity of 625 – 840 ft/s
and an impact angle of approximately 20 degrees. Ground experiments subse-
quent to the accident indicated that this impact could have created a hole in
the wing ’ s thermal insulation that was possibly as large as 10 in in diameter.

 Examination of launch video the day after the launch, while Columbia was
in orbit, showed the impact but not whether damage had resulted. Engineering
analyses were conducted in an attempt to assess the extent of the damage and
the resulting risk. The assessment did not fi nd suffi cient evidence to indicate an
unsafe situation and Columbia was given permission for reentry. During the
course of the reentry, the hole in the wing ’ s thermal insulation allowed hot
gases to enter and burn through the wing ’ s structure, leading to catastrophic
failure of the wing structure and the consequent loss of the orbiter and crew.

The Crater Model and the Columbia Analysis The damage assessment
process conducted during the mission examined possible damage to the orbit-
er ’ s thermal protection system, which is essential to withstand the tremendous
temperatures experience during reentry (at some points more than 2800 ° F).
Because the exact impact location on the orbiter was not known, two compo-
nents of the thermal protection system were considered: the thermal insulating
tiles that covered the bottom of the orbiter, including the wings, and the rein-
forced carbon – carbon panels in the orbiter ’ s wing ’ s leading edges.

 Possible damage to the thermal tiles was investigated using a model known
as Crater. Crater is a mathematical model that predicts the depth of penetra-
tion to be expected from a foam, ice, or debris projectile impacting one of the
thermal tiles. Figure 10.11 shows the Crater model. It is most often used to
analyze possible damage caused by ice debris falling from the external tank

362 VERIFICATION, VALIDATION, AND ACCREDITATION

during launch. Input parameters to the Crater model include length, diameter,
and density of the projectile and the compressive strength and density of the
tile. The Craft model also includes an empirical parameter that affects the
model ’ s predictions. That parameter, and the overall model, had been cali-
brated and validated by comparison to actual impact data several times,
including ice droplet tests in 1978 and foam insulation projectile tests in 1979
and 1999. The projectiles used in these tests had a maximum volume of 3 in 3 .
The tests showed that within the limits of the test data, Crater ’ s damage pre-
dictions tended to be more severe than the actual damage observed during
the test, a tendency referred to by engineers as “ conservative. ”

 For projectiles, the size of the Columbia foam fragment, approximately 400
times larger than those for which the model had been validated, the accuracy
of the model was not known. For the Columbia fragment, Crater predicted a
penetration depth that was greater than the tile thickness; that is, it predicted
that the impact would have created a hole in the tile that would expose the
orbiter ’ s wing structure to the extreme temperatures of reentry. However,
because Crater ’ s predictions within its validated limits were known to be
conservative, the model ’ s penetration fi nding was discounted.

 Another model, similar to Crater, was used to investigate possible damage
to the reinforced carbon – carbon panels in the leading edge of the left wing.
This model, which was designed to estimate the panel thickness needed to
withstand impacts, was calibrated and validated in 1984 using impact data
from ice projectiles with a volume of approximately 2.25 in 3 . Analysis using
this model for the much larger Columbia foam fragment indicated that impact
angles greater than 15 degrees would penetrate the panels. However, because
the foam that impacted Columbia was less dense than the ice for which the
model had been validated, the analysts concluded that the panel would not be
penetrated by foam impacts at up to 21 degrees, and the model ’ s penetration
fi nding was discounted.

6/14/1

3/2*27.0

)()(

)())((45.0)/(0195.0

TT

P

S

VVddL
p

r

−r
=

where
p
L
d

V
V *

ST

rT

0.0195

6/141

3/2*27.0

)

)())((45.0)/(0195.0

TT

P

S

VVddL
p

−
=

= penetration depth
= length of foam projectile
= diameter of foam projectile

rP = density of foam
= component of foam velocity at right angle to foam
= velocity required to break through the tile coating
= compressive strength of tile
= density of tile
= empirical constant

 Figure 10.11 The Crater model (Gehman et al. [48]).

VV&A CASE STUDIES 363

Case Study Conclusions The size of foam fragment that damaged
Columbia had an estimated volume well outside of the bounds for which the
two models had been validated. (Several other parameters of the foam frag-
ment were outside those values as well.) A simple conclusion would be to
present this as an example of a model that, when used outside of its bounds
of validity, gives an incorrect answer. However, the case of the Columbia
damage analysis is not so simple. Although the two models were used for input
values beyond what they had been validated for, they both indicated the pos-
sibility of signifi cant and dangerous damage to the orbiter ’ s thermal protec-
tion, which regrettably proved to be correct.

 The actual conclusion is that it is possible that the fact that the models were
used outside their bounds of validity misled the analysts into discounting the
models ’ predictions and underestimating the risk. On this point, the Columbia
Accident Investigation Board Report found that “ the use of Crater in this new
and very different situation compromised [the analysts ’] ability to accurately
predict debris damage in ways [they] did not fully comprehend ” [48] .

Case Study: Validation Using Hypothesis Testing

 As noted earlier, hypothesis testing is a broadly useful statistical technique
that can be used as a dynamic validation method. This case study examines,
in a bit more detail than the earlier examples, one application of a hypothesis
test.

Model and Validation Procedure The model to be validated was a model
of human decision making [28] . The model ’ s decision - making algorithm was
based on recognition - primed decision making [49] , a psychological model of
decision making by experienced human decision makers. It was implemented
using multiagent software techniques. The goal of the model, known as
RPDAgent, was not to make theoretically optimum decisions, but rather to
mimic the decisions of human decision makers. In particular, the model was
challenged to model the decisions of senior military commanders at the opera-
tional level of warfare.

 A test scenario based on an amphibious landing was devised to validate the
model. The scenario included four specifi c decisions, or decision points: one
of four landing locations, one of four landing times, one of three responses to
changes in enemy deployment, and one of two responses to heavy friendly
casualties had to be selected. The choices were numerically coded to allow the
computation of mean decisions.

 Relevant military information about the decision choices was included with
the scenario and used by the decision makers. Thirty human military offi cers
were asked to make selections for each of the four decision points within the
test scenario. The RPDAgent model has stochastic elements, so 200 replica-
tions of 30 sets of the four decisions were generated using the model. For
each of the four decision points, the distribution of the human decisions was

364 VERIFICATION, VALIDATION, AND ACCREDITATION

compared with the distribution of RPDAgent ’ s decisions choice by choice; the
number of the humans selected a particular choice was compared with the
mean number of times the choice was selected by the model over the 200
replications.

 Hypothesis Test Used in Validation The statistical method employed for
the comparison, equivalency testing, can be used to determine if the difference
between two distributions is insignifi cant, as defi ned by a maximum difference
parameter [50] . For the RPDAgent validation, the maximum difference was
set to 20 percent, a value judged to be small enough for realism but large
enough to allow for reasonable human variability.

 The hypotheses and statistics used for the equivalency testing were

Test 1 hypotheses

h X

h Xa

0 1

1

:

:

− ≤

− >

μ δ
μ δ

Test 2 hypotheses

h X

h Xa

0 2

2

:

:

− ≥

− <

μ δ
μ δ

Test 1 test statistic

t

X

SX
1

1=
−() ≤

−

μ δ

μ

Test 2 test statistic

t

X

SX
2

2=
−() ≤

−

μ δ

μ

where

 X
–
 = mean model decision response (times a choice was selected)

 μ = human decision response (times a choice was selected)
 δ 1 = lower limit of the equivalency band
 δ 2 = upper limit of the equivalency band

 Two statistical hypothesis tests are needed in equivalency testing. For this
application, test 1 determines if the model mean is less than or equal to the
human mean allowing for the equivalency band; rejecting the null hypothesis
shows that it is not. Test 2 determines if the model mean is greater than or
equal to the human mean, allowing for the equivalency band; rejecting the
null hypothesis shows that it is not. Rejecting both null hypotheses shows that
the distributions are equivalent within ± δ . For both tests, a one - tailed t - test
was used with α = 0.05, giving a critical value for the test statistic t = 1.645.

CONCLUSION 365

 The model and human means were compared in this manner for each of
the choices for each of the four decision points in the test scenario. In every
comparison, the calculated test statistics exceeded the critical value for both
tests, leading to the rejection of both null hypotheses, thereby supporting the
conclusion that the model and human decision means were equivalent within
the difference parameter.

Case Study Conclusions Using a statistical validation technique is not
always possible. To do so, the data needed to support it must be available,
and the appropriate technique must be selected and properly employed.
However, when these conditions are met, such methods can be quite powerful,
as this case study shows. Note that the hypothesis test structure here avoided
the “ backward ” structure of the example given earlier; here, the two null
hypotheses were that the model behavior was different from the human
behavior, and showing that the model behavior was comparable to the human
behavior required rejecting both null hypotheses.

CONCLUSION

 This section fi rst identifi es a set of challenges that arise in the practice of
VV & A. It then offers some concluding comments.

VV&A Challenges

 As with any complex process, the practice of VV & A involves challenges. In
this section, fi ve important VV & A challenges are presented.

Managing VV&A V & V activities must be done at the proper times within
a simulation project, and they must be allocated suffi cient resources. As
discussed earlier, the project artifacts to be compared in V & V become avail-
able at different times in the project; for example, the executable model
will be available for comparison to the model before the results are available
for comparison to the simuland. Because of this, the guideline that V & V
should be done “ as soon as possible ” implies that V & V should be done over
the course of the project. * Unfortunately, in real - world simulation projects,
V & V are all too often left to the end of simulation projects. This has at least
two negative consequences. First, problems are found later than they might
have been, which almost always makes them more diffi cult and costly to
correct. Second, by the end of the project, schedule and budget pressures
can result in V & V being given insuffi cient time and attention [12] . All too
often, V & V are curtailed in simulation projects facing impending deadlines,

 * Indeed, in the list of 15 principles of V & V, this is the fi rst [2] .

366 VERIFICATION, VALIDATION, AND ACCREDITATION

producing a model that has not been adequately validated and results that
are not reliable. The project manager must ensure that V & V are not skipped
or shortchanged.

Interpreting Validation Outcomes For all but the simplest models, it is
rarely correct to simply claim that a model is “ valid ” or has “ been validated. ” *
Almost any model with practical utility is likely to be suffi ciently complex that
a more nuanced and qualifi ed description of its validity is necessary. For such
models, validation is likely to show that the model is valid (i.e., is accurate
enough to be usable) under some conditions, but not under others. A model
might be valid for inputs within a range of values, but not outside those values;
for example, the simple gravity model presented earlier could be considered
valid for small initial height values, but not height values so large that the
distance implied by the height value would cause the acceleration due to
gravity to be noticeably less. Or, a model might be valid while operating within
certain parameters, but not outside those; for example, an aircraft fl ight
dynamics model could be valid for subsonic velocities, but not for transonic
or supersonic. Finally, the accuracy of a model could be suffi cient for one
application, but not for another; for example, a fl ight simulator might be
accurate enough for entertainment or pilot procedures training, but not accu-
rate enough for offi cial aircraft type qualifi cation.

 In all of these cases, describing the model as “ valid ” without the associated
conditions is misleading and potentially dangerous. The person performing
the validation must take care to establish and document the bounds of validity
for a model, and the person using the model must likewise take care to use it
appropriately within those bounds of validity.

Combining Models Models are often combined to form more comprehen-
sive and capable models. * * For example, a mathematical model of an aircraft ’ s
fl ight dynamics might be combined with a visual model of its instrument panel
in a fl ight simulator. The means of combination are varied, including direct
software integration, software architectures, interface standards, and net-
worked distributed simulation; these details of these methods are beyond the
scope of this chapter (see Davis and Anderson [51] and Weisel et al. [52] for
details). However, the combination of models introduces a validation chal-
lenge. When models that have been separately validated are combined, what
can be said about the validity of the combination? Quite frequently, in both
the research literature and in the practice of M & S (especially the latter), it is
assumed that the combination of validated models must be valid, and that
validation of the combination is unnecessary or redundant. In fact, a combina-
tion of validated models is not necessarily valid; this has been recognized for
some time [2] and more recently formally proven [53] . Consequently, when

 * The second principle of V & V makes this point [2] .
 * * In the literature, the terms integrated or composed [54] are used more often than combined .

CONCLUSION 367

models are combined, a complete validation approach will validate each sub-
model separately (analogous to unit testing in software engineering) and then
validate the combined composite model as a whole (analogous to system
testing). *

Data Availability Validation compares the model ’ s results to the simuland ’ s
behavior. To make the comparison, data documenting observations of the
simuland is required. For some simulands such data may be available from
test results, operational records, or historical sources, or the data may be easily
obtainable via experimentation or observation of the simuland. However, not
all simulands are well documented or conveniently observable in an experi-
mental setting. A simuland may be large and complex, such as theater - level
combat or national economies, for which history provides only a small number
of observable instances and data suffi ciently detailed for validation may not
have been recorded. Or, a simuland may not actually exist, such as a proposed
new aircraft design, for which observations of the specifi c simuland will not
be available. The availability (or lack thereof) of reliable data documenting
observations of the simuland will often determine which validation method is
used. This is one reason for the relatively frequent application of face valida-
tion; subject matter experts are often available when data necessary to support
a quantitative validation method, such as statistical analysis, are not.

Identifi cation of Assumptions Assumptions are made in virtually every
model. The example gravity model assumes proximity to the earth ’ s surface.
A fl ight simulator might assume calm, windless air conditions. The assump-
tions themselves are not the challenge; rather, it is the proper consideration
of them in V & V that is. Models that are valid when their underlying assump-
tions are met may not be outside when they are not, which implies that the
assumptions, which are characteristics of the model, become conditions on the
validity of the model. This is not a small issue; communicating all of the
assumptions of a model to the person performing the validation is important,
but the developer of a model can make many assumptions unconsciously and
unrealized, and identifying the assumptions can be diffi cult. This point is made
more formally in Spiegel et al. [55] , where the assumptions upon which a
model ’ s validity depends are captured in the idea of validation constraints.

Concluding Remarks

 The three central concepts of VV & A asserted in this chapter were the
following:

 * In Balci [2] , there are fi ve levels of testing. The separate validation of submodels is level 2,
submodel (module) testing , and the combined validation of the composite model is level 4, model
(product) testing .

368 VERIFICATION, VALIDATION, AND ACCREDITATION

 (1) V & V are processes that compare artifacts of model development to
each other, or model results to observations or knowledge of the simu-
land. Specifi c V & V methods are structured means of making those
comparisons.

 (2) The outcome of V & V is most often not a simplistic determination that
the model is entirely correct or incorrect [2,6] . Rather, V & V serve to
determine the degree of accuracy a model has and the ranges or types
of inputs within which that accuracy is present, that is, the model ’ s
bounds of validity.

 (3) The accuracy of a model with respect to its simuland, or more precisely,
the standard of accuracy a model must meet, depends on its intended
application. The effort spent on V & V and the standard to be applied
in accreditation depend on the need for model accuracy and the con-
sequences of model inaccuracy within the model ’ s application.

 As already stated, V & V are essential prerequisites to the credible and reli-
able use of a model and its results. V & V reveal when and how a model should
be. Shortchanging V & V is false economy, as the consequences of using an
invalid model can in some circumstances be dire. Accreditation is the crucial
decision regarding the suitability of a model for an application. The accredita-
tion decision can only be made successfully when fully informed by the results
of properly conducted V & V.

ACKNOWLEDGMENTS

 Stephanie E. Brown and Ann H. Kissell (U.S. Army VTC) provided informa-
tion for the VTC case study. William V. Tucker (Boeing) suggested the topic
for the Crater model case study. Wesley N. Colley (University of Alabama in
Huntsville) helped to prepare several of the fi gures. Their support is gratefully
acknowledged.

REFERENCES

 [1] Petty MD . Verifi cation and validation . In Principles of Modeling and Simulation:
A Multidisciplinary Approach . Sokolowski JA , Banks CM (Eds.). Hoboken, NJ :
 John Wiley & Sons ; 2009 , pp. 121 – 149 .

 [2] Balci O . Verifi cation, validation, and testing . In Handbook of Simulation:
Principles, Methodology, Advances, Applications, and Practice . Banks J (Ed.).
 New York : John Wiley & Sons ; 1998 , pp. 335 – 393 .

 [3] Modeling and Simulation Coordination Offi ce . Verifi cation, Validation, and
Accreditation (VV & A) Recommended Practices Guide. September 15 2006 .
Available at http://vva.msco.mil . Accessed May 31, 2009.

REFERENCES 369

 [4] Ford T . Helicopter simulation . Aircraft Engineering and Aerospace Technology ,
 69 (5): 423 – 427 ; 1997 .

 [5] Kesserwan N . Flight Simulation . M.S. Thesis, McGill University, Montreal,
Canada; 1999 .

 [6] Banks J , et al. Discrete- Event System Simulation . 4th ed . Upper Saddle River,
NJ : Prentice Hall ; 2005 .

 [7] Rumbaugh J , et al. The Unifi ed Modeling Language . Reading, MA : Addison -
 Wesley ; 1999 .

 [8] Fontaine MD , et al. Modeling and simulation: Real - world examples . In Principles
of Modeling and Simulation: A Multidisciplinary Approach . Sokolowski JA ,
 Banks CM (Eds.). Hoboken, NJ : John Wiley & Sons ; 2009 , pp. 181 – 245 .

 [9] Sargent RG . Verifi cation, validation, and accreditation of simulation models . In
Proceedings of the 2000 Winter Simulation Conference . Orlando, FL , December
10 – 13, 2000 , pp. 50 – 59 .

 [10] U.S. Department of Defense . DoD Modeling and Simulation (M & S) Verifi cation,
Validation, and Accreditation (VV & A) . Department of Defense Instruction
5000.61 , May 13, 2003 .

 [11] Cohn J . Building virtual environment training systems for success . In The PSI
Handbook of Virtual Environment Training and Education: Developments for
the Military and Beyond; Volume 1: Learning, Requirements, and Metrics .
 Nicholson D , Schmorrow D , Cohn J (Eds.). Westport, CT : Praeger Security
International ; 2009 , pp. 193 – 207 .

 [12] Balci O . Verifi cation, validation, and accreditation . In Proceedings of the 1998
Winter Simulation Conference. Washington, DC , December 13 – 16, 1996 ,
pp. 41 – 48 .

 [13] Royce W . Software Project Management: A Unifi ed Framework . Reading, MA :
 Addison - Wesley ; 1998 .

 [14] Jacoby SLS , Kowalik JS . Mathematical Modeling with Computers . Englewood
Cliffs, NJ : Prentice Hall ; 1980 .

 [15] Balci O , Sargent RG . A methodology for cost - risk analysis in the statistical
validation of simulation models . Communications of the ACM , 24 (4): 190 – 197 ;
 1981 .

 [16] Shannon RE . Systems Simulation: The Art and Science . Upper Saddle River, NJ :
 Prentice Hall ; 1975 .

 [17] Sargent RG . Verifying and validating simulation models . In Proceedings of
the 1996 Winter Simulation Conference. Coronado, CA , December 8 – 11, 1996 ,
pp. 55 – 64 .

 [18] Balci O . Guidelines for successful simulation studies . In Proceedings of the
1990 Winter Simulation Conference. New Orleans, LA , December 9 – 12, 1990 ,
pp. 25 – 32 .

 [19] Balci O . Validation, verifi cation, and testing techniques throughout the life cycle
of a simulation study . In Proceedings of the 1994 Winter Simulation Conference.
Lake Buena Vista, FL , December 11 – 14, 1994 , pp. 215 – 220 .

 [20] Belfore LA , et al. Capabilities and intended uses of the Joint Operations
Feasibility Tool . Proceedings of the Spring 2004 Simulation Interoperability
Workshop. Arlington, VA , April 18 – 23, 2004 , pp. 596 – 604 .

370 VERIFICATION, VALIDATION, AND ACCREDITATION

 [21] Grant S , Galanis G . Assessment and prediction of effectiveness of virtual envi-
ronments: Lessons learned from small arms simulation . In The PSI Handbook
of Virtual Environment Training and Education: Developments for the Military
and Beyond; Volume 3: Integrated Systems, Training Evaluations, and Future
Directions . Nicholson D , Schmorrow D , Cohn J (Eds.). Westport, CT : Praeger
Security International ; 2009 , pp. 206 – 216 .

 [22] Knepell PL , Arangno DC . Simulation Validation: A Confi dence Assessment
Methodology . New York : John Wiley & Sons ; 1993 .

 [23] Moya LJ , McKenzie FD , Nguyen QH . Visualization and rule validation in
human - behavior representation . Simulation & Gaming , 39 (1): 101 – 117 ; 2008 .

 [24] Petty MD . Behavior generation in semi - automated forces . In The PSI Handbook
of Virtual Environment Training and Education: Developments for the Military
and Beyond; Volume 2: VE Components and Training Technologies . Nicholson
 D , Schmorrow D , Cohn J (Eds.). Westport, CT : Praeger Security International ;
 2009 , pp. 189 – 204 .

 [25] Turing AM . Computing machinery and the mind . Mind , 59 (236): 433 – 460 ; 1950 .
 [26] Wise BP , Miller D , Ceranowicz AZ . A framework for evaluating computer

generated forces . In Proceedings of the Second Behavioral Representation
and Computer Generated Forces Symposium. Orlando, FL , May 6 – 7, 1991 ,
pp. H 1 – H 7 .

 [27] Petty MD . The Turing test as an evaluation criterion for computer generated
forces . In Proceedings of the Fourth Conference on Computer Generated Forces
and Behavioral Representation. Orlando, FL , May 4 – 6, 1994 , pp. 107 – 116 .

 [28] Sokolowski JA . Enhanced decision modeling using multiagent system simula-
tion . SIMULATION , 79 (4): 232 – 242 ; 2003 .

 [29] Desel J , Oberweis A , Zimmer T . A test case generator for the validation of
high - level petri nets . In Proceedings of the International Conference on Emerging
Technologies and Factory Automation. Los Angeles, CA , September 9 – 12, 1997 ,
pp. 327 – 332 .

 [30] Cohen ML , et al. Statistics, Testing, and Defense Acquisition, New Approaches
and Methodological Improvements . Washington DC : National Research Council,
National Academy Press ; 1998 .

 [31] Miller DR . Sensitivity analysis and validation of simulation models . Journal of
Theoretical Biology , 48 (2): 345 – 360 ; 1974 .

 [32] Harrison A , Winters J , Anthistle D . Ironside: A command and battle space
simulation . In Proceedings of the 1999 Summer Computer Simulation Conference.
Chicago, IL , July 11 – 15, 1999 , pp. 550 – 554 .

 [33] Petty MD , Panagos J . A unit - level combat resolution algorithm based on
entity - level data . In Proceedings of the 2008 Interservice/Industry Training,
Simulation and Education Conference. Orlando, FL , December 1 – 4, 2008 , pp.
 267 – 277 .

 [34] Herington J , et al. Representation of historical events in a military campaign
simulation model . In Proceedings of the 2002 Winter Simulation Conference. San
Diego, CA , December 8 – 11, 2002 , pp. 859 – 863 .

 [35] Poncelin de Raucourt VPM . The reconstruction of part of the Battle of Medenine .
Unpublished M.Sc. Thesis, The Royal Military College of Science, Shrivenham,
UK; 1997 .

 [36] Tournes C , Colley WN , Umansky M . C 2 PAT, a closed - form command and
control modeling and simulation system . In Proceedings of the 2007 Huntsville
Simulation Conference. Huntsville, AL , October 30 – November 1, 2007 .

 [37] Simpkins SD , et al. Case study in modeling and simulation validation methodol-
ogy . In Proceedings of the 2001 Winter Simulation Conference. Arlington, VA ,
December 9 – 12, 2001 , pp. 758 – 766 .

 [38] Bhattacharyya GK , Johnson RA . Statistical Concepts and Methods . New York :
 John Wiley & Sons ; 1977 .

 [39] Benfi eld MPJ . Advanced Chemical Propulsion System (ACPS) validation study .
Unpublished presentation, University of Alabama in Huntsville, November 28,
 2007 .

 [40] Box GEP , et al. Statistics for Experimenters: An Introduction to Design, Data
Analysis, and Model Building . New York : John Wiley & Sons ; 1978 .

 [41] Van Brackle DR , et al. Terrain reasoning for reconnaissance planning in polygo-
nal terrain . In Proceedings of the Third Conference on Computer Generated
Forces and Behavioral Representation. Orlando, FL , March 17 – 19, 1993 , pp.
 285 – 306 .

 [42] Petty MD , Van Brackle DR . Reconnaissance planning in polygonal terrain . In
Proceedings of the 5th International Training Equipment Conference. The Hague,
The Netherlands , April 26 – 28, 1994 , pp. 314 – 327 .

 [43] Brogan DC , Johnson NL . Realistic human walking paths . In Proceedings of
International Computer Animation and Social Agents. New Brunswick, NJ , May
7 – 9, 2003 , pp. 94 – 101 .

 [44] Bandi S , Thalmann D . Path fi nding for human motion in virtual environments .
Computational Geometry: Theory and Applications , 15 : 103 – 127 ; 2000 .

 [45] Page EH , et al. A case study of verifi cation, validation, and accreditation for
advanced distributed simulation . ACM Transactions on Modeling and Computer
Simulation , 7 (3): 393 – 424 ; 1997 .

 [46] U.S. Army Research, Development, and Engineering Command . Virtual targets
center modeling process. Unpublished presentation to the NATO RTO MSG -
 058 Group (Conceptual Modeling for M & S), January 16, 2009 .

 [47] U.S. Army Virtual Targets Center . Threat virtual target validation process.
Unpublished document, July 26, 2005 .

 [48] Gehman HW , et al. Columbia Accident Investigation Board Report Volume I .
National Aeronautics and Space Administration; August 2003 .

 [49] Klein G . Strategies of decision making . Military Review , 69 (5): 56 – 64 ; 1989 .

 [50] Rogers JL , Howard KI , Vessey JT . Using signifi cance tests to evaluate equiva-
lence between two experimental groups . Psychological Bulletin , 113 (3): 553 – 565 ;
 1993 .

 [51] Davis PK , Anderson RH . Improving the Composability of Department of Defense
Models and Simulations . Santa Monica, CA : RAND National Defense Research
Institute ; 2003 .

 [52] Weisel EW , Petty MD , Mielke RR . A survey of engineering approaches to
composability . In Proceedings of the Spring 2004 Simulation Interoperability
Workshop. Arlington, VA , April 18 – 23, 2004 , pp. 722 – 731 .

REFERENCES 371

372 VERIFICATION, VALIDATION, AND ACCREDITATION

 [53] Weisel EW , Mielke RR , Petty MD . Validity of models and classes of models in
semantic composability . In Proceedings of the Fall 2003 Simulation Interoperability
Workshop. Orlando, FL , September 14 – 19, 2003 , pp. 526 – 536 .

 [54] Petty MG , Weisel EW . A composability lexicon . In Proceedings of the Spring
2003 Simulation Interoperability Workshop. Orlando, FL , March 30 – April 4,
 2003 , pp. 181 – 187 .

 [55] Spiegel M , et al. A case study of model context for simulation composability and
reusability . In Proceedings of the 2005 Winter Simulation Conference. Orlando,
FL , December 4 – 7, 2005 , pp. 436 – 444 .

373

Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains,
Edited by John A. Sokolowski and Catherine M. Banks
Copyright © 2010 John Wiley & Sons, Inc.

11

AN INTRODUCTION TO
DISTRIBUTED SIMULATION

Gabriel A. Wainer and Khaldoon Al-Zoubi

 Distributed simulation technologies were created to execute simulations on
distributed computer systems (i.e., on multiple processors connected via com-
munication networks) [1] . Distributed simulation is a computer program that
models real or imagined systems over time. On the other hand, distributed
computer systems interconnect various computers (e.g., personal computers)
across a communication network. Therefore, distributed simulation deals with
executing simulation correctly over interconnected multiple processors.
Correctness means that the simulation should produce the same results as if
it was executed sequentially using a single processor. Fujimoto distinguished
parallel from distributed simulation by their physical existence, used proces-
sors, communication network, and latency [1] . Parallel systems usually exist
in a machine room, employing homogeneous processors, and communication
latency is measured with less than 100 μ s. In contrast, distributed computers
can expand from a single building to global networks, often employing het-
erogeneous processors (and software), and communication latency is mea-
sured with hundreds of microseconds to seconds. The simulation is divided
spatially (or temporally) and mapped to participating processors. Our focus
here is on distributed simulation, which employs multiple distributed comput-
ers to execute the same simulation run over a wide geographic area.

374 AN INTRODUCTION TO DISTRIBUTED SIMULATION

 A focus of distributed simulation software has been on how to achieve
model reuse via interoperation of heterogeneous simulation components.
Other benefi ts include reducing execution time, connecting geographically
distributed simulation components (without relocating people/equipment to
other locations), interoperating different vendor simulation toolkits, providing
fault tolerance, and information hiding — including the protection of intellec-
tual property rights [1,2] .

TRENDS AND CHALLENGES OF DISTRIBUTED SIMULATION

 The defense sector is currently one of the largest users of distributed simula-
tion technology. On the other hand, the current adoption of distributed simu-
lation in the industry is still limited. In recent years, there have been some
studies (conducted in the form of surveys) to analyze these issues [2 – 4] . The
surveys collected opinions, comments, and interviews of experts from different
backgrounds in the form of questionnaires and showed that there is now an
opportunity for distributed simulation in industry. It has been predicted that
in the coming years, the sectors that will drive future advancement in distrib-
uted simulation are not only the defense sector, but also the gaming industry,
the high - tech industry (e.g., auto, manufacturing, and working training), emer-
gency, and security management [4] .

 The high - level architecture (HLA) is the preferred middleware standard in
the defense sector [5] . However, its popularity in industry is limited. The HLA
started as a large project mainly funded by the military, in order to provide
the means for reusing legacy simulations in military training operations, so
that this exercise could be conducted between remote parties in different
fi elds, reusing existing simulation assets. On the other hand, the adoption of
these technologies in the industry is based on return - of - investment policies.
Therefore, most commercial off - the - shelf (COTS) simulation packages do not
usually support distributed simulation due to a cost/benefi t issue. In “ A survey
on distributed simulation in industry, ” the authors suggested that in order to
make distributed simulation more attractive to the industrial community, we
need a lightweight COTS - based architecture with higher cost/benefi t ratio [2] .
The middleware should be easy to understand (e.g., programming interface,
fast development, and debugging), and interoperable with other vendor ’ s
simulation components. Distributed simulation might become a necessity
when extending the product development beyond factory walls, particularly
when such organizations prefer to hide detailed information [6] . New stan-
dards (for instance, COTS simulation package interoperability, core manufac-
turing simulation data, and Discrete - Event System Specifi cation [DEVS]) can
contribute to achieve these goals [7] .

 Another recent study, carried out by Strassburger et al., focused on survey-
ing experts from the area of distributed simulation and distributed virtual
environment [4] . This study found out that the highest rated applications in

A BRIEF HISTORY OF DISTRIBUTED SIMULATION 375

future distributed simulation efforts include the integration of heterogeneous
resources, and joining computer resources for complex simulations and train-
ing sessions. The study also identifi ed some research challenges:

 (1) Plug - and - play capability : The middleware should be able to support
coupling simulation models in such a way that the technical approach
and standards gain acceptance in industry. In other words, interoper-
ability should be achieved effortlessly.

 (2) Automated semantic interoperability between domains : To achieve the
plug - and - play challenge, interoperability must be achieved at the
semantic level.

A BRIEF HISTORY OF DISTRIBUTED SIMULATION

 Simulations have been used for war games by the U.S. Department of Defense
(DoD) since the 1950s. However, until the 1980s, simulators were developed
as a stand - alone with single - task purpose (such as landing on the deck of an
aircraft carrier). Those stand - alone simulators were extremely expensive com-
pared with the systems that they are suppose to mimic. For example, the cost
of a tank simulator in the 1970s was $18 million, while the cost of an advanced
aircraft was around $18 million (and a tank was signifi cantly less). By the
1980s, the need of performing cost - effective distributed simulation started to
be used at the DoD to simulate war games [8] .

 The fi rst large project in this area, the SIMulator NETworking (SIMNET)
program, was initiated in 1983 by the Defense Advanced Research Projects
Agency (DARPA) in order to provide virtual world environment for military
training [8 – 11] . SIMNET was different from previous simulators in a sense
that many objects played together in the same virtual war game. During a
SIMNET exercise, a simulator sent/received messages to/from other simula-
tors using a local area network (LAN). This distributed simulation environ-
ment enabled various simulation components to interact with each other over
the communication network. Cost played as a major factor for developing
SIMNET. However, the ability of having different types of simulations inter-
acting with each other was another major factor. For example, warships, tanks,
and aircraft simulators worked together, enhancing the individual systems ’
ability to interact with others in a real - world scenario. Further, the design of
SIMNET was different from previous simulators. The goal became to derive
the simulation requirements, and only then decide the hardware needed for
the simulation environment. This caused many required hardware in the
actual systems to be rolled out from simulation training.

 The success of SIMNET led to developing standards for distributed interac-
tive simulation (DIS) during the 1990s [12 – 14] . DIS is an open standard
discussed in numerous articles of the Institute of Electrical and Electronics
Engineers (IEEE) for conducting interactive and distributed simulations

376 AN INTRODUCTION TO DISTRIBUTED SIMULATION

mainly within military organizations [15 – 18] . DIS evolved from SIMNET and
applied many of SIMNET ’ s basic concepts. Therefore, DIS can be viewed as
a standardized version of SIMNET. The DIS standards introduced the concept
of interoperability in distributed simulation, meaning that one can interface a
simulator with other compliant DIS simulators, if they follow the DIS stan-
dards. Interoperability via simulation standards was a major step forward
provided by SIMNET, but it only permitted distributed simulations in homo-
geneous environments. DIS was designed to provide consistency (from human
observation and behavior) in an interactive simulation composed by different
connected components. Consistency in these human - in - the - loop simulators
was achieved via data exchange protocols and a common database. DIS
exchanged data using standardized units called the protocol data unit (PDU),
which allowed DIS simulations to be independent of the network protocol
used to transmit those PDUs [13] . DIS was successful in providing distributed
simulation in LANs, but it only supported interactive simulations restricted
to military training [4] . These simulations did not scale well in wide area net-
works (WANs).

 SIMNET and DIS use an approach in which a single virtual environment
is created by a number of interacting simulations, each of which controls the
local objects and communicates its state to other simulations. This approach
led to new methods for integrating existing simulations into a single environ-
ment, and during the 1990s, the Aggregate Level Simulation Protocol (ALSP)
was built. ALSP was designed to allow legacy military simulations to interact
with each other over LANs and WANs. ALSP, for example, enabled Army,
Air Force, and Navy war game simulations to be integrated in a single exercise
 [19 – 21] .

 The next major progress in the defense simulation community occurred in
1996 with the development of the HLA [5,22,23] . HLA was a major improve-
ment because it combined both analytic simulations with virtual environment
technologies in a single framework [1] . The HLA replaced SIMNET and DIS,
and all simulations in DoD are required to be HLA compliant since 1999 [1] .

 The distributed simulation success in the defense community along with the
popularity of the Internet in the early 1990s led to the emergence of nonmili-
tary distributed virtual environments, for instance, the distributed interactive
virtual environment (DIVE) (which is still in use since 1991). DIVE allows a
number of users to interact with each other in a virtual world [24] . The central
feature in DIVE is the shared, distributed database where all interactions
occur through this common medium.

 Another environment that became popular during the 1990s was the
Common Object Request Broker Architecture (CORBA) [25] . CORBA
introduced new interoperability improvements since it was independent of the
programming language used. On the other hand, CORBA use had sharply
declined in new projects since 2000. Some refl ect this for being very compli-
cated to developers or by the process CORBA standard was created (e.g., the
process did not require a reference implementation for a standard before
being adopted). Further, Web services became popular in the 2000s as an

SYNCHRONIZATION ALGORITHMS FOR PARALLEL AND DISTRIBUTED SIMULATION 377

alternative approach to achieve interoperability among heterogeneous appli-
cations (which also contributed to CORBA ’ s decline).

 Web services standards were fully fi nalized in 2000. However, TCP/IP,
HTTP, and XML (which are the major Web services standards) had matured
since the 1990s. These standards have opened the way for Simple Object
Access Protocol (SOAP) version 1.0, which was developed in 1999 by Userland
Software and Microsoft [26] . SOAP provided a common language (based on
XML) to interface different applications. A major breakthrough came when
IBM backed up the SOAP proposal in early 2000 and joined the effort for
producing the SOAP standard version 1.1 [27] . It was followed in the same
year by the defi nition of the standards version 1.0 of the Web Services
Description Language (WSDL), which is used to describe exposed services
 [28] . The fi nal boost for making Web services popular came when fi ve major
companies (Sun, IBM, Oracle, HP, and Microsoft) announced their support
for Web services in their products in 2000. It did not take long for the distrib-
uted simulation community to take advantage of Web services technology.
Web services are now being used even to wrap the HLA interfaces to overcome
its interoperability shortcomings, or to perform pure distributed simulation
across the WAN/Internet. Web services presented the service - oriented archi-
tecture (SOA) concept, which means services are deployed in interoperable
units in order to be consumed by other applications. The U.S. DoD Global
Information Grid (GIG) is based on SOA to interoperate the DoD heteroge-
neous systems. At the time of this writing, Web service is the technology of
choice for interoperating heterogeneous systems across the Internet [29] .

SYNCHRONIZATION ALGORITHMS FOR PARALLEL AND
DISTRIBUTED SIMULATION

 Parallel/distributed simulations are typically composed of a number of sequen-
tial simulations where each is responsible for a part of the entire model. In
parallel and distributed simulations, the execution of a system is subdivided
in smaller, simpler parts that run on different processors or nodes. Each of
these subparts is a sequential simulation, which is usually referred to as a
logical processor (LP). These LPs interact with each other using message
passing to notify each other of a simulation event. In other words, LPs use
messages to coordinate the entire simulation [1] . The main purpose of syn-
chronization algorithms is to produce the same results as if the simulation was
performed sequentially in a single processor. The second purpose is to opti-
mize the simulation speed by executing the simulation as fast as possible.

 In order to reduce the execution times, the parallel simulator tries to
execute events received on different LPs concurrently (in order to exploit
parallelism). Nevertheless, this might cause errors in a simulation. Consider
the scenario presented in Figure 11.1 , in which two LPs are processing
different events. Consider that the LPs receive two events: E 200 is received by
LP2 (with time stamp 200), and event E 300 is received by LP 1 (with time stamp

378 AN INTRODUCTION TO DISTRIBUTED SIMULATION

300). Suppose that LP 2 has no events before time 200, and LP 1 has no events
before time 300. It thus seems reasonable to process E 200 and E 300 . Suppose
that, when we execute E 200 , it generates a new event, E 250 (with time stamp
250), which must be sent to LP 1 . When LP 1 receives the event E 250 , it was
already processing (or had processed) the event E 300 with time stamp 300. As
we can see, we receive an event from the past in the future (an event that
requires immediate attention, and might affect the results of processing event
E 300). This is called a causality error .

 The local causality constraint guarantees the conditions under which one
cannot have causality errors: If each LP processes events and messages in
nondecreasing time stamp order, causality errors cannot occur [1] . This brings
us to a fundamental issue in synchronization algorithms: Should we avoid or
deal with local causality constraints? Based on these ideas, two kinds of algo-
rithms were defi ned. Conservative (pessimistic) algorithms avoid local causal-
ity errors by carefully executing safe events, not permitting local causality
errors. On the other hand, optimistic algorithms allow causality errors to
occur, but fi x them when detected. It is diffi cult to decide which type is better
than the other one, because simulation is application dependent. In fact, the
support for both types of algorithms may exist within one system.

 Conservative Algorithms

 Conservative algorithms were introduced in the late 1970s by Chandy and
Misra and Bryant [30,31] . This approach always satisfi es local causality con-
straint via ensuring safe time stamp - ordered processing of simulation events
within each LP [30,32] . Figure 11.2 shows the data structures used: input and
output queues on each LP, and a local virtual time (LVT) representing the
time of the last processed event. For instance, LP - B uses two input queues:
one from LP - A and one from a different LP (not showed in the fi gure). At
this point, it has processed an event at time 4 and has advanced the LVT = 4.
Its output queue is connected to LP - A.

Simulation time

LP2

LP1

100 200 300

Processed event

Unprocessed event

E200

E250 E300

 Figure 11.1 Causality error in a distributed simulation.

SYNCHRONIZATION ALGORITHMS FOR PARALLEL AND DISTRIBUTED SIMULATION 379

 For instance, LP - B has received an event with time stamp = 27; thus, we
know that it will never receive an event with a smaller time stamp from the
same LP. If at that point it receives an event with time stamp 4 from LP - C,
LP - B can safely process it (in fact, it can process any event from LP - C earlier
than time 27, as we know that we will not receive an event with an earlier time
stamp). However, LP - B must be blocked once all the unprocessed events from
LP - C are processed. If one of the input queues is empty (as in the fi gure), the
LP must be blocked. We cannot guarantee the processing of other events (for
instance, although we have plenty of events in the second queue, as the fi rst
one is empty, and the associated time stamp is 4, the LP cannot continue: if
we receive, for instance, a new event with time stamp 5 from LP - C, this will
cause a causality error). As we can see, the simulation can enter into a dead-
lock when a cycle of empty queues is developed where each process in the
simulation is blocked (as shown in the fi gure).

 A solution to break the deadlock in Figure 11.2 is to have each LP broad-
casting the lower bound on its time stamp to all other relevant LPs. This can
be accomplished by having LPs sending each other “ null ” messages with its
time stamp. In this case, when an LP processes an event, it sends other LPs a
null message, allowing other LPs decide the safe events to process. For
instance, in our example, LP - A will inform LP - C that the earliest time stamp
for a future event will be 16. Therefore, is it now safe for LP - C to process the
next event in the input queue (with time stamp 15), which breaks the hold -
 and - wait cycle (thus preventing deadlock to occur). These are the basic ideas
behind the Chandy/Misra/Bryant algorithm [1,30,31] .

 Further, runtime performance in conservative algorithms depends on an
application property called lookahead , which is the time distance between two
LPs. The lookahead value can ensure an LP to process events in the future
safely. Let us suppose that LP - A and LP - B in Figure 11.2 represent the time
taken to traverse two cities by car (which takes 3 units of simulation time). In

 Network

LVT = 4

27 4

LVT = 11

11 15

LVT = 16

16 81

LP-B LP-A LP-C

 Figure 11.2 Deadlock situation where each LP is waiting for an event from another LP.

380 AN INTRODUCTION TO DISTRIBUTED SIMULATION

this case, if LP - A is at simulation time 16, we know the smallest time stamp
it will send to LP - B is 19, so LP - B can safely process events with that time
stamp or lower. The lookahead is an important value because it determines
the degree of parallelism in the simulation, and it affects the number of
exchanged null messages. Naturally, the lookahead value is very diffi cult to
extract in complex applications. Further, null messages could harshly degrade
system performance [1] . Therefore, an LP can advance and process events
safely once it realizes the lower time stamp bound and the lookahead informa-
tion for all other relevant LPs. As a result, many algorithms were proposed
during the late 1980s and 1990s to arm each LP with this information as effi -
ciently as possible. For example, the barrier algorithms execute the simulation
by cycling between phases. Once an LP reaches the barrier (i.e., a wall clock
time), it is blocked until all other LPs get the chance to reach the barrier. In
this case, an LP knows that all of its events are safe to process when it executes
the barrier primitive (e.g., semaphore). Of course, the algorithms need to deal
with the messages remaining in the network (called transient messages) before
LPs cross the barrier. Examples of such algorithms are bounded lag, synchro-
nous protocol, and a barrier technique, which deals with the transit messages
problem [33 – 35] . Different algorithms are discussed in detail in Parallel and
Distribution Simulation Systems [1] .

 The above - described algorithms still form the basis of recent conservative
distributed simulation. For example, the distributed CD++ (DCD++) [36] is
using a conservative approach similar to the barrier algorithms, as shown in
Figure 11.3 . DCD++ is a distributed simulation extension of the CD++ toolkit

Producer Consumer-A

Consumer-B

(a)

Consumer-B
simulator

Consumer-A
simulator

Producer
simulator

Coupled (top)
coordinator

Root

LP-2LP-1

(b)

 Figure 11.3 DCD++ conservative simulation example. (a) Coupled model consists of three
atomic models. (b) Model hierarchy during simulation split between two LPs.

SYNCHRONIZATION ALGORITHMS FOR PARALLEL AND DISTRIBUTED SIMULATION 381

 [37] , which is based on the DEVS formalism [38] . Figure 11.3 shows a DEVS
coupled model that consists of three atomic models. An atomic model forms
an indivisible block. A coupled model is a model that consists of one or more
coupled/atomic models. The Producer model in Figure 11.3 (a) has one output
port linked with the input port of two consumer models. Suppose that this
model hierarchy is partitioned between two LPs, as shown in Figure 11.3 (b).

 In this case, each LP (which is a component running in DCD++) has its
own unprocessed event queue, and the simulation is cycling between phases.
In this case, the Root Coordinator starts a phase by passing a simulation
message to the topmost Coordinator in the hierarchy. This message is propa-
gated downward in the hierarchy. In return, a DONE message is propagated
upward in the hierarchy until it reaches the Root Coordinator. Each model
processor uses this DONE message to insert the time of its next change (i.e.,
an output message to another model, or an internal event message) before
passing it to its parent coordinator. A coordinator always passes to its parent
the least time change received from its children. Once the Root Coordinator
receives a DONE message, it advances the clock and starts a new phase safely
without worrying about any lingering transit messages in the network. Further,
each coordinator in the hierarchy knows which child will participate in the
next simulation phase. Furthermore, each LP can safely process any event
exchanged within a phase since an event is generated at the time it is supposed
to be executed by the receiver model. In this approach, the barrier is repre-
sented by the arrival of the DONE message at the Root Coordinator. However,
the Root Coordinator does not need to contact any of the LPs because they
are already synchronized.

 The lookahead value is the most important parameter in conservative algo-
rithms. Therefore, lookahead extraction has been studied intensively by
researchers. Recently, the effort has focused on determining the lookahead
value dynamically at runtime (instead of static estimation). This is done by col-
lecting lookahead information from the models as much as possible [39 – 42] .

Optimistic Algorithms

 Conservative algorithms avoid violating LPs ’ local causality constraints, while
optimistic algorithms allow such violations to occur but provide techniques to
undo any computation errors. Jefferson ’ s time warp mechanism remains the
most well - known optimistic algorithm [43] . The simulation is executed via a
number of time warp processors (TWLPs) interacting with each other via
exchanging time - stamped event messages. Each TWLP maintains its LVT and
advances “ optimistically ” without explicit synchronization with other proces-
sors. On the other hand, a causality error is detected if a TWLP receives a
message from another processor with a time stamp in the past (i.e., with a time
stamp less than the LVT), as shown in Figure 11.4 . Such messages are called
straggler messages.

 To fi x the detected error, the TWLP must roll back to the event before
the straggler message time stamp; hence, undo all performed computation.

382 AN INTRODUCTION TO DISTRIBUTED SIMULATION

Therefore, three types of information are needed to be able to roll back
computation:

 (1) An input queue to hold all incoming events from other LPs. This is
necessary because the TWLP will have to reprocess those events in case
of rollback. The events in this queue are stored according to their
received time stamp.

 (2) A state queue to save the TWLP states that might roll back. This is
necessary because the simulation state usually changes upon processing
an event. Thus, to undo an event processing affect, the prior state of
its processing must be restored. For example, as shown in Figure 11.4 ,
the TWLP must roll back events 21 and 35, upon event 18 (i.e., with
time stamp 18) arrival. Thus, the simulation must be restored to state
S1, the state that resulted from processing event 12. Afterward, the
processor can process event 18 and reprocess events 21 and 35.

 (3) An output queue to hold the output messages sent to other processors.
These messages are sorted according to their sending time stamps. This
is necessary because part of undoing an event computation is to undo
other events scheduled by this event on the other processors. Such
messages are called antimessages and they may cause a rollback at its
destination, triggering other antimessages, resulting in a cascade of
rollbacks in the simulation system. Upon event 18 arrival, in Figure
 11.4 , all antimessages resulted from events 21 and 35 are triggered. In
this example antimessage 42 is sent. When antimessage meets its coun-
terpart positive message, they annihilate each other. Suppose the shown
processor in Figure 11.4 receives an antimessage for event 43. In this
case, unprocessed event 43 is destroyed without any further actions. On
the other hand, if an antimessage is received for event 21, the simula-
tion must be rolled back to state S1, LVT is set to 12, and antimessage
42 must be sent to the appropriate processor.

12 21 35 41

18 LVT
Straggler
message

Unprocessed
events

43
Input
queue

State
queue S1 S2 S3

19 42Output
queue

 Figure 11.4 TWLP internal processing.

DISTRIBUTED SIMULATION MIDDLEWARE 383

 The time warp computation requires a great deal of memory throughout
the simulation execution. Therefore, a TWLP must have a guarantee that
rollback will not occur before a certain virtual time. In this case, a TWLP must
not receive a positive/negative message before a specifi c virtual time, called
global virtual time (GVT). This allows TWLP to reclaim memory via releasing
unneeded data such as saved previous simulation states, and events in the
input/output (I/O) queues with time stamp less than the GVT. Further, the
GVT can be used to ensure committing certain operations that cannot be
rolled back such as I/O operations. GVT serves as the lower fl oor for the
simulation virtual time. Thus, as the GVT never decreases and the simulation
must not roll back below the GVT, all events processed before the GVT can
be safely committed (and their memory can be reclaimed) [44] . Releasing
memory for information older than GVT is performed via a mechanism called
fossil collection . How often the GVT is computed is a trade - off. The more
often the computation, it allows better space utilization, but it also imposes a
higher communication overhead [1,45,46] . For example, the pGVT (passive
global virtual time) algorithm allows users to set the frequency of GVT com-
putation at compile time [47] . The GVT computation algorithm described in
Bauer et al. uses clock synchronization to have each processor start computa-
tion at the same time instant [48] . Each processor should have a highly accu-
rate clock to be able to use this algorithm.

 The purpose of computing the GVT is to release memory, since the simula-
tion is guaranteed to not roll back below it. The fossil collection manager
cleans up all of the objects in the state/input/output queues with time stamp
less than the GVT. Many techniques have been used to optimize this mecha-
nism: the infrequent state saving technique (which avoids saving the modifi ed
state variables for each event), the one antimessage rollback technique (which
avoids sending multiple antimessages to the same LP), or the antimessage with
the earliest time stamp (only sent to that LP since it suffi ces to cause the
required rollback). Lazy cancellation is a technique that analyzes if the result
of the new computed message is the same as the previous one. In this case,
an antimessage is not sent [49] .

DISTRIBUTED SIMULATION MIDDLEWARE

 The main purpose of a distributed simulation middleware is to interoperate
different simulation components and between different standards. Integrating
new simulation components should be easy, fast, and effortless. To achieve
this, certain prerequisite conditions must be met [4] :

 (1) The middleware Application Programming Interface (API) should be
easy to understand.

 (2) It should follow widely accepted standards.
 (3) It should be fast to integrate with new simulation software.

384 AN INTRODUCTION TO DISTRIBUTED SIMULATION

 (4) It should be interoperable with other middleware and be independent
of diverse platforms.

 In the following sections, we will discuss some of the features of existing
simulation middleware.

 CORBA

 As discussed earlier, CORBA is an open standard for distributed object com-
puting defi ned by the Object Management Group (OMG) [25,50] .

 CORBA object services are defi ned using the Interface Defi nition Language
(IDL), which can then be compiled into a programming language stubs such
as C, C++, or Java (IDL syntax is similar to other programming languages, as
shown in Fig. 11.5). Clients in CORBA invoke methods in remote objects
using a style similar to remote procedure calls (RPCs), using IDL stubs, as
shown in Fig. 11.6 . The method call may return another CORBA handle
where the client can invoke methods of the returned objects.

 Figure 11.6 shows a picture of CORBA architecture: CORBA IDL stubs
and skeletons glue operations between the client and server sides. The object
request broker (ORB) layer provides a communication mechanism for trans-
ferring client requests to target object implementations on the server side. The
ORB interface provides a library of routines (such as translating strings to
object references and vice versa). The ORB layer uses the object adapter with
routing client requests to objects and with objects activation.

 Building distributed simulations using CORBA is straightforward, since
CORBA enables application objects to be distributed across a network.
Therefore, the issue becomes identifying distributed object interfaces and
defi ning them in IDL; hence, a C++/Java local operation call becomes an
RPC (hidden by CORBA). Therefore, to support distributed simulation using

module BankAccount
{

interface account {

readonly attribute float balance;
readonly attribute string name;

void deposit (in float amount);
void withdraw (in float amount);

};

interface accountManager {
exception reject {string reason;};

account createAccount (in string name) raises (reject);
void deleteAccount (in account acc);

};
};

 Figure 11.5 CORBA IDL example.

DISTRIBUTED SIMULATION MIDDLEWARE 385

CORBA, you just need to translate your existing C++/Java simulation inter-
faces into CORBA IDL defi nition.

 The work by Zeigler and Doohwan is an example of implementing a dis-
tributed DEVS simulation using CORBA [51] . For instance, a DEVS Simulator
IDL interface (to the Coordinator, presented in Fig. 11.3) could be defi ned as
follows (tN is the global next event time):

 Module Simulator{
 Interface toCoordinator
 {
 boolean start();
 double tN?();
 double set_Global_and_Sendoutput (in double tN);
 boolean appIyDeltaFunc(in message);
 };
 };

 The Simulator module above is initialized via the method start . The Simulator
module receives its tN via the method set_Global_and_Sendoutput , and in
response, it returns its output. The above IDL code can then be compiled
into specifi c Java/C++ code. For instance, in the Zeigler and Doohwan article,
a DEVS coordinator IDL (to the simulator) was defi ned as follows [51] :

 Module Coordinator{
 Interface toSimulator
 {
 boolean register
 (in Simu1ator::toCoordinator SimObjRef);
 boolean startSimulation();
 boolean stopSimulation();
 };
 };

Object
adapter

Client

Object request broker (ORB)

Object
implementation

IDL
skeletons

ORB
interface

IDL
stubs

 Figure 11.6 CORBA 2.x reference model.

386 AN INTRODUCTION TO DISTRIBUTED SIMULATION

 The above IDL description shows that the simulator is given an object
reference for the toCoordinator interface (via register method). As a result,
simulators and coordinators can now invoke each other methods (across the
network).

 HLA

 As discussed earlier, the HLA was developed to provide a general architecture
for simulation interoperability and reuse [5,22,23,52] . Table 11.1 shows the
common terminology used in HLA.

 Figure 11.7 shows the overall HLA simulation interaction architecture. The
fi gure shows HLA simulation entities (called federates). Multiple federates
(called a federation) interact with each other using the runtime infrastructure
(RTI), which implements the HLA standards. Federates use the RTIAmbassador
method to invoke RTI services, while the RTI uses the FederateAmbassador
method to pass information to a federate in a callback function style. A call-
back function is a function passed to another function in the form of a refer-
ence (e.g., a C++ function pointer) to be invoked later via its reference. For
example, in Figure 11.7 , when the federate A sends an interaction (via
 RTIAmbassador) to the federate B, the RTI invokes a function in federate B
via that function reference.

 Table 11.1 General HLA terminology

 Term Description

 Attribute Data fi eld of an object
 Federate HLA simulation processor
 Federation Multiple federates interacting via RTI
 Interaction Event (message) sent between federates
 Object Collection of data sent between federates
 Parameter Data fi eld of an interaction

Runtime infrastructure
(RTI)

Federate A

RTIAmbassador

Federate ambassador

Federate B

RTIAmbassador

Federate ambassador

Runtime infrastructure
(RTI)

 Figure 11.7 HLA interaction overview.

DISTRIBUTED SIMULATION MIDDLEWARE 387

 The HLA consists of three parts: the object model template (OMT) (to
document exchanged shared data), the HLA interface specifi cation (to defi ne
RTI/federates interfaces), and the HLA rules (to describe federate obligations
and interactions with the RTI) [22,23] .

 The OMT provides a standard for documenting HLA object model infor-
mation. This ensures detailed documentation (in a common format) for all
visible objects and interactions managed by federates. Therefore, the data
transmitted can be interpreted correctly by receivers to achieve the federa-
tion ’ s objectives. The OMT consists of the following documents:

 (1) The federation object model (FOM), which describes the shared object ’ s
attributes and interactions for the whole federation (several federates
connected via the RTI).

 (2) The simulation object model (SOM), which describes the shared object,
attributes, and interactions for a single federate. The SOM documents
specifi c information for a single simulation.

 The HLA interface specifi cation standardized the API between federates
and RTI services [23] . The specifi cation defi nes RTI services and the required
callback functions that must be supported by the federates. Many contempo-
rary RTI implementations conform to the IEEE 1516 and HLA 1.3 API
specifi cations such as Pitch pRTI ™ (C++/Java), CAE RTI (C++), M Ä K High
Performance RTI (C++/Java), and poRTIco (C++). However, the RTI imple-
mentation itself is not part of the standards. Therefore, interoperability
between different RTI implementations should not be assumed, since HLA
standards do not defi ne the RTI network protocol. In this sense, the standards
assume homogeneous RTI implementations in a federation. However, federa-
tion should be able to replace RTI implementations since APIs are standard-
ized (but relinking and compiling are required). Unfortunately, this is not
always the case.

 The RTI services are grouped as follows:

 (1) Federation management: services to create and destroy federation
executions.

 (2) Declaration management: federates must declare exactly what objects
(or object attributes) they can produce or consume. The RTI uses this
information to tell the producing federates to continue/stop sending
certain updates.

 (3) Object management: basic object functions, for instance, deletion/
updates of objects.

 (4) Ownership management: services that allow federates to exchange
object attributes ownership between themselves.

 (5) Time management: these services are categorized in two groups:
 • Transportation : services to ensure events delivery reliability and

events ordering.

388 AN INTRODUCTION TO DISTRIBUTED SIMULATION

 • Time advance : services to ensure logical time advancement correctly.
For example, a conservative federate uses the time advance request
service with a parameter t to request time to advance to t . The RTI
then responds via invoking the time granted callback function.

 (6) Data distribution management: it controls fi lters for data transmission
(data routing) and reception of data volume between federates.

 The HLA has been widely used to connect HLA - compliant simulations via
RTI middleware. However, it presents some shortcomings:

 (1) No standards exist to interoperate different RTI implementations.
Therefore, interoperability should not be assumed among RTIs pro-
vided by different vendors. Further, standards are too heavy and no
load balancing as part of the standards [4] .

 (2) The system does not scale well when many simulations are connected
to the same RTI. This is because RTI middleware acts as a bus that
manages all activities related to connected simulations in a session.

 (3) HLA only covers syntactic (not semantic) interoperability [4] .
 (4) Interfacing simulations with RTIs can vary from a standard to another.

It is a strong selling point for commercial RTIs that you can use your
old HLA 1.3 federates with HLA 1516 RTI implementations [5] .

 (5) HLA API specifi cations are tied to programming languages. Some
interoperability issues need to be resolved when federates are devel-
oped with different programming languages.

 (6) Firewalls usually block RTI underlying communication when used on
WAN/Internet networks.

 A new WSDL API has been added to the HLA IEEE 1516 - 2007 standard,
allowing HLA compliant simulation to be connected via the Internet using
SOAP - based Web services. Some examples of existing HLA - based simulation
tools using Web services include Boukerche et al. [53] , M ö ller and Dahlin [54] ,
and Zhu et al. [55] . As shown in Figure 11.8 , the Web service provider RTI

RTI

Federate

RTI

Federate

Web service provider RTI
component (WSPRC)

WS
federate

WS
federate

WSDL/SOAP

 Figure 11.8 Interfacing RTI with Web services.

DISTRIBUTED SIMULATION MIDDLEWARE 389

component (WSPRC) is an RTI with one or more Web service ports, allowing
HLA to overcome some of its interoperability problems. Therefore, this solu-
tion uses Web service interoperability in the WAN/Internet region while
maintaining the standard HLA architecture locally. The WSPRC and Web
Services (WS) federate APIs are described in WSDL where a standard feder-
ate and standard RTI API is described in actual programming languages. For
instance, the Pitch pRTI version 4.0 supports Web services.

 WS - based solutions solved interoperability issues at the federate level.
However, this solution still does not solve interoperation of different WSPRC
implementations, since the standard does not cover this part. Further, it does
not provide a scalable solution, since many simulation components are still
managed by a single component.

 SOAP - Based Web Services Middleware

 SOAP - based Web services (or big Web services) provide a standard means of
interoperating between different heterogeneous software applications, resid-
ing on a range of different platforms mainly for software reuse and sharing.
At present, it is the leading technology for interoperating remote applications
(including distributed simulations) across WAN/Internet networks. For
example, a new WSDL API has been added to the HLA IEEE 1516 - 2007
standard, allowing HLA - compliant simulations to be connected via the
Internet using SOAP - based Web services. Efforts in Boukerche et al., M ö ller
and Dahlin, and Zhu et al. are examples of HLA - based simulation using Web
services [53 – 55] . Further, the DEVS community is moving toward standard-
izing interoperability among different DEVS implementations using SOAP -
 based Web services [56] .

 The SOAP - based WS programming style is similar to RPCs, as depicted in
Figure 11.9 . The server exposes a group of services that are accessible via ports .
Each service can actually be seen as an RPC, with semantics described via the

Server

SOAP layer

HTTP server

RPC API (ports)

Client stubs

RPC API (ports)

RPC
Service Service Service

Service Service

Broker (UDDI)

WSDL
WSDL

Network

 Figure 11.9 SOAP - based Web service architecture overview.

390 AN INTRODUCTION TO DISTRIBUTED SIMULATION

procedure parameters. Ports can be viewed as a class exposing its functionality
with a number of operations, forming an API accessible to the clients. On
other hand, clients need to access those services, and they do so using proce-
dure stubs at their end. The stubs are local and allow the client to invoke
services as if they were local procedure calls.

 Client programmers need to construct service stubs with their software at
compile time. The clients consume a service at runtime by invoking its stub.
In a WS - based architecture, this invocation is in turn converted into an XML
SOAP message (which describes the RPC). This SOAP message is wrapped
into an HTTP message and sent to the server port, using an appropriate port
Uniform Resource Identifi er (URI). Once the message is received at the
server, an HTTP server located into the same machine passes the message to
the SOAP layer (also called SOAP engine; it usually runs inside the HTTP
server as Java programs called servlets). The SOAP layer parses the SOAP
message and converts it into an RPC, which is applied to the appropriate port
(which activates the right service). In turn, the server returns results to the
clients in the same way.

 Service providers need to publish the services available (using WSDL docu-
ments), in order to enable clients to discover and use the services. One way
of doing so is via a broker called Universal Description, Discovery, and
Integration (UDDI). UDDI is a directory for storing information about Web
services and is based on the World Wide Web Consortium (W3C) and Internet
Engineering Task Force (IETF) standards.

 To achieve interoperability, services need to be described in WSDL and
published so that clients can construct their RPC stubs correctly [57] . Further,
XML SOAP messages ensure a common language between the client and the
server regardless of their dissimilarities.

 To demonstrate the role of SOAP and WSDL in an example, suppose that
a simulation Web service exposes a port that contains a number of simulation
services. Suppose further that the stopSimulation service (which takes an
integer parameter with the simulation session number, and returns true or
false indicating the success or the failure of the operation) is used to abort a
simulation, as shown below:

boolean stopSimulation(int in0); // method prototype
…
result = stopSimulation(1000); // method call

 From the client ’ s viewpoint, the stopSimulation service is invoked similarly
to any other procedure (using the SOAP - engine API). The responsibility of
the SOAP engine (e.g., AXIS server) is to convert this procedure call into
XML SOAP message as shown in Figure 11.10 .

 The SOAP message in Figure 11.10 will then be transmitted in the body of
an HTTP message using the HTTP POST method. It is easy to see how an RPC
is constructed in this SOAP message. The stopSimulation RPC is mapped to

DISTRIBUTED SIMULATION MIDDLEWARE 391

lines 6 – 8 in Figure 11.10 . Line #6 indicates invocation service stopSimulation on
the Web service port with URI (http://WS - Port - URI/). URIs are WS port
addresses (which correspond, for instance, to CORBA object references). Line
#7 indicates that this service takes one integer parameter (i.e., simulation
session number) with value 1000. Figure 11.11 shows a possible response to the
client as a SOAP message, responding with the stopSimulation return value.

 The above - explained example shows how SOAP is used to achieve interop-
erability. Because the participant parties have agreed on a common standard
to describe the RPC (in this case SOAP), it becomes straightforward for soft-
ware to convert an RPC (from any programming language) to a SOAP
message (and vice versa).

 Interoperability cannot only be achieved with SOAP messages because
RPCs are programming procedures; hence, they need to be compiled with the
clients ’ software. For example, a programmer writing a Java client needs to
know that the stopSimulation service method looks exactly as boolean stop-
Simulation (int in0) . Here is where WSDL helps in achieving interoperability
for SOAP - based WS. Web service providers need to describe their services in
a WSDL document (and publish them using UDDI) so that clients can use it
to generate services stubs.

 The major elements of any WSDL document are the type, message, port
Type, binding, port, and service elements. Some of these elements (type,
message, and portType) are used to describe the functional behavior of the

1 <?xml version="1.0" encoding="UTF-8"?>
2 <SOAP-ENV:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema"
3 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
5 <SOAP-ENV:Body>
6 <ns1: stopSimulation xmlns:ns1="http://WS-Port-URI/">
7 <in0 xsi:type="xsd:int">1000</in0>
8 </ns1: stopSimulation>
9 </SOAP-ENV:Body>
10 </SOAP-ENV:Envelope>

 Figure 11.10 SOAP message request example.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <SOAP-ENV:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema"
3 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
5 <SOAP-ENV:Body>
6 <ns1: stopSimulationResponse xmlns:ns1="http://WS-Port-URI/">
7 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
8 <return xsi:type="xsd:boolean">true</return>
9 </ns1: stopSimulationResponse>
10 </SOAP-ENV:Body>
11 </SOAP-ENV:Envelope>

 Figure 11.11 SOAP message response example.

392 AN INTRODUCTION TO DISTRIBUTED SIMULATION

Web service in terms of the functionality it offers. On the other hand, binding,
port, and service defi ne the operational aspects of the service, in terms of the
protocol used to transport SOAP messages and the URL of the service. The
former is referred to as abstract service defi nition, and the latter is known as
concrete service defi nition.

 To carry on with our previous example, the simulation service provider
should describe the stopSimulation service (along with other provided ser-
vices) in a WSDL document. Figure 11.12 shows an excerpt of the WSDL
description for the boolean stopSimulation (int in0) service.

 Lines 1 – 7 show the messages used by the Web service to send the request
and to handle the response. The stopSimulation operation uses an input
message called stopSimulationRequest (which is an int eger), and an output
message called stopSimulationResponse (a Boolean value). Lines 9 – 17 show
the portType defi nition, which is used by operations accessing the Web service.
It defi nes CDppPortType as the name of the port and stopSimulation as the
name of the exposed operation by this port. As discussed earlier, ports defi ne

1 <wsdl:message name="stopSimulationRequest">
2 <wsdl:part name="in0" type="xsd:int"/>
3 </wsdl:message>
4
5 <wsdl:message name="stopSimulationResponse">
6 <wsdl:part name="stopSimulationReturn" type="xsd:boolean"/>
7 </wsdl:message>
8
9 <wsdl:portType name="CDppPortType">
10 <wsdl:operation name="stopSimulation" parameterOrder="in0">
11 <wsdl:input message="impl:stopSimulationRequest"
12 name="stopSimulationRequest"/>
13 <wsdl:output message="impl:stopSimulationResponse"
14 name="stopSimulationResponse"/>
15 </wsdl:operation>
16
17 </wsdl:portType>
18
19 <wsdl:binding name="CDppPortTypeSoapBinding"
20 type="impl:CDppPortType">
21 <wsdlsoap:binding style="rpc"
22 transport="http://schemas.xmlsoap.org/soap/http"/>
23 <wsdl:operation name="stopSimulation">
24 <wsdlsoap:operation soapAction=""/>
25 <wsdl:input name="stopSimulationRequest">
26 <wsdlsoap:body encodingStyle="http://.../"
27 namespace="http://..." use="encoded"/>
28 </wsdl:input>
29
30 <wsdl:output name="stopSimulationResponse">
31 <wsdlsoap:body encodingStyle="http://.../"
32 namespace="http://..." use="encoded"/>
33 </wsdl:output>
34 </wsdl:operation>
35 </wsdl:binding>

 Figure 11.12 Excerpt of a WSDL document example.

DISTRIBUTED SIMULATION MIDDLEWARE 393

connection points to a Web service. If we want to relate this with a traditional
program, CDppPortType defi nes a class where stopSimulation is a method
with stopSimulationRequest as the input parameter and stopSimulationRe-
sponse as the return parameter. Lines 19 – 35 show the binding of the Web
service, which defi nes the message format and ports protocol details. The
< wsdlsoap:binding > element has two attributes: style and transport . In this
example, the style attribute uses the RPC style, and the transport attribute
defi nes the SOAP protocol to apply. The < wsdl:operation > element defi nes
each operation the port exposes. In this case, operation stopSimulation is the
only one. The SOAP I/O encoding style for operation stopSimulation is
defi ned in lines 25 – 33.

 As we can see, it is a great deal of work to describe one RPC. However,
mature tools are one of the main advantages of SOAP - based WS. The WSDL
document is usually converted to programming language stubs and vice versa
with a click of a button (or with a simple shell command).

 Using SOAP and WSDL, interoperability is achieved at the machine level
regardless of their differences such as programming languages and operating
systems. However, interoperability at the human level is still needed. For
example, a programmer still needs to know that the integer input parameter
to service stopSimulation means the simulation session number (even if that
programmer was able to compile and invoke the service). This gets worse
when a service procedure is complex with many input parameters. Therefore,
in practice a text description can be helpful for client programmers. It is pos-
sible to add comments to WSDL document like any other XML documents
(and WSDL without comments is worse than programming code without
them). However, WSDL documents are typically generated by tools (and they
need to move comments between WSDL and programming code stubs).

 In addition, we need a standardized protocol when using Web services to
interoperate various remote applications (such as interoperation of different
simulations to perform distributed simulation). This is because Web services
provide interoperability to overcome differences between machines rather
than to overcome the differences between various application functionalities.
Therefore, standards are still needed to accomplish simulations among differ-
ent simulators successfully. As part of this effort, the DEVS simulation com-
munity is in the progress of developing standards to interface different DEVS
(and non - DEVS) implementations using SOAP - based Web services (is an
example of such proposals [56]).

 In contemporary WS - based distributed simulations (e.g., Wainer et al. and
Mittal et al.), simulation components act as both client and server at the same
time [58,59] . In this case, a simulator becomes the client when it wants to send
a simulation message to a remote simulator (which the later becomes the
server), as shown in Figure 11.13 .

 SOAP - based distributed simulations share in common that synchronized
messages are exchanged in RPC style where contents are usually passed as
input parameters to the RPC (so it becomes similar to invoking a local call

394 AN INTRODUCTION TO DISTRIBUTED SIMULATION

procedure). Further, those RPCs are based on internal software implementa-
tion, which makes interfacing standards not easy to achieve among existing
systems. This is because each system has already defi ned its RPC interfaces.

 To summarize the major drawback points with SOAP - based Web services:

 (1) Heterogeneous interface by exposing few URIs (ports) with many
operations. Building programming stubs correctly (i.e., compiled
without errors) is not enough to interface two different simulators
quickly and effi ciently. One possible solution is one of the participant
parties has to wrap their simulator API with the simulator API to be
able to interact with it. Another possible solution is to combine both
simulator APIs and expose a new set of APIs, assuming this solution
works. What happens if many vendor simulators need to interface with
each other? It becomes a complex process. In fact, exposing heteroge-
neous programming procedures of a simulator and expecting it to inter-
operate with another simulator that also exposes heterogeneous
procedures quickly and effi ciently is a naive assumption.

 (2) It uses an RPC style, which is suitable for closed communities that need
to coordinate new changes among each other. In fact, those APIs (ser-
vices) are programming procedures, which means that they refl ect the
internal implementation. Therefore, different vendors, for example,
have to hold many meetings before they reach an agreement on defi n-
ing those stubs, because they are tied into their internal implementa-
tion; hence, it affects a great deal the internal design and implementation
of the simulation package. However, suppose that those different simu-
lator vendors came to an agreement of standardizing the same exposed
API, and assume that some changes are required during development
or in the future. How easy is it to change those standardized APIs? A
new coordination among different teams becomes inevitable to rede-
fi ne new services.

 (3) To use SOAP - based services requires building services stubs at compile
time. This can cause more complexity in future advancements if the

Simulation

Receive
message service

Generate message

Simulation

Receive
message service

Generate message

 Figure 11.13 Distributed simulation using SOAP - based WS.

DISTRIBUTED SIMULATION MIDDLEWARE 395

simulation components can join/leave the simulation at runtime. For
example, in “ Ad hoc distributed simulations, ” the authors present the
ad hoc distribution simulation, where the number of LPs is not known
in advance and can be changed during runtime [60] .

RESTful Web Services Middleware

 The representational state transfer (REST) provides interoperability by imitat-
ing the World Wide Web (WWW) style and principles [61] . RESTful Web
services are gaining increased attention with the advent of Web 2.0 and the
concept of mashup (i.e., grouping various services from different providers
and present them as a bundle) because of its simplicity [62] . REST exposes
services as “ resources ” (which are named with unique URIs similar to Web
sites) and manipulated with uniform interface, usually HTTP methods: GET
(to read a resource), PUT (to create/update a resource), POST (to append to
a resource), and DELETE (to remove a resource). For example, a client
applies the HTTP GET method to a resource ’ s URI in order to retrieve that
resource representation (e.g., this is what happens when you browse a Web
site). Further, a client can transfer data by applying HTTP methods PUT or
POST to a URI. REST applications need to be designed as resource oriented
to get the benefi ts of this approach (see “ RESTful Web services ” for design
guidelines [63]). REST is sometimes confused with HTTP, since HTTP per-
fectly matches REST principles. However, REST is an approach that devotes
principles such as standardized uniform interface, universal addressing
schemes, and resource - oriented design. REST has been used in many applica-
tions such as Yahoo, Flicker, and Amazon S3. It is also used in distributed
systems such as National Aeronautics and Space Administration (NASA)
SensorWeb (which uses REST to support interoperability across Sensor Web
systems that can be used for disaster management) [64] . Another example of
using REST to achieve plug - and - play interoperability heterogeneous sensor
and actuator networks is described in Stirbu [65] . Example of REST usage in
business process management (BPM) is described in Kumaran et al., which
focuses on different methods and tools to automate, manage, and optimize
business processes [66] . REST has also been used for modeling and managing
mobile commerce spaces [67] .

 REST architecture separates the software interface from internal imple-
mentation; hence, services can be exposed while software internal implemen-
tation is hidden from consumers, and providers need to conform to the service
agreement, which comes in the form of messages (e.g., XML). This type of
design is a recipe for a plug - and - play (or at least semiautomatic) interoperabil-
ity, as a consumer may search, locate, and consume a service at runtime (this
is why Web 2.0 applications have expanded beyond regular computer machines
to cell phones or any other device connected to the Internet). In contrast,
other RPC - style form of interfacing require a programmer to build the inter-
face stubs and recompile the application software before being able to use the

396 AN INTRODUCTION TO DISTRIBUTED SIMULATION

intended service. This is clearly not the way to reach a plug - and - play interop-
erability. Distributed simulation can benefi t of this capability toward future
challenges (see the study by Strassburger et al. [4]) such as having middleware
that have a plug - and - play (semiautomatic) interoperability, and accessed by
any device from anywhere. Indeed, interoperating two independent devel-
oped simulators where each one of them exposes heterogeneous defi ned set
of RPCs is not a trivial task to do. In fact, RPCs are often tied to internal
implementation, and semantics are described in programming parameters. To
add to the situation complexity, many simulators expose many RPCs of many
objects (or ports). One has to question if this task is worth the cost, particularly
if we need to add more independent developed simulators and models. The
bottom line is that those simulators are software packages; hence, they inter-
face with their APIs. Therefore, the API design matters when connecting
diverse software together. To achieve plug - and - play interoperability, simula-
tors need to have uniform interface, and semantics need to be described in
the form of messages such as XML.

 Based on these ideas, we designed RESTful - CD++, the fi rst existing dis-
tributed simulation middleware, based on REST [2] . The RESTful - CD++ ’ s
main purpose is to expose services as URIs. Therefore, RESTful - CD++ routes
a received request to its appropriate destination resource and apply the
required HTTP method on that resource. This makes the RESTful - CD++
independent of a simulation formalism or a simulation engine. CD++ is
selected to be the fi rst simulation engine to be supported by the RESTful -
 CD++ middleware.

 In this case, as shown in Figure 11.14 , the simulation manager component
is constructed to manage the CD++ distributed simulation such as the geo-
graphic existence of model partitions, as shown in Figure 11.3 . The simulation
manager is seen externally as a URI (e.g., similar to Web site URIs). On the
other hand, it is a component that manages a distributed simulation LP instance;
in our case, an LP is a CD++ simulation engine. Therefore, LPs exchange
XML simulation messages among each other according to their wrapped
URIs (using the HTTP POST method). The RESTful - CD++ middleware API
is expressed as URI template, as shown in Figure 11.15 , that can be created at

RESTful-CD++

URI

Simulation
manager

CD++
engine

RESTful-CD++

URI

Simulation
manager

CD++
engine

 Figure 11.14 RESTful - CD++ distributed simulation session.

CONCLUSION 397

runtime. Variables (written within braces {}) in the URI template are assigned
at runtime by clients, allowing modelers to create and name their resources
(URIs) as needed. Consequently, the RESTful - CD++ exposes its APIs as
regular Web site URIs that can be mashed up with other Web 2.0 applications
(e.g., to introduce real systems in the simulation loop). In addition, it is capable
of consuming services from SOAP - based Web services (Fig. 11.15).

 CONCLUSION

 Distributed simulation deals with executing simulations on multiple proces-
sors connected via communication networks. Distributed simulation can be
used to achieve model reuse via interoperation of heterogeneous simulation
components, reducing execution time, connecting geographically distributed
simulation components, avoiding people/equipment relocations and informa-
tion hiding — including the protection of intellectual property rights. These
simulations are typically composed of a number of sequential simulations
where each is responsible for a part of the entire model.

 The main purpose of a distributed simulation middleware is to interoperate
different simulation components and between different standards. Integrating
new simulation components should be easy, fast, and effortless. A number of
middlewares have been used to achieve interoperability among different simu-
lation components such as CORBA, HLA, and SOAP - based/REST - based

1 /cdpp/admin Administrative URIs subtree

Utility URIs (can be helpful to clients)

Holds all workspaces (e.g., GET

returns list of workspaces URIs)

Wraps active simulation (e.g., simulation

messages sent to this URI)

Holds simulation

results

Modeler uses

to retrieve

debugging

files

Holds a service type (e.g.,

DCD++)

Simulation framework

Specific user workspace

2 /cdpp/util

3 /cdpp/sim/workspaces

4 /cdpp/sim/workspaces/{userworkspace}

5 /cdpp/sim/workspaces/{userworkspace}/{servicetype}

6 /cdpp/sim/workspaces/{userworkspace}/{servicetype}/{framework}

7 /cdpp/sim/workspaces/{userworkspace}/{servicetype}/{framework}/simulation

8 /cdpp/sim/workspaces/{userworkspace}/{servicetype}/{framework}/results

9 /cdpp/sim/workspaces/{userworkspace}/{servicetype}/{framework}/debug

 Figure 11.15 RESTful - CD++ URIs template (APIs).

398 AN INTRODUCTION TO DISTRIBUTED SIMULATION

Web services. HLA is the used middleware in the military sector where various
simulation components are plugged into the RTI, which manages the entire
simulation activities. On the other hand, SOAP - based and CORBA expose
services as RPC style via ports/objects, where semantic is described in the
parameters of those RPCs. REST - based WS, instead, separate interface from
internal implementation via exposing standardized uniform interface and
describing semantics in the form of messages (e.g., XML). REST can provide
a new means of achieving a plug - and - play (automatic/semiautomatic) distrib-
uted simulation interoperability over the Internet and can introduce real
systems in the simulation loop (e.g., Web 2.0 mashup applications). This
approach has the potential of highly infl uencing the fi eld, as it would make
the use of distributed simulation software more attractive for the industry (as
one can reuse existing applications and integrate them with a wide variety of
e - commerce and business software applications already existing on the Web).

REFERENCES

 [1] Fujimoto RM. Parallel and Distribution Simulation Systems . New York : John
Wiley & Sons ; 2000 .

 [2] Boer C , Bruin A , Verbraeck A . A survey on distributed simulation in industry .
Journal of Simulation , 3 (1): 3 – 16 ; 2009 .

 [3] Boer C , Bruin A , Verbraeck A . Distributed simulation in industry — A survey,
part 3 — The HLA standard in industry . Proceedings of Winter Simulation
Conference (WSC 2008). Miami, FL , 2008 .

 [4] Strassburger S , Schulze T , Fujimoto R . Future trends in distributed simulation
and distributed virtual environments: Results of a peer study . Proceedings of
Winter Simulation Conference (WSC 2008). Miami, FL , 2008 .

 [5] IEEE - 1516 - 2000 . Standard for modeling and simulation (M & S) high level archi-
tecture (HLA) — Frameworks and rules. 2000 .

 [6] Gan BP , Liu L , Jain S , Turner SJ , Cai WT , Hsu WJ . Distributed supply chain
simulation across the enterprise boundaries . Proceedings of Winter Simulation
Conference (WSC 2000). Orlando, FL, December 2000 .

 [7] Wainer G , Zeigler B , Nutaro J , Kim T . DEVS Standardization Study Group
Final Report. Available at http://www.sce.carleton.ca/faculty/wainer/standard .
Accessed March 2009 .

 [8] Lenoir T , Lowood H . Theaters of Wars: The Military — Entertainment Complex.
Available at http://www.stanford.edu/class/sts145/Library/Lenoir-Lowood_
TheatersOfWar.pdf . Accessed March 2009 .

 [9] Calvin J , Dickens A , Gaines B , Metzger P , Miller D , Owen D . The SIMNET
virtual world architecture . Proceedings of Virtual Reality Annual International
Symposium (IEEE VRAIS 1993). Seattle, WA , 1993 .

 [10] Taha HA . Simulation with SIMNET II . Proceedings of Winter Simulation
Conference (WSC 1991). Phoenix, AZ, December 1991 .

 [11] Taha HA . Introduction to SIMNET v2.0 . Proceedings of Winter Simulation
Conference (WSC 1988). San Diego, CA, December 1988 .

REFERENCES 399

 [12] Fitzsimmons EA , Fletcher JD. Beyond DoD: Non - defense training and educa-
tion applications of DIS . Proceedings of the IEEE , 83 (8): 1179 – 1187 ; 1995 .

 [13] Hofer RC , Loper ML . DIS today . Proceedings of the IEEE , 83 (8): 1124 – 1137 ;
 1995 .

 [14] Pullen JM , Wood DC . Networking technology and DIS . Proceedings of the
IEEE , 83 (8): 1156 – 1167 ; 1995 .

 [15] IEEE - 1278.1 - 1995 . Standard for distributed interactive simulation — Application
protocols. 1995 .

 [16] IEEE - 1278.2 - 1995 . Standard for distributed interactive simulation —
Communication services and profi les. 1995 .

 [17] IEEE 1278.3 - 1996 . Recommended practice for distributed interactive
simulation — Exercise management and feedback. 1996 .

 [18] IEEE 1278.4 - 1997 . Recommended practice for distributed interactive —
Verifi cation validation & accreditation. 1997 .

 [19] Anita A , Gordon M , David S . Aggregate Level Simulation Protocol (ALSP) 1993
Confederation Annual Report. The MITRE Corporation. 1993. Available at
 http://ms.ie.org/alsp/biblio/93_annual_report/93_annual_report_pr.html .
Accessed March 2009.

 [20] Fischer M . Aggregate Level Simulation Protocol (ALSP) — Future training
with distributed interactive simulations . U.S. Army Simulation, Training and
Instrumentation Command. International Training Equipment Conference. The
Hague, Netherlands , 1995 .

 [21] Babineau WE , Barry PS , Furness CS . Automated testing within the Joint
Training Confederation (JTC) . Proceedings of the Fall Simulation Interoperability
Workshop. Orlando, FL, September 1998 .

 [22] IEEE - 1516.1 - 2000 . Standard for modeling and simulation (M & S) high level
architecture (HLA) — Federate interface specifi cation. 2000 .

 [23] IEEE - 1516.2 - 2000 . Standard for modeling and simulation (M & S) high level
architecture (HLA) — Object model template (OMT) specifi cation. 2000 .

 [24] Fr é con E , Stenius M . DIVE: A scalable network architecture for distributed
virtual environments . Distributed Systems Engineering Journal , 5 (3): 91 – 100 ; 1998 .

 [25] Henning M , Vinoski S . Advanced CORBA Programming with C++ . Reading,
MA : Addison - Wesley ; 1999 .

 [26] Kakivaya G , Layman AS , Thatte S , Winer D . SOAP: Simple Object Access
Protocol. Version 1.0. 1999. Available at http://www.scripting.com/misc/soap1.
txt . Accessed March 2009 .

 [27] Box D , Ehnebuske D , Kakivaya G , Layman A , Mendelsohn N , Nielsen H ,
 Thatte S , Winer D . Simple Object Access Protocol (SOAP) 1.1. May 2000 .
Available at http://www.w3.org/TR/2000/NOTE-SOAP-20000508/ . Accessed
March 2009.

 [28] Christensen E , Curbera F , Meredith G , Weerawarana S . Web Service Description
Language (WSDL) 1.1. March 2001 . Available at http://www.w3.org/TR/wsdl .
Accessed March 2009.

 [29] Zeigler B , Hammods P . Modeling and Simulation - Based Data Engineering:
Pragmatics into Ontologies for Net - Centric Information Exchange . Burlington,
MA : Academic Press ; 2007 .

400 AN INTRODUCTION TO DISTRIBUTED SIMULATION

 [30] Chandy KM , Misra J . Distributed simulation: A case study in design and verifi ca-
tion of distributed programs . IEEE Transactions on Software Engineering , SE -
 5 (5): 440 – 452 ; 1979 .

 [31] Bryant RE . Simulation of packet communication architecture computer systems .
Technical Report LCS, TR - 188 . Cambridge, MA : Massachusetts Institute of
Technology ; 1977 .

 [32] Chandy KM , Misra J . Asynchronous distributed simulation via a sequence of
parallel computations . Communications of the ACM , 24 (4): 198 – 205 ; 1981 .

 [33] Lubachevsky B . Effi cient distributed event - driven simulations of multiple - loop
networks . Proceedings of the 1988 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems. Santa Fe, NM , 1988 .

 [34] Nicol D . The cost of conservative synchronization in parallel discrete event
simulation . Journal of the ACM , 40 (2): 304 – 333 ; 1993 .

 [35] Nicol D . Noncommittal barrier synchronization . Parallel Computing , 21 (4): 529 –
 549 ; 1995 .

 [36] Al - Zoubi K , Wainer G . Using REST Web services architecture for distributed
simulation . Proceedings of Principles of Advanced and Distributed Simulation
PADS 2009. Lake Placid, NY , 2009 .

 [37] Wainer G . Discrete - Event Modeling and Simulation: A Practitioner ’ s Approach .
 Boca Raton, FL : CRC Press and Taylor & Francis Group ; 2009 .

 [38] Zeigler B , Kim T , Praehofer H . Theory of Modeling and Simulation . 2nd ed . San
Diego, CA : Academic Press ; 2000 .

 [39] Chung M , Kyung C . Improving lookahead in parallel multiprocessor simulation
using dynamic execution path prediction . Proceedings of Principles of Advanced
and Distributed Simulation (PADS 2006). Singapore, May 2006 .

 [40] Zacharewicz G , Giambiasi N , Frydman C . Improving the lookahead computa-
tion in G - DEVS/HLA environment . Proceedings of Distributed Simulation and
Real - Time Applications (DS - RT 2005). Montreal, QC, Canada , 2005 .

 [41] Liu J , Nicol DM . Lookahead revisited in wireless network simulations .
 Proceedings of Principles of Advanced and Distributed Simulation (PADS
2002). Washington, DC , 2002 .

 [42] Meyer R , Bagrodia L . Path lookahead: A data fl ow view of PDES models .
 Proceedings of Principles of Advanced and Distributed Simulation (PADS
1999). Atlanta, GA , 1999 .

 [43] Jefferson DR . Virtual time . ACM Transactions on Programming Languages and
Systems , 7 (3): 405 – 425 ; 1985 .

 [44] Frey P , Radhakrishnan R , Carter HW , Wilsey PA , Alexander P . A formal speci-
fi cation and verifi cation framework for time warp - based parallel simulation .
IEEE Transactions on Software Engineering , 28 (1): 58 – 78 ; 2002 .

 [45] Samadi B . Distributed simulation, algorithms and performance analysis. PhD
Thesis, Computer Science Department, University of California, Los Angeles,
CA; 1985 .

 [46] Mattern F . Effi cient algorithms for distributed snapshots and global virtual time
approximation. Journal of Parallel and Distributed Computing , 18 (4): 423 – 434 ;
 1993 .

REFERENCES 401

 [47] D ’ Souza LM , Fan X , Wisey PA . pGVT: An algorithm for accurate GVT estima-
tion . Proceedings of Principles of Advanced and Distributed Simulation (PADS
1994). Edinburgh, Scotland, July 1994 .

 [48] Bauer D , Yaun G , Carothers CD , Yuksel M , Kalyanaraman S . Seven - o ’ clock:
A new distributed GVT algorithm using network atomic operations . Proceedings
of Principles of Advanced and Distributed Simulation (PADS 2005). Monterey,
CA , 2005 .

 [49] Lubachevsky B , Weiss A , Schwartz A . An analysis of rollback - based simulation .
ACM Transactions on Modeling and Computer Simulation (TOMACS) , 1 (2): 154 –
 193 ; 1991 .

 [50] Object Management Group (OMG) . Available at http://www.omg.org/ . Accessed
February 2009 .

 [51] Zeigler BP , Doohwan K . Distributed supply chain simulation in a DEVS/
CORBA execution environment . Proceedings of Winter Simulation Conference
(WSC 1999). Phoenix, AZ , 1999 .

 [52] Khul F , Weatherly R , Dahmann J . Creating Computer Simulation Systems: An
Introduction to High Level Architecture . Upper Saddle River, NJ : Prentice Hall ;
 1999 .

 [53] Boukerche A , Iwasaki FM , Araujo R , Pizzolato EB . Web - based distributed
simulations visualization and control with HLA and Web services . Proceedings
of Distributed Simulation and Real - Time Applications (DS - RT 2008). Vancouver,
BC, Canada , 2008 .

 [54] M ö ller B , Dahlin C . A fi rst look at the HLA evolved Web service API .
 Proceedings of 2006 Euro Simulation Interoperability Workshop, Simulation
Interoperability Standards Organization. Stockholm, Sweden , 2006 .

 [55] Zhu H , Li G , Zheng L . Introducing Web services in HLA - based simulation
application . Proceedings of IEEE 7th World Congress on Intelligent Control and
Automation (WCICA 2008). Chongqing, China, June 2008 .

 [56] Al - Zoubi K , Wainer G. Interfacing and Coordination for a DEVS Simulation
Protocol Standard . Proceedings of Distributed Simulation and Real - Time
Applications (DS - RT 2008). Vancouver, BC, Canada , 2008 .

 [57] Christensen E , Curbera F , Meredith G , Weerawarana S . Web Services
Description Language (WSDL) 1.0. Available at http://xml.coverpages.org/
wsdl20000929.html. Accessed March 2009 .

 [58] Wainer G , Madhoun R , Al - Zoubi K . Distributed simulation of DEVS and cell -
 DEVS models in CD++ using Web services . Simulation Modelling Practice and
Theory , 16 (9): 1266 – 1292 ; 2008 .

 [59] Mittal S , Risco - Mart í n JL , Zeigler BP . DEVS - based simulation Web services for
net - centric T & E . Proceedings of the 2007 Summer Computer Simulation
Conference. San Diego, CA , 2007 .

 [60] Fujimoto R , Hunter M , Sirichoke J , Palekar M , Kim H , Suh W . Ad hoc distrib-
uted simulations . Proceedings of Principles of Advanced and Distributed
Simulation (PADS 2007). San Diego, CA, June 2007 .

 [61] Fielding RT . Architectural Styles and the Design of Network - based Software
Architectures . PhD Thesis, University of California, Irvine, CA, 2000 .

402 AN INTRODUCTION TO DISTRIBUTED SIMULATION

 [62] O ’ Reilly T . What is Web 2.0. Available at http://www.oreillynet.com/pub/a/
oreilly/tim/news/2005/09/30/what-is-web-20.html. Accessed May 2009 .

 [63] Richardson L , Ruby S . RESTful Web Services . 1st ed. Sebastopol, CA : O ’ Reilly
Media ; 2007 .

 [64] Cappelaere P , Frye S , Mandl D . Flow - enablement of the NASA SensorWeb
using RESTful (and secure) workfl ows . 2009 IEEE Aerospace Conference. Big
Sky, MT, March 2009 .

 [65] Stirbu V . Towards a RESTful plug and play experience in the Web of things .
 IEEE International Conference on Semantic Computing (ICSC 2008). Santa
Clara, CA, August 2008 .

 [66] Kumaran S , Rong L , Dhoolia P , Heath T , Nandi P , Pinel F . A RESTful archi-
tecture for service - oriented business process execution . IEEE International
Conference on e - Business Engineering (ICEBE ‘ 08). Xi ’ an, China, October
 2008 .

 [67] McFaddin S , Coffman D , Han JH , Jang HK , Kim JH , Lee JK , Lee MC , Moon
 YS , Narayanaswami C , Paik YS , Park JW , Soroker D . Modeling and managing
mobile commerce spaces using RESTful data services . 9th IEEE International
Conference on Mobile Data Management (MDM ‘ 08). Beijing, China , 2008 .

403

Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains,
Edited by John A. Sokolowski and Catherine M. Banks
Copyright © 2010 John Wiley & Sons, Inc.

12

INTEROPERABILITY
AND COMPOSABILITY

Andreas Tolk

 For many modeling and simulation (M & S) developers, questions regarding
the future interoperability and composability of their solution are not the main
concern during design and development. They design their M & S system or
application to solve a special problem and provide a solution. There is nothing
wrong with this perception. However, there are many reasons why it is prefer-
able to design interoperability and composability from the early phases on,
for example, by using open standards for the communication of information
or by using standardized interfaces to common services. The main driving
factor for this is the desire to enable the reuse of existing solutions . Why should
we invest in rewriting a solution that already exists?

 The second aspect is that of modularity , in particular when dealing with
complex systems. While it may be possible to use and evaluate small models
as a whole, large and complex system rapidly become too big to be handled
in one block. Development and testing for such systems should be conducted
in modules; however, these modules need to be interoperable and composable
to allow bringing them back into a common system.

 The aspect of reducing costs is also playing a signifi cant role. The idea is
to reduce development cost by reducing reliable solutions and avoiding to
 “ reinvent the wheel ” in new models. However, again this assumes that the
components can be identifi ed, selected, composed, and orchestrated.

404 INTEROPERABILITY AND COMPOSABILITY

 In addition, the growing connectivity of real - world problems is refl ected in
the requirement to compose cross - domain solutions as well. Examples are,
among others, the evaluation of interdependencies between the transportation
systems and possible energy support in the domain of homeland security, or
the analysis and support of common operations of several nations with several
branches of their armed forces hand in hand with nonmilitary and often even
nongovernment organizations for the organizations like the North Atlantic
Treaty Organization (NATO) or the European Defense Agency (EDA).
Other examples from medical simulation can easily be derived for biologic
and medical simulations, where similar problems are observed when compos-
ing models on the enzyme, cell, or organism level with each other. The common
challenge of these compositions is that such joint operations are more than
just the parallel execution of part solutions. Synergistic effects need to be
taken into consideration, as the whole new operation is likely to be more than
just the sum of its part solution.

 The growing connectivity requiring interoperable and composable parts is
also refl ected in the ideas of service - oriented architectures (SOAs) and system
of systems. In both cases, solutions are composed on - the - fl y reusing preexist-
ing services that provide the required functionality. While engineers tradition-
ally conduct the evaluation and adaptation of existing solutions to make them
fi t for a new environment, these engineering tasks now need to be conducted
by machines, such as intelligent agents. This requires that all information
needed to allow for

 • the identifi cation of applicable services
 • the selection of the best subset for the given task
 • the composition of these services to produce the solution
 • the orchestration of their execution

 must be provided in machine - readable form as annotations. Consequently,
services and systems must be annotated with information on their interoper-
ability and composability characteristics to allow and enable their composition
on - the - fl y.

 Finally, interoperability and composability challenges are not limited to
M & S applications and services. Many M & S application areas as defi ned earlier
in this book require the interoperation of M & S systems and operational infra-
structure, such as traffi c information systems and evacuation models, or mili-
tary command and control systems and combat simulation systems.

 This chapter will focus on the technical challenges of interoperability and
composability, current proposed standardized solutions, and ongoing related
research. It will not deal with business models supporting the idea. It will also
leave out security aspects (you do not want your opponent or competition to
use your best tools for his solutions) and questions of intellectual property
out. These are valuable research fi elds on their own.

DEFINING INTEROPERABILITY AND COMPOSABILITY 405

 To deal with the selected subset of challenges, the chapter is structured as
follows:

 (1) We will start with an overview of currently used defi nitions for interop-
erability and composability . In this section, we will also include ongoing
discussions of models for composability and interoperability that can
guide the M & S professional. This section will introduce the levels of
conceptual interoperability model (LCIM).

 (2) The next section will give an overview of current standards supporting
interoperability and composability, including the Institute of Electrical
and Electronics Engineers (IEEE) standards for distributed interactive
simulation (DIS) and the high - level architecture (HLA) and the
Simulation Interoperability Standards Organization (SISO) standard
for base object models (BOMs). We will also have a look at solutions
in support of Web - based solutions, in particular contributions proposed
in support of the semantic Web. The section ends with a comparison
of these solutions using the LCIM.

 (3) The last section will look into ongoing research on engineering methods
in support of interoperability and composability. The methods of data
engineering, process engineering, and constraint engineering build the
center of this section, showing how they contribute to solutions in the
frame of the LCIM.

 Students and scholars of the topics of interoperability and composability
are highly encouraged to use this chapter as a fi rst step toward understanding
M & S fundamentals: theoretical underpinnings and practical domains. These
topics, interoperability and composability, have implications for nearly all
domains captured in this book, in particular for distributed simulation devel-
opment and validation, verifi cation, and accreditation (VV & A). However, it
also implies new views on conceptual modeling beyond established needs as
well as the need for extended annotations of M & S services in SOAs. It also
implies the need for new M & S standards as current solutions are too focused
on implementation. We will focus on these issues in this chapter.

DEFINING INTEROPERABILITY AND COMPOSABILITY

 It is good practice to start discussions on the need for unambiguous defi nitions
with respective defi nitions of terms that are used. We will start with the more
traditional defi nitions used by IEEE and other organizations before looking
at ongoing research on layered models of interoperations that are applied to
improve the community understanding of what interoperability and compos-
ability are and how they can be reached.

406 INTEROPERABILITY AND COMPOSABILITY

Selected Interoperability Defi nitions

 IEEE defi nes interoperability as the ability of two or more systems or compo-
nents to exchange information and to use the information that has been
exchanged [1] . This simple defi nition has already a number of implications:

 (1) Interoperability is defi ned between two or more systems . As such, it
includes peer - to - peer solutions as well as hub solutions.

 (2) Interoperability allows systems to exchange information . This means
that systems must be able to produce the required information as well
as to consume the provided information. In particular, when informa-
tion is encapsulated, this may be challenging, which explains that it is
necessary to take interoperability requirements into account early
enough, so that the design does not hide information from accessibility.

 (3) Interoperability allows systems to use the information in the receiving
system. This implies some common understanding that is shared
between sender and receiver. If a system “ just listens ” to provided
information but ignores everything it cannot use, this is not an interop-
erable solution.

 Other organizations, like the Open Group, are stricter in their defi nition.
The Open Group [2] defi nes interoperability not only as an exchange of infor-
mation, but they add the ability of systems to provide and receive services
from other systems and to use the services so interchanged to enable them
to operate effectively together. The notion of actively using other services
and taking action based on the received information is a new element in this
view.

 The U.S. Department of Defense (DoD) adds the component of effi ciency
to the collaboration and defi nes interoperability as the ability of systems, units,
or forces to provide data, information, materiel, and services to and accept the
same from other systems, units, or forces, and to use the data, information,
materiel, and services so exchanged to enable them to operate effectively together
 [3] . The same directive furthermore states that joint concepts and integrated
architectures shall be used to characterize the interoperations of interest.

 Thus, interoperability is understood as the ability of systems to effectively
collaborate together on the implementation level to reach a general common
objective. To this end, they exchange information that both sides understand
well enough to make use of it in the receiving system. Interoperability is a
characteristic of a group of systems.

Selected Composability Defi nitions

 In the M & S community, the term composability is also used to address similar
issues. Petty and Weisel [4] documented various defi nitions. Examples for
defi nitions of composability are the following.

DEFINING INTEROPERABILITY AND COMPOSABILITY 407

 Harkrider and Lunceford defi ned composability as the ability to create,
confi gure, initialize, test, and validate an exercise by logically assembling a
unique simulation execution from a pool of reusable system components in
order to meet a specifi c set of objectives [5] . They introduced the aspect of
logically assembling and, as such, emphasized the necessity for a common basis
for the conceptual models that describe the underlying logic.

 Pratt et al. approached the challenge of composability from the common
architecture perspective. They defi ned it as the ability to build new things
from existing pieces [6] . These existing pieces, however, are components of a
common architecture, or at least can be captured in a common architecture
framework.

 Kasputis and Ng emphasized the simulation view. They defi ned compos-
ability as the ability to compose models/modules across a variety of application
domains, levels of resolution, and time scales [7] .

 In their work, Petty and Weisel recommended the following defi nition:
Composability is the capability to select and assemble simulation components
in various combinations into valid simulation systems to satisfy specifi c user
requirements [4] . They also observed that composability deals with the com-
position of M & S applications using components that exist in the community
(e.g., in a common repository). The composition is driven by requirements
defi ning the intended use of the desired composition. Their defi nition became
a common basis of composability research within the community. Composability
therefore resides in the models, dealing with the conceptualizations and how
they can support a set of requirements.

 In comparison, interoperability is seen as the broader, technical principle
of interacting systems based on information exchange, while composability
deals with the selection and composition of preexisting domain solutions to
fulfi ll user requirements. This idea to distinguish between interoperability of
implementation or simulation systems and composability of conceptualiza-
tions or simulation models is also the result of current layered approaches.

Toward a Layered Model of Interoperation

 Several researchers introduced layered models to better understand the theo-
retical underpinnings of interoperation, not only in M & S. Computer science
has a tradition of using layered models to better understand the concepts
underlying successful interoperation on the implementation level. One of the
better known examples is the International Organization for Standards (ISO)/
Open System Interconnect (OSI) reference model that introduced seven
layers of interconnection, each with well - defi ned protocols and responsibilities
 [8] . This section uses the idea of introducing a reference model with well -
 defi ned layers of interoperation to better deal with challenges of interoperabil-
ity of simulation systems and composability of simulation models.

 Dahmann introduced the idea of distinguishing between substantive
and technical interoperability [9] . In her presentation, technical interopera-

408 INTEROPERABILITY AND COMPOSABILITY

bility ensures connectivity and distributed computation, while substantive
interoperability ensures the effective collaboration of the simulation systems
contributing to the common goal.

 Petty built on this idea in his lectures and short courses [10] . He explicitly
distinguished between the implemented model representing substantive
interoperability and layers for protocols, the communication layers, and hard-
ware representing technical interoperability.

 Tolk and Muguira introduced the fi rst version of a layered model for sub-
stantive interoperability, which was very data - centric [11] . In this fi rst model,
they distinguished among system specifi c data, documented data, aligned static
data, aligned dynamic data, and harmonized data. These categories describe
gradual improvements of interoperability and composition. While system spe-
cifi c data result in independent systems with proprietary interfaces, docu-
mented data allow for ad hoc peer - to - peer federations. If these data follow a
common model, they are statically aligned and allow for easier collaboration.
If their use in the systems is also understood, the data are dynamically aligned
as well, and systems can be integrated. Finally, when assumptions and con-
straints regarding the data and their use are captured as well, the data are
harmonized, allowing a unifi ed view.

 Using the responding articles of Hoffmann [12] , Page et al. [13] , and Tolk
et al. [14] , the LCIM was improved into its current form, which was successfully
applied in various application domains, which are not limited to M & S applica-
tions. The main improvement was to adapt the names of the layers of interop-
eration to the terms known from the computer linguistic spectrum regarding
the increasing level of understanding based on the information exchanged [12] .
In addition, Page et al. [13] proposed to clearly distinguish between the three
governing concepts of interoperation:

 (1) Integratability contends with the physical/technical realms of connec-
tions between systems, which include hardware and fi rmware, proto-
cols, networks, and so on.

 (2) Interoperability contends with the software and implementation details
of interoperations; this includes exchange of data elements via inter-
faces, the use of middleware, mapping to common information exchange
models, and so on.

 (3) Composability contends with the alignment of issues on the modeling
level. The underlying models are purposeful abstractions of reality
used for the conceptualization being implemented by the resulting
systems.

 In summary, successful interoperation of solutions requires integratability
of infrastructures, interoperability of systems, and composability of models .
Successful standards for interoperable solutions must address all three
categories.

DEFINING INTEROPERABILITY AND COMPOSABILITY 409

The LCIM

 The current version of the LCIM was fi rst published in Theory of Modeling
and Simulation [15] . In this and the following papers, the LCIM exposes the
following six layers of interoperation:

 (1) The technical layer deals with infrastructure and network challenges,
enabling systems to exchange carriers of information. This is the domain
of integratability.

 (2) The syntactic layer deals with challenges to interpret and structure the
information to form symbols within protocols. This layer belongs to the
domain of interoperability.

 (3) The semantic layer provides a common understanding of the informa-
tion exchange. On this level, the pieces of information that can be
composed to objects, messages, and other higher structures are identi-
fi ed. It represents the aligned static data.

 (4) The pragmatic layer recognizes the patterns in which data are organized
for the information exchange, which are in particular the inputs and
outputs of procedures and methods to be called. This is the context in
which data are exchanged as applicable information. These groups are
often referred to as (business) objects. It represents the aligned dynamic
data.

 (5) The dynamic layer recognizes various system states, including the
possibility for agile and adaptive systems. The same business object
exchanged with different systems can trigger very different state
changes. It is also possible that the same information sent to the same
system at different times can trigger different responses.

 (6) Finally, assumptions, constraints, and simplifi cations need to be cap-
tured. This happens in the conceptual layer . This layer represents the
harmonized data.

 The following fi gure shows the LCIM in connection with the three inter-
operation categories as defi ned in Page et al. [13] (Fig. 12.1). The fi gure adds
an additional basis level 0 in which no interoperation takes place and where
no interoperability has been established.

 The LCIM is unique regarding the dynamic and conceptual level. The
viewpoint of the LCIM is to distinguish clearly between the three interopera-
tion categories — integratability, interoperability, and composability — and
their related concepts within infrastructures, simulations, and models of the
systems or services.

Alternative Layered Views

 Although the LCIM has been successfully applied in various domains, alterna-
tive layered models exist that are of interest and at a similar maturity level

410 INTEROPERABILITY AND COMPOSABILITY

 [14] . Of particular interest is the following model that fi nds application in the
net - centric environment.

 Zeigler et al. proposed the following architecture for M & S that also com-
prises six layers [15] . They defi ne these layers as follows:

 (1) The network layer contains the infrastructure including the computer
and network.

 (2) The execution layer comprises the software used to implement the
simulation. This includes protocols, databases, and so on.

 (3) The modeling layer captures the formalism for the model behavior.
 (4) The design and search layer supports the design of systems based on

architectural constraints, comparable to the ideas captured in Pratt
et al. [6] and mentioned earlier in this chapter.

 (5) The decision layer applies the capability to search, select, and execute
large model sets in support of what - if analyses.

 (6) The collaboration layer allows experts — or intelligent agents in support
of experts — to introduce viewpoints and individual perspectives to
achieve the overall goal.

 The LCIM maps well to the network, execution, and modeling layer that
deal with infrastructure, simulation, and model. The upper three layers are
metalayers that capture the intended and current use of the model, including
architectural constraints, which are not dealt with by the LCIM. Using this
architecture for M & S, Zeigler and Hammonds defi ned syntax, semantics, and
pragmatics as linguistic levels in a slightly different way [16] . They are defi ned
as follows (see also Fig. 12.2):

Level 5

Dynamic interoperability

Level 4

Pragmatic interoperability

Level 3

Semantic interoperability

Level 2

Syntactic interoperability

Level 0

No interoperability

Level 1

Technical interoperability

Level 6

Conceptual interoperability In
c
re

a
s
in

g
 c

a
p
a
b
ility

 fo
r in

te
ro

p
e
ra

tio
n

Modeling /

conceptualization

Simulation /

implementation

Network /

infrastructure

 Figure 12.1 Levels of conceptual interoperability model.

DEFINING INTEROPERABILITY AND COMPOSABILITY 411

 (1) Syntax focuses on structure and adherence to the rules that govern that
structure, such as Extensible Markup Language (XML).

 (2) Semantics consists of low - level and high - level parts. Low - level seman-
tics focus on defi nition of attributes and terms; high - level semantics
focus on the combined meaning of multiple terms.

 (3) Pragmatics deals with the use of data in relation to its structure and the
context of the application (why is the system applied).

 These defi nitions are different from the similar terms introduced in the
LCIM. In particular, the pragmatics as defi ned by Zeigler and Hammonds
represent the context of the application; in the LCIM, pragmatics is the context
of data exchange within the application.

 Zeigler and Hammonds associated these linguistic levels with the architec-
ture for M & S [16] . The difference in the defi nition of pragmatics becomes
obvious, as the intended use capture in the linguistic defi nition of the term is
mapped to the metalayers of the architecture for M & S. In summary, the LCIM
focuses on interoperation challenges between models (composability), imple-
menting simulation systems (interoperability), and underlying infrastructure
(integratability). These questions are addressed in the syntactic and semantic
layer of Zeigler ’ s model; the questions addressed by his pragmatic level are
outside the scope of the LCIM, as they deal with the use of the systems.

 Both viewpoints are valid and offer a different perspective of the challenges
of interoperability and composability. While the LCIM is unique in defi ning
the dynamic and the agility of systems in the dynamic layer as well as the
assumption, constraints, and simplifi cations in the conceptual layer, the
approach of Zeigler and Hammonds introduces the intended and current
use of linguistic pragmatics as an additional challenge.

Network layer

Execution layer

Modeling layer

Design and search layer

Decision layer

Collaboration layer

Pragmatic level

Semantic level

Syntactic level

 Figure 12.2 Association between architecture for M & S and linguistic levels.

412 INTEROPERABILITY AND COMPOSABILITY

 In the next section, we will use the LCIM to evaluate the contribution of
current interoperability standard solutions. The interested reader is referred to
the Further Readings section for more information on alternative approaches.

CURRENT INTEROPERABILITY STANDARD SOLUTIONS

 At this point, the reader should know that interoperation of systems requires
support regarding integratability, interoperability, and composability for the
infrastructures, the simulations, and the models. Within this section, we will
look at the interoperability standard solutions that are applied in the M & S
domain. This selection of current solutions is neither complete nor exclusive.
Furthermore, this chapter can only give short - and high - level introductions
that by no means can replace the in - depth study of these standards.

IEEE 1278: DIS

 Military training is one of the earliest adaptors of distributed simulation appli-
cations. The use of training simulators in the armed forces became standard
procedure in the education every soldier goes through when he learns to
handle his equipment. However, soon after simulation was applied routinely
in the armed forces, the requirement for team and group training came up.
This required sharing information between the simulators. The objective was
to train soldiers in their simulators as a team; that is, the tank or fl ight simula-
tors had to be represented in the situation displays of the other soldiers. To
this end, the Close Combat Tactical Trainer (CCTT) of the U.S. Army was
integrated into a SIMulator NETworking (SIMNET) system. SIMNET was
developed within a research project out of the Defense Advanced Research
Projects Agency (DARPA) and resulted in a network system that allowed
tank simulators located in the United States, Germany, and Korea to exchange
information about location, activities, and interactions with enemy forces
allowing for a whole unit of tank crews to simulate training simultaneously.

 The success of SIMNET let to the standardization efforts for the IEEE 1278
Standard for DIS [17] . DIS was built on the foundation of SIMNET. The
standard consists of fi ve parts that were released and updated in the following
documents:

 (1) IEEE 1278 - 1993 — Standard for DIS — Application protocols
 (2) IEEE 1278.1 - 1995 — Standard for DIS — Application protocols
 (3) IEEE 1278.1 - 1995 — Standard for DIS — Application protocols — Errata

(May 1998)
 (4) IEEE 1278.1A - 1998 — Standard for DIS — Application protocols
 (5) IEEE - 1278.2 - 1995 — Standard for DIS — Communication Services and

Profi les

CURRENT INTEROPERABILITY STANDARD SOLUTIONS 413

 (6) IEEE 1278.3 - 1996 — Recommended Practice for DIS — Exercise Man-
agement and Feedback

 (7) IEEE 1278.4 - 1997 — Recommended Practice for DIS — Verifi cation,
Validation, and Accreditation

 (8) IEEE 1278.5 - XXXX — Fidelity Description Requirements
(unpublished).

 Under the lead of the SISO, the DIS community is currently working on
another update of this standard.

 In this section, the application protocols defi ned in the fi rst part of the
standard are of particular interest. Following the introductory remarks, it
becomes obvious that the interoperability achieved by applying the IEEE
1278 standard is narrowly focused, as the standard is rooted in the exchange
of well - defi ned protocol data units (PDUs) with a shared understanding of
PDUs and their defi ning attributes.

 The DIS community defi ned and standardized PDUs for all sorts of pos-
sible events that could happen during such a military training. Whenever a
preconceived event happens — such as one tank fi ring at another, two system
colliding, artillery ammunition being used to shoot into special area, a report
being transmitted using radio, a jammer being used to suppress the use of
communication or detection devices, and more — the appropriate PDU is
selected from the list of available PDUs and used to transmit the standardized
information describing this event. Within a PDU, syntax and semantics are
merged into the information exchange specifi cation. To a certain degree,
even the pragmatics are part of this standard PDUs, as the intent is standard-
ized for some interactions as well: When two systems are in a duel, the
shooting systems determines if a shot hits the target or not, while the victim
determines what effect the hit produces. The following table shows the
structure of each PDU.

 As described before, DIS is used for military simulators that represent
weapon systems. The objects that DIS can represent are categorized in IEEE
1278 as platforms, ammunition, life forms, environmental cultural features,
supplies, radios, sensors, and others. DIS also supports the notion of an
 “ expendable ” object that allows user - specifi c representations, but this object
is not standardized. The current DIS version defi nes 67 different PDU types,
such as fi re, collisions, service calls, and so on. Each PDU is defi ned as shown
in Table 12.1 .

 The general characteristics of DIS are the absence of any central manage-
ment; all simulations remain autonomous and are just interconnected by infor-
mation exchange via PDUs; each simulator has an autonomous perception of
the situation; cause – effect responsibilities are distributed for the PDUs to
minimize the data traffi c. There is no time management or data distribution
management. The PDUs are transmitted in a ring or on a bus and each simula-
tor uses PDUs that are directed at one of his entities.

414 INTEROPERABILITY AND COMPOSABILITY

 DIS is clean and effi cient for its purpose. The main advantage of DIS — that
everything is defi ned in detail for the application domain the standard was
defi ned for — is also its main disadvantage: DIS is only applicable for military
training on the chosen modeling level. Whenever a new information exchange
requirement is identifi ed, the standard needs to be extended. If a new cause –
 effect responsibility has to be modeled, the standard needs to be extended.

 Nonetheless, DIS has been and is still very successful in the military model-
ing domain, and other M & S application areas are considering comparable
domain - specifi c solutions utilizing well - defi ned information exchange specifi -
cations with well - defi ned cause – effect responsibilities.

 The interested reader is referred to David Neyland ’ s book on virtual
combat, listed in the Further Readings section, for more information on DIS
and its applications. Information on current developments is accessible via the
Web sites of SISO.

IEEE 1516: HLA

 In comparison with DIS, the IEEE 1516 Standard for M & S HLA is much more
fl exible. The declared objective of HLA is to defi ne a software architecture that
allows the federation of simulation systems. The driving assumptions behind
HLA are that (1) no single simulation system can satisfy the need of all users
and (2) no single simulation system developer is an expert across all domains;
the logical approach is to compose existing simulation systems into a federation
to satisfy the user ’ s requirements with the best simulation systems available.

 Different from DIS, this is not limited to a special M & S application area.
As a software architecture, HLA supports all M & S application domains, all
M & S formalisms, discrete and continuous simulation, and so on. This fl exibil-
ity comes with the price that much more detail must be aligned between the
simulation system providers for their federation.

 The IEEE 1516 standard consists of fi ve parts that were released and
updated in the following documents:

Table 12.1 PDU structure

 PDU header Protocol version 8 bit enumeration
 Exercise ID 8 bit unsigned integer
 PDU type 8 bit enumeration
 Protocol family 8 bit enumeration
 Time stamp 32 bit unsigned integer
 Length 16 bit unsigned integer
 Padding 16 bit unsigned integer

 Originating entity ID Site 16 bit unsigned integer
 Application 16 bit unsigned integer
 Entity 16 bit unsigned integer

 Receiving entity ID Site 16 bit unsigned integer
 Application 16 bit unsigned integer
 Entity 16 bit unsigned integer

CURRENT INTEROPERABILITY STANDARD SOLUTIONS 415

 (1) IEEE 1516 - 2000 — Standard for M & S HLA — Framework and Rules;
 (2) IEEE 1516.1 - 2000 — Standard for M & S HLA — Federate Interface

Specifi cation;
 (3) IEEE 1516.1 - 2000 Errata (October 2003);
 (4) IEEE 1516.2 - 2000 — Standard for M & S HLA — Object Model Template

(OMT) Specifi cation;
 (5) IEEE 1516.3 - 2003 — Recommended Practice for HLA Federation

Development and Execution Process (FEDEP);
 (6) IEEE 1516.4 - 2007 — Recommended Practice for Verifi cation, Validation,

and Accreditation of a Federation an Overlay to the HLA FEDEP.

 Under the lead of SISO, the HLA community is currently working on
another update of this standard called HLA - evolved , which includes dynamic
link capabilities, extended XML support, increased fault tolerance, Web capa-
bilities, and more. In addition, particularly in the United States, many HLA
federations are built using the predecessor of IEEE 1516, the U.S. DoD HLA
Specifi cation 1.3 NG, which has a slight difference. In this section, we will use
the current version of IEEE 1516, and the federate interface specifi cation and
the OMT specifi cation are of particular interest.

 Federate Interface Specifi cation One of the main differences between
IEEE 1278 DIS and IEEE 1516 HLA is the fact that HLA defi nes a common
 runtime infrastructure (RTI) with standardized interfaces and well - defi ned
functional categories as part of the standard. The participating systems —
 called federates — agree to exclusively exchange data during runtime via the
RTI. This facilitates management and synchronization of a federation. The
functions provided by the RTI to the federation are divided into the six man-
agement areas shown in the following fi gure (Fig. 12.3).

Ownership management

Time management

Data distribution management

Object management

Declaration management

Federation management

Start-up Execution Shutdown

 Figure 12.3 RTI management areas.

416 INTEROPERABILITY AND COMPOSABILITY

 The six RTI management areas can be defi ned as follows:

 (1) The purpose of the federation management is to determine the federa-
tion. Federates join and leave the federation using the functions defi ned
in this group.

 (2) The purpose of the declaration management is to identify which feder-
ate can publish and/or subscribe to which information exchange ele-
ments. This defi nes the type of information that can be shared.

 (3) The purpose of object management is managing the instances of share-
able objects that are actually shared in the federation. Sending and
receiving and updating belong into this group.

 (5) The purpose of data distribution management is to ensure the effi ciency
of information exchange. By adding additional fi lters, this group ensures
that only data of interest are broadcasted.

 (6) The purpose of time management is the synchronization of federates.
 (7) The purpose of ownership management is to enable the transfer of

responsibility for instances or attributes between federates.

 The fi gure shows in which order the functions belonging to the management
areas are normally invoked (join the federation, declare publish and subscribe
capabilities, update objects and send interactions, leave federation). In contrast
to the PDUs of DIS, the types and the structure of information are not stan-
dardized in HLA, but the objects can be agreed upon between all federates.

 IEEE 1516 defi nes the interface from the federate to the RTI as well as the
interface from the RTI to the federate and their interplay. For example, if
federate A updates one of his objects O, he calls the update function of the
RTI with the object parameters. The RTI calls the receive functions of all
other federates that subscribed to the object type of object O, if not excluded
by additional fi lters. All allowed sequences of functions and callbacks are
standardized in the federate interface specifi cation.

 The functions comprised in these groups use the objects defi ned in the OMT.
The possibility to defi ne its own objects makes the IEEE 1516 HLA fl exible.
The requirement to use the functions defi ned in the RTI makes it stable.

OMT Specifi cation As mentioned earlier, IEEE 1516 HLA only standard-
izes the form in which the data to be exchanged are documented. To this end,
the OMT is used to defi ne all parameters that are needed to call functions or
callbacks provided by the RTI or the federate. As mentioned before, the OMT
specifi cation prescribes the format and syntax for describing information but
does not standardize the domain - specifi c data that will appear in the object
model. However, IEEE 1516 HLA requires that all shareable information is
captured in an object model following the OMT specifi cation. This HLA
object models may be used to describe an individual federate (which is called
a simulation object model [SOM], defi ning the information exchange capabili-

CURRENT INTEROPERABILITY STANDARD SOLUTIONS 417

ties of this federate) or to describe the information shared between the feder-
ates within a federation (which is called a federation object model [FOM]) In
addition, management information for the federation is also captured in this
schema (which is called the management object model [MOM]).

 IEEE 1516 distinguishes between objects and interactions as information
exchange types:

 • Objects exist over time . They need to be created, updated, and destroyed.
They are described by their attributes. Different attributes can be owned
by different federates, and their ownership can change over time.

 • Interactions are events . They are just created and sent to interested feder-
ates as a single event. They are described by parameters.

 Besides this distinction, objects and interactions are equivalent regarding
their information. It is often a modeling decision if something is an object or
an interaction. If, for example, one object in federate fi res a missile at an object
in another federate, the developer can model the missile as an object that
updates its position and state (to allow for interceptions), or the developer
can decide to just model the impact as an unavoidable event in the form of
an interaction.

 To specify the exchangeable information as needed to support the federate
interface specifi cation, 14 tables are needed. The interested reader is referred
to the standard IEEE 1516 and the book of Kuhl et al. in the Further Readings
section for details [18] :

 (1) The object model identifi cation table enumerates information on the
developer of the model, contact information, version, and so on. This
is meta - information needed for administration purposes and to facili-
tate the identifi cation of an object model for potential reuse. The
structure is pretty easy. The table has two columns to specify the cat-
egory to be described (such as name, organization, address, and
version) and the content describing the category.

 (2) The object class structure table describes all objects in the form of an
object hierarchy of subclasses and superclasses. All objects are sub-
classes from the generic object called HLAobjectRoot. Following the
idea of inheritance as known from object - oriented languages, sub-
classes are specializations of their superclasses and therefore inherit
the attributes of their superclasses. Their specialization is modeled by
additional attributes. It should be pointed out that this table does not
specify any attributes. This is done in another table.

 (3) The interaction class structure table comprises the equivalent informa-
tion for interactions.

 (4) The attribute table specifi es the attributes and their characteristics that
are used to model objects. Each class of objects is characterized by a

418 INTEROPERABILITY AND COMPOSABILITY

fi xed set of attribute types. This attribute table describes all object
attributes represented in a federation. The fi rst column specifi es the
object class that is specifi ed by the attribute, the second column speci-
fi es the attribute itself, the third column the data type. Valid data types
are described in the data type table. The remaining columns defi ne
characteristics needed for the management functions of the RTI, such
as updates, ownership, transportation, and so on.

 (5) The parameter table comprises the equivalent information for param-
eters characterizing interactions.

 (6) The dimension table comprises information needed for data distribu-
tion management that can be referred to in the attribute and param-
eter tables.

 (7) The time representation table comprises information needed for time
management that can be referred to in the attribute and parameter
tables.

 (8) The user - supplied tag table comprises user - defi ned tags that can be
referred to in the attribute and parameter tables. These fl ags can be
evaluated in well - defi ned RTI functions and callback functions defi ned
in the federate interface specifi cation.

 (9) The synchronization table comprises the description needed for syn-
chronization points. These points provide support for the mechanism
for federates to synchronize their activities.

 (10) The transportation type table comprises information needed for the
transportation of data that can be referred to in the attribute and
parameter tables.

 (11) The switches table comprises switches that can be used by federates.
As the RTI performs actions on behalf of federates, switches are used
to confi gure if these actions are enabled or disabled based on the
current circumstances. These actions comprise automatically soliciting
updates of instance attribute values when an object is newly discov-
ered and advising federates when certain events occur.

 (12) The data type tables are actually a group of several tables for the
various data type categories. HLA 1516 defi nes the following tables:
 • simple data type table
 • enumerated data type table
 • fi xed record data type table
 • array data type table
 • variant record data type table
 Each attribute data type or parameter data type needs to be defi ned
in one of these tables before it can be used.

 (13) The notes table may comprise additional descriptive information for
any entry within any of the other tables. The notes can be referred to
in the other tables.

CURRENT INTEROPERABILITY STANDARD SOLUTIONS 419

 (14) The FOM/SOM lexicon comprises semantic information necessary to
better understand the information by defi ning all tags used. This list
of terms and defi nitions is the controlled vocabulary used within the
federation.

 To summarize this section without going into detail, the information
exchange within IEEE 1516 HLA is based on objects characterized by attri-
butes and interactions characterized by parameters. Allowable data types for
attributes and parameters must be defi ned by the federation developer. The
RTI specifi es management function areas for data management, data distribu-
tion management, time management, and more. These functions use the char-
acteristics specifi ed for attributes and parameters in additional tables.

 The IEEE 1516 HLA signifi cantly increased the fl exibility of simulation
federation defi nitions. Instead of being limited to predefi ned information
exchange groups, the developer can specify the objects and interactions and
can even support different time model philosophies. However, the IEEE 1516
HLA does not support semantic transparency of federates regarding proce-
dures and processes. As such, the IEEE 1516 HLA standard is limited to the
specifi cation of data to be used for information exchange and the defi nition
of synchronization points.

 The interested reader is referred to Kuhl et al. on creating computer simula-
tion systems, listed in the Further Readings section, for more information on
HLA and its applications. Information on current developments is accessible
via the Web sites of SISO.

SISO-STD-003-2006: BOMs

 The SISO Standard 003 - 2006 on BOMs is currently the most recent contribu-
tion to M & S interoperability standards [19] . BOMs utilize the IEEE 1516
HLA structures for the defi nition of objects and interactions. In addition,
BOMs add the idea of patterns of interplay to the annotations standardized
in support of reuse and composition of services. The main characteristics of
BOMs can be summarized as follows:

 (1) A BOM is a standards - based approach for describing a reusable com-
ponent or piece part of a simulation or system.

 (2) BOMs are unique in that they are able to represent or support discrete
patterns of interplay among conceptual entities within a simulation
environment.

 (3) BOMs are intended to serve as building blocks for supporting
composability.

 (4) This includes the composition of HLA object models , federate capabili-
ties, and/or federation agreements regardless of the hardware platform,
operating system, or programming language required of a participating
federate.

420 INTEROPERABILITY AND COMPOSABILITY

 Two documents defi ne BOMs and their use, which can be downloaded and
used by everyone being interested in this for free [19] ; in contrast to DIS and
HLA, BOM is not standardized by IEEE:

 (1) SISO - STD - 003 - 2006 — BOM Template Specifi cation
 (2) SISO - STD - 003.1 - 2006 — Guide for BOM Use and Implementation

 SISO - STD - 003 - 2006 BOM uses the XML to capture model metadata,
aspects of the conceptual model , the class structures of an object model, which
are to be used by a federation for representing the conceptual model aspects,
and the mapping that exists between that conceptual model and object model.
The following fi gure shows the BOM template (Fig. 12.4).

 The categories of the BOM template — in the standard referred to as sec-
tions of the template — are clearly motivated by IEEE 1516 HLA, as the fol-
lowing enumeration shows as well.

Model identification (metadata)

Notes

Lexicon (definitions)

Object model definition

Object classes

HLA object class attributes

HLA object classes

Interaction classes

HLA interaction class parameters

HLA interaction classes

HLA data types

Conceptual model

Pattern of interplay

State machine

Entity type

Event type

Model mapping

Entity type mapping

Event type mapping

 Figure 12.4 BOM template.

CURRENT INTEROPERABILITY STANDARD SOLUTIONS 421

 (1) Essential metadata needed so that the BOM can be described, discov-
ered, and properly reused is captured in the model identifi cation section .
This section is very similar to the object model identifi cation table used
to describe the federation as defi ned in the last section, but the BOM
version is machine readable and comprises more information.

 (2) Conceptual entities and the events, which occur among those entities
as well as the states attainable by those entities, are described in the
conceptual model section . It should be pointed out that the conceptual
model referred to here is close to the computer science view: BOM uses
state machines and other methods to capture a principal view of what
is modeled inside, without giving away the implementation details. This
approach is comparable to use Unifi ed Modeling Language (UML)
artifacts to describe a component.

 (3) Mapping of conceptual entities and events to object model, object, and
interaction classes result in the model mapping section . This section
maps the implementation - independent conceptual ideas to implemen-
tation - driven details, as they are defi ned in the next section of the BOM
template.

 (4) The conceptual entities and events are represented by object classes,
interaction classes, and data types used to perform the behavior
described in the conceptual model. These implementation details are
captured in the object model defi nition section . In the example of
IEEE1516, these are HLA objects and interactions, specifi ed by attri-
butes and parameters as defi ned in the HLA OMT, but other imple-
mentations are foreseen for future extensions of the BOM already.

 (5) Finally, notes and defi nitions supporting any of the above - mentioned
elements are captured including a lexicon with defi nitions of all used
terms in the notes section and the lexicon (defi nitions) section . Again,
the lexicon defi nes the controlled vocabularies that are used within the
component defi ned by the BOM.

 Of particular interest is the conceptual model section, as this is the main
new contribution of BOM. It introduces the notion of patterns of interplay as
a specifi c type of pattern characterized by a sequence of events involving one
or more conceptual entities [20] . Conceptual entities are represented in the
participating federates. Each event can result in a state change of the concep-
tual entity. The conceptual model section captures the entity types for the
conceptual entities, the event types for the events by or between the entities,
the state machine to capture state changes of the entities, and the patterns of
interplay showing entities and events.

 Although this view on conceptual modeling is not suffi cient to ensure
interoperability, it is a signifi cant step into the direction of semantic transpar-
ency of federates and components.

422 INTEROPERABILITY AND COMPOSABILITY

 BOM is not yet suffi ciently covered in textbooks. However, the standard is
easy to read, and BOM tutorials are available for free on the Internet.

Web Services and the Semantic Web

 The last set of standards, Web services and the semantic Web , differs from DIS,
HLA, and BOM. These standardization efforts are driven by the M & S com-
munity. However, the interest to use applicable standards from other domains
in support of interoperable M & S solutions instead of using M & S - specifi c solu-
tions is increasingly observable in current discussions on interoperability and
composability. Of particular interest here is the semantic Web as it searches
for solutions for composable services and semantic consistency as well. This
section only deals with a limited selected subset of means to show future
trends and current applicability of solutions [21,22] .

XML The backbone of semantic Web methods is XML [23] . XML resulted
from improvements — mainly simplifi cations allowing the easier application —
 of the Standard Generalized Markup Language (SGML). SGML itself was
developed out of an IBM project, in the 1960s, for inserting tags that could be
used to describe data and evolved into the ISO Standard 8879. Different fea-
tures or sections of a document could be marked as serving a particular func-
tion. One of the most successful descendants of SGML, prior to the
development of XML, is the Hypertext Markup Language (HTML). HTML
is the language that currently makes most of the World Wide Web (WWW)
documents possible. Since its introduction in 1998, XML has become widely
and almost universally adopted by all levels of data and system modelers and
developers.

 XML is important to the development of portable solutions because it is
extensible — the markup tags are self - describing — universally readable — it is
based on Unicode — – and highly portable — it can be transferred via almost any
medium, and its self - contained and embedded nature make it a perfect partner
to the data it is describing.

 However, XML is not a Rosetta stone. Its application must be accompanied
by management effort to support the semantic consistency of tags being used,
the mapping of different tags, and more.

Resource Description Framework (RDF) and RDF Schema The World
Wide Web Consortium (W3C) developed the RDF as a standard framework
to capture ontologies. By defi nition, RDF is a standardized method for describ-
ing resources. In RDF, a description is made of three parts, namely the
 “ subject ” (what you are describing) and the “ object ” (the defi nition) joined
together by the “ predicate ” (the link between the two). By linking the subject
to the object, the predicate gives meaning to the relationship. The set of
subject, object, and predicate is commonly referred to as an RDF triple. RDF
triples mostly rely on universal resource identifi ers (URIs) to provide a physi-

CURRENT INTEROPERABILITY STANDARD SOLUTIONS 423

cal address for each member of the RDF triple. A URI, although originally
envisioned as being quite useful, is not used universally within RDF. Other
possibilities include simple terms, literals, and probably in the future exten-
sible resource identifi ers (XRIs). The application of RDF resulted soon in the
creation of an XML - based RDF schema commonly known as the RDF/XML
schema, or RDFS. For interoperability and composability, RDF offers a
standardized way to defi ne subjects using standardized Web - based means
across federations as well as in heterogeneous environments with systems
from various domains.

 RDFS describes resources using URIs, simple terms, and literals. Literals
are simple terms that may be typed. Literals include a reference to a descrip-
tion of their type. Literal types in RDF are similar to those found within
programming languages — integer, string, and so on. RDFS follows the basic
RDF triple structure, but models predicate as a property, and the object as
a value for that property. This allows modeling how objects, or property
values, can be related to subjects. Also, property values (or objects) can be
treated as subjects themselves. A machine can infer that certain properties
are transitive.

 Relying on RDFS as an enhancement to XML for data interchange has the
potential to increase the level interoperation between systems. If the RDF
structures are well formed and complete in helping to describe the semantic
meaning of the data being interchanged, and if each system is capable of
making use of those RDF structures, then it becomes possible to evaluate
semantic alignment between RDF/RDFS described solutions.

Web Ontology Language (OWL) and Application to Services The
purpose of the OWL is similar to that of RDFS: to provide an XML - based
vocabulary to express classes, properties, and relationships among classes [24] .
However, RDFS does this at a very rudimentary level and is not rich enough
to refl ect the complex nature of many systems.

 DARPA targeted overcoming these shortcomings with the development of
the DARPA Agent Markup Language (DAML), an RDFS - based language
that makes it possible to describe systems at a higher level of detail. DARPA
later combined DAML with the European Community ’ s ontology interface
layer (OIL) to create DAML+OIL, a full - fl edged ontology modeling lan-
guage. A revision of DAML+OIL, lead by the W3C resulted in the creation
of OWL, a new standard for expressing the ontology of a system. Some of
OWL ’ s main capabilities include the following:

 (1) Defi ning property characteristics: RDFS defi nes a property in terms of
its range (possible values), its domain (class it belongs to), and as a
 “ sub - Property - Of ” to narrow its meaning. OWL makes it possible to
describe the nature of properties by defi ning them as symmetric, transi-
tive, functional, inverse, or inverse functional.

424 INTEROPERABILITY AND COMPOSABILITY

 (2) Object property versus data type properties: In owl, as opposed to
RDFS, object properties and data type properties are members of two
disjoint classes. Object properties are used to relate resources to one
another, while data properties link a resource to a literal (number,
string, etc.) or a built - in XML schema data type.

 (3) Property restriction: OWL classes have a higher level of expressiveness
than RDFS classes from which they are inherited. OWL classes allow
restrictions on global properties. A property can have all of its values
belonging to a certain class, at least one value coming from a certain
class or simply have a specifi c value. OWL also allows restrictions on
the cardinality of properties, by simply specifying cardinality, minimum
cardinality, or maximum cardinality.

 (4) Class relationships: OWL classes have most of the properties of sets in
set theory (union, disjoint, complement, etc.).

 In summary, OWL increases the power of inference that systems can make
about one another. OWL provides a powerful framework for expressing
ontologies.

 OWL for Services (OWL - S) is the application of OWL to describe, in par-
ticular, Web services in a much more detailed fashion than the current Web
Service Description Language (WSDL) [24] . WSDL is a W3C standard that
describes a protocol - and - encoding - independent mechanism for Web service
providers to describe the means of interacting with service, but the defi nition
of information exchange is limited to the power provided by XML. WSDL
defi nes operations and messages and provides means to describe how these
are bound to implementation using the Simple Object Access Protocol (SOAP)
or other executable protocols.

 OWL - S adds meaning to the description. OWL - S models a service using
three components that are captured in the following list:

 (1) The service profi le provides a concise description of the capabilities
implemented by the service. The service profi le specifi es what the
service does. This allows clients and search agents to determine whether
the service fulfi lls their needs.

 (2) The service model describes the behavior and state changes of a service.
The service model specifi es how the service works. The service model
specifi es the inputs, outputs, preconditions, and effects (IOPE) of the
service.

 (3) The service grounding defi nes how to make use of a service. The service
grounding specifi es how to access the service. Because WSDL is suit-
able to express the grounding of a service, such as formats and proto-
cols, OWL - S applies these ideas as well.

 The combination of OWL methods for the service profi le and the service
model and WSDL method for the service grounding results in the best of

CURRENT INTEROPERABILITY STANDARD SOLUTIONS 425

both worlds. OWL - S provides a semantic description of services, while
WSDL specifi es how to access the services. Potential clients can use the
service profi le to discover the service, use the service model to understand
the behavior of the service at the abstract level, and fi nally use WSDL to
identify the protocols to bind and interact with the service at the implementa-
tion level.

 As such, OWL - S enables a new level of interoperation for services. It
makes it possible to automatically discover and invoke Web services. It also
supports service composition and interoperation and allows more complex
tasks to be performed in an automated fashion. This means that interoperabil-
ity and composability that standardize means are provided to describe IOPE
in machine readable form, similar to using BOM templates.

Summarizing Observations on Standardization Efforts and
Alternatives DIS and HLA are well - established IEEE standards that have
been successfully applied in worldwide distributed simulation experimenta-
tion. BOM is a SISO standard that introduces the idea of conceptual models
of representing entities, events, and patterns of interplay in support of reus-
ability and composability.

 XML, RDF/RDFS, and OWL/OWL - S provide means that can be applied
in support of interoperability and composability of M & S applications. In par-
ticular, when M & S applications need to interoperate with operational systems
that do not follow M & S interoperability standards, this knowledge becomes
important.

 There are other possibilities that may be considered for special application
domains, among these is the Test and Training Enabling Architecture (TENA)
 [25] . TENA is not a standard as those described here but an integrated
approach to develop distributed simulation for military testing and training,
including the integration of live system on test ranges. TENA supports the
integration of HLA - and DIS - based systems, but is neither HLA nor DIS
based. Following the TENA philosophy, interoperability requires a common
architecture, which is TENA, an ability to meaningfully communicate, which
requires a common language provided by the TENA Object Model and a
common communication mechanism, which is the TENA Middleware and
Logical Range Data Archive. In addition, a common context in the form of
a common understanding of the environment, a common understanding of
time as provided by TENA Middleware, and a common technical process
as provided by TENA processes is needed. The specialization of test and
training in the military domain is the strength as well as the weakness of
TENA, as test and training is well supported, but the transition to other
domains requires signifi cant changes to the object model, the data archives,
and even the middleware.

 Another branch not evaluated in this chapter but worthy of being consid-
ered is the use of the Discrete - Event System Specifi cation (DEVS) as docu-
mented in Zeigler et al. [15] . DEVS is a formalism rooted in systems theory.

426 INTEROPERABILITY AND COMPOSABILITY

Using this formalism consistently improves reuse and composability but goes
beyond the scope of this chapter.

 Contributions and Gaps of Current Solutions

 Using the LCIM defi ned earlier in this chapter, a comparison between these
different contributions becomes possible. The following fi gure shows the six
levels of interoperation (technical, syntactic, semantic, pragmatic, dynamic,
and conceptual) and the evaluated standardization efforts (DIS, HLA, BOM,
XML, RDFS, OWL - S) to show the degree of support of integratability,
interoperability, and composability as defi ned in the LCIM can be provided.
The dark gray fi elds indicate that this level of interoperation is well covered
by the respective approach. The light gray fi elds indicate that the standard
comprises means to cope with challenges of this level, but not suffi ciently to
allow for unambiguous solution.

 The justifi cations for the shades shown in Figure 12.5 are as follows:

 (1) DIS uses established infrastructures like Ethernet or Token Rings and
established Web protocols to ensure the technical connectivity. The
defi nition of PDUs ensure unambiguous syntax and semantic. However,
which PDUs can be sent to whom in which context (pragmatic) and
how the system reacts (dynamics) are not part of the standard, although
there is room to capture agreements. The conceptual assumptions and
constraints, however, are not covered.

 (2) HLA has means to support all levels of interoperation, but only the
lower levels are standardized. As DIS, the technical level is supported
by using established protocols. The HLA OMT unambiguously defi nes

Conceptual

Dynamic

Pragmatic

Semantic

Syntactic

Technical

DIS HLA BOM XML RDFS OWL-S

 Figure 12.5 LCIM applied to interoperability standards.

CURRENT INTEROPERABILITY STANDARD SOLUTIONS 427

the syntax. However, as no common data model is given (on purpose,
in order to be able to support all M & S application domains and
areas), every level from the semantic level must be agreed to and
documented in the artifacts provided by the HLA. Unfortunately, these
artifacts are not mandatory, so that the upper layers are not supported
unambiguously.

 (3) BOM evaluated the lessons learned from DIS and HLA and introduced
an extension of necessary artifacts in the form of the BOM template
that requires to identify the conceptual entities and events (semantics),
resulting state changes in the entities (dynamic), and the patterns of
interplay (pragmatic) for the higher levels of interoperation. The
mapping connects these to the syntactically consistent representations
in the services or components represented by the BOM. However, the
capturing of assumptions and constraints is limited to the documenta-
tion what is modeled, which is not suffi cient to support the conceptual
level of the LCIM.

 (4) To evaluate XML in this context is a little bit unfair, as XML has been
designed to describe information exchange between information tech-
nology systems in general. It uses established infrastructures and defi nes
the syntax unambiguously. It also provides the frame for higher levels
(as RDFS, OWL - S, and also HLA and BOM and some extensions on
DIS utilize XML).

 (5) RDFS adds the level of semantics to XML but stays on the same level
as DIS: unambiguous defi nition of objects to be exchanged (or shared)
between applications. To a certain degree, RDFS allows to capture the
context as well, but not enough to fully support the pragmatic level.

 (6) OWL - S explicitly models IOPE and, by doing so, unambiguously
defi nes syntax, semantics, and pragmatics. If the effects were unam-
biguously mapped to inputs of other services to model state changes
as well, it would also support dynamics, but OWL - S misses the
common conceptual representations that are used in BOM to reach
this level.

 This evaluation shows the possible descriptive and prescriptive use of the
LCIM, which has been introduced and expanded in Tolk et al. [26] and Wang
et al. [27] . What is currently still lacking is a set of metrics for each level that
can be used to evaluate if a system supports this level or not. Currently, this
evaluation is conducted by subject matter expertise using their personal judg-
ment, which leaves too much room for interpretation and discussion. Current
discussions show, for example, that some M & S experts explain the opinion
that BOMs already support the conceptual level, while others state that the
statecharts used in BOM are not even suffi cient to support the dynamic level.
A similar discussion is possible for the expressiveness of OWL - S. Additional
research and agreements are necessary.

428 INTEROPERABILITY AND COMPOSABILITY

 ENGINEERING METHODS SUPPORTING
INTEROPERATION AND COMPOSITION

 The elusiveness of the conceptual level of interoperability drives current
research. When the LCIM was fi rst presented in 2003, many experts doubted
that reaching level 6 will ever be possible. However, several current research
projects that will be discussed in this section are working on contribution.
Figure 12.6 was introduced to motivate a general layered approach of inter-
operation in complex systems [28] .

 Interoperability and composability are not values per se. They are required
to support the composition of components that provide a part solution to a
problem into a coherent and consistent solution. It is therefore necessary to
understand the organizational and business model fi rst before any questions
regarding the applicability of solutions can be answered. This model identifi es
and defi nes the necessary organizations, entities, and capabilities as well as
the business processes that need to be supported. It can be argued that this
model builds the conceptual model of the operation that needs to be sup-
ported. Although this model itself is a simplifi cation of reality, it needs to be
complete regarding the required functionality, the conceptual providers and
their capability, their relations, and the common processes. This allows that
the organizational and business model becomes the blueprint against which
the solutions are measured.

 Based on this blueprint, process engineering and data engineering are
conducted as engineering methods that mutually support each other. Data

Level 5

Dynamic interoperability

Level 4

Pragmatic interoperability

Level 3

Semantic interoperability

Level 2

Syntactic interoperability

Level 1

Technical interoperability

Level 6

Conceptual interoperability

C
o

n
s
tra

in
ts

O
rganizational and

business m
odel

Process engineering

D
ata engineering

 Figure 12.6 Engineering methods in support of interoperation.

ENGINEERING METHODS SUPPORTING INTEROPERATION AND COMPOSITION 429

engineering evaluates the information exchange requirements (what data need
to be exchanged to support the business) from the operational view and com-
pares this with the information exchange capability (what data can be pro-
duced by the data source) and the information exchange need (what data can
be consumed by the data target). Process engineering evaluates if the processes
that transform and utilize these data can be synchronized, or even orches-
trated in support of the business processes.

 Data engineering is conducted in four main phases that in practical applica-
tions are often iterative and even circular. The four phases are:

 (1) Data administration answering the questions where the data are, and
how the data can be obtained (including business and security concerns).

 (2) Data management doing the planning, organizing, and managing of data
including defi nition and standardization of the meaning of data as of
their relations.

 (3) Data alignment evaluating information exchange requirement, capabili-
ties, and needs to ensure obtainability and exchangeability of all rele-
vant data.

 (4) Data mediation ensuring the lossless mediation between different
viewpoints.

 Introducing a common reference model capturing the information exchange
requirements derived from the organizational and business model including
dependencies between information elements extends data engineering to
model - based data engineering [29] .

 Process engineering is conducted in four similar phases as well. Process
engineering is conducted to synchronize, align, and orchestrate processes of
the participating systems in support of the common business process. The four
phases are:

 (1) Process administration identifying the relevant processes including
their source and their operational contexts.

 (2) Process identifi cation conducting the organizing and managing of the
processes and their specifi cations.

 (3) Process alignment defi ning attributes of the processes, such as deter-
mining where in the life of the system the process will occur and what
effect it has internally on the system.

 (4) Process transformation involves performing the necessary transforma-
tion to one or more attributes of some of the processes in question to
support the required synchronization, alignment, and orchestration.

 To intrude into the elusiveness of conceptual interoperability, constraint
engineering becomes necessary. King described the foundation for constraint
engineering [30] . Using ontological means to capture the organizational and

430 INTEROPERABILITY AND COMPOSABILITY

business model including the assumptions, constraints, and simplifi cations
making up the conceptual model, he outlined a process for capturing and
aligning assertions. Constraint engineering is also conducted in several phases,
namely:

 • Capture assertions as propositions (assumptions, constraints, implemented
considerations, and competencies) for the model and organizational
environment that are known within the scope or that are otherwise
important.

 • Encode propositions in a knowledge representation language.
 • Compare assertion lists requiring a multilevel strategy that is described in

detail in King [30] .

 In the fi rst applications, we were able to show that it is possible that services
can be conceptually misaligned without showing evidence thereof in their
implementation. In other words, services showed no evidence of creating a
problem even if their source code were open; however, they exposed problems
on the conceptual layer as their assertions resulted in confl icts. While on the
implementation level nothing spoke against composing them, the resulting
composition were conceptually faulty and would create conceptually wrong
answers. Assumptions and constraints leading to simplifi cations of what is not
modeled in these evaluated services resulted in conceptual confl icts. Capturing
just a conceptual model of what is implemented using methods, such as those
supported by BOM or generally UML, is therefore not suffi cient. Constraints
and assumptions of what is and what is not implemented must be modeled
explicitly, showing the need for constraint engineering in support of concep-
tual interoperability.

CONCLUSION

 This chapter introduced the student and scholar to the concepts needed to
understand the challenges of integratability, interoperability, and composabil-
ity. It motivated why it is necessary to distinguish between interoperability of
simulation systems focusing on aspects of their implementation and compos-
ability of simulation models focusing on aspects of their conceptualization. The
LCIM was introduced to systematically evaluate in prescriptive and descriptive
applications the various layers of interoperation. The LCIM also identifi es
artifacts needed to annotate systems and service, allowing identifying appli-
cable potential solutions, selecting the best candidates, composing the selected
candidates to provide the solution, and orchestrating their execution.

 Following these theoretical concepts, current interoperability standardiza-
tion efforts were introduced: IEEE 1278 DIS [17] , IEEE 1516 HLA [18] ,
and SISO - STD - 003 - 2006 BOM [19] . In addition to these M & S - specifi c stan-
dards, Web - based standards were described as well: XML, RDF/RDFS, and

REFERENCES 431

OWL/OWL - S. When applying the LCIM descriptively, the elusiveness of the
conceptual level becomes apparent.

 Current research evaluates engineering methods in support of enabling
interoperation in complex systems: data, process, and constraint engineering.
This is an ongoing research that contributes to the next generation of interop-
erability standards.

 Although this chapter focuses on the technical challenges of interoperabil-
ity and composability, technical solutions do only support interoperability
as a point solution in time. To ensure interoperability and composability
over the lifetime of a system or a federation, management processes are
needed that are integrated into project management as well as into strate-
gic project management [31] . What management processes are needed and
which artifacts need to be produced to support them are topics of ongoing
research.

REFERENCES

 [1] Institute of Electrical and Electronics Engineers . IEEE Standard Computer
Dictionary: A Compilation of IEEE Standard Computer Glossaries . New York :
 IEEE Press ; 1990 .

 [2] The Open Group . The Open Group Architecture Framework Version 8.1.1,
Enterprise Edition: Part IV: Resource Base — Glossary. Berkshire, UK, 2006 ,
available at http://www.opengroup.org/architecture/togaf8 - doc/arch/chap36.html
(accessed December 2009).

 [3] U.S. Department of Defense (DoD) Directive 5000.01 . The Defense Acquisition
System. Certifi ed as current as of November 20, 2007 (former DoDD 5000.1,
October 23, 2004).

 [4] Petty MD , Weisel EW . A composability lexicon . Proceedings of the Spring
Simulation Interoperability Workshop. Orlando, FL , March 30 – April 4, 2003 ,
pp. 181 – 187 .

 [5] Harkrider SM , Lunceford WH . Modeling and simulation composability .
 Proceedings of the Interservice/Industry Training, Simulation and Education
Conference . Orlando, FL, November 29 – December 2, 1999 .

 [6] Pratt DR , Ragusa LC , von der Lippe S . Composability as an architecture driver .
 Proceedings of the Interservice/Industry Training, Simulation and Education
Conference . Orlando, FL, November 29 – December 2, 1999 .

 [7] Kasputis S , Ng HC . Composable simulations . Proceedings of the Winter
Simulation Conference. Orlando, FL , December 10 – 13, 2000 , pp. 1577 – 1584 .

 [8] International Organization for Standardization (ISO)/International Electrotech-
nical Commission (IEC) 10731:1994 . Information Technology — Open Systems
Interconnection— Basic Reference Model — Conventions for the Defi nition of OSI
Services . ISO Press; 1994 .

 [9] Dahmann JS . High level architecture interoperability challenges . Presentation
at the NATO Modeling & Simulation Conference . Norfolk, VA : NATO RTA
Publications; October 25 – 29, 1999 .

432 INTEROPERABILITY AND COMPOSABILITY

 [10] Petty MD . Interoperability and composability . In Modeling & Simulation
Curriculum of Old Dominion University. Old Dominion University.

 [11] Tolk A , Muguira JA . The levels of conceptual interoperability model
(LCIM). Proceedings of the Simulation Interoperability Workshop . Orlando,
FL, September 14 – 19 , 2003 .

 [12] Hofmann M . Challenges of model interoperation in military simulations .
Simulation , 80 : 659 – 667 ; 2004 .

 [13] Page EH , Briggs R , Tufarolo JA . Toward a family of maturity models for
the simulation interconnection problem . Proceedings of the Simulation
Interoperability Workshop . Arlington, VA, April 18 – 23 , 2004 .

 [14] Tolk A , Turnitsa CD , Diallo SY . Implied ontological representation within the
levels of conceptual interoperability model . International Journal of Intelligent
Decision Technologies , 2 (1): 3 – 19 ; 2008 .

 [15] Zeigler BP , Kim TG , Praehofer H . Theory of Modeling and Simulation . 2nd ed.
 New York : Academic Press ; 2000 .

 [16] Zeigler BP , Hammonds PE . Model and Simulation - Based Data Engineering .
 New York : Elsevier Science & Technology Books - Academic Press ; 2007 .

 [17] Institute of Electrical and Electronics Engineers . IEEE 1278 Standard for
Distributed Interactive Simulation . New York : IEEE Publication .

 [18] Institute of Electrical and Electronics Engineers . IEEE 1516 Standard for
Modeling and Simulation High Level Architecture . New York : IEEE Publication .

 [19] Simulation Interoperability Standards Organizations . SISO - STD - 003 - 2006 Base
Object Model (BOM) Template Specifi cation; SISO - STD - 003.1 - 2006 Guide for
BOM Use and Implementation. Available at http://www.sisostds.org . Accessed
May 15, 2009 .

 [20] Hou B , Yao Y , Wang B . Mapping from BOM conceptual model defi nition to
PDES models for enhancing interoperability . Proceedings of the 7th Interna-
tional Conference on System Simulation and Scientifi c Computing . Venice, Italy,
November 21 – 23, 2008 , pp. 349 – 354 .

 [21] Daconta MC , Obrst LJ , Smith KT . The Semantic Web: The Future of XML, Web
Services, and Knowledge Management . Indianapolis, IN : John Wiley ; 2003 .

 [22] Tolk A . What comes after the semantic Web — PADS implications for the dynamic
Web . Proceedings of the 20th Workshop on Principles of Advanced and
Distributed Simulation . Singapore, May 24 – 26, 2006 , pp. 55 – 62 .

 [23] Harold ER , Means WS . XML in a Nutshell: A Desktop Quick Reference . 3rd ed.
 Sebastopol, CA : O ’ Reilly ; 2004 .

 [24] Alesso HP , Smith CF . Developing Semantic Web Services . Wellesley, MA : AK
Peters; 2004 .

 [25] Noseworthy JR . The Test and Training Enabling Architecture (TENA) supporting
the decentralized development of distributed applications and LVC simulations .
 Proceedings of the 12th IEEE/ACM International Symposium on Distributed
Simulation and Real - Time Applications . Vancouver, Canada, October 27 – 29, 2008 ,
pp. 259 – 268 .

 [26] Tolk A , Turnitsa CD , Diallo SY . Implied ontological representation within the
levels of conceptual interoperability model. Journal of Systemics, Cybernetics and
Informatics , 5 (5): 65 – 74 ; 2007 .

FURTHER READINGS 433

 [27] Wang W , Tolk A , Wang W . The levels of conceptual interoperability model:
Applying systems engineering principles to M & S . Proceedings of the Spring
Simulation Multiconference . San Diego, CA, March 22 – 27, 2009 , pp. 375 – 384 .

 [28] Tolk A , Diallo SY , King RD , Turnitsa CD . A layered approach to composition
and interoperation in complex systems . In Complex Systems in Knowledge - Based
Environments: Theory, Models and Applications . Vol. 168. Tolk A , Jain LC
(Eds.). Secaucus, NJ : Springer SCI ; 2009 , pp. 41 – 74.

 [29] Tolk A , Diallo SY . Model - based data engineering for Web services . IEEE
Internet Computing , 9 (4): 65 – 70 ; 2005 .

 [30] King RD . On the Role of Assertions for Conceptual Modeling as Enablers of
Composable Simulation Solutions . PhD Thesis, Engineering, Old Dominion
University , Norfolk, VA ; 2009 .

 [31] Tolk A , Landaeta RE , Kewley RH , Litwin TT . Utilizing strategic project man-
agement processes and the NATO code of best practice to improve management
of experimentation events . Proceedings of the International Command and
Control Research and Technology Symposium . Washington, DC, June 15 – 17 ,
 2009 .

FURTHER READINGS

 Davis PK , Anderson RH . Improving the Composability of Department of Defense
Models and Simulation . Santa Monica, CA : National Defense Research Institute
(US), Rand Corporation ; 2003 . Available at http://www.rand.org/pubs/monographs/
MG101/index.html.

 Kuhl F , Dahmann J , Weatherly R . Creating Computer Simulation Systems: An
Introduction to the High Level Architecture . Upper Saddle River, NJ : Prentice Hall ;
 2000 .

 Neyland DL . Virtual Combat: A Guide to Distributed Interactive Simulation . New
York : Stackpole Books ; 1997 .

 Page EH . Theory and practice for simulation interconnection: interoperability and
composability in defense simulation . In Handbook of Dynamic Systems Modeling ,
 Fishwick PA (Ed.). Boca Raton, FL : CRC/Taylor & Francis Group ; 2007 .

435

Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains,
Edited by John A. Sokolowski and Catherine M. Banks
Copyright © 2010 John Wiley & Sons, Inc.

Aggregate modeling, 19
Analysis, 1, 21

data, 345
regression, 349
sensitivity, 142, 346

Analysis and operations research, 10
Applications, 20
ARENA simulation, 87–92

Central limit theorem, 139
Computational technologies, 8
Computer simulation, 4
Confi dence interval estimate, 50

statistical estimation, 50
Continuous systems, 99

simulating, 110
system class, 100

CountrySim, 229, 255–265

Data/information technologies, 8
Development technologies, 7
Direct3D, 210
Discrete event simulation, 57

queue discipline, 61
queuing, 57, 156
queuing model system, 60

Distributed simulation, 373–402
commercial off the shelf (COTS), 374
conservative algorithms, 378
CORBA, 384
high level architecture (HLA), 374,

386

INDEX

middleware, 383
optimistic algorithms, 381
RESTful web services middleware,

395
SIMulator NETworking (SIMNET),

375
SOAP-based web services

middleware, 389
synchronization algorithms, 377

Distribution functions, 35
empirical, 41
exponential, 36
normal, 36
theoretical, 44
triangular, 35
uniform, 35

Domains, 22

Euler’s method, 111

Fidelity, 13
Flash, 216

Google Earth, 217–220
Google Maps, 218–222

Human behavior modeling, 11, 271–324
artifi cial intelligence, 278
fi nite state machines, 287
fuzzy logic, 277
human behavior, 271
lumped versus distributed, 275

436 INDEX

Human behavior modeling (continued)
pattern recognition, 296
physical level, 273
strategic level, 274

Human-computer interfacing (HCI), 11,
308

Human factors, 11, 305
augmented cognition, 306

Human information processing, 307
Hybrid modeling, 19
Hypothesis testing, 350

International Council of Systems
Engineering (INCOSE), 2

Interoperability and composability,
403–433

cross domain solutions, 404
federate interface specifi cation, 415
IEEE 1278: DIS, 412
IEEE 1516: HLA, 414
integratability, 408
layered model, 407
levels of conceptual interoperability

model (LCIM), 409–411
modularity, 403
OMT specifi cation, 416
resource description framework, 422
resource description schema, 422
SISO-STD-003–2006: BOMs, 419
Web Ontology Language (OWL),

423
XML, 422

Java 3D, 213

MATLAB, 215
Maya, 215
Model, 1, 3

conceptual, 327
constraint, 160
executable, 327
functional, 158
mathematical, 3
notional, 2
physical, 2
spatial, 161
stochastic, 10

Model examples, 104
Predator–prey, 104

Model types, 16
agent-based modeling, 18, 233
data-based modeling, 17
fi nite element modeling (FEM), 17,

163
formal modeling, 165
game theory, 236
input data modeling, 39
multimodels, 164
other modeling, 19
physics-based modeling, 16
semiformal modeling, 168

Modeling technologies, 7
Modeling and simulation (M&S), 1

analysis, 165
analyze phase, 7
characteristics and descriptors,

12
code phase, 7
execute phase, 7
life cycle (fi gure), 9
model phase, 7
strategy, 101

OODA loop (observe, orient, decide,
act), 245

OpenGL, 209
OpenSceneGraph, 211
Operational Research (OR) Methods,

174
Oscillators, 107

critically damped solution, 109
overdamped solution, 109
underdamped solution, 108

Output data analysis, 48

Probability and statistics, 9, 10, 26
density function, 32
distribution function, 32
set, 26
space, 28

Project management, 11

Random number, 38
Random process, 10, 21
Random variables, 10, 31

state variables, 61, 102
Random variates, 37
Resolution, 13

INDEX 437

Runge–Kutta methods, 112
adaptive time step, 116

Scale, 13
Simulation, 1, 4, 328

constructive, 20
continuous, 2, 12
deterministic, 21
discrete, 2, 12, 25
error estimation, 133
exercise, 6
hand, 67
implementation, 118
live, 19
Monte Carlo simulation, 12, 131–145
nonterminating, 54
paradigms, 12
run, 6
stochastic, 21
terminating, 54
trial, 6
virtual, 19

Social sciences, 227, 229
cognitive modeling, 228
economic institution modeling, 228
ethnographic modeling, 228
political strategy modeling, 228
social agent systems, 228

System, 2
dynamic systems, 12

Systems modeling, 147–180
conceptual models, 149
declarative models, 152
Markov chains, 154
methodologies and tools, 148
types, 147

Time-advance mechanism, 62

XNA Game Studio, 212

Use cases, 168

Verifi cation and validation, 8, 173
verifi cation and validation process, 15

Verifi cation, Validation, and
Accreditation (VV&A), 325–372

cause-effect graphing, 345
comparison testing, 348
dynamic methods, 346
face validation, 341
inductive assertions, 353
inspection, 341
methods, 340
performing, 333
predicate calculus, 353
predictive validation, 346
referent, 327
risks, bounds, model credibility, 336
simuland, 327
static V&V methods, 345
Turing test, 343

Visualization, 1, 11, 181–226
3D representations, 184
computer animations, 11
computer graphics, 181
computer visualization, 11
digital images, 202
lighting and shading, 194
refl ection models, 197
shading models, 201
synthetic camera and projections, 189
texture mapping, 202, 205

	MODELING AND SIMULATION FUNDAMENTALS
	CONTENTS
	Preface
	Contributors
	1 Introduction to Modeling and Simulation
	M&S
	M&S Characteristics and Descriptors
	M&S Categories
	Conclusion
	References

	2 Statistical Concepts for Discrete Event Simulation
	Probability
	Simulation Basics
	Input Data Modeling
	Output Data Analysis
	Conclusion
	References

	3 Discrete-Event Simulation
	Queuing System Model Components
	Simulation Methodology
	DES Example
	Hand Simulation—Spreadsheet Implementation
	Arena Simulation
	Conclusion
	References

	4 Modeling Continuous Systems
	System Class
	Modeling and Simulation (M&S) Strategy
	Modeling Approach
	Model Examples
	Simulating Continuous Systems
	Simulation Implementation
	Conclusion
	References

	5 Monte Carlo Simulation
	The Monte Carlo Method
	Sensitivity Analysis
	Conclusion
	References

	6 Systems Modeling: Analysis and Operations Research
	System Model Types
	Modeling Methodologies and Tools
	Analysis of Modeling and Simulation (M&S)
	OR Methods
	Conclusion
	References
	Further Readings

	7 Visualization
	Computer Graphics Fundamentals
	Visualization Software and Tools
	Case Studies
	Conclusion
	References

	8 M&S Methodologies: A Systems Approach to the Social Sciences
	Simulating State and Substate Actors with CountrySim: Synthesizing Theories Across the Social Sciences
	The CountrySim Application and Sociocultural Game Results
	Conclusions and the Way Forward
	References

	9 Modeling Human Behavior
	Behavioral Modeling at the Physical Level
	Behavioral Modeling at the Tactical and Strategic Level
	Techniques for Human Behavior Modeling
	Human Factors
	Human–Computer Interaction
	Conclusion
	References

	10 Verification, Validation, and Accreditation
	Motivation
	Background Definitions
	VV&A Definitions
	V&V as Comparisons
	Performing VV&A
	V&V Methods
	VV&A Case Studies
	Conclusion
	Acknowledgments
	References

	11 An Introduction to Distributed Simulation
	Trends and Challenges of Distributed Simulation
	A Brief History of Distributed Simulation
	Synchronization Algorithms for Parallel and Distributed Simulation
	Distributed Simulation Middleware
	Conclusion
	References

	12 Interoperability and Composability
	Defining Interoperability and Composability
	Current Interoperability Standard Solutions
	Engineering Methods Supporting Interoperation and Composition
	Conclusion
	References
	Further Readings

	Index

