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ABSTRACT. In this paper, we present some upper bounds for unitarily
invariant norms inequalities. Among other inequalities, we show some
upper bounds for the Hilbert-Schmidt norm. In particular, we prove

1£(A)Xg(B) £ g(B)XJ(A)]]p < || LHALXAHEDHUILIBOXULAD |
where A, B, X € M,, such that A, B are Hermitian with o(A) Uo(B) C
D and f,g are analytic on the complex unit disk D, g(0) = f(0) = 1,
Re(f) > 0 and Re(g) > 0.

1. Introduction

Let B(H) be the C*-algebra of all bounded linear operators on a separable
complex Hilbert space H with the identity I. In the case when dimH = n,
we determine B(H) by the matrix algebra M, of all n X n matrices having
associated with entries in the complex field. If z € C, then we write z instead of
zI. For any operator A in the algebra K(H) of all compact operators, we denote
by {s;(A)} the sequence of singular values of A, i.e., the eigenvalues \;(|A]),
where [A| = (A*A)2, enumerated as s1(A) > s5(A) > --- in decreasing order
and repeated according to multiplicity. If the rank A is n, we put sx(A) =
0 for any & > n. Note that s;(X) = s;(X*) = s;(]X]) and s;(AXB) <
IANB|s;(X) (j =1,2,...) for all A, B € B(H) and all X € K(H).

A unitarily invariant norm is a map ||| - ||| : K(H) — [0, 00] given by
14]|] = g(s1(A), s2(A),...), where g is a symmetric norming function. The
set C))|. |y including {A € K(H) : [[|A[|| < oo} is a closed self-adjoint ideal J of
B(H) containing finite rank operators. It enjoys the property [6]:

(1) IAXBII| < [|ATHBIIXT

for A,B € B(H) and X € J. Inequality (1) implies that ||[[UXV]|| = ||| X]||,
where U and V are arbitrary unitaries in B(H) and X € J. In addition,
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890 M. BAKHERAD

employing the polar decomposition of X = W/|X| with W a partial isome-

try and (1), we have [||X]|| = [|||X]|]||- An operator A € K(H) is called
1/2

Hilbert-Schmidt if [|All, = (Z?'; ) s§(A)) < oo. The Hilbert-Schmidt

norm is a unitarily invariant norm. For A = [a;;] € M, it holds that

1/2
| Al = (EZ;‘:1 la;,; 2) . We use the notation A @ B for the diagonal block

matrix diag(A, B). Its singular values are s1(A), s1(B), s2(A), s2(B),.... It is
evident that

0 A
Il 5 o |l[-masizm=waezn.

14 ® B|| = max{||All, | B]l} and ||A® Bll2 = (A3 +[BI3)* -

The inequalities involving unitarily invariant norms have been of special inter-
est; see e.g., [4,9] and references therein.
An operator A € B(H) is called G; operator if the growth condition

v
dist(z,0(A))

holds for all z not in the spectrum o(A) of A, where dist(z,0(A)) denotes
the distance between z and o(A4). It is known that normal (more generally,
hyponormal) operators are Gy operators (see e.g., [15]). Let A € B(H) and
f be a function which is analytic on an open neighborhood 2 of o(A) in the
complex plane. Then f(A) denotes the operator defined on H by the Riesz-
Dunford integral as

Iz = 4)7 =

1) = 5 [ F0G— Ay

where C' is a positively oriented simple closed rectifiable contour surrounding
o(A) in Q (see e.g., [8, p. 568]). The spectral mapping theorem asserts that
o(f(A)) = f(c(A)). Throughout this note, D = {z € C: |z| < 1} denotes the
unit disk, 0D stands for the boundary of D and dg = dist(0D,0(A)). In
addition, we denote

A={f:D— C: f is analytic, Re(f) >0 and f(0) =1}.

The Sylvester type equations AX B + X = C have been investigated in matrix
theory; see [5]. Several perturbation bounds for the norm of sum or difference
of operators have been presented in the literature by employing some integral
representations of certain functions; see [3,11,12,16] and references therein.

In the recent paper [12], Kittaneh showed that the following inequality in-
volving f € A

2
/()X = Xf(BIl < 7——[IAX — XBJ||
AUB
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where A, B, X € B(H) such that A and B are G; operators with o(A4)Uo(B) C
D. In [13], the authors extended this inequality for two functions f,g € U as
follows

(2) [I[f(A)X — Xg(B)|| < 2\TIIIIAXHIXB’IIII
and
(3) If(A)X + Xg(B )Ill<il\|\AXB\+|X||H

in which A, B, X € B(H) such that A and B are G operators with o(A) U
o(B) C D. They also showed that

(4) II1f(A)Xg(B) — Xlll<il|l|AX|+|XBIIII
and
5) I Xg(B) + X1 < 222 114X B+ 1x] ],

where A, B, X € B(H) such that A and B are G; operators with o(A4)Uo(B) C
D.

In this paper, by using some ideas from [12, 13] we present some upper
bounds for unitarily invariant norms of the forms |[|[f(A)X + X f(A)[|[ and
[llf(A)X — X f(A)]|| involving G; operator and f € 2[. We also present the
Hilbert-Schmidt norm inequality of the form

1/(A)Xg(B) £ g(B)X f(A)ll2
< H(I+IA)X(I+|B|)+(I+|BI)X(I+|A)
=~ dAdB 2»

where A, B, X € M, such that A and B are Hermitian matrices with o(A) U
o(B) CDand f,g € .

2. Main results

Our first result is some upper bounds for the Hilbert-Schmidt norm inequal-
ities.
Theorem 2.1. Let A, B € M, be Hermitian matrices with c(A)Uo(B) C D
and f,g € A. Then
[f(A)X + Xg(B) + f(A)Xg(B)]2
X+ |AIX  X+X|B|  ([I+|A)X(I+]B|)
< + +
dp dadp

and

[ £(A)Xg(B) £+ g(B)X f(A)||2 < H (I+|ADX(I+|B)+UI+|B)X (I+|A]) H 7

dadp

where X € M,,.
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Proof. Let A=UAU* and B = VI'V* be the spectral decomposition of A and
B such that A = diag(A1,...,A,), T = diag(y1,...,7v) and let U* XV = [y,x].
It follows from [e!® — \;| > d4 and |e"’ — v, > dp that

I£(A)X + Xg(B) £ f(A)Xg(B)|I3

= Z [F )ik + yirg(ve) £ FN)ys09(7e)]?

= Z\f( X)) £ FO)g(w) + 90v) Lyl
ik

2

skl

2

e ip et (e +
S+ e 4 (T (o) dpa(B)

27 . 2
le >+, | le* il o e +A; e+ 2
Z (/ / [e7a—x; | [t — ,y’;‘ + em_/\;|ez‘ﬁ_,yzdﬂ(a)d/i(ﬁ)> |yj,k|
2

2m
Z(/ / Ll | 0D | 1+d;k|du(a)du(ﬁ)> a2

1+, 14+ 1+ DA+ 2
Z( d‘A | 4 |’Yk\ + (O dL)((iB IVk\)) sk ]
Jik

IN

IA

IN

_ || XHIAIX
By VIR

X+X|B| n (I+\A|)X(I+|B|)H
dp

Then we get the first inequality. Similarly,

1F(A)Xg(B) + g(B)X f(A)|3
Z|f )5 k9(v) £ 9(35) .6 (k)2

= Z FOA)g(v) £ 9() F ) [?

2 ) ) 2

- e | 0 g )au(B)| gl
27 ) . 2

< 2( / / e e a)au(5) ) [

2
< Z(/ / (LA DA ED | (DO D g, )dﬂ(ﬁ)) ;6
ok oo Jo
< Z((HI/\(;BEZLHWI) + (HWZZBE;HAICD>2|9J'J€|2

Jik



UNITARILY INVARIANT NORM INEQUALITIES INVOLVING G; OPERATORS 893

< Z ((1+\/\j|)yj,k(1+|7k\) + (1+|’Yj|)yj,k(1+|)\k|)>2

dAdB dAdB
J.k
_ || U+ADXI+[BD+UT+|B) X (I+]A])
dadp 9" [l

Now, if we put X = I in Theorem 2.1, then we get the next result.

Corollary 2.2. Let A, B € M, be Hermitian matrices with o(A)Uo(B) C D
and f,g € A. Then

I+VH+I+WBL%U+LMMI+H%

154+ 9(8) & F(p (Bl < [ 2L dris

2
and

(L +[ADU +|B]) + (L + [BNU + |A])
dadp

2

1£(A)g(B) = g(B)f(A)]2 < H

To prove the next results, the following lemma is required.

Lemma 2.3. Let A, B, X,Y € B(H) such that X and Y are compact. Then
() 5;(AX £ YB) < 2/[ANBls;(X 0Y) (j = 1,2,..);
(b) [[[(AX £ Y B) @ 0| < 2¢/[| Al BIH[|X @ Y]]

Proof. Using [11, Theorem 2.2] we have

s;(AX £YB) < (Al +||Bl)s;( X @Y) (j =1,2,...).

)s
If we replace A, B, X and Y by tA, ?, % and tY’, respectively, then we get
B
sj(AX £YB) < (t||A]| + g)sj(X aY) (G=1,2,...).

It follows from minsso(¢]|A| + H'%”) = 24/||A]|||B]| that we reach the first
inequality. The second inequality can be proven by the first inequality and the
Ky Fan dominance theorem [6, Theorme IV.2.2]; see also [1]. O

Now, by applying Lemma 2.3 we obtain the following result.
Theorem 2.4. Let A, B, X, Y e B(H) and f,g € A. Then

11(4) — oB)X £ Y (73) ~ o) @0]]| < 222 a4 Bl X & V)
and
11(CFC4) + 9(BX Y (7B) + 9(4)) @ 0]l| < 52 1+ 4Bl 1 & V1],

where X,Y are compact and A, B are Gy operators with c(A) Uo(B) C D.
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Proof. Using Lemma 2.3 and inequalities (2) and (3) we have
[HH(CrC )XiY(f<B)— 9(A4))) & 0l

<2(f(A ) ( )II 17(B) = g(A)lIZ[lIX @ Y][| (by Lemma 2.3)

\/ |A|+BIII\/ 1Bl +[A[l[[IX @ Y]

(by inequality (2))

4\f
= Tad, A IBIIHIX @ YT
Similarly,
11 )XiY(f(BHg(A ) @0
< 2| f(A ) ( || (B A)|Z||X @ Y]|| (by Lemma 2.3)
\/ I+ |AB|||\/ I+ [ABI[|[[X @ Y|
(by inequality (3))
4v2
= 22T+ 4Bl IX & VI .

Theorem 2.5. Let A, B € B(H) be Gy operators with c(A)Uo(B) C D and
f e Then for every X € B(H)

©) ll#a)x & XFBI| < 2 11X — AxB|
and
™ llsax - i@l < 222 ji1ax) + x84,

Proof. Using the Herglotz representation theorem (see e.g., [7, p. 21]) we have

27 7,04 2T i«
6= [ S e + it o) = [ S )

et — 2z

where p is a positive Borel measure on the interval [0, 2] with finite total mass
f027r du(a) = f(0) = 1. Hence

2T 4 27 —ia >
= e+ z e +Zz
= - du(a) = ——du(a
f(Z) /0 cia _ M( ) /(; P —du( )a

zaiz

where f is the conjugate function of f (i.e., ff = [f|?). So
F(AX +Xf(B)

-1

= [Ty e X ) () )
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_ /0277 (em . A)ﬂ {(em JrA) X (efm o B*)

+ (= A) X (e B [ (e - B

dp(a)

- 2/ (e — A (X — AXBY) (e — BY) " dpu(a).
0

Hence
[F(A)X + XF(B)|
2m
T ey e By e ) e
27
- (i = A) 7 (X — AXB*) (7™ = B*) ' du(a) ‘
0
2m
< 2/ ‘(em — A)_l (X — AXB*) (e‘m - B*)_lmdu(a)
0
27
< 2/0 (e’ = A) " llI(e™ = B) 7Y |IIX — AXB*|[] du(e)
(by inequality (1)).
Since A and B are G| operators, it follows from H eio‘ — A)71 H = m
S dlst(aﬂ) o(A) = g, and H o — H < g that
2m
[[f(A)X +Xf(B |||_( du(a))llX—AXB*ll

_ (f<o>) Il - AxB|

X - AXB*
— Il -

Then we have the first inequality. Using the inequality
{ *i“AXJreiO‘XB* 0 HH

{ H;?;i all
]HHHXB* o]l

(by 1nequahty
-2 <5 0]

XB*
= V2 |||[0axi? + 1xB )¢ @ 0|

l[leT"*AX + e X B*||| =

IN
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< V2|[[(|AX] + [xB]) & 0]
(applying [2, p. 775 to the function h(t) = t7)
the Ky Fan dominance theorem we have
(8) lle™PAX + e X B*[|| < V2|||[AX] + | X B ]| .

It follows from (8) and the same argument of the proof of the first inequality
that we have the second inequality and this completes the proof. (I

Remark 2.6. Let f(z + yi) = u(z,y) + v(x,y)i, where u,v are the real and
imaginary parts of f, respectively. If f,f € 2, then the Cauchy—Rlemann
equations for complex analytic functions (i.e., 8; = gz and aZ = 83E) implies
that v(z,y) = k for some k € C. The condition f(0) = 1 conclude that v(x,y) =
0. Hence, f is a real valued function. So, for arbitrary functions f,g € 2, we
can not replace g by f in inequalities (2) and (3). Thus, in Theorem 2.5 we have
been established some upper bounds for |||f(A)X + X f(B)||| and |||f(A)X —
X f(B)||| in terms of ||| X — AX B*||| and ||| |AX| + | X B*| |||, respectively, that

can not be derived from inequality (2) and (3) for an arbitrary function f € 2.

Remark 2.7. If A,B € B(H) are G; operators with o(A) Uo(B) C D and
f € 2, then with a similar argument in the proof of Theorem 2.5 we get the
following inequalities

(9) ()X +Xf(B |H<7|I\X A"XB|

and

lFax ~ x sl < 222 ji1asx1 + 1B,

where X € B(H).

Remark 2.8. For an arbitrary operator A € B(H), the numerical range is
definition by W(A) = {{(Az,z) : x € H, ||z|| = 1}. It is well-known that W (A)
is a bounded convex subset of the complex plane C. Its closure W(A) contains
o(A) and is contained in {z € C: |z| < ||A]|}. In [10], it is shown

zmafazgéH@—Arﬂ| (= ¢ 0(A))

1 1 5 377 AN
[(z=A) 7| < A7) (= & W(A)).

Now, if we replace the hypophysis G; operators by the conditions W(A) U

W(B) C D in Theorem 2.5, then in inequalities (2)-(5), the constants d4 and



UNITARILY INVARIANT NORM INEQUALITIES INVOLVING G; OPERATORS 897

dp interchange to D4 and Dp, respectively, where Dy = dist(0D, W (A)),
Dp = dist(0D, W(A)). Also inequalities (6) and (7) appear of the forms

2
X - AXB*
55z I

[f(AX +Xf(B)|| <

and

22
DaDp
where f € . For example, for every contraction operator A (i.e., A*A < 1)

and 0 < € < 1, the operator €A has the property W (eA) C D.

| f(A)X - Xf(B)|| < IIAX| + | X B/l

If we take X = I in Theorem 2.5, then we get the following result.

Corollary 2.9. Let A, B € B(H) be normal operators with c(A) Uo(B) C D
and f € A. Then for every X € B(H)

_ 2 .
[ £(A) + F(B)|]] < ———[IlI = AB*|||.
dadp
In particular, for B = A we have
1 *
I Re(f(ADI < = I = AA™]]].
A

For the next result we need the following lemma (see also [14]).

Lemma 2.10. If A,B,X € B(H) such that A and B are self-adjoint and
0 <mlI < X for some positive real number m, then

m|[[A— Bl|| < |[|[AX + XBJ||.
Proof.

m|||A— Bl

IN

%|H(A—B)X+X(A—B)||| (by [17, Lemma 3.1])

1
= 5 lIIAX ~ XB+ (XA~ BX)|

IN

1
5 (AX = X Bl + [llxA - BX]]])
AX — X B[ (since [[A] = [[A™[])- O

Proposition 2.11. Let A, B € B(H) be Gy operators with 0(A) Uo(B) C D,
let X € B(H) such that 0 < mI < X for some positive real number m and
f e Then

(10)
m |||Re(f(A)) — Re(f(B))||| < ﬁ

In particular, if A and B are unitary operators, then

(11X = AXB™[[| + [||X — A"XBI[]).

ml|Re(7(4) ~ Re(F(BYI| < 7 [IX — AXB|].
AUB
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Proof.

m ||[Re(f(A)) = Re(f(B))[| < [l[Re(f(A))X + XRe(f(B))ll
(by Lemma 2.10)

= lr@)x + x7B) + fax + x58)]|
< 3 (X + X7B)||+ [[IFx + X))
Sdl ([1X = AXB™||| +[||X — A"XB]l])

A

(by inequalities (6) and (9)).

Hence we get the first inequality. Especially, it follows from inequality (10)
and equation

1 X — AXB*||| = [||A(A"XB — X)B*[|| = [[|[A"XB — X||| = [[[X — A*XB||.
O
Remark 2.12. Using Lemma 2.3 we have
[[((F(A) + F(B)X =Y (f(B) + f(A)) @0l
<2|f(A) + B2 £(B) + FA)2[|1X @ Y]]
=2[7(A) + F(B)IIIX & Y]]
Now, if we apply inequality (6), then we reach

1F(A)+ FB)IX @Y < III AB*| X e Y],
whence
() + FBYX =Y (1B + FAap) @0 < I = AB| [IX @ Y]l

Hence, if we put B = A, then we get

IRe(f(A))X — YRe(f(A)) ®0]]] < dé 11 = AAT[|[[]X @ Y|
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