Ab Initio and Density-
Functional Treatments
of Molecules



AB INITIO, DENSITY-FUNCTIONAL, SEMIEMPIRICAL,

Diatomic molecules: electronic wave function is a function of only one
parameter (the internuclear distance)

Polyatomic molecule: electronic wave function depends on several
parameters (bond distances, bond angles, and dihedral angles)

The equilibrium bond distances and angles are found as those values
that minimize (U = E_ + V)

ab initio

Four main methods semiempirical

(to calculating molecular properties): , _
density-functional

Molecular mechanics



Semiempirical methods:

v
v

v

use a simpler Hamiltonian than the correct H

use parameters (are adjusted to fit experimental data or the results
of ab initio calculations)

Example: is the Hiickel MO treatment (uses a one-electron
Hamiltonian and takes the bond integrals as adjustable parameters
rather than quantities to be calculated theoretically)

ab initio (or first principles) method:

v
v
v

v
v

uses the correct Hamiltonian

does not use experimental data (only fundamental physical constants)
HF SCF calculation is an ab initio calculation (seeks the
antisymmetrized product ® of one-electron functions that minimizes
Jo*Addr ; A = true Hamiltonian)

Ab initio = from the beginning (not 100% correct)

An ab initio SCF MO calculation: taking y as an antisymmetrized
product of spin-orbitals and uses a finite (and hence incomplete) basis
set.



Density-functional method:
v does not attempt to calculate the molecular wave function
v’ calculates p — molecular electronic energy from p

Molecular-mechanics method:

is not a QM method

does not use a molecular Hamiltonian operator or wave function
molecule = a collection of atoms held together by bonds
molecular energy is expressed in terms of force constants for
bond bending and stretching and other parameters.
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The Hartree—Fock Self-Consistent-Field Method

e we must use spin-orbitals and must take an antisymmetric linear
combination of products of spin-orbitals. This was pointed out by Fock
(and by Slater) in 1930, and an SCF calculation that uses antisymmetrized
spin-orbitals is called a Hartree—Fock calculation. We have seen that a
Slater determinant of spin-orbitals provides the proper antisymmetry.

For example, to carry out a Hartree—Fock calculation for the lithium
ground state, we start with the function, where fand gare guesses for the
1sand 2sorbitals.

1)B(1 |
b= —|f(2)a(2) A2)B(2) g(2)x(2)
3)B(3 3



We then carry out the SCF iterative process until we get no further
improvement in fand g.

This gives the lithium ground-state Hartree—Fock wave function.

The differential equations for finding the Hartree—Fock orbitals have the
same general form as

.E'ua- = gli;, [ = 1, R

where u, is the ith spin-orbital, the operator F, called the Fock (or Hartree—
Fock) operator, is the effective HF Hamiltonian, and the eigenvalue €, is the
orbital energy of spin-orbital i.

Actually, above eq. applies only when the HF wave function can be written
as a single Slater determinant, as it can for closed-subshell atoms and
atoms with only one electron outside closed subshells. When the Hartree—
Fock wave function contains more than one Slater determinant, the
Hartree—Fock equations are more complicated than that.



The orbital energy €;in the HF equations can be shown to be a good
approximation to the negative of the energy needed to ionize a closed-
subshell atom by removing an electron from spin-orbital /(Koopmans’
theorem.

In 1951, Roothaan proposed representing the Hartree—Fock orbitals as
linear combinations of a complete set of known functions, called basis
functions. Thus for lithium we would write the Hartree—Fock 1sand 2s
spatial orbitals as

JII =Ehrx.!'~ B EE}':{E

where the y,functions are some complete set of functions, and where the
bs and cs are expansion coefficients that are found by the SCF iterative
procedure. Since the y; (chi /) functions form a complete set, these
expansions are valid. The Roothaan expansion procedure allows one to
find the HF wave function using matrix algebra. The Roothaan procedure is
readily implemented on a computer and is often used to find atomic HF
wave functions and nearly always used to find molecular HF wave
functions.



A commonly used set of basis functions for atomic Hartree—Fock

calculations is the set of Slater-type orbitals (STOs) whose normalized

form is _—
(2 /ag)"*'2

[ (2n)!]"/2

ph- l{r—;J',.":a”};;u{ﬂ" {b}

The set of all such functions with n, |, and m being integers obeying rules
but with C having all possible positive values forms a complete set. The
parameter C is called the orbital exponent. To get a truly accurate
representation of the HF orbitals, we would have to include an infinite
number of Slater orbitals in the expansions. In practice, one can get very
accurate results by using only a few judiciously chosen Slater orbitals.

Another possibility is to use Gaussian-type basis functions



THE HARTREE-FOCK METHOD FOR MOLECULES

A key development in quantum chemistry has been the computation
of accurate self-consistent-field wave functions for many diatomic
and polyatomic molecules.

For closed shells:

The molecular HF wave function = an antisymmetrized product
(Slater determinant) of spin-orbitals.

By the variation theorem: E,; = (D|A,, + Vyn|D)

D: Slater-determinant HF wave function (normalized)

Vun: does not involve electronic coordinates



the closed-shell orthogonal Hartree-Fock MOs satisty:
ﬁﬂ)‘l”i(l) = &:(1)

g; : the orbital energy

A n nfz . : . .
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the potential energy of interaction
_____________________________________ between electron 1 and a smeared-out
 an arbitrary function ' electron with electronic density -

------------------------------------- ,2) 12

J(Of(1) = (1) J |¢J,-(2)[2;T—2 dv, Coulomb operator:

}k(z)f (2) exchange operator

v has no simple physical
interpretation

v’ arises from the requirement that

 over all space : the wave function be

_______________________ antisymmetric with respect to

electron exchange.

v" The orthogonality of the MOs greatly simplifies calculations (simpler)
v" The VB method uses atomic orbitals, and AOs centered on different

atoms are not orthogonal.



The true Hamiltonian operator and wave function involve the coordinates
of all n electrons.

The Hartree-Fock Hamiltonian operator F is a one-electron operator

The operator F depends on its own eigenfunctions, which are not known
initially. Hence the Hartree-Fock equations must be solved by an iterative
process.

a one-electron
differential equation

F(l)d’i(l) = g;d{(1)
multiply by ¢:*(l) l

integrate over all space

& = [ d¥(1)F(1)g(1) dv,
R . nfz2 .
B) = A1) + 3 [2J(1) — R(1)] l

j=1

& = {(G(DIH(D]¢ (1) + X [ASDI(Dlbi(1) — (DK (Dl(1))]

n/2
g = Hﬁpre -+ 21(2']11 - K”)
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Roothaan's proposal : expand the spatial orbitals ¢, as linear
combinations of a set of one-electron basis functions x, (make
feasible the calculation)

b
(;bi = Z] CoiXs

basis functions should form a complete set (exact representation,
infinite number of basis functions)

In practice : a finite number b of basis functions

negligible error in MOs representation: b be large enough and
the functions x, well chosen



F(l)d’i(l) = g;¢,(1)

b
¢i = 2 CsiXs
s=1

2 CSIFX:; = & E CsiX's

Xr % and integration

\i

b
>elF,—&S,)=0, r=12..,b
§=1

Frs = <Xr|ﬁ‘|Xs> Srs = <Xr|XS>



b
2 Csf(Frs - EiSrS) = 0 ’ ¥ — 1: 2: vy b (Hartree_FOCk_) .
= Roothaan equations

a set of b simultaneous linear homogeneous equations in the b
unknowns c., s=1, 2, ..., b, that describe the MO .

S Y
For a nontrivial solution:

det(F,, — 85,,) =0 a secular equation

Roothaan equations must be solved by an iterative process, since the F
depend on the orbitals ¢; (through the dependence of F on the ¢,'s),
which depend on cg;.



guesses for the
 occupied-MO as linear
(1) combinations of the
basis functions

compute the Fock
(2) operator F

3) " matrix elements

(%)

(4)

an improved set of ~ an improved set of
coefficients MOs

an initial set of g;s an improved F

secular equation is |
| and ...
solved

v
no further improvement in MO
coefficients and energies



b
= 2 CsiXs
s=1
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det(F,S — SI'S”-) = 0

b
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Basis functions:

v Generally, each MO is written as a linear combination of one-electron
functions (orbitals) centered on each atom.

v’ one can use Slater functions for the AOs.
v" a complete set of AO BFs: an infinite number of SOs are needed,

v" the true molecular HF wave function can be closely approximated with a
reasonably small number of carefully chosen SOs.

v" A minimal BS for a molecular SCF calculation consists of a single basis
function for each inner-shell AO and each valence-shell AO of each atom.

v" An extended basis set (EBS) is a set that is larger than a minimal set.

v" Minimal-BS SCF calculations are easier than EBS calculations, but the latter
are considerably more accurate.



Matrix Form of the Roothaan Equations

The Roothaan equations are most efficiently solved using matrix methods.

b b
EE‘SCSi =2Srscsi8i’ r = 13 29"' 5b
s=1 s=1

c, : relate the MOs ¢, to
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b = X, CuXs : Use of the matrix multiplication rule: :
l(Ce)si = 2m("sm{':mi — 2mCsr.mamigi = CyE; II

g; : orbital energies

b

b
2 Frscs 2 SrS(Cs)Sl

s=1



C : be the square matrix of order b whose elements are the coefficients c
F : be the square matrix of order b whose elements are  F,, = (y,|F|x,)
S : be the square matrix whose elements are S, = (xlxs)

€ : be the diagonal square matrix whose diagonal elements are the
€1, €,, €, ... Orbital energies ¢ . =§ ¢,

Kronecker delta

---------------------------------

(r, i)th element of FC (r, i)th element of S(Cg)

FC = SCe

matrix form of the Roothaan equations.



Schmidt or some other procedure: linear
combinations of the basis functions

X; = Et s Xt S;s = <X;'X;> = 5!‘5“
See Szabo and Ostlund, Section 3.4.5, for details of the orthogonalization

in {x',} the overlap matrix is a unit matrix: S/, = (x/|x)) = 8,5

FC=8Ce ——— F'C =Ce

F. = (lFlx;)
C': relate the MOs ¢, to the orthonormal BFs:  &; = 2, X,

F' and C’ are readily calculated from F and C.



F and F' matrices and the C and C’ matrices are related by (Problem
8.49¢):

F'=A'FA and C = A(C

where A is the matrix of coefficients a, in  Xs = 2 a5X;

FC =C¢
The orbital energies €, are the eigenvalues of the Fock matrix F' and
each column of C’" is an eigenvector of F'

Fis Hermitian 3 FisaHermitian 5~ the eigenvector matrix C’
matrix can be chosen to be unitary

its inverse equals its

) the MOs ¢, are
2> conjugate transpose SO

geEEE EEm EEm B s o o

orthonormal
N cil=c" /
e e e e e e e e e o o o o o o o o o o e o o o o o o o o o o o e e e e e e e o o b
- m T s T T @ ________________________ \
! F'C' =Cle |
: l Multiplication on the leftby €' ~'=C"" :
I [
| C'F'C =¢ I



For an SCF calculation at a specified molecular geometry:

1. Choose a basis set x;

2. Evaluate the H:27¢,S,, and (rs|tu) integrals.

3. Use the overlap integrals S, and an orthogonalization procedure to
calculate the A matrix of coefficients a, that will produce orthonormal basis
functions ye = Xt Qrs Xt

4. Make an initial guess for the coefficients c; in the MOs ¢; = .. ¢, xs From

the initial guess of coefficients, calculate the density matrix P in
n/2
P,uEZEc;*}cuj, t=1,2,...,b, u=12,...,b
j=1

5. Use
b b
F, = HZ™ + > > P,[(rsltu) — 3(rults)]

t=1u=1
to calculate an estimate of the Fock matrix elements F.. from P and the (rs|tu)
and HyJ€ integrals.

6. Calculate the matrix F' using F’ = A'FA.



7. Use a matrix-diagonalization method to find the eigenvalue and
eigenvector matrices € and C'of F'.

8. Calculate the coefficient matrix C = AC’.

9. Calculate an improved estimate of the density matrix from C using P = 2CC,

which is the matrix form of

n/2
P,uEZEc;*}cuj, t=1,2,...,b, u=12,...,b
j=1

10. Compare the improved P with the preceding estimate of P. If the
differences are negligible, the calculation has converged and one uses the
converged SCF wave function to calculate molecular properties. If the
calculation has not converged, one goes back to step (5)



1) One way to begin an SCF calculation:

S I I IS B I BN B B B B B EEm

/b

Es = Hﬁ;’re +: E P,u[(rs|tu) - %(ru|ts)] - s Frs o~ Hc;?re
|
l

)

a very crude estimate

2) ab initio SCF calculations get the initial estimate of the density
matrix by doing a semiempirical calculation on the molecule

3) a guess for the P matrix by using the density matrices of the atoms
composing the molecule.

To find the equilibrium geometry of a molecule, one does a series of
SCF calculations at many successive geometries.

For the second and later SCF calculations of the series, one takes the
initial guess of P as P for the SCF wave function of a nearby geometry.



SCF wave function and Hartree-Fock wave function

the term SCF wave function is applied to any wave function
obtained by iterative solution of the Roothaan equations

the basis set is large enough to give a really accurate approximation
to the HF SCF wave function.

There is only one true HF SCF wave function, which is the best
possible wave function that can be written as a Slater determinant
of spin-orbitals.

By the extended-basis-set calculations - "near HF wave
functions" or, less cautiously, "HF wave functions."



Hartree-Fock wave functions are only approximations to the true wave
functions.

v’ a HF wave function gives a very good approximation to the electron
probability density p(x,y, z) for equilibrium configuration.

v" A molecular property that involves only one-electron operators can
be expressed as an integral involving p. Consequently, such properties
are accurately calculated using HF wave functions (For example, the
molecular dipole moment).

LiH :

with a near HF y: dipole moment = 6.00 D (experimental value = 5.83 D)

NaCl:

the calculated value = 9.18 D (experimental value 9.02 D)

v An error of about 0.2 D is typical in such calculations, but where the
dipole moment is small, the percent error can be large.

CO:

(experimental moment = 0.11 D with the polarity CO",

the near-HF moment = 0.27 D with the wrong polarity C*0-.

a Cl wave function gives 0.12 D with the correct polarity



A major weakness of the Hartree-Fock method is its failure to give
accurate molecular dissociation energies.

N,:

HF D,=5.3eV by an extended-bs (true value = 9.9 eV)
F,:

HF D, =-1.4¢eV (true De = 1.66 eV)



can prove, for a many-electron MO wave function:
P = 2Peach Mo X Ne(OCCUPYINg it)

p(x,y,2) = X njof

N
over different number of electrons in

orthogonal spatial the MO ¢; (0,1, or 2)
MOs



B(r,)) : a function of the spatial coordinates x;, y,, z; of electron i

the average value

(4

N

n

2 B(r;)

i=1

¢> - J o BE)dr = S JMZB(r,-) dr

=1 i=1

electronic wave function. e e
electrons are indistinguishable:

terms are identical

(| =71 By = J nly[*B(r,) dr



(6| 2i=1 Br)lw) = [ nly*B(r,) dr

- Em Em Em EE EE EE EE EE S EE B EE B EE EE EE EE EE D D EE E E S D e gy,

B(r,) depends only on x;, y;, z,

before we integrate over x;, y;, Z;, we can
integrate nly |2 over the spatial
coordinates of electrons 2 to n and sum
over all the spin coordinates.

\ p(l' _nzj J|¢(r L YPRREINS PPN ({ PITRER msn)lzer.“drn /

N all m,

e e e o e mm mm mm mm mm mm mm mm mm mm Em Em mm Em Em o o o =

W Zi=1B@)w) = [ p(r}) B(xy) dr,

l

[ > Bley dr - [ ote)51e) a

/N

—— e o e e e e e . oy
- o S S o S e e .

over the three spatial coordinates x, y, z.



DIPOLE MOMENTS

wave functions — molecular dipole moments

classical expression:

for a set of discrete charges Q;

Ko = 2 Qr;
1

position vector

quantum-mechanical expression (by perturbation theory):

p=—e JJJp(x, v, Zxdxdydz + e Z.x,
I «

electron probability density.



THE VALENCE-ELECTRON APPROXIMATION

Cs,, which has 110 electrons

__________________________________________________________________________________________________________________

/" In the MO method:

110 X 110 Slater determinant of molecular orbitals

l MOs ~ functions containing variational parameters

minimize the variational integral

the valence-electron approximation:

108 core electrons + two 6s valence electrons

molecular energy = core- and valence-electron energies.



1) core electrons = point charges coinciding with the nucleus.

Hamiltonian (for Cs,) = Hamiltonian for H,

minimize the variational integral
no restrictions on the valence-electron trial functions,

valence-electrons' MO to "collapse” to the o,1s MO

Constraint: variational functions used for the valence
electrons be orthogonal to the orbitals of the core electrons.

more work

2) core electrons are treated as a charge distribution (effective repulsive
potential for the motion of the valence electrons).
effective Hamiltonian for the valence electrons

The valence-electron approximation is widely used in approximate
treatments of polyatomic molecules



SCF MO Wave Functions for Open-Shell States

A HF wave function in which electrons whose spins are paired occupy the
same spatial orbital is called a restricted HF (RHF) wave function.

v" RHF wave functionis generally used for closed-shell states

v unrestricted HF (UHF) and restricted open-shell HF (ROHF) are widely
used for open-shell states.

v" In ROHF method, paired electrons are given the same spatial orbital

function

|1s1s2s| for the ROHF wave function of the Li ground state

| 1sg23| for UHF wave function, where 1s # 1s'.

the interaction between the 2sa and 1sa electrons differs from the

interaction between the 2sa and 1s3 electrons (spatial orbitals, 1s and

1s°).

SN X



A NEANERN

ANERN

UHF wf gives a slightly lower E than the ROHF wf

UHF wf is more useful in predicting ESR spectra

main problem with the UHF wf: is not an eigenfunction of 52 (nor a
linear combination of a few UHF functions)

true wf and the ROHF wf are eigenfunctions of S2.

for the UHF wf, one have to check the deviation of (S?) from S(S +
|)h?



BASIS FUNCTIONS

Most QM methods begin with the choice of a set of BFs.

For diatomic molecules, the BFs are usually taken as AOs, (centered on a or b)
each AO = a linear combination of one or more STOs.
has the form

An STO centered on atom a Nr;“le_frf'Y;"(Ba, db,)

For nonlinear molecules, the real form of the STOs is used (Y, is replaced
by (V™" £ ¥,™)/2%)

¢i = 2:rcri Xr

STO basis function
LC-STO MOs

LC-STO method uses STOs centered on each of the atoms



The presence of more than two atoms causes difficulties in evaluating the
needed integrals.

For a triatomic molecule: three-center, two-center, and one-center integrals.
For a molecule with four or more atoms: one also has four-center integrals

Solution of the Roothaan equations:
(rs|tu): is four-center If the BFs centered on different nucleus
HyJCintegrals: involve either one or two centers

e e e e e e e e e e e e e e Em e e e e e R e e e e e R e e e e M e e e e e Em M e e e M M e e e e e R e e em e e R e e e e e e e e

' Number of BFs=b

~
N
e
-

b different possibilities for each BF in (rs|tu)
(rs|tu) = (sr|tu) = ...

number of different electron-repulsion integrals = b*/8

b =20 to 400 — b*%/8 = 20000 to 3 X 10°

N e o o e e e e e e - - - - - —————— =

Computer evaluation of three- and four-center integrals over STO basis
functions is very time consuming.



To speed up integral evaluation, Boys proposed the use of Gaussian-type
functions (GTFs) instead of STOs for the AOs in an LCAO wf.

— i jk —ar: i i
Sk = Nx,y,zpe 7" A Cartesian Gaussian
centeredon b

i, j, and k are nonnegative integers,
a is a positive orbital exponent,
X, Vb, Zp, are Cartesian coordinates with the origin at nucleus b.

20\ (Ba) /il Lkt 12
N = (—) { — ] normalization constant
™ (227N (2k)!
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P it e it i

i+j+k=0(thatis,i=0,j=0, k=0) : s-type Gaussian

i+j+k=1:p-type Gaussian

i+j+k=2:d-type Gaussian

Six d-type Gaussians: X2, Y2, 2,2, XpYp, XpZp, aNd Y, 2;..

five linear combinations (x,y,, X,z,, and y,z,, X,>- y,2, 3z,%- r,2) have the
same angular behavior as the five real 3d AOs; sixth (x, 2+ y, >+ z,2=r,2) is
like a 3s function; sometimes omitted from the basis set.

there are ten f-type Gaussians, and these could be combined to have the
angular behavior of the seven real 4f AOs.

-

The form of linear combinations Nrle—ers(Y* = YI)/21/?

S e e o o o e o = = = = = = = = e e - =

the principal guantum number n is absent:
s AO (1s or 2s or ...) = a LC of several Gaussians with different a, each
Gaussian having the form exp (-ar,?)
p, orbital = a LC of Gaussians, each of the form x, exp (-ar,?) and so on.

— -

— e e e e e e e e e e = = = = = = = = = = = = = = = = = = = = = = = = = = = = = == —— =

The Cartesian Gaussians form a complete set.



spherical Gaussians:

Nrile oy = yp)/212

A GF does not have the desired cusp at the nucleus (a poor representation
of AO for small r,)

represent an AO as a LC of several GFs.

an LC-GTF SCF MO calculation involves many more integrals than the
corresponding LC-STO SCF MO calculation

the number of two-electron integrals oc b*.

integral evaluation : much less computer time (by G)

Why? the product of two GFs centered at two different points is equal to a
single GF centered at a third point (three- and four-center two-electron
repulsion integrals are reduced to two-center integrals).



STO basis sets:

minimal (or minimum) basis set : one STO for each inner-shell and
valence-shell AO of each atom

C,H, : 1s, 25,2p,, 2p,, and 2p, AOs on each C and a 1s STO on each H;
five STOs on each C and one on each H = a total of 12 basis functions.
two s-type STOs and one set of p-type STOs on each carbon and one s-
type STO on each hydrogen; is denoted (2s1p) for the C functions and
(1s) for the H functions; notation (2s1p/1s),

minimal STO set for first part of the periodic table:

H,He | Li-Ne | Na-Ar | K,Ca | Sc-Kr
| 13 | 18

numbers of basis functions 1 | 5 I 9



A double-zeta (DZ) basis set : replaces each STO of a minimal basis set by two
STOs that differ in C

C2H2 :2 1s STOs on each H, 2 1s STOs, 2 2s STOs, 2 2p,, 2 2p,, and 2 2p, STOs on
each carbon (24 basis functions; (4s2p/2s))

the number of variational parameters c, in a DZ-BS wf is twice that in a M-BS wf.
A triple-zeta (TZ) basis set : replaces each STO of a M-BS by three STOs that
differin €.

A split-valence (SV) basis set : two (or more) STOs for each valence AO but

only one STO for each inner-shell (core) AO.

An SV-BS is minimal for inner-shell AOs and DZ (or TZ or ...) for the valence AOs
(VDZ, VTZ,...)

AOs are distorted in shape upon molecule formation (polarization)
Thus, one adds BF STOs whose ¢>¢__ of the valence shell of the GS atom
(polarized (P) basis set)
double-zeta plus polarization set (DZ + P or DZP) :
DZ set + five 3d functions on each "first- and second-row" atoms + three 2p
functions (2p,, 2p,, 2p,) on each H atom. (In QC, Li-Ne are called the first-row)
C,H:OSiH, :is designated as (6s4p1d/4s2p1d/2slp)

Si C O H
To increase accuracy, higher-f polarization functions can be added.



Gaussian-basis-sets

Instead of using the individual GFs as BFs, take each BF as a normalized LC
of a few Gaussians:

Xr = 2. du 8

g,'s : normalized Cartesian Gaussians centered on the same atom and

having the same |, j, k, but different a's.

d,, : contraction coefficients (constants)

X, : contracted CGTF

g,'s : primitive Gaussians.

using CG = number of variational coefficients = computational time
(little loss in accuracy if d s are well chosen)



The product of two 1s Gaussians is a third 1s

Gaussian.



The classifications given for STO BSs also apply to CGTF BSs

A minimal basis set : consists of one CGF for each inner-shell AO and for
each valence-shell AO

A DZ basis set : two CGTFs for each such AO

A DZP set : adds CGs with higher (to the DZ set, wheref=i+j+k

as and d s of the BFs are kept fixed at the predetermined values

CGTF M-BS : no way for the BFs to adjust their sizes to differing
molecular environments.

DZ BS : allow the AO sizes to vary from one molecule to another.
Example:

1s' and 1s" be two 1s CGTFs centered on a certain H atom

1s' (and 1s“) be a linear combination of a few s-type PGs

Let for ain the primitives 1s' > Is“ 1s" is spread out over a much larger
region of space than Is'.

expression for a given MO contains ¢,1s' + ¢,ls“; ¢; and c, are found by
the SCF process. The size of the function will increase as the ratio c,/c,
increases.



polarization functions vary the AO shapes, shifting charge density away
from the nuclei and into the bonding regions in the molecule.

/ Example

adding 2p functionstoa 1son H

c;1s +¢,2p, + c32p, + ¢,2p,

AO will be polarized in a direction determined by c,, c;, and c,.
c;=0,¢,=0,¢,>0, c, >0. c,2p, will cancel some of the probability
density of the c;1s term on one side of the H atom and will augment it
on the other side, thereby polarizing the 1s function in the positive x
direction.

p-type AOs can be polarized by mixing in d-type AOs.

e e o o = = = = = e = - - =



methods to form CG sets:

1) Minimal CGTF sets are often formed by fitting STOs.

a) one STO per AQ, b) Each STO is approximated as a linear combination of

N GFs, (coefficients and exponents)

N =3 — STO-3G (H through Xe) is not quite as good as a MBS STO
(6s3p/3s) contracted to [2s1p/1s] (2s1p/1s)

parentheses for primitive Gaussians

brackets for contracted Gaussians.

e e e e e e e e e e e = = = = = = e

: 1s STO having (=1 S(r;1) = 7 Ve
normalized s-type Gaussian  (2e/m)¥e™"
Gan(r; 1) = 1200/ m) ™" + o) 20n/m) ™" + 3 20/m) ™"
E ¢, = 0.444615, ¢, = 0.535336, c; = 0.154340, ay = 0.109814, o, = 0.40575, o5 = 2.22746

" to fita 1s STO with orbital exponent

For G, (r; 1), replacing each orbital exponent o, by ¢?a.

\_ Cis called a scale factor.

N e o o e = = = = = -



= SLATER 40} ' ‘\‘ — SLATER

os}
----- STO-16 -——-- STO-16

4rr'|¢,,|'

'y [ [ ] ' & 'y 2
5 '.o l-s 2.0 2-5 3|° 3.5 ‘-o llo 2.0 s.o 4‘0 s.o s.o 7.0 a.o
Radius (0.u.) Radius (0.u.)

#SCF(¢ = 1.0, STO-1G) = ¢SF(0.270950)
$SSF(¢ = 1.0, STO-2G)
= 0.678914¢SF(0.151623) + 0.430129¢5F(0.851819)
$SCF(¢ = 1.0, STO-3G) = 0.444635¢5F(0.109818) + 0.535328 ¢SF(0.405771)
+ 0.1543294SF(2.22766)



05 SLATER

04k — —-—— $T0-26

——— — STO-36

.0 .5 1.0 15 20 25 30 35 40
Radius (a.u.)

Comparison of the quality of the least-squares fit of a 1s Slater
function ({ = 1.0) obtained at the STO-1G, STO-2G, and STO-3G
levels.



2) start with atomic GTF SCF calculations
Huzinaga used a (9s5p) basis set of uncontracted Gaussians to do SCF calculations
on the atoms Li-Ne.

Example: the ground state of the O atom for the nine s-type basis GTFs:

orbital exponents:

S & & & & & & & | &
7817 1176 2732 812 272 953 341 0940 | 0285 ||

___________

: _ ' diffuse function
expansion coefficients for the 1s SCF AO

81 &2 83 84 8s 86 87 88 89
0.0012 0.009 0.043 0.144 035 0461 0140 -0.0006 0.001

expansion coefficients for the 2s SCF AO
81 82 83 84 85 86 87 88 89
-0.0003 —0.002 -0.010 -0.036 -0.095 -0.196 —-0.037 059 0.526



e EE e e e e e e e e e e E e E e e E e e e e e e e e e e e e —————

a split-valence [3s2p] set of contracted GTFs for O:

1

1s:

the g,, 8,, 85, 84, 85, and g, coefficients:1s AO >> 2s AQ, |
gs and g, coefficients 2s AO >> 1s AO, |
g, : substantial contributions to both 1s and 2s. |

1s = N(O.UOIZgl + 0.0098’2 + 0.043g3 + 0.144g4 + 0.356g5 + 0-46136 -+ 0.1408’}')5
A :

because gg and g, have been omitted

2s: !
we need two BFs for the 2s AO (from g, g, and g) |
g, is called a diffuse function

The outer region of an AO changes the most upon molecule formation
(take g4 as one of the basis)

~~ -

The 2p and 2p' CGTFs can be formed similarly



3-21G set (H - Xe) and 6-31G set (H - Zn) :

SV basis sets of CGTFs.

3-21G:

inner-shell AO: (1s for Li-Ne; 1s, 2s, 2p,, 2p,, 2p, for Na-Ar; and so on) —
single CGTF (a LC of three PGs)

valence-shell AO: (1s for H; 2s and the 2p's for Li-Ne;...; 4s and the 4p's
for K, Ca, Ga-Kr; 4s, the 4p's, and the five 3d's for Sc-Zn) — two basis
functions (one CGTF that is a LC of two GP and one which is a single
diffuse Gaussian.

6-31G:

inner-shell CGTF — six primitives

valence-shell AO — one CGTF (with 3 primitives) + one Gaussian (with
one primitive)

a and d,. were determined to minimize the SCF energies of atoms.

in 3-21G, a for H in an atomic calculation are increased using a scale
factor

in 6-31G, valence orbital exponents of H and of Li through O are scaled
to be more appropriate for molecular calculations.



6-31G* and 6-31G** [or 6-31G(d) and 6-31G(d,p)] (H - Zn)
VDZ polarized basis sets:

6-31G*=6-31G + six d-type Cartesian-Gaussian polarization functions
on Li - Ca and ten f-type Car-GPFs on Sc - Zn.

6-31G** = 6-31G* + three p-type GPFs on H & He.

a of PFs were determined as the average of the optimum values found in
calculations on small molecules.

P atom:
6-31G* : 19 BFs centered on it (Is, 2s, 2p,, 2p,, 2p,, 3s, 3s', 3p,, 3p,, 3p,,
3p'y, 3p',, 3p',, and six d's) and is [4s3p1d] for P.

3-21G") (H - Ar)

For second-row atoms, d orbitals contribute significantly to the bonding.
3-21G) (H - Ar) = 3-21G + six d-type GFs on each second-row atom.
For H-Ne, 3-21G") = 3-21G..



3-21+G, 6-31+G*, 3-21++G and 6-31++G*

Anions, compounds with lone pairs, and hydrogen-bonded dimers have
significant electron density at large distances from the nuclei.

3-21+G (and 6-31+G*) = 3-21G (and 6-31G*) + four highly diffuse functions
(s,p,,P,,P,) Oon each non-hydrogen atom; very small a (0.01 to 0.1)

3-21++G (and 6-31++G*) = 3-21+G (and 6-31+G*) + a highly diffuse s
function on each H atom.

cc-pVXZ basis sets (a CGTF BS; Dunning and co-workers):
(cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV527)

for use in methods (such as Cl) that include ec.

cc-pVDZ (correlation consistent, polarized VDZ).

first-row atoms: cc-pVDZ is [3s2p1d]; cc-pVTZ is [4s3p2d1f].

cc-pCVXZ = cc-pVXZ + certain primitive Gaussians (CV stands for
core/valence).

for calculations that include correlation effects involving the core
electrons.

augmented sets aug-cc-pVDZ = cc-pVXZ + diffuse nonpolarization
for correlation calculations on anions and H-bonded species.



Example:
On the basis-set order form, choose the 3-21G basis set and enter O in the
Elements box (Gaussian 94)

oxygen atom

can be ignored

a scale factor

V \/
0 0
s-type CGTF consisting of 3 PGs S 3 1.0
322.03700000 0.05923940 large [inner-shell
48.43080000 035150000  (core) 1s AO]
s-type and p-type CGTFs 10.42060000 0.70765800
SP 2 1.00
valence 2s and 2p AOs 7.40294000 —0.40445300 0.24458600
1.57620000 1.22156000 0.85395500
SP 1 1.00
0.37368400 1.00000000 1.00000000
N 7
a dur dur

assures us that the
primitive Gaussians are
normalized



1s CGTO

1s = 0.0592394g,(322.037) + 0.3515g,(48.4308) + 0.707658g,(10.4206)

a normalized primitive s-type GTF with a = 322.037

The 3-21G set uses the same orbital exponents for the 2s and 2p AOs, so
as to speed up calculations.

the valence CGTFs

2s' = —0.404453g,(7.40294) + 1.22156g,(1.5762)

2p, = 0.244586g, (7.40294) + 0.853955g, (1.5762),. ..,
25" = g,(0.373684)
p" = g, (0.373684), ..



https://bse.pnl.gov/bse/portal

6-311++G (2d, 2p)

EMSL. Basia Set Exchange Library 11711727 0:56

Elements Eeferences
H, Li - He: R. Krishnan, J.5. Binkley, R. Seeger and J.A. Pople,
J. Chem. Phys. 72, 650 (19380
Ha - Ar: L.D. Mclean and $.5. Chandler J. Chem. Phys. 72, 5639, (1930).
E - Ca: J-P. Blaudeagu, M. P. McGrath, L.A. Curtiss and L. Eadom,
J. Chem. Phys. 107, 5016 (1957).
Ga - Kr: L. &. Curtiss, M. P. McGrath, J-P. Blandeau, N. E. Davis,
E. C. Binning, Jr. L. Radom, J. Chem. Phya. 103, 6104 (1995}).
I M.N. Glukhovstev, A. pross, M.P. McGrath, L. Radom, J. Chem. Phys
103, 1878 (1995)
Elements Beferences
H-Ne: M.J. Frisch, J.A. Pople and J.5. Binkley, J. Chem. Phys. 380, 3265 (1984
Elements Beference
H, Li—Cl: T. Clark, J. Chandrasekhar, G.W. Spitznagel, P.V.R. Schlevyer,
J. Comp. Chem. 4, 294 ([19%83).
&
L 1.00
8588.35000000 0.00189515
12587.2300000 0.014385%
295 2960000 0.0707320
a7.3771000 0.2400010
25.68735000 0.5%47970
3.7400400 0.2808020
3 .00
42.1175000 0.1133350 0.0365114
9.6283700 0.5208110 0.2371530
2.8533200 -0.00327447 0.81587020
1 i1
0.9058610 1.0000000 1.0000000
1 .00
0.2556110 1.0000000 1.0000000
1 .00



6-311++G(2d,2p)

O O
S 6 1.00
8588.5000000
1297.2300000
299.2960000
87.3771000
25.6789000
3.7400400
SP 3 1.00
42.1175000
9.6283700
2.8533200
SP 1 1.00
0.9056610
SP 1 1.00
0.2556110
SP 1 1.00
0.0845000
D 1 1.00
2.5840000
D 1 1.00
0.6460000

0.00189515
0.0143859
0.0707320
0.2400010
0.5947970
0.2808020

0.1138890

0.9208110

-0.00327447

1.0000000

1.0000000

1.0000000

1.0000000

1.0000000

0.0365114
0.2371530

0.8197020
1.0000000
1.0000000

1.0000000



POPULATION ANALYSIS

SCF wave functions can be analysied by population analysis, introduced by
Muliken [Mulliken population analysis (MPA)]
n-electrons > n +n__

n, : net populations in the basis functions ¥,
n,. .overlap populations for all possible pairs of basis functions

basis set {x;}
¢i = ZSCSiXS = C1iX1 + ClX2 + -t CriXb

L \
For simplicity: c;'s and x;'s are real

The probability density associated with one electron in ¢, is
b = clxd + xd + o+ 2cucux1X2 + 20103X1X5 + 20uC3XaXs +

l Integrating (¢, and x.'s are normalized)

_ 2.2
I=cfi+ e+ + 20051 + 26163513 + 202;'03:'523\{'" _
overlap integrals



Muliken proposed:
cf}i : contribution of one electron (in ¢,) to the net population in x;

cii : contribution of one electron (in ¢,) to the net population in x,

2¢1;C21S15 : contribution of one electron (in ¢;) to the overlap population
between x; and ¥,
2¢1;C3;S13 : contribution of one electron (in ¢;) to the overlap population
between x; and x5

For n. electrons in the MO ¢, {n,=0,1,2):

Let,

n, = contribution of electrons (in ¢,) to the net population in ¥,
n, = contribution of electrons (in ¢,) to the overlap population

between y, and X,

— 2 —
nr,i - nicris nr«s,i — ni(zcricsiSrs)

i summing over the occupied MOs,

n,=>n,; and n.,= dn.,
i L

2.0+ 252N, =N total number of electrons



Example:

calculate the net and overlap population contributions for the H,O
2a; = —0.027(01s) + 0.820(02s,) + 0.132(0O2p,) + 0.152(H,1s + H,1s)

find n, for each basis function. Use H,1s and H,1s as basis functions, rather
than the symmetry-adapted basis functions.

Overlap integrals between basis STOs centered on different atoms can
be found by interpolation in the tables of R. S. Muliken et al., J. Chem.
Phys., 11,1248
(1949). (see Problem 15.21)
(H,15|O1s) = (H,15|O1s) = 0.054, (H,15|02s,) = (H,15|02s,) = 0.471
(H,15|02p,) = —(H,15|02p,) = 0.319, (H,15|02p,) = (H,15|02p,) = 0.247
(H,1s|H,1s) = 0.238

net populations:
Nots2aq, = 2("‘0027)2 = 00015, no2s, 2a, = 2(0820)2 =
1345, No2p 24, = 0035= By 1524 = 2(0152)2 = 0046’ Ny,i152a, = 0.046



The five lowest SCF MOs found by Pitzer and Merrifield at the
experimental geometry are

la; = 1.000(O1s) + 0.015(02s,) + 0.003(O2p,) — 0.004(H,1s + H,1s)
2a; = —0.027(01s) + 0.820(02s,) + 0.132(02p,) + 0.152(H,1s + H,ls)
1b, = 0.624(O2p,) + 0.424(H,1s — H,ls)

3a, = —0.026(0O1s) — 0.502(02s,) + 0.787(02p,) + 0.264(H,1s + H,ls)
16, = O2p,

The 0,,, orbital is an orthogonalized orbital

02s, = 1.028[02s — 0.2313(OLs)]



overlap populations

Nots—H 15,24, = 2(2)(—0.027)(0.152)(0.054) = —0.0009 = noys—n,1524

Rozs —H 1524, = 0.235 = No2s, —H,1s.2aq,

Noxp,-H1s2a, = 0020 = noop w1524, PH1s-H1520, = 0.022

net population of Ols:

noys = 2(1.000)? + 2(—0.027)* + 2(—0.026)* = 2.00

Rozs, = 1.85
nosz = 2.00
n.ozp)_ = (.78

nozpz = 127, Ny = 0.545, By,1s = 0545



The MO ¢, in a covalent molecule:

S =2.n.; (X, and x; lie on different atoms)
S > 0 (substantially), the MO is bonding

S < 0 (substantially), the MO is antibonding
S=0, the MO is nonbonding

for the 3a; MO

overlap of,

O1s with H,1s : 2(2)(-0.026)(0.264)(0.054) = -0.0015
0O2s , with H, 1s 2(2)(-0.502) X (0.264)(0.471) = -0.250,
O2p, with H,1s : 0.205

O2p,with H,1s: 0.205

H,1s with H,1s : 2(2)(0.264)(0.238) = 0.066

2. =-0.03 for the 3a, MO = zero — a nonbonding (lone-pair) MO
2. =0.53 for the 2a,— bonding

2. =0.50 for the 1b, — bonding

2. =0.00 for 1a, (inner-shell)



1)

2)

apportioning the electrons into net populations in BFs and overlap
populations for pairs of BFs,

apportioning the electrons among the basis functions only, with no
overlap populations. Muliken proposed : splitting n_, equally
between the BFs x, and X.

=n, + - Enrs gross population
s#&r

Ele N =n number of electrons in the molecule

Example:
the contribution to the gross population of O2s, from the 2a, MO

Noas.2a = 2[(0.820)2 + (0.820)(0.152)(0.471) + (0.820)(0.152)(0.471)] = 1.58

Nozszsﬂlc.v.1 = 0.00 N02525¢,3a1 =0.25 Nozszsﬂu;u1 = 0.00
Nozszsﬂwz = 0.00

| Nozszs =1 83 '

l.-_.-._-. e e



Nois=2.00+000 +0+000+0=2.00 Ny, =1.83; Ny, =0+0+0+0+2=2

Nozp,=0+0+112+0+ 0=1.12; Npy, =0+ 0.055 + 0 + 1.445+ 0=1.50

NHlls = 0.00 + 0.184- :i' 0442 + 0.150 + O = 0'776; NHzls = 0776

gross atomic population N for atom B:

Np = EN,K
reB
1 for basis function y,

all BFs centered on atom B

number of electrons in the molecule

2 Nz=n

net atomic charge gz on atom B :

ds = Zp — Np



One should not put too much reliance on numbers calculated by population
analysis.

1) assignment of %2 n to each basis function is arbitrary and sometimes leads to
unphysical results

2) a small change in BS can produce a large change in the calculated net charges.

For example:
net atomic charges on each H atom:

CH4 NH3 HzO HF
STO-3G 006 0.16 0.18 0.21} c ,
321G 020 028 036 045 omparison

N y, ?
N

Comparison




An improvement on MPA is natural population analysis (NPA)

uses ideas related to natural orbitals

1) one calculates a set of orthonormal natural atomic orbitals (NAOs)
from {x,}

2) NAOs — a set of orthonormal natural bond orbitals (NBOs), (core,
lone pair, or bond orbital)

3) population analysis by NBOs. qyp,s show less BS dependence than

AnvipaS-

Other methods of assigning net atomic charges are discussed in the
next section.

in view of the existence of improved methods, MPA should no longer be

used [S. M. Bachrach in K. Lipkowitz and D. B. Boyd (eds.), Reviews in
Computational Chemistry, vol. 5, VCH (1994), Chapter 3.]



