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Abstract We prove numerical radius inequalities involving commutators of G| oper-
ators and certain analytic functions. Among other inequalities, it is shown that if A
and X are bounded linear operators on a complex Hilbert space, then

w(f(A)X + X f(A) < d%w(X — AX A%,
A

where A is a G operator with 0(A) C D and f is analytic on the unit disk D such
that Re(f) > Oand f(0) = 1.
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1 Introduction

Let (47, (-, -)) be a complex Hilbert space and B(.7#) denote the C*-algebra of all
bounded linear operators on .7 with the identity /. In the case when dimJ7” = n, we
identify B(7°) with the matrix algebra M, of all n x n matrices having entries in the
complex field. The numerical radius of A € B(57) is defined by

w(A) :=sup {|[{Ax, x)| : x € A, x| = 1}.

It is well known that w( - ) defines a norm on B(.7), which is equivalent to the usual
operator norm || - |. In fact, for any A € B(J¢), %IlAll < w(A) < ||A]| (see [9,
p. 91). If A> = 0, then equality holds in the first inequality, and if A is normal, then
equality holds in the second inequality. For further information about numerical radius
inequalities, we refer the reader to [1-3,12,16,17] and references therein.

An operator A € B() is called a G| operator if the growth condition

1
-1

I@=A7 = Sz oy

holds for all z not in the spectrum o (A) of A, where dist(z, o (A)) denotes the distance
between z and o (A). For simplicity, if z is a complex number, we write z instead of
zI. It is known that hyponormal (in particular, normal) operators are G| operators
(see, e.g., [15]). Let A € B(4) and f be a function which is analytic on an open
neighborhood 2 of o (A) in the complex plane. Then f (A) denotes the operator defined
on ¢ by the Riesz-Dunford integral as

1
f(A) = 7/ f()—A)dz,
Tl C

where C is a positively oriented simple closed rectifiable contour surrounding o (A)
in Q (see e.g., [8, p. 568]). The spectral mapping theorem asserts that o (f(A)) =
f(o(A)). Throughout this note, D = {z € C: |z| < 1} denotes the unit disk, D
stands for the boundary of D and d4 = dist(dD, o (A)). In addition, we denote

A={f:D— C: fisanalytic, Re(f) > Oand f(0) = 1}.

The Sylvester type equations AX B £ X = C have been investigated in matrix theory
(see [4]). Several perturbation bounds for the norms of sums or differences of operators
have been presented in the literature by employing some integral representations of
certain functions. See [5,13,14] and references therein.

In this paper, we present some upper bounds for the numerical radii of the com-
mutators and elementary operators of the form f(A)X + X f(A), f(A)X f(B) —
f(B)X f(A) and f(A)X f(B) +2X + f(B)X f(A), where A, B, X € B(J¢) and
fed



Numerical Radius Inequalities Involving Commutators. ..

2 Main Results

To prove our first result, the following lemma concerning numerical radius inequalities
and an equality is required.

Lemma 2.1 [10,11] Let A, B, X, Y € B(J7). Then
(a) w(A*XA) < [|A|Pw(X).

(b) w(AX £ XA*) < 2| Aw(X).

(¢) w(A*XB+ B*YA) <2|A||B|w ([2 )é]) .

@ ([ pyae &) = maxtiaiz iz ([35]).

0Xx (X+Y)+w(X—Y)
O

0 w (|:ei(9)X ﬁ}) =w(X) ford e R

Proof Since all parts, except part (d), have bee shown in [10, 11], we prove only part

_1AO 10X v 0 AXB*
(d). If we take C = OBi|andS—|:YO:|,thenCSC _|:BYA* 0 i|.NOW,

using part (a), we have

w <[B)9A* A%B D = w(CSC¥)

< ICIFw(S)

= max{[|AlI*, [|B]|*}w ([3 g]) ’

as required. O

Now, we are in position to demonstrate the main results of this section by using
some ideas from [13,14].

Theorem 2.2 Let A € B() be a G| operator with o (A) C D and f € 2. Then for
every X € B(JC), we have

. 2
w(f(AX +Xf(A) = d—zw(X — AXAY)
A

and

. 4
w(f(AX —Xf(A) < d—zllAllw(X)-
A
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Proof Using the Herglotz representation theorem (see e.g., [7, p.21]), we have

21 eiot +z

el —z

2 ia
f(z)=/0 ‘ JFZGlu(t)t)Jrl'ImJ‘(O):/O du(a),

el — 7z

where o is a positive Borel measure on the interval [0, 2] with finite total mass
P du(@) = f(0) = 1. Hence,

2w Lia 2r ,—ia =

= e'Y +z e +z
f@) = / du(a) = f ———=du(a),

0 e 0 e —Z

iot_Z -

where £ is the conjugate function of f. So,

FAX + X F(A) = /Ozn [(e"“ + A) (d’“ - A)f1 X
+X (e_i“ + A*) (e_i“ — A*)_li| du(a)
I RCEONCENHEERY
+ (ef“ - A) X (e—"“ + A*)] (e—f“ - A*>_1 du(a)

_ 2[0271 (e"a _ A>_l (X — AXA®) (e*"a - A*)_l du(@).
Hence,

w(f(A)X + X f(A))

o ([T a) (e -a)

+X (e*"“ + A*) (e*"“ - A*)_li| d,u(a))
=2w (foh (e"“ - A>_1 (X — AXA®) (e—"“ - A*)_l du(a))
< Z/OZH w <<e"“ - A>71 (X — AXA*) (e—"“ - A*)l> dju(e)

(since w( - ) is a norm)

2
(=)

w (X — AXA*) dp(a)
(by Lemma2.1(a)).
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Since A is a G| operator, it follows that

)

1 1 1
= < S
dist(e’®, o (A)) ~ dist(dD, 0 (A))  da’

and so
(f(A)X + Xf(A) (—2 d,u(oz)) w(X —AXAY)
A

A
2
— S w(X — AXA").

a;

This proves the first inequality.
Similarly, it follows from the equations

FAX — XF(A) = /02” [(e"“ T A) (e"“ - A)71 X
-X (e—ia —i—A*) (e—ioz _ A*>_li| du(a)
2, - .
[ e
. . —1

that

w(f(A)X — X f(A)

—ou ([T (e () x - x () ) (e 7))
<2 [Tu (e a) () x - x (ea) ) (- 4) e

(since w( - ) is a norm)
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’ w ((e*"“A) X—X (e*"“A)*) du(e)

(by Lemma?2.1 (a))
2
lle™" Allw(X)d ()

-1

/

(by Lemma?2.1 (b))

27
< |A||w(X>f (@)
A

-1

< < lIAJw(X).
—dill llw(X)

This proves the second inequality and completes the proof of the theorem. O

If we take X = I in Theorem 2.2, we get the following result. Observe that f(A) =
(f(AN*.
Corollary 2.3 Let A € B(S) be a G| operator with o (A) C D and f € Q. Then

1
[Re(f (AN = d—2||1 — AAT|
A

and

2
[m(f (AN = d—zllAII-

A

Theorem 2.4 Let A, B € B(5) be G| operators witho (A)Uo (B) C Dand f € 2.
Then for every X € B(9), we have

w(f(A)X f(B) — f(B)X f(A))

2 [2w (X) + w (AXB* + BXA*) + w (AXB* — BXA")]
B

and

w(f(A)X f(B) +2X + f(B)X f(A))
< 2 [2w (X) + w (AXB* + BXA*) + w (AXB* — BXA")].
dadp

Proof We have

F(AXF(B) — (B)Xf(A)
2 p2m S . . -1
/ / [ (@® + A)X (e~ + B%) <e"ﬂ - B*)

— (e B _ B) @f + B)X (e~ + A% ( —ia _ A*)_l] du()du(B).



Numerical Radius Inequalities Involving Commutators. ..

Using the equations

(ef“ — A)71 (@ + A)X (e~ + B%) <e—"ﬁ — B*)il
- (el’ﬁ - B)71 @ + B)X (e~ + A% (e—"“ — A*>71
- (ef“ - A)il (% + A)X (P + BY) (e—"/f‘ - B*)il +X
X - (e"ﬁ - 3)71 @ + B)X (e~ + A*) <e—f“ - A*)il
_ (e"“ - A)il [(e"“ + A)X (e + BY
(@ — )X (e P — B*)] (f”“ - B*)il
- (eiﬂ - B)71 [(e"ﬁ — B)X (e~ — A%
F@ 4 BIX 4 A (e ar)
=2('* — A) (e X + AXB*) (e # — B!
—2(? — B) N (e P X + BXA¥)(e71¥ — AF)7L,

we have

w(f(AXf(B) — f(B)X f(A))
2 2
= 2w </ (€ — A) (e P X + AXB*)(e P — B*)7!
0 0
—(@? — BN X + BXA) (e — A*)_ldu(o:)du(ﬂ)>
2 2
< 2/ / w ((e"“ —A) (%P X + AXB*) (e — B*)!
0 0

— (P —B) (e P X + BXA) (e — A*)‘l) dp()dp(p)

(since w( - ) is a norm)

2 2 ) )
< 4/ / 1@ — AP — B
0 0

0 e PX 4+ AXB*
Xw <|:e—iaeiﬂx+BXA* 0 i|> d/,L(O{)d/,L(ﬂ)
(by Lemma 2.1 (c))

4 o 0 e PXx
dAdB/o /0 |:w<|:emeiﬁx 0 ])

+w ([ aone o m dp(@)du(B)

=<
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“aanh L)) oo (ot 57 ) Javeser

< T [2w (X) + w (AXB* + BXA*) + w (AXB* — BXA")]
A

(by Lemma 2.1 (e) and (f)).

This proves the first inequality.
Similarly, we have

F(AXF(B)+2X + f(B)Xf(A)
. plmw : . 4 ~1
/ / [ L@+ X (e 1 B (e—'ﬂ _ B*) 42X

-1
(e B _ B) (P + B)X (7% + A*) ( —ia _ A*) :|du(a)du(ﬂ).
Using the equations

. -1 . . . —1
(e“" — A) (@ + A)X (e~ + B%) (a"f‘ — B*) +2x
. -1 . . . —1
n (e’f’ - B) @* + B)X (e + A%) (e_’“ - A*)
. -1 . . . —1
_ (e'“ — A) (@ + A)X (e~ + B%) (g"ﬁ - B*) X
. —1 . . . —
X+ (e’ﬁ — B) @ + B)X (e~ + A*) <e—“¥ - A*)
. —1 . .
_ (e'“ — A) [(e’“ + A)X(e P + BY
. . . —1
F (@ — A)X (e P — B*)] (flﬁ - B*)
. -1 . .
n (elﬁ - B) [(e’ﬁ — B)X (e — A%
. . . —1
+ (P + B)X (e + A*)] (f“x - A*)
=2 — A) (e P X + AXB*) (e P — B*)7!
+2(? — By N e P X + BXA®)(e71¥ — AL,

we have

w(f(AXF(B)+2X + f(B)X f(A))
27 27
=2w <f @ — A X + AXB*)(e P — B*)~!
0 0

+ (e — By (e 7P X + BXAY) (7 — A*)*ldu(a)du(ﬁ))
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2 2 ) ) ) )
< 2/ f w ((e'“ — A (%X 4 AXB*) (e P — B*)!
0 0

+ (e — By (e 7P X + BXAY) (7 — A*)’l) du()du(B)

(since w( - ) is a norm)

27 27 ) )
< 4/ / ™ — A~ E? - By
0 0

0 e BX + AXB*
xw ([e—mel‘ﬂx 1+ BXA* 0 D dp(@du(p)

(by Lemma 2.1 (c))

g | [ (et 70™))

+u ([BXA* AXE m di(@)dp(p)

dAdB /2” /2” [ ([ ]) w <[B)?A* A%B*D] dp(e)d ()

< ﬁ [2w (X) +w (AXB* + BXA*) + w (AXB* — BXA*)]
A
(by Lemma 2.1 (e) and (f)).

This proves the second inequality and completes the proof of the theorem. O

Remark 2.5 Under the assumptions of Theorem 2.4 and the hypothesis that X is self-
adjoint, we have

I f(AXF(B)— f(BYXf(A
4
= ——— max{[ IX| [+ [TAX Bl [1X 11+ [ 1BX A1}
AdB

and

I f(A)X f(B) +2X + f(B)X f(A)
4
< 2y max(lXII+1 AXB*||I, I 1X| || + Il IBXA*| ][}

To see this, first note that if X is self-adjoint, then the operator matrix

T_ 0 ei%e~iPX + AXB*
T e e X + BXA* 0

is self-adjoint, hence w(7) = ||T'||. Moreover, T = M + N, where

0 e X 0 AXB*
M:[e—i“eiﬁx 0 } N:[BXA* 0 ]
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are self-adjoint operators. Using the fact that ||C + D| < || |C|+ | D] || for any normal
operators C and D (see [6]), we have

w(T) = [[M + NI < | IM[+ NI

max{|| [ X[ | + I [AXB*[ Il | IX] | + I  BXA™[ |I}.

Hence, we get the required inequalities by the same arguments as in the proof of
Theorem 2.4.

If we take X = I in Theorem 2.4, we get the following result.

Corollary 2.6 Let A, B € B(9) be G| operators witho (A)Uo (B) C Dand f € 2.
Then

_ 2 "
[Im(f (A) f(B)]l < dnds (1+11AB*)
and
_ 2 N
[Re(f(A)f(B)) + 1]l < dids (1+1IAB™]).

Remark 2.7 If instead of applying Lemma 2.1 (c) we use Lemma 2.1 (d) and (f) in
the proof Theorem 2.4, we obtain the related inequalities

= = 4
w(f(AXFB) = FBXFA) = ——— [1+max{lAI%. 1B} |w ()
AdB

and

= = 4
W(f(AXF(B)+2X + F(BXF(A) = —— [1+max(lAI. 1812} |w (X).
AdB
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