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Abstract. In this paper, we present some upper bounds for unitarily

invariant norms inequalities. Among other inequalities, we show some
upper bounds for the Hilbert-Schmidt norm. In particular, we prove

‖f(A)Xg(B)± g(B)Xf(A)‖2 ≤
∥∥∥ (I+|A|)X(I+|B|)+(I+|B|)X(I+|A|)

dAdB

∥∥∥
2
,

where A,B,X ∈ Mn such that A, B are Hermitian with σ(A) ∪ σ(B) ⊂
D and f, g are analytic on the complex unit disk D, g(0) = f(0) = 1,

Re(f) > 0 and Re(g) > 0.

1. Introduction

Let B(H) be the C∗-algebra of all bounded linear operators on a separable
complex Hilbert space H with the identity I. In the case when dimH = n,
we determine B(H) by the matrix algebra Mn of all n × n matrices having
associated with entries in the complex field. If z ∈ C, then we write z instead of
zI. For any operator A in the algebra K(H) of all compact operators, we denote
by {sj(A)} the sequence of singular values of A, i.e., the eigenvalues λj(|A|),
where |A| = (A∗A)

1
2 , enumerated as s1(A) ≥ s2(A) ≥ · · · in decreasing order

and repeated according to multiplicity. If the rank A is n, we put sk(A) =
0 for any k > n. Note that sj(X) = sj(X

∗) = sj(|X|) and sj(AXB) ≤
‖A‖‖B‖sj(X) (j = 1, 2, . . .) for all A,B ∈ B(H) and all X ∈ K(H).

A unitarily invariant norm is a map ||| · ||| : K(H) −→ [0,∞] given by
|||A||| = g(s1(A), s2(A), . . .), where g is a symmetric norming function. The
set C||| · ||| including {A ∈ K(H) : |||A||| <∞} is a closed self-adjoint ideal J of
B(H) containing finite rank operators. It enjoys the property [6]:

|||AXB||| ≤ ‖A‖‖B‖|||X|||(1)

for A,B ∈ B(H) and X ∈ J . Inequality (1) implies that |||UXV ||| = |||X|||,
where U and V are arbitrary unitaries in B(H) and X ∈ J . In addition,
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890 M. BAKHERAD

employing the polar decomposition of X = W |X| with W a partial isome-
try and (1), we have |||X||| = ||| |X| |||. An operator A ∈ K(H) is called

Hilbert-Schmidt if ‖A‖2 =
(∑∞

j=1 s
2
j (A)

)1/2
< ∞. The Hilbert-Schmidt

norm is a unitarily invariant norm. For A = [aij ] ∈ Mn, it holds that

‖A‖2 =
(∑n

i,j=1 |ai,j |2
)1/2

. We use the notation A⊕B for the diagonal block

matrix diag(A,B). Its singular values are s1(A), s1(B), s2(A), s2(B), . . .. It is
evident that ∣∣∣∣∣∣∣∣∣∣∣∣[ 0 A

B 0

]∣∣∣∣∣∣∣∣∣∣∣∣ = ||| |A| ⊕ |B| ||| = |||A⊕B||| ,

||A⊕B|| = max{‖A‖, ‖B‖} and ||A⊕B||2 =
(
‖A‖22 + ‖B‖22

) 1
2 .

The inequalities involving unitarily invariant norms have been of special inter-
est; see e.g., [4, 9] and references therein.

An operator A ∈ B(H) is called G1 operator if the growth condition

‖(z −A)−1‖ =
1

dist(z, σ(A))

holds for all z not in the spectrum σ(A) of A, where dist(z, σ(A)) denotes
the distance between z and σ(A). It is known that normal (more generally,
hyponormal) operators are G1 operators (see e.g., [15]). Let A ∈ B(H) and
f be a function which is analytic on an open neighborhood Ω of σ(A) in the
complex plane. Then f(A) denotes the operator defined on H by the Riesz-
Dunford integral as

f(A) =
1

2πi

∫
C

f(z)(z −A)−1dz,

where C is a positively oriented simple closed rectifiable contour surrounding
σ(A) in Ω (see e.g., [8, p. 568]). The spectral mapping theorem asserts that
σ(f(A)) = f(σ(A)). Throughout this note, D = {z ∈ C : |z| < 1} denotes the
unit disk, ∂D stands for the boundary of D and dA = dist(∂D, σ(A)). In
addition, we denote

A = {f : D→ C : f is analytic, Re(f) > 0 and f(0) = 1} .

The Sylvester type equations AXB ±X = C have been investigated in matrix
theory; see [5]. Several perturbation bounds for the norm of sum or difference
of operators have been presented in the literature by employing some integral
representations of certain functions; see [3, 11,12,16] and references therein.

In the recent paper [12], Kittaneh showed that the following inequality in-
volving f ∈ A

|||f(A)X −Xf(B)||| ≤ 2

dAdB
|||AX −XB|||,
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where A,B,X ∈ B(H) such that A and B are G1 operators with σ(A)∪σ(B) ⊂
D. In [13], the authors extended this inequality for two functions f, g ∈ A as
follows

|||f(A)X −Xg(B)||| ≤ 2
√

2

dAdB
||| |AX|+ |XB| |||(2)

and

|||f(A)X +Xg(B)||| ≤ 2
√

2

dAdB
||| |AXB|+ |X| |||,(3)

in which A,B,X ∈ B(H) such that A and B are G1 operators with σ(A) ∪
σ(B) ⊂ D. They also showed that

|||f(A)Xg(B)−X||| ≤ 2
√

2

dAdB
||| |AX|+ |XB| |||(4)

and

|||f(A)Xg(B) +X||| ≤ 2
√

2

dAdB
||| |AXB|+ |X| |||,(5)

where A,B,X ∈ B(H) such that A and B are G1 operators with σ(A)∪σ(B) ⊂
D.

In this paper, by using some ideas from [12, 13] we present some upper
bounds for unitarily invariant norms of the forms |||f(A)X + Xf̄(A)||| and
|||f(A)X − Xf̄(A)||| involving G1 operator and f ∈ A. We also present the
Hilbert-Schmidt norm inequality of the form

‖f(A)Xg(B)± g(B)Xf(A)‖2

≤
∥∥∥∥ (I + |A|)X(I + |B|) + (I + |B|)X(I + |A|)

dAdB

∥∥∥∥
2

,

where A,B,X ∈ Mn such that A and B are Hermitian matrices with σ(A) ∪
σ(B) ⊂ D and f, g ∈ A.

2. Main results

Our first result is some upper bounds for the Hilbert-Schmidt norm inequal-
ities.

Theorem 2.1. Let A,B ∈ Mn be Hermitian matrices with σ(A) ∪ σ(B) ⊂ D
and f, g ∈ A. Then

‖f(A)X +Xg(B)± f(A)Xg(B)‖2

≤
∥∥∥∥X + |A|X

dA
+
X +X|B|

dB
+

(I + |A|)X (I + |B|)
dAdB

∥∥∥∥
2

and

‖f(A)Xg(B)± g(B)Xf(A)‖2 ≤
∥∥∥ (I+|A|)X(I+|B|)+(I+|B|)X(I+|A|)

dAdB

∥∥∥
2
,

where X ∈Mn.
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Proof. Let A = UΛU∗ and B = V ΓV ∗ be the spectral decomposition of A and
B such that Λ = diag(λ1, . . . , λn), Γ = diag(γ1, . . . , γn) and let U∗XV := [yjk].
It follows from |eiα − λj | ≥ dA and |eiβ − γk| ≥ dB that

‖f(A)X +Xg(B)± f(A)Xg(B)‖22
=
∑
j,k

|f(λj)yj,k + yj,kg(γk)± f(λj)yj,kg(γk)|2

=
∑
j,k

|f(λj)± f(λj)g(γk) + g(γk)|2|yj,k|2

=
∑
j,k

∣∣∣∣∫ 2π

0

∫ 2π

0

eiα+λj
eiα−λj + eiβ+γk

eiβ−γk ±
(eiα+λj)(e

iβ+γk)
(eiα−λj)(eiβ−γk)dµ(α)dµ(β)

∣∣∣∣2 |yj,k|2
≤
∑
j,k

(∫ 2π

0

∫ 2π

0

|eiα+λj |
|eiα−λj | + |eiβ+γk|

|eiβ−γk| +
|eiα+λj ||eiβ+γk|
|eiα−λj ||eiβ−γk|dµ(α)dµ(β)

)2

|yj,k|2

≤
∑
j,k

(∫ 2π

0

∫ 2π

0

1+|λj |
dA

+
(1+|λj |)(1+|γk|)

dAdB
+ 1+|γk|

dB
dµ(α)dµ(β)

)2

|yj,k|2

≤
∑
j,k

(
1+|λj |
dA

+ 1+|γk|
dB

+
(1+|λj |)(1+|γk|)

dAdB

)2
|yj,k|2

=
∥∥∥X+|A|X

dA
+ X+X|B|

dB
+ (I+|A|)X(I+|B|)

dAdB

∥∥∥2
2
.

Then we get the first inequality. Similarly,

‖f(A)Xg(B)± g(B)Xf(A)‖22
=
∑
j,k

|f(λj)yj,kg(γk)± g(γj)yj,kf(λk)|2

=
∑
j,k

|f(λj)g(γk)± g(γj)f(λk)|2|yj,k|2

=
∑
j,k

∣∣∣∣∫ 2π

0

∫ 2π

0

(eiα+λj)(e
iβ+γk)

(eiα−λj)(eiβ−γk) ±
(eiβ+γj)(e

iα+λk)
(eiβ−γj)(eiα−λk)dµ(α)dµ(β)

∣∣∣∣2 |yj,k|2
≤
∑
j,k

(∫ 2π

0

∫ 2π

0

|eiα+λj ||eiβ+γk|
|eiα−λj ||eiβ−γk| +

|eiβ+γj ||eiα+λk|
|eiβ−γj ||eiα−λk|dµ(α)dµ(β)

)2

|yj,k|2

≤
∑
j,k

(∫ 2π

0

∫ 2π

0

(1+|λj |)(1+|γk|)
dAdB

+
(1+|γj |)(1+|λk|)

dAdB
dµ(α)dµ(β)

)2

|yj,k|2

≤
∑
j,k

(
(1+|λj |)(1+|γk|)

dAdB
+

(1+|γj |)(1+|λk|)
dAdB

)2
|yj,k|2
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≤
∑
j,k

(
(1+|λj |)yj,k(1+|γk|)

dAdB
+

(1+|γj |)yj,k(1+|λk|)
dAdB

)2
=
∥∥∥ (I+|A|)X(I+|B|)+(I+|B|)X(I+|A|)

dAdB

∥∥∥
2
.

�

Now, if we put X = I in Theorem 2.1, then we get the next result.

Corollary 2.2. Let A,B ∈ Mn be Hermitian matrices with σ(A) ∪ σ(B) ⊂ D
and f, g ∈ A. Then

‖f(A) + g(B)± f(A)g(B)‖2 ≤
∥∥∥∥I + |A|

dA
+
I + |B|
dB

+
(I + |A|) (I + |B|)

dAdB

∥∥∥∥
2

and

‖f(A)g(B)± g(B)f(A)‖2 ≤
∥∥∥∥ (I + |A|)(I + |B|) + (I + |B|)(I + |A|)

dAdB

∥∥∥∥
2

.

To prove the next results, the following lemma is required.

Lemma 2.3. Let A,B,X, Y ∈ B(H) such that X and Y are compact. Then

(a) sj(AX ± Y B) ≤ 2
√
‖A‖‖B‖sj(X ⊕ Y ) (j = 1, 2, . . .);

(b) |||(AX ± Y B)⊕ 0||| ≤ 2
√
‖A‖‖B‖ |||X ⊕ Y |||.

Proof. Using [11, Theorem 2.2] we have

sj(AX ± Y B) ≤ (‖A‖+ ‖B‖)sj(X ⊕ Y ) (j = 1, 2, . . .).

If we replace A, B, X and Y by tA, B
t , X

t and tY , respectively, then we get

sj(AX ± Y B) ≤ (t‖A‖+
‖B‖
t

)sj(X ⊕ Y ) (j = 1, 2, . . .).

It follows from mint>0(t‖A‖ + ‖B‖
t ) = 2

√
‖A‖‖B‖ that we reach the first

inequality. The second inequality can be proven by the first inequality and the
Ky Fan dominance theorem [6, Theorme IV.2.2]; see also [1]. �

Now, by applying Lemma 2.3 we obtain the following result.

Theorem 2.4. Let A,B,X, Y ∈ B(H) and f, g ∈ A. Then∣∣∣∣∣∣((f(A)− g(B))X ± Y (f(B)− g(A))
)
⊕ 0
∣∣∣∣∣∣ ≤ 4

√
2

dAdB
‖|A|+ |B|‖ |||X ⊕ Y |||

and∣∣∣∣∣∣((f(A) + g(B))X ± Y (f(B) + g(A))
)
⊕ 0
∣∣∣∣∣∣ ≤ 4

√
2

dAdB
‖I + |AB|‖ |||X ⊕ Y |||,

where X,Y are compact and A,B are G1 operators with σ(A) ∪ σ(B) ⊂ D.
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Proof. Using Lemma 2.3 and inequalities (2) and (3) we have∣∣∣∣∣∣((f(A)− g(B))X ± Y (f(B)− g(A))
)
⊕ 0
∣∣∣∣∣∣

≤ 2‖f(A)− g(B)‖ 1
2 ‖f(B)− g(A)‖ 1

2 |||X ⊕ Y ||| (by Lemma 2.3)

≤ 2

√
2
√

2

dAdB
‖|A|+ |B|‖

√
2
√

2

dAdB
‖|B|+ |A|‖ |||X ⊕ Y |||

(by inequality (2))

=
4
√

2

dAdB
‖|A|+ |B|‖ |||X ⊕ Y ||| .

Similarly, ∣∣∣∣∣∣((f(A) + g(B))X ± Y (f(B) + g(A))
)
⊕ 0
∣∣∣∣∣∣

≤ 2‖f(A) + g(B)‖ 1
2 ‖f(B) + g(A)‖ 1

2 |||X ⊕ Y ||| (by Lemma 2.3)

≤ 2

√
2
√

2

dAdB
‖I + |AB|‖

√
2
√

2

dAdB
‖I + |AB|‖ |||X ⊕ Y |||

(by inequality (3))

=
4
√

2

dAdB
‖I + |AB|‖ |||X ⊕ Y ||| .

�

Theorem 2.5. Let A,B ∈ B(H) be G1 operators with σ(A) ∪ σ(B) ⊂ D and
f ∈ A. Then for every X ∈ B(H)∣∣∣∣∣∣f(A)X +Xf̄(B)

∣∣∣∣∣∣ ≤ 2

dAdB
|||X −AXB∗|||(6)

and ∣∣∣∣∣∣f(A)X −Xf̄(B)
∣∣∣∣∣∣ ≤ 2

√
2

dAdB
||| |AX|+ |XB∗| ||| .(7)

Proof. Using the Herglotz representation theorem (see e.g., [7, p. 21]) we have

f(z) =

∫ 2π

0

eiα + z

eiα − z
dµ(α) + iIm f(0) =

∫ 2π

0

eiα + z

eiα − z
dµ(α),

where µ is a positive Borel measure on the interval [0, 2π] with finite total mass∫ 2π

0
dµ(α) = f(0) = 1. Hence

f̄(z) =

∫ 2π

0

eiα + z

eiα − z
dµ(α) =

∫ 2π

0

e−iα + z̄

e−iα − z̄
dµ(α),

where f̄ is the conjugate function of f (i.e., f̄f = |f |2). So

f(A)X +Xf̄(B)

=

∫ 2π

0

(
eiα +A

) (
eiα −A

)−1
X +X

(
e−iα +B∗

) (
e−iα −B∗

)−1
dµ(α)
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=

∫ 2π

0

(
eiα −A

)−1 [ (
eiα +A

)
X
(
e−iα −B∗

)
+
(
eiα −A

)
X
(
e−iα +B∗

) ] (
e−iα −B∗

)−1
dµ(α)

= 2

∫ 2π

0

(
eiα −A

)−1
(X −AXB∗)

(
e−iα −B∗

)−1
dµ(α).

Hence∣∣∣∣∣∣f(A)X +Xf̄(B)
∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∫ 2π

0

(
eiα +A

) (
eiα −A

)−1
X +X

(
e−iα +B∗

) (
e−iα −B∗

)−1
dµ(α)

∣∣∣∣∣∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣∣∣∣∣∣∣∫ 2π

0

(
eiα −A

)−1
(X −AXB∗)

(
e−iα −B∗

)−1
dµ(α)

∣∣∣∣∣∣∣∣∣∣∣∣
≤ 2

∫ 2π

0

∣∣∣∣∣∣∣∣∣(eiα −A)−1 (X −AXB∗)
(
e−iα −B∗

)−1∣∣∣∣∣∣∣∣∣ dµ(α)

≤ 2

∫ 2π

0

‖
(
eiα −A

)−1 ‖‖(eiα −B)−1‖ |||X −AXB∗||| dµ(α)

(by inequality (1)).

Since A and B are G1 operators, it follows from
∥∥∥(eiα −A)−1∥∥∥ = 1

dist(eiα,σ(A))

≤ 1
dist(∂D,σ(A)) = 1

dA
and

∥∥∥(eiα −B)−1∥∥∥ ≤ 1
dB

that

∣∣∣∣∣∣f(A)X +Xf̄(B)
∣∣∣∣∣∣ ≤ ( 2

dAdB

∫ 2π

0

dµ(α)

)
|||X −AXB∗|||

=

(
2

dAdB
f(0)

)
|||X −AXB∗|||

=
2

dAdB
|||X −AXB∗||| .

Then we have the first inequality. Using the inequality

|||e−iαAX + eiαXB∗||| =
∣∣∣∣∣∣∣∣∣∣∣∣[ e−iαAX + eiαXB∗ 0

0 0

]∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣[ e−iα eiα

0 0

] [
AX 0
XB∗ 0

]∣∣∣∣∣∣∣∣∣∣∣∣
≤
∥∥∥∥[ e−iα eiα

0 0

]∥∥∥∥ ∣∣∣∣∣∣∣∣∣∣∣∣[ AX 0
XB∗ 0

]∣∣∣∣∣∣∣∣∣∣∣∣
(by inequality (1))

=
√

2

∣∣∣∣∣∣∣∣∣∣∣∣ ∣∣∣∣[ AX 0
XB∗ 0

]∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣∣∣
=
√

2
∣∣∣∣∣∣∣∣∣(|AX|2 + |XB∗|2)

1
2 ⊕ 0

∣∣∣∣∣∣∣∣∣
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≤
√

2 |||(|AX|+ |XB∗|)⊕ 0|||

(applying [2, p. 775] to the functionh(t) = t
1
2 )

the Ky Fan dominance theorem we have

|||e−iβAX + eiαXB∗||| ≤
√

2 ||| |AX|+ |XB∗| ||| .(8)

It follows from (8) and the same argument of the proof of the first inequality
that we have the second inequality and this completes the proof. �

Remark 2.6. Let f(x + yi) = u(x, y) + v(x, y)i, where u, v are the real and
imaginary parts of f , respectively. If f, f̄ ∈ A, then the Cauchy-Riemann
equations for complex analytic functions (i.e., ∂u∂x = ∂v

∂y and ∂u
∂y = − ∂v

∂x ) implies

that v(x, y) = k for some k ∈ C. The condition f(0) = 1 conclude that v(x, y) =
0. Hence, f is a real valued function. So, for arbitrary functions f, g ∈ A, we
can not replace g by f̄ in inequalities (2) and (3). Thus, in Theorem 2.5 we have
been established some upper bounds for |||f(A)X +Xf̄(B)||| and |||f(A)X −
Xf̄(B)||| in terms of |||X −AXB∗||| and ||| |AX|+ |XB∗| |||, respectively, that
can not be derived from inequality (2) and (3) for an arbitrary function f ∈ A.

Remark 2.7. If A,B ∈ B(H) are G1 operators with σ(A) ∪ σ(B) ⊂ D and
f ∈ A, then with a similar argument in the proof of Theorem 2.5 we get the
following inequalities∣∣∣∣∣∣f̄(A)X +Xf(B)

∣∣∣∣∣∣ ≤ 2

dAdB
|||X −A∗XB|||(9)

and ∣∣∣∣∣∣f̄(A)X −Xf(B)
∣∣∣∣∣∣ ≤ 2

√
2

dAdB
||| |A∗X|+ |XB| ||| ,

where X ∈ B(H).

Remark 2.8. For an arbitrary operator A ∈ B(H), the numerical range is
definition by W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}. It is well-known that W (A)

is a bounded convex subset of the complex plane C. Its closure W (A) contains
σ(A) and is contained in {z ∈ C : |z| ≤ ‖A‖}. In [10], it is shown

1

dist(z, σ(A))
≤
∥∥(z −A)−1

∥∥ (z 6∈ σ(A))

and ∥∥(z −A)−1
∥∥ ≤ 1

dist(z,W (A))
(z 6∈W (A)).

Now, if we replace the hypophysis G1 operators by the conditions W (A) ∪
W (B) ⊆ D in Theorem 2.5, then in inequalities (2)-(5), the constants dA and
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dB interchange to DA and DB , respectively, where DA = dist(∂D,W (A)),

DB = dist(∂D,W (A)). Also inequalities (6) and (7) appear of the forms∣∣∣∣∣∣f(A)X +Xf̄(B)
∣∣∣∣∣∣ ≤ 2

DADB
|||X −AXB∗|||

and ∣∣∣∣∣∣f(A)X −Xf̄(B)
∣∣∣∣∣∣ ≤ 2

√
2

DADB
||| |AX|+ |XB∗| ||| ,

where f ∈ A. For example, for every contraction operator A (i.e., A∗A ≤ I)

and 0 < ε < 1, the operator εA has the property W (εA) ⊆ D.

If we take X = I in Theorem 2.5, then we get the following result.

Corollary 2.9. Let A,B ∈ B(H) be normal operators with σ(A) ∪ σ(B) ⊂ D
and f ∈ A. Then for every X ∈ B(H)∣∣∣∣∣∣f(A) + f̄(B)

∣∣∣∣∣∣ ≤ 2

dAdB
|||I −AB∗||| .

In particular, for B = A we have

|||Re(f(A))||| ≤ 1

d2A
|||I −AA∗||| .

For the next result we need the following lemma (see also [14]).

Lemma 2.10. If A,B,X ∈ B(H) such that A and B are self-adjoint and
0 < mI ≤ X for some positive real number m, then

m |||A−B||| ≤ |||AX +XB||| .

Proof.

m |||A−B||| ≤ 1

2
|||(A−B)X +X(A−B)||| (by [17, Lemma 3.1])

=
1

2
|||AX −XB + (XA−BX)|||

≤ 1

2
(|||AX −XB|||+ |||XA−BX|||)

= |||AX −XB||| (since ‖A‖ = ‖A∗‖). �

Proposition 2.11. Let A,B ∈ B(H) be G1 operators with σ(A) ∪ σ(B) ⊂ D,
let X ∈ B(H) such that 0 < mI ≤ X for some positive real number m and
f ∈ A. Then

m |||Re(f(A))− Re(f(B))||| ≤ 1

dAdB
(|||X −AXB∗|||+ |||X −A∗XB|||) .

(10)

In particular, if A and B are unitary operators, then

m |||Re(f(A))− Re(f(B))||| ≤ 2

dAdB
|||X −AXB∗||| .
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Proof.

m |||Re(f(A))− Re(f(B))||| ≤ |||Re(f(A))X + XRe(f(B))|||
(by Lemma 2.10)

=
1

2

∣∣∣∣∣∣f(A)X + Xf̄(B) + f̄(A)X + Xf(B)
∣∣∣∣∣∣

≤ 1

2

(∣∣∣∣∣∣f(A)X + Xf̄(B)
∣∣∣∣∣∣ +

∣∣∣∣∣∣f̄(A)X + Xf(B)
∣∣∣∣∣∣)

≤ 1

dAdB
(|||X −AXB∗|||+ |||X −A∗XB|||)

(by inequalities (6) and (9)).

Hence we get the first inequality. Especially, it follows from inequality (10)
and equation

|||X −AXB∗||| = |||A(A∗XB −X)B∗||| = |||A∗XB −X||| = |||X −A∗XB||| .
�

Remark 2.12. Using Lemma 2.3 we have∣∣∣∣∣∣((f(A) + f̄(B))X − Y (f(B) + f̄(A)))⊕ 0
∣∣∣∣∣∣

≤ 2‖f(A) + f̄(B)‖ 1
2 ‖f(B) + f̄(A)‖ 1

2 |||X ⊕ Y |||
= 2‖f(A) + f̄(B)‖|||X ⊕ Y |||.

Now, if we apply inequality (6), then we reach

‖f(A) + f̄(B)‖|||X ⊕ Y ||| ≤ 2

dAdB
‖I −AB∗‖ |||X ⊕ Y ||| ,

whence∣∣∣∣∣∣((f(A) + f̄(B))X − Y (f(B) + f̄(A))
)
⊕ 0

∣∣∣∣∣∣ ≤ 4

dAdB
‖I −AB∗‖ |||X ⊕ Y ||| .

Hence, if we put B = A, then we get

|||Re(f(A))X − Y Re(f(A))⊕ 0||| ≤ 2

d2A
‖I −AA∗‖‖ |||X ⊕ Y ||| .
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