
Ab Initio and Density-
Functional Treatments 

of Molecules



AB INITIO, DENSITY-FUNCTIONAL, SEMIEMPIRICAL, 

Diatomic molecules: electronic wave function is a function of only one 
parameter (the internuclear distance)
Polyatomic molecule: electronic wave function depends on several 
parameters (bond distances, bond angles, and dihedral angles)
The equilibrium bond distances and angles are found as those values 
that minimize (U = Eel + VNN) 

Four main methods
(to calculating molecular properties):

ab initio

semiempirical

density-functional

Molecular mechanics



ab initio (or first principles) method:
 uses the correct Hamiltonian
 does not use experimental data (only fundamental physical constants)
 HF SCF calculation is an ab initio calculation (seeks the 

antisymmetrized product  of one-electron functions that minimizes 
*Ĥd ; Ĥ ≡ true Hamiltonian) 

 Ab initio ≡ from the beginning (not 100% correct)
 An ab initio SCF MO calculation: taking  as an antisymmetrized

product of spin-orbitals and uses a finite (and hence incomplete) basis 
set. 

Semiempirical methods:
 use a simpler Hamiltonian than the correct Ĥ
 use parameters (are adjusted to fit experimental data or the results 

of ab initio calculations)
 Example: is the Hückel MO treatment (uses a one-electron 

Hamiltonian and takes the bond integrals as adjustable parameters 
rather than quantities to be calculated theoretically) 



Molecular-mechanics method:
 is not a QM method
 does not use a molecular Hamiltonian operator or wave function
 molecule ≡ a collection of atoms held together by bonds
 molecular energy is expressed in terms of force constants for 

bond bending and stretching and other parameters. 

Density-functional method:
 does not attempt to calculate the molecular wave function
 calculates ρ  molecular electronic energy from ρ



The Hartree–Fock Self-Consistent-Field Method

• we must use spin-orbitals and must take an antisymmetric linear 
combination of products of spin-orbitals. This was pointed out by Fock
(and by Slater) in 1930, and an SCF calculation that uses antisymmetrized
spin-orbitals is called a Hartree–Fock calculation. We have seen that a 
Slater determinant of spin-orbitals provides the proper antisymmetry.
For example, to carry out a Hartree–Fock calculation for the lithium 
ground state, we start with the function, where f and g are guesses for the 
1s and 2s orbitals. 



• We then carry out the SCF iterative process until we get no further 
improvement in f and g. 

• This gives the lithium ground-state Hartree–Fock wave function. 
• The differential equations for finding the Hartree–Fock orbitals have the 

same general form as 

• where ui is the ith spin-orbital, the operator F, called the Fock (or Hartree–
Fock) operator, is the effective HF Hamiltonian, and the eigenvalue εi is the 
orbital energy of spin-orbital i. 

• Actually, above eq. applies only when the HF wave function can be written 
as a single Slater determinant, as it can for closed-subshell atoms and
atoms with only one electron outside closed subshells. When the Hartree–
Fock wave function contains more than one Slater determinant, the 
Hartree–Fock equations are more complicated than that.



• The orbital energy εi in the HF equations can be shown to be a good 
approximation to the negative of the energy needed to ionize a closed-
subshell atom by removing an electron from spin-orbital i (Koopmans’ 
theorem. 

• In 1951, Roothaan proposed representing the Hartree–Fock orbitals as 
linear combinations of a complete set of known functions, called basis 
functions. Thus for lithium we would write the Hartree–Fock 1s and 2s 
spatial orbitals as

• where the i functions are some complete set of functions, and where the 
bis and cis are expansion coefficients that are found by the SCF iterative 
procedure. Since the i (chi i) functions form a complete set, these 
expansions are valid. The Roothaan expansion procedure allows one to 
find the HF wave function using matrix algebra. The Roothaan procedure is 
readily implemented on a computer and is often used to find atomic HF 
wave functions and nearly always used to find molecular HF wave 
functions.



• A commonly used set of basis functions for atomic Hartree–Fock
calculations is the set of Slater-type orbitals (STOs) whose normalized 
form is

• The set of all such functions with n, l, and m being integers obeying rules 
but with  having all possible positive values forms a complete set. The 
parameter  is called the orbital exponent. To get a truly accurate 
representation of the HF orbitals, we would have to include an infinite 
number of Slater orbitals in the expansions. In practice, one can get very 
accurate results by using only a few judiciously chosen Slater orbitals. 

• Another possibility is to use Gaussian-type basis functions



THE HARTREE-FOCK METHOD FOR MOLECULES 

A key development in quantum chemistry has been the computation 
of accurate self-consistent-field wave functions for many diatomic 
and polyatomic molecules. 
For closed shells:
The molecular HF wave function ≡ an antisymmetrized product 
(Slater determinant) of spin-orbitals. 

By the variation theorem: 

D: Slater-determinant HF wave function (normalized)
VNN: does not involve electronic coordinates



the closed-shell orthogonal Hartree-Fock MOs satisfy: 

εi : the orbital energy 

in atomic units

kinetic energy 
operator of one 
electron

potential-energy operators 
for the attractions between 
one electron and the nuclei

there are two electrons in 
each spatial orbital



Coulomb operator:
the potential energy of interaction 
between electron 1 and a smeared-out 
electron with electronic density -
|j(2)|2

exchange operator
 has no simple physical 

interpretation
 arises from the requirement that 

the wave function be 
antisymmetric with respect to 
electron exchange. 

an arbitrary function 

over all space 

 The orthogonality of the MOs greatly simplifies calculations (simpler)
 The VB method uses atomic orbitals, and AOs centered on different 

atoms are not orthogonal. 



The true Hamiltonian operator and wave function involve the coordinates 
of all n electrons. 

a one-electron 
differential equation

multiply by i*(l) 
integrate over all space



over the n/2 
occupied orbitals 

sum of the orbital 
energies

avoids counting 
each interelectronic 
repulsion twice



Roothaan's proposal : expand the spatial orbitals i as linear 
combinations of a set of one-electron basis functions χs (make 
feasible the calculation)

basis functions should form a complete set (exact representation, 
infinite number of basis functions)

In practice : a finite number b of basis functions

negligible error in MOs representation: b be large enough and 
the functions χs well chosen





For a nontrivial solution:

a set of b simultaneous linear homogeneous equations in the b 
unknowns csi, s = 1, 2, ..., b, that describe the MO .

a secular equation 

(Hartree-Fock-) 
Roothaan equations 



guesses for the 
occupied-MO as linear 

combinations of the 
basis functions

matrix elements secular equation is 
solved

an initial set of εis

an improved set of 
coefficients

an improved set of 
MOs

and …

no  further improvement in MO 
coefficients and energies

(1)

(2)

(3) (4)

(5)



(1)

(2)

(3)

(4)

(5)



Basis functions:

 Generally, each MO is written as a linear combination of one-electron 
functions (orbitals) centered on each atom. 

 one can use Slater functions for the AOs.

 a complete set of AO BFs: an infinite number of SOs are needed,

 the true molecular HF wave function can be closely approximated with a 
reasonably small number of carefully chosen SOs. 

 A minimal BS for a molecular SCF calculation consists of a single basis 
function for each inner-shell AO and each valence-shell AO of each atom. 

 An extended basis set (EBS) is a set that is larger than a  minimal set. 

 Minimal-BS SCF calculations are easier than EBS calculations, but the latter 
are considerably more accurate. 



Use of the matrix multiplication rule: 

sχto irelate the MOs : sic

Matrix Form of the Roothaan Equations
The Roothaan equations are most efficiently solved using matrix methods. 

εi : orbital energies



. 

C : be the square matrix of order b whose elements are the coefficients csi

F : be the square matrix of order b whose elements are

S : be the square matrix whose elements are
ε : be the diagonal square matrix whose diagonal elements are the 
ε1, ε2, ε3, … orbital energies

Kronecker delta

(r, i)th element of S(Cε)(r, i)th element of FC

matrix form of the Roothaan equations. 



{χ's} : an orthonormal set 

Schmidt or some other procedure: linear 
combinations of the basis functions 

{χs} is not an orthogonal set 

See Szabo and Ostlund, Section 3.4.5, for details of the orthogonalization 

in {χ's} the overlap matrix is a unit matrix: 

C' : relate the MOs i to the orthonormal BFs: 

F' and C’ are readily calculated from F and C.



F and F' matrices and the C and C’ matrices are related by (Problem 
8.49c):

where A is the matrix of coefficients ats in 

The orbital energies εi, are the eigenvalues of the Fock matrix F' and 
each column of C’ is an eigenvector of F'

Multiplication on the left by 

the eigenvector matrix C’
can be chosen to be unitary 

its inverse equals its 
conjugate transpose 

C’-1 = C'†

the MOs i are 
orthonormal

F is Hermitian F' is a Hermitian 
matrix 



For an SCF calculation at a specified molecular geometry: 



7. Use a matrix-diagonalization method to find the eigenvalue and 
eigenvector matrices ε and C'of F'. 
8. Calculate the coefficient matrix C = AC’. 
9. Calculate an improved estimate of the density matrix from C using P = 2CC†, 
which is the matrix form of 

10. Compare the improved P with the preceding estimate of P. If the 
differences are negligible, the calculation has converged and one uses the 
converged SCF wave function to calculate molecular properties. If the 
calculation has not converged, one goes back to step (5)



To find the equilibrium geometry of a molecule, one does a series of 
SCF calculations at many successive geometries. 
For the second and later SCF calculations of the series, one takes the 
initial guess of P as P for the SCF wave function of a nearby geometry. 

1) One way to begin an SCF calculation:

Is neglected a very crude estimate

2) ab initio SCF calculations get the initial estimate of the density 
matrix by doing a semiempirical calculation on the molecule

3) a guess for the P matrix by using the density matrices of the atoms 
composing the molecule. 



By the extended-basis-set calculations  "near HF wave 
functions" or, less cautiously, "HF wave functions." 

SCF wave function and Hartree-Fock wave function

the term SCF wave function is applied to any wave function 
obtained by iterative solution of the Roothaan equations

the basis set is large enough to give a really accurate approximation 
to the HF SCF wave function.

There is only one true HF SCF wave function, which is the best 
possible wave function that can be written as a Slater determinant 
of spin-orbitals.



 a HF wave function gives a very good approximation to the electron 
probability density ρ(x,y, z) for equilibrium configuration. 

 A molecular property that involves only one-electron operators can 
be expressed as an integral involving ρ. Consequently, such properties 
are accurately calculated using HF wave functions (For example, the 
molecular dipole moment).

LiH :
with a near HF : dipole moment = 6.00 D (experimental value = 5.83 D)
NaCl:
the calculated value = 9.18 D (experimental value 9.02 D)

 An error of about 0.2 D is typical in such calculations, but where the 
dipole moment is small, the percent error can be large. 

CO:
(experimental moment = 0.11 D with the polarity C-O+, 
the near-HF moment = 0.27 D with the wrong polarity C+0-. 
a CI wave function gives 0.12 D with the correct polarity

Hartree-Fock wave functions are only approximations to the true wave 
functions.



A major weakness of the Hartree-Fock method is its failure to give 
accurate molecular dissociation energies. 

N2: 
HF De = 5.3 eV       by an extended-bs                  (true value = 9.9 eV) 

F2:
HF De = -1.4 eV                                                         (true De = 1.66 eV)



can prove, for a many-electron MO wave function: 
ρ = ∑ρeach MO  ne(occupying it)

over different 
orthogonal spatial 
MOs

number of electrons in 
the MO j (0,1, or 2)



B(ri) : a function of the spatial coordinates xi, yi, zi of electron i

the average value 

electronic wave function. electrons are indistinguishable:  
terms are identical 



B(r1) depends only on x1, y1, z1
before we integrate over x1, y1, z1, we can 
integrate n||2 over the spatial 
coordinates of electrons 2 to n and sum 
over all the spin coordinates. 

over the three spatial coordinates x, y, z. 



DIPOLE MOMENTS 

wave functions   molecular dipole moments

classical expression: 
for a set of discrete charges Qi

position vector 

electron probability density. 

quantum-mechanical expression (by perturbation theory):



THE VALENCE-ELECTRON APPROXIMATION

Cs2, which has 110 electrons

In the MO method:

110 X 110 Slater determinant of molecular orbitals

MOs  functions containing variational parameters 

minimize the variational integral

108 core electrons + two 6s valence electrons

molecular energy = core- and valence-electron energies.

the valence-electron approximation:



1) core electrons ≡ point charges coinciding with the nucleus. 

minimize the variational integral
no restrictions on the valence-electron trial functions, 

valence-electrons' MO to "collapse" to the σg1s MO

Hamiltonian (for Cs2)  = Hamiltonian for H2

Constraint: variational functions used for the valence 
electrons be orthogonal to the orbitals of the core electrons. 

more work 

2) core electrons are treated as a charge distribution (effective repulsive 
potential for the motion of the valence electrons). 

effective Hamiltonian for the valence electrons

The valence-electron approximation is widely used in approximate 
treatments of polyatomic molecules 



SCF MO Wave Functions for Open-Shell States 

A HF wave function in which electrons whose spins are paired occupy the 
same spatial orbital is called a restricted HF (RHF) wave function.  



 UHF wf gives a slightly lower E than the ROHF wf
 UHF wf is more useful in predicting ESR spectra 
 main problem with the UHF wf: is not an eigenfunction of Ŝ2 (nor a 

linear combination of a few UHF functions)
 true wf and the ROHF wf are eigenfunctions of Ŝ2. 
 for the UHF wf, one have to check the deviation of (S2) from S(S + 

l)ħ2



BASIS FUNCTIONS

Most QM methods begin with the choice of a set of BFs. 

For diatomic molecules, the BFs are usually taken as AOs, (centered on a or b)
each AO ≡ a linear combination of one or more STOs. 
has the form 

An STO centered on atom a

STO basis function 

LC-STO MOs 

LC-STO method uses STOs centered on each of the atoms



Number of BFs = b 

b different possibilities for each BF in (rs|tu)
(rs|tu) = (sr|tu) = … 

number of different electron-repulsion integrals ≈  b4/8

b = 20 to 400  b4/8 = 20000 to 3 X 109

Computer evaluation of three- and four-center integrals over STO basis 
functions is very time consuming. 



To speed up integral evaluation, Boys proposed the use of Gaussian-type 
functions (GTFs) instead of STOs for the AOs in an LCAO wf. 

A Cartesian Gaussian 
centered on b 

i, j, and k are nonnegative integers, 
α is a positive orbital exponent, 
xb, yb, zb are Cartesian coordinates with the origin at nucleus b. 

normalization constant 



i + j + k = 0 (that is, i = 0,j = 0, k = 0) : s-type Gaussian
i + j + k = 1 : p-type Gaussian
i + j + k = 2 : d-type Gaussian
Six d-type Gaussians: xb

2, yb
2, zb

2, xbyb, xbzb, and ybzb. 
five linear combinations (xbyb, xbzb, and ybzb, xb

2- yb
2 , 3zb

2- rb
2) have the 

same angular behavior as the five real 3d AOs; sixth (xb
2+ yb

2+ zb
2= rb

2) is 
like a 3s function; sometimes omitted from the basis set. 
there are ten f-type Gaussians, and these could be combined to have the 
angular behavior of the seven real 4f AOs. 

The form of linear combinations 

the principal quantum number n is absent: 
s AO (1s or 2s or ...) ≡ a LC of several Gaussians with different α, each 
Gaussian having the form exp (-αrb

2)
px orbital ≡ a LC of Gaussians, each of the form xb exp (-αrb

2) and so on.

The Cartesian Gaussians form a complete set. 



spherical Gaussians: 

A GF does not have the desired cusp at the nucleus (a poor representation 
of AO for small rb)
represent an AO as a LC of several GFs. 
an LC-GTF SCF MO calculation involves many more integrals than the 
corresponding LC-STO SCF MO calculation
the number of two-electron integrals  b4.
integral evaluation : much less computer time (by G)
Why? the product of two GFs centered at two different points is equal to a 
single GF centered at a third point (three- and four-center two-electron 
repulsion integrals are reduced to two-center integrals). 



STO basis sets:
minimal (or minimum) basis set : one STO for each inner-shell and 
valence-shell AO of each atom
C2H2 : 1s, 2s,2px, 2py, and 2pz AOs on each C and a 1s STO on each H; 
five STOs on each C and one on each H = a total of 12 basis functions. 
two s-type STOs and one set of p-type STOs on each carbon and one s-
type STO on each hydrogen; is denoted (2s1p) for the C functions and 
(1s) for the H functions; notation (2s1p/1s),

numbers of basis functions 

minimal STO set for first part of the periodic table:



A double-zeta (DZ) basis set : replaces each STO of a minimal basis set by two 
STOs that differ in ζ
C2H2 : 2 1s STOs on each H, 2 1s STOs, 2 2s STOs, 2 2px, 2 2py, and 2 2pz STOs on 
each carbon (24 basis functions; (4s2p/2s))
the number of variational parameters cri in a DZ-BS wf is twice that in a M-BS wf.
A triple-zeta (TZ) basis set : replaces each STO of a M-BS by three STOs that 
differ in ζ. 
A split-valence (SV) basis set : two (or more) STOs for each valence AO but 
only one STO for each inner-shell (core) AO. 
An SV-BS is minimal for inner-shell AOs and DZ (or TZ or ...) for the valence AOs 
(VDZ, VTZ,...) 
AOs are distorted in shape upon molecule formation (polarization)
Thus, one adds BF STOs whose l > lmax of the valence shell of the GS atom 
(polarized (P) basis set)
double-zeta plus polarization set (DZ + P or DZP) : 
DZ set + five 3d functions on each "first- and second-row" atoms + three 2p 
functions (2px, 2py, 2pz) on each H atom. (In QC, Li-Ne are called the first-row)
C2H5OSiH3 :is designated as (6s4p1d/4s2p1d/2s1p)

Si        C, O         H 
To increase accuracy, higher-l polarization functions can be added. 



Instead of using the individual GFs as BFs, take each BF as a normalized LC 
of a few Gaussians: 

Gaussian-basis-sets

gu's : normalized Cartesian Gaussians centered on the same atom and 
having the same i, j, k , but different α's. 
dur : contraction coefficients (constants) 
χr : contracted CGTF
gu's : primitive Gaussians. 
using CG   number of variational coefficients  computational time 

(little loss in accuracy if durs are well chosen) 



The product of two 1s Gaussians is a third 1s 
Gaussian. 



The classifications given for STO BSs also apply to CGTF BSs 

A minimal basis set : consists of one CGF for each inner-shell AO and for 
each valence-shell AO
A DZ basis set : two CGTFs for each such AO
A DZP set : adds CGs with higher l to the DZ set, where l = i + j + k 

αs and durs of the BFs are kept fixed at the predetermined values
CGTF M-BS : no way for the BFs to adjust their sizes to differing 
molecular environments. 
DZ BS : allow the AO sizes to vary from one molecule to another. 
Example:
1s' and 1s" be two 1s CGTFs centered on a certain H atom
1s' (and 1s“) be a linear combination of a few s-type PGs 
Let for α in the primitives  1s'  >  Is“. 1s" is spread out over a much larger 
region of space than Is'.
expression for a given MO contains  c11s' + c2ls“; c1 and c2 are found by 
the SCF process. The size of the function will increase as the ratio c2/c1
increases.



polarization functions vary the AO shapes, shifting charge density away 
from the nuclei and into the bonding regions in the molecule. 

Example
adding 2p functions to a 1s on H
c11s + c22px + c32py + c42pz
AO will be polarized in a direction determined by c2, c3, and c4. 
c3 = 0, c4 = 0, c1 > 0, c2 > 0. c22px will cancel some of the probability 
density of the c11s term on one side of the H atom and will augment it 
on the other side, thereby polarizing the 1s function in the positive x 
direction. 

p-type AOs can be polarized by mixing in d-type AOs. 



methods to form CG sets:
1) Minimal CGTF sets are often formed by fitting STOs. 
a) one STO per AO, b) Each STO is approximated as a linear combination of 
N GFs, (coefficients and exponents)
N = 3  STO-3G (H through Xe) is not quite as good as a MBS STO

(6s3p/3s) contracted to [2s1p/1s]                          (2s1p/1s) 
parentheses for primitive Gaussians 
brackets for contracted Gaussians.

1s STO having ζ = 1

normalized s-type Gaussian

to fit a 1s STO with orbital exponent ζ

For G3N(r; 1), replacing each orbital exponent αi by ζ2αi

ζ is called a scale factor. 





Comparison of the quality of the least-squares fit of a 1s Slater 
function (ζ = 1.0) obtained at the STO-1G, STO-2G, and STO-3G 
levels. 



2) start with atomic GTF SCF calculations
Huzinaga used a (9s5p) basis set of uncontracted Gaussians to do SCF calculations 
on the atoms Li-Ne. 

Example: the ground state of the O atom for the nine s-type basis GTFs:

orbital exponents: 

expansion coefficients for the 1s SCF AO 

expansion coefficients for the 2s SCF AO 

diffuse function 



a split-valence [3s2p] set of contracted GTFs for O: 
1s:
the g1, g2, g3, g4, g5, and g7 coefficients:1s AO >> 2s AO, 
g8 and g9 coefficients 2s AO >> 1s AO, 
g6 : substantial contributions to both 1s and 2s.  

have been omitted 9and g8because g

2s:
we need two BFs for the 2s AO (from g6, g8, and g9)
g9 is called a diffuse function
The outer region of an AO changes the most upon molecule  formation 
(take g9 as one of the basis)

The 2p and 2p' CGTFs can be formed similarly 



3-21G set (H - Xe) and 6-31G set (H - Zn) : 
SV basis sets of CGTFs. 
3-21G: 
inner-shell AO: (1s for Li-Ne; 1s, 2s, 2px, 2py, 2pz for Na-Ar; and so on) 
single CGTF (a LC of three PGs)
valence-shell AO: (1s for H; 2s and the 2p's for Li-Ne;...; 4s and the 4p's 
for K, Ca, Ga-Kr; 4s, the 4p's, and the five 3d's for Sc-Zn)  two basis 
functions (one CGTF that is a LC of two GP and one which is a single 
diffuse Gaussian. 
6-31G:
inner-shell CGTF  six primitives
valence-shell AO  one CGTF (with 3 primitives) + one Gaussian (with 
one primitive)

α and dur were determined to minimize the SCF energies of atoms. 
in 3-21G, α for H in an atomic calculation are increased using a scale 
factor
in 6-31G, valence orbital exponents of H and of Li through O are scaled 
to be more appropriate for molecular calculations. 



6-31G* = 6-31G   +    six d-type Cartesian-Gaussian polarization functions  
on Li - Ca and ten f-type Car-GPFs on Sc - Zn. 
6-31G**  =  6-31G*  + three p-type GPFs on H & He. 
α of PFs were determined as the average of the optimum values found in  
calculations on small molecules. 
P atom:
6-31G* : 19 BFs centered on it (Is, 2s, 2px, 2py, 2pz, 3s, 3s', 3px, 3py, 3pz, 
3p'x, 3p'y, 3p'z, and six d's) and is [4s3p1d] for P. 

6-31G* and 6-31G** [or 6-31G(d) and 6-31G(d,p)] (H - Zn) 
VDZ polarized basis sets:

3-21G(*) (H - Ar)
For second-row atoms, d orbitals contribute significantly to the bonding. 
3-21G(*) (H - Ar) = 3-21G  +  six d-type GFs on each second-row atom. 
For H-Ne, 3-21G(*) = 3-21G . 



3-21+G, 6-31+G*, 3-21++G and 6-31++G*
Anions, compounds with lone pairs, and hydrogen-bonded dimers have  
significant electron density at large distances from the nuclei. 
3-21+G (and 6-31+G*) =  3-21G (and 6-31G*) +  four highly diffuse functions 
(s,px,py,pz) on each non-hydrogen atom; very small α (0.01 to 0.1)
3-21++G (and 6-31++G*) = 3-21+G (and 6-31+G*) + a highly diffuse s 
function on each H atom. 

cc-pVXZ basis sets (a CGTF BS; Dunning and co-workers):
(cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z)
for use in methods (such as CI) that include ec. 
cc-pVDZ (correlation consistent, polarized VDZ). 
first-row atoms: cc-pVDZ  is [3s2p1d]; cc-pVTZ  is [4s3p2d1f].

cc-pCVXZ = cc-pVXZ + certain primitive Gaussians (CV stands for 
core/valence).
for calculations that include correlation effects involving the core 
electrons. 

augmented sets aug-cc-pVDZ = cc-pVXZ  +  diffuse nonpolarization 
for correlation calculations on anions and H-bonded species. 



oxygen atom

can be ignored

s-type CGTF consisting of 3 PGs 

a scale factor 

α dur dur

large [inner-shell 
(core) 1s AO]

s-type and p-type CGTFs 
valence 2s and 2p AOs 

assures us that the 
primitive Gaussians are 
normalized 

Example:
On the basis-set order form, choose the 3-21G basis set and enter O in the 
Elements box (Gaussian 94)



1s CGTO

a normalized primitive s-type GTF with α = 322.037 

The 3-21G set uses the same orbital exponents for the 2s and 2p AOs, so 
as to speed up calculations. 

the valence CGTFs 



https://bse.pnl.gov/bse/portal



O     0 
S   6   1.00

8588.5000000              0.00189515       
1297.2300000              0.0143859        
299.2960000              0.0707320        
87.3771000              0.2400010        
25.6789000              0.5947970        
3.7400400              0.2808020        

SP   3   1.00
42.1175000              0.1138890              0.0365114        
9.6283700              0.9208110              0.2371530        
2.8533200             -0.00327447             0.8197020        

SP   1   1.00
0.9056610              1.0000000              1.0000000        

SP   1   1.00
0.2556110              1.0000000              1.0000000        

SP   1   1.00
0.0845000              1.0000000              1.0000000        

D   1   1.00
2.5840000              1.0000000        

D   1   1.00
0.6460000              1.0000000        

6-311++G(2d,2p)



POPULATION ANALYSIS 

SCF wave functions can be analysied by population analysis, introduced by
Muliken [Mulliken population analysis (MPA)]
n-electrons  nr + nr-s
nr : net populations in the basis functions χr
nr-s  : overlap populations for all possible pairs of basis functions 

basis set {χi}

For simplicity: csi's and χsi's are real

The probability density associated with one electron in i is 

Integrating (i and χs's are normalized)

overlap integrals



For ni electrons in the MO i {ni = 0,1,2):
Let, 
nri  contribution of electrons (in i) to the net population in χr
nr-si  contribution of electrons (in i) to the overlap population 
between χr and χs

summing over the occupied MOs, 

total number of electrons 



Example:
calculate the net and overlap population contributions for the H2O 
from
find nr for each basis function. Use H11s and H21s as basis functions, rather 
than the symmetry-adapted basis functions. 

Overlap integrals between basis STOs centered on different atoms can 
be found by interpolation in the tables of R. S. Muliken et al., J. Chem. 
Phys.,11,1248 
(1949). (see Problem 15.21) 

net populations: 



The five lowest SCF MOs found by Pitzer and Merrifield at the 
experimental geometry are 

The 02s orbital is an orthogonalized orbital 



overlap populations 

net population of O1s: 



The MO i in a covalent molecule:
S =  nr-s,i (χr and χs lie on different atoms)
S > 0 (substantially), the MO is bonding
S < 0 (substantially), the MO is antibonding 
S ≈ 0 , the MO is nonbonding 

for the 3a1 MO 
overlap of,
O1s with H11s : 2(2)(-0.026)(0.264)(0.054) = -0.0015
O2s  with H 2 1s 2(2)(-0.502) X (0.264)(0.471) = -0.250,  
O2pz with H11s : 0.205 
O2pz with H21s : 0.205
H11s with H21s : 2(2)(0.264)(0.238) = 0.066
 = -0.03 for the 3a1 MO ≈ zero  a nonbonding (lone-pair) MO 
 = 0.53 for the 2a1 bonding 
 = 0.50 for the 1b2  bonding
 = 0.00 for 1a1 (inner-shell) 



1) apportioning the electrons into net populations in BFs and overlap 
populations for pairs of BFs, 

2) apportioning the electrons among the basis functions only, with no 
overlap populations. Muliken proposed : splitting nr-s equally 
between the BFs xr and Xs

gross population

number of electrons in the molecule 

Example:
the contribution to the gross population of O2s from the 2a1 MO



gross atomic population NB for atom B: 

for basis function χr

all BFs centered on atom B 

 NB = n

number of electrons in the molecule

net atomic charge qB on atom B :



One should not put too much reliance on numbers calculated by population 
analysis. 
1) assignment of ½ nrs to each basis function is arbitrary and sometimes leads to 
unphysical results
2) a small change in BS can produce a large change in the calculated net charges. 

For example:
net atomic charges on each H atom:

Comparison

Comparison
?



1) one calculates a set of orthonormal natural atomic orbitals (NAOs) 
from {χr} 

2) NAOs  a set of orthonormal natural bond orbitals (NBOs), (core, 
lone pair, or bond orbital)

3) population analysis by NBOs. qNPAs show less BS dependence than 
qMPAs. 

in view of the existence of improved methods, MPA should no longer be 
used [S. M. Bachrach in K. Lipkowitz and D. B. Boyd (eds.), Reviews in 
Computational Chemistry, vol. 5, VCH (1994), Chapter 3.] 

An improvement on MPA is natural population analysis (NPA)

uses ideas related to natural orbitals 

Other methods of assigning net atomic charges are discussed in the 
next section. 


