Stress and Strain Measures

Goals - Stress \& Strain Measures

- Definition of a nonlinear elastic problem
- Understand the deformation gradient?
- What are Lagrangian and Eulerian strains?
- What is polar decomposition and how to do it?
- How to express the deformation of an area and volume
- What are Piola-Kirchhoff and Cauchy stresses?

What Is a Nonlinear Elastic Problem?

- Elastic (same for linear and nonlinear problems)
- Stress-strain relation is elastic
- Deformation disappears when the applied load is removed
- Deformation is history-independent
- Potential energy exists (function of deformation)
- Nonlinear
- Stress-strain relation is nonlinear
- Deformation is large
- Lagrangian or Material Stress/Strain: when the reference frame is undeformed configuration

- Eulerian or Spatial Stress/Strain: when the reference frame is deformed configuration

Deformation and Mapping

- Initial domain Ω_{0} is deformed to Ω_{x}
- We can think of this as a mapping from Ω_{0} to Ω_{x}
- X: material point in Ω_{0}
x : material point in Ω_{x}
- Material point P in Ω_{0} is deformed to Q in Ω_{x}
 displacement

Φ, Φ^{-1} : One-to-one mapping Continuously differentiable

Deformation Gradient

- Infinitesimal length $d X$ in Ω_{0} deforms to $d x$ in Ω_{x}
- Remember that the mapping is continuously differentiable

$$
d \mathbf{x}=\frac{\partial \mathbf{x}}{\partial \mathbf{X}} \mathrm{dX} \Rightarrow \mathrm{~d} \boldsymbol{x}=\mathbf{F} d \mathbf{X}
$$

- Deformation gradient:

$$
\mathrm{F}_{\mathrm{ij}}=\frac{\partial \mathrm{x}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{j}}} \quad \mathrm{~F}=1+\frac{\partial \mathbf{u}}{\partial \mathbf{X}}=1+\nabla_{\mathrm{o}} \mathbf{u}
$$

- gradient of mapping Φ

$$
\begin{aligned}
& \mathbf{1}=\left[\delta_{i j}\right], \\
& \nabla_{0}=\frac{\partial}{\partial \mathbf{X}}, \quad \nabla_{x}=\frac{\partial}{\partial \mathbf{x}}
\end{aligned}
$$

- Second-order tensor, Depend on both 0 and x
- Due to one-to-one mapping: $\operatorname{det} F \equiv J>0$. $\quad d \mathbf{X}=F^{-1} d x$
- F includes both deformation and rigid-body rotation

Example - Uniform Extension

- Uniform extension of a cube in all three directions

$$
x_{1}=\lambda_{1} x_{1}, \quad x_{2}=\lambda_{2} x_{2}, \quad x_{3}=\lambda_{3} x_{3}
$$

- Continuity requirement: $\lambda_{i}>0$
- Deformation gradient:

$$
F=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]
$$

- $\lambda_{1}=\lambda_{2}=\lambda_{3}$: uniform expansion (dilatation) or contraction
- Volume change
- Initial volume: $d V_{0}=d X_{1} d X_{2} d X_{3}$
- Deformed volume:

$$
d V_{x}=d x_{1} d x_{2} d x_{3}=\lambda_{1} \lambda_{2} \lambda_{3} d X_{1} d X_{2} d X_{3}=\lambda_{1} \lambda_{2} \lambda_{3} d V_{0}
$$

Green-Lagrange Strain

- Why different strains?
- Length change: $\|d x\|^{2}-\|d X\|^{2}=d x^{\top} d x-d X^{\top} d X$

$$
\begin{aligned}
& =d X^{\top} F^{\top} F d X-d X^{\top} d X \\
& =d X^{\top}\left(F^{\top} F-1\right) d X \\
& \text { Ratio of length change }
\end{aligned}
$$

- Right Cauchy-Green Deformation Tensor

$$
C=F^{\top} F
$$

- Green-Lagrange Strain Tensor

$$
E=\frac{1}{2}(C-1)
$$

The effect of rotation is eliminated

To match with infinitesimal strain

Green-Lagrange Strain cont.

- Properties:
- E is symmetric: $E^{\top}=E$
- No deformation: $F=1, E=0$

$$
\varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial X_{j}}+\frac{\partial u_{j}}{\partial X_{i}}\right)
$$

$$
\begin{aligned}
\mathbf{E} & =\frac{1}{2}\left(\frac{\partial \mathbf{u}}{\partial \mathbf{X}}+\frac{\partial \mathbf{u}^{\top}}{\partial \mathbf{X}}+\frac{\partial \mathbf{u}^{\top}}{\partial \mathbf{X}} \frac{\partial \mathbf{u}}{\partial \mathbf{X}}\right) \\
& =\frac{1}{2}\left(\nabla_{0} \mathbf{u}+\nabla_{0} \mathbf{u}^{\top}+\nabla_{0} \mathbf{u}^{\top} \nabla_{0} \mathbf{u}\right) \\
& \text { Displacement gradient } \\
& \text { Higher-order term }
\end{aligned}
$$

- When $\left|\nabla_{0} \mathbf{u}\right| \ll 1, \quad \mathbf{E} \approx \frac{1}{2}\left(\nabla_{0} \mathbf{u}+\nabla_{0} \mathbf{u}^{\top}\right)=\varepsilon$
- $E=0$ for a rigid-body motion, but $\varepsilon \neq 0$

Example - Rigid-Body Rotation

- Rigid-body rotation

$$
\begin{aligned}
& x_{1}=X_{1} \cos \alpha-X_{2} \sin \alpha \\
& x_{2}=X_{1} \sin \alpha+X_{2} \cos \alpha \\
& x_{3}=X_{3}
\end{aligned}
$$

- Approach 1: using deformation gradient

$F=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right] \quad F^{\top} F=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$E=\frac{1}{2}\left(F^{\top} F-1\right)=0$

Green-Lagrange strain removes rigid-body rotation from deformation

Example - Rigid-Body Rotation cont.

- Approach 2: using displacement gradient

$$
\begin{aligned}
& \mathbf{u}_{1}=x_{1}-X_{1}=X_{1}(\cos \alpha-1)-X_{2} \sin \alpha \\
& \mathbf{u}_{2}=x_{2}-X_{2}=X_{1} \sin \alpha+X_{2}(\cos \alpha-1) \\
& u_{3}=x_{3}-X_{3}=0 \\
& \nabla_{0} \mathbf{u}=\left[\begin{array}{ccc}
\cos \alpha-1 & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha-1 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \nabla_{0} \mathbf{u}^{\top} \nabla_{0} \mathbf{u}=\left[\begin{array}{ccc}
2(1-\cos \alpha) & 0 & 0 \\
0 & 2(1-\cos \alpha) & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \mathbf{E}=\frac{1}{2}\left(\nabla_{0} \mathbf{u}+\nabla_{0} \mathbf{u}^{\top}+\nabla_{0} \mathbf{u}^{\top} \nabla_{0} \mathbf{u}\right)=0
\end{aligned}
$$

Example - Rigid-Body Rotation cont.

- What happens to engineering strain?

$$
\begin{aligned}
& u_{1}=x_{1}-X_{1}=X_{1}(\cos \alpha-1)-X_{2} \sin \alpha \\
& u_{2}=x_{2}-X_{2}=X_{1} \sin \alpha+X_{2}(\cos \alpha-1) \\
& u_{3}=x_{3}-X_{3}=0
\end{aligned}
$$

$$
\varepsilon=\left[\begin{array}{ccc}
\cos \alpha-1 & 0 & 0 \\
0 & \cos \alpha-1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Engineering strain is unable to take care of rigid-body rotation

Eulerian (Almansi) Strain Tensor

- Length change: $\|d x\|^{2}-\|d x\|^{2}=d x^{\top} d x-d X^{\top} d X$

$$
\begin{aligned}
& =d x^{\top} d x-d x^{\top} F^{-\top} F^{-1} d x \\
& =d x^{\top}\left(1-F^{-\top} F^{-1}\right) d x \\
& =d x^{\top}\left(1-b^{-1}\right) d x
\end{aligned}
$$

- Left Cauchy-Green Deformation Tensor

$$
\mathbf{b}=\mathbf{F F}^{\top} \quad \mathbf{b}^{-1}: \text { Finger tensor }
$$

- Eulerian (Almansi) Strain Tensor

$$
e=\frac{1}{2}\left(1-b^{-1}\right)
$$

Reference is deformed (current) configuration

Eulerian Strain Tensor cont.

- Properties
- Symmetric
- Approach engineering strain when $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \ll 1$
- In terms of displacement gradient

$$
\begin{aligned}
\boldsymbol{e} & =\frac{1}{2}\left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}}+\frac{\partial \mathbf{u}^{\top}}{\partial \mathbf{x}}-\frac{\partial \mathbf{u}^{\top}}{\partial \mathbf{x}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right) \\
& =\frac{1}{2}\left(\nabla_{x} \mathbf{u}+\nabla_{x} \mathbf{u}^{\top}-\nabla_{x} \mathbf{u}^{\top} \nabla_{x} \mathbf{u}\right)
\end{aligned}
$$

$$
\nabla_{x}=\frac{\partial}{\partial \boldsymbol{x}}
$$

Spatial gradient

- Relation between E and e

$$
E=F^{\top} e F
$$

Example - Lagrangian Strain

- Calculate F and E for deformation in the figure
- Mapping relation in Ω_{0}

$$
\left\{\begin{array}{l}
x=\frac{3}{4}(s+1) \\
y=\frac{1}{2}(t+1)
\end{array}\right.
$$

- Mapping relation in Ω_{x}

$$
\begin{aligned}
& x(s, t)=0.35(1-t) \\
& y(s, t)=s+1
\end{aligned}
$$

Example - Lagrangian Strain cont.

- Deformation gradient

$$
\begin{aligned}
\mathbf{F} & =\frac{\partial \mathbf{x}}{\partial \mathbf{X}}=\frac{\partial \mathbf{x}}{\partial \mathbf{s}} \frac{\partial \mathbf{s}}{\partial \mathbf{X}} \\
& =\left[\begin{array}{cc}
0 & -.35 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
4 / 3 & 0 \\
0 & 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & -0.7 \\
4 / 3 & 0
\end{array}\right]
\end{aligned}
$$

- Green-Lagrange Strain

$$
E=\frac{1}{2}\left(F^{\top} F-1\right)=\left[\begin{array}{cc}
0.389 & 0 \\
0 & -0.255
\end{array}\right]
$$

Example - Lagrangian Strain cont.

- Almansi Strain

$$
\begin{aligned}
& \mathbf{b}=\mathbf{F} \cdot \mathbf{F}^{\top}=\left[\begin{array}{cc}
0.49 & 0 \\
0 & 1.78
\end{array}\right] \\
& \boldsymbol{e}=\frac{1}{2}\left(\mathbf{1}-\mathbf{b}^{-1}\right)=\left[\begin{array}{cc}
-0.52 & 0 \\
0 & 0.22
\end{array}\right]
\end{aligned}
$$

- Engineering Strain

$$
\begin{aligned}
& \nabla_{0} \mathbf{u}=\mathbf{F}-\mathbf{1}=\left[\begin{array}{cc}
-1 & -0.7 \\
1.33 & -1
\end{array}\right] \\
& \varepsilon=\frac{1}{2}\left(\nabla_{0} \mathbf{u}+\nabla_{0} \mathbf{u}^{\top}\right)=\left[\begin{array}{cc}
-1 & 0.32 \\
0.32 & -1
\end{array}\right]
\end{aligned}
$$

Which strain is consistent with actual deformation?

Example - Uniaxial Tension

- Uniaxial tension of incompressible material $\left(\lambda_{1}=\lambda \quad \lambda\right)$
- From incompressibility

$$
x_{1}=\lambda_{1} X_{1}
$$

$$
\lambda_{1} \lambda_{2} \lambda_{3}=1 \Rightarrow \lambda_{2}=\lambda_{3}=\lambda^{-1 / 2}
$$

$$
x_{2}=\lambda_{2} x_{2}
$$

- Deformation gradient and deformation tensor $x_{3}=\lambda_{3} X_{3}$

$$
\mathbf{F}=\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda^{-1 / 2} & 0 \\
0 & 0 & \lambda^{-1 / 2}
\end{array}\right] \quad \boldsymbol{C}=\left[\begin{array}{ccc}
\lambda^{2} & 0 & 0 \\
0 & \lambda^{-1} & 0 \\
0 & 0 & \lambda^{-1}
\end{array}\right]
$$

- G-L Strain

$$
\mathbf{E}=\frac{1}{2}\left[\begin{array}{ccc}
\lambda^{2}-1 & 0 & 0 \\
0 & \lambda^{-1}-1 & 0 \\
0 & 0 & \lambda^{-1}-1
\end{array}\right]
$$

Example - Uniaxial Tension

- Almansi Strain (b=C)

$$
b^{-1}=\left[\begin{array}{ccc}
\lambda^{-2} & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right] \quad e=\frac{1}{2}\left[\begin{array}{ccc}
1-\lambda^{-2} & 0 & 0 \\
0 & 1-\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right]
$$

- Engineering Strain

$$
\varepsilon=\left[\begin{array}{ccc}
\lambda-1 & 0 & 0 \\
0 & \lambda^{-1 / 2}-1 & 0 \\
0 & 0 & \lambda^{-1 / 2}-1
\end{array}\right]
$$

- Difference

$$
E_{11}=\frac{1}{2}\left(\lambda^{2}-1\right) \quad e_{11}=\frac{1}{2}\left(1-\lambda^{-2}\right) \quad \varepsilon_{11}=\lambda-1
$$

