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Stress and Strain Measures
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Goals – Stress & Strain Measures

• Definition of a nonlinear elastic problem

• Understand the deformation gradient?

• What are Lagrangian and Eulerian strains?

• What is polar decomposition and how to do it?

• How to express the deformation of an area and volume

• What are Piola-Kirchhoff and Cauchy stresses?
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What Is a Nonlinear Elastic Problem?
• Elastic (same for linear and nonlinear problems)

– Stress-strain relation is elastic

– Deformation disappears when the applied load is removed

– Deformation is history-independent

– Potential energy exists (function of deformation)

• Nonlinear

– Stress-strain relation is nonlinear

– Deformation is large

• Lagrangian or Material Stress/Strain:

when the reference frame is

undeformed configuration

• Eulerian or Spatial Stress/Strain:

when the reference frame is deformed configuration
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Deformation and Mapping
• Initial domain Ω0 is deformed to Ωx

– We can think of this as a mapping from Ω0 to Ωx

• X: material point in Ω0 x: material point in Ωx

• Material point P in Ω0 is deformed to Q in Ωx

 x X u

displacement
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1, :  One-to-one mapping
Continuously differentiable
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Deformation Gradient
• Infinitesimal length dX in Ω0 deforms to dx in Ωx

• Remember that the mapping is continuously differentiable

• Deformation gradient:

– gradient of mapping Φ

– Second-order tensor, Depend on both W0 and Wx

– Due to one-to-one mapping:

– F includes both deformation and rigid-body rotation

Ω0

Ωx
u dxdX

P
Q

P'
Q'

d d d d
  

xx X x F X
X

i
ij

j

xF
X



 0


    


uF 1 1 u
X

det J 0. F

ij

0 x

[ ],

,

 

 
   

 

1

X x

1d dX F x



6

Example – Uniform Extension
• Uniform extension of a cube in all three directions

• Continuity requirement:
• Deformation gradient:

• : uniform expansion (dilatation) or contraction
• Volume change

– Initial volume:

– Deformed volume:
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Green-Lagrange Strain
• Why different strains?
• Length change:

• Right Cauchy-Green Deformation Tensor

• Green-Lagrange Strain Tensor
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The effect of rotation is eliminated

To match with infinitesimal strain
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Green-Lagrange Strain cont.
• Properties:

– E is symmetric: ET = E

– No deformation: F = 1, E = 0

– When ,

– E = 0 for a rigid-body motion, but
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Example – Rigid-Body Rotation
• Rigid-body rotation

• Approach 1: using deformation gradient
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Example – Rigid-Body Rotation cont.
• Approach 2: using displacement gradient
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Example – Rigid-Body Rotation cont.
• What happens to engineering strain?
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Engineering strain is unable to take care of rigid-body rotation
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Eulerian (Almansi) Strain Tensor

• Length change:

• Left Cauchy-Green Deformation Tensor

• Eulerian (Almansi) Strain Tensor
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Eulerian Strain Tensor cont.

• Properties

– Symmetric

– Approach engineering strain when

– In terms of displacement gradient

• Relation between E and e
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Example – Lagrangian Strain
• Calculate F and E for deformation in the figure
• Mapping relation in Ω0

• Mapping relation in Ωx 1.5
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Example – Lagrangian Strain cont.
• Deformation gradient

• Green-Lagrange Strain
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Example – Lagrangian Strain cont.
• Almansi Strain

• Engineering Strain
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Example – Uniaxial Tension
• Uniaxial tension of incompressible material (λ1 = λ  >1)
• From incompressibility

• Deformation gradient and deformation tensor

• G-L Strain
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Example – Uniaxial Tension
• Almansi Strain (b = C)

• Engineering Strain

• Difference
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