

Numerical Radius Inequalities Involving Commutators of G_1 Operators

Mojtaba Bakherad¹ · Fuad Kittaneh²

Received: 30 December 2016 / Accepted: 6 September 2017 © Springer International Publishing AG 2017

Abstract We prove numerical radius inequalities involving commutators of G_1 operators and certain analytic functions. Among other inequalities, it is shown that if A and X are bounded linear operators on a complex Hilbert space, then

$$w(f(A)X + X\bar{f}(A)) \le \frac{2}{d_A^2}w(X - AXA^*),$$

where A is a G_1 operator with $\sigma(A) \subset \mathbb{D}$ and f is analytic on the unit disk \mathbb{D} such that Re(f) > 0 and f(0) = 1.

Keywords G_1 operator · Numerical radius · Commutator · Analytic function

Mathematics Subject Classification Primary 47A12; Secondary 15A60 · 30E20 · 47A30 · 47B15 · 47B20

Communicated by Daniel Aron Alpay.

Published online: 13 September 2017

Fuad Kittaneh fkitt@ju.edu.jo

Mojtaba Bakherad mojtaba.bakherad@yahoo.com; bakherad@member.ams.org

Department of Mathematics, Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, Islamic Republic of Iran

Department of Mathematics, The University of Jordan, Amman, Jordan

1 Introduction

Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and $\mathbb{B}(\mathcal{H})$ denote the C^* -algebra of all bounded linear operators on \mathcal{H} with the identity I. In the case when $\dim \mathcal{H} = n$, we identify $\mathbb{B}(\mathcal{H})$ with the matrix algebra \mathbb{M}_n of all $n \times n$ matrices having entries in the complex field. The numerical radius of $A \in \mathbb{B}(\mathcal{H})$ is defined by

$$w(A) := \sup\{|\langle Ax, x \rangle| : x \in \mathcal{H}, ||x|| = 1\}.$$

It is well known that $w(\cdot)$ defines a norm on $\mathbb{B}(\mathscr{H})$, which is equivalent to the usual operator norm $\|\cdot\|$. In fact, for any $A \in \mathbb{B}(\mathscr{H})$, $\frac{1}{2}\|A\| \leq w(A) \leq \|A\|$ (see [9, p. 9]). If $A^2 = 0$, then equality holds in the first inequality, and if A is normal, then equality holds in the second inequality. For further information about numerical radius inequalities, we refer the reader to [1-3,12,16,17] and references therein.

An operator $A \in \mathbb{B}(\mathcal{H})$ is called a G_1 operator if the growth condition

$$||(z-A)^{-1}|| = \frac{1}{\operatorname{dist}(z, \sigma(A))}$$

holds for all z not in the spectrum $\sigma(A)$ of A, where $\operatorname{dist}(z, \sigma(A))$ denotes the distance between z and $\sigma(A)$. For simplicity, if z is a complex number, we write z instead of zI. It is known that hyponormal (in particular, normal) operators are G_1 operators (see, e.g., [15]). Let $A \in \mathbb{B}(\mathcal{H})$ and f be a function which is analytic on an open neighborhood Ω of $\sigma(A)$ in the complex plane. Then f(A) denotes the operator defined on \mathcal{H} by the Riesz–Dunford integral as

$$f(A) = \frac{1}{2\pi i} \int_C f(z)(z - A)^{-1} dz,$$

where C is a positively oriented simple closed rectifiable contour surrounding $\sigma(A)$ in Ω (see e.g., [8, p. 568]). The spectral mapping theorem asserts that $\sigma(f(A)) = f(\sigma(A))$. Throughout this note, $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ denotes the unit disk, $\partial \mathbb{D}$ stands for the boundary of \mathbb{D} and $d_A = \operatorname{dist}(\partial \mathbb{D}, \sigma(A))$. In addition, we denote

$$\mathfrak{A} = \{ f : \mathbb{D} \to \mathbb{C} : f \text{ is analytic, } \operatorname{Re}(f) > 0 \text{ and } f(0) = 1 \}.$$

The Sylvester type equations $AXB \pm X = C$ have been investigated in matrix theory (see [4]). Several perturbation bounds for the norms of sums or differences of operators have been presented in the literature by employing some integral representations of certain functions. See [5, 13, 14] and references therein.

In this paper, we present some upper bounds for the numerical radii of the commutators and elementary operators of the form $f(A)X \pm X\bar{f}(A)$, $f(A)X\bar{f}(B) - f(B)X\bar{f}(A)$ and $f(A)X\bar{f}(B) + 2X + f(B)X\bar{f}(A)$, where $A, B, X \in \mathbb{B}(\mathcal{H})$ and $f \in \mathfrak{A}$.

2 Main Results

To prove our first result, the following lemma concerning numerical radius inequalities and an equality is required.

Lemma 2.1 [10,11] *Let* A, B, X, $Y \in \mathbb{B}(\mathcal{H})$. *Then*

- (a) $w(A^*XA) \le ||A||^2 w(X)$.
- (b) $w(AX \pm XA^*) \le 2||A||w(X)$.

(c)
$$w(A^*XB \pm B^*YA) \le 2||A|| ||B|| w\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right)$$
.

$$(\mathsf{d}) \quad w\left(\left[\begin{matrix} 0 & AXB^* \\ BYA^* & 0 \end{matrix}\right]\right) \leq \max\{||A||^2, ||B||^2\}w\left(\left[\begin{matrix} 0 & X \\ Y & 0 \end{matrix}\right]\right).$$

(e)
$$w\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right) \le \frac{w(X+Y)+w(X-Y)}{2}$$
.

(f)
$$w\left(\begin{bmatrix}0 & X\\ e^{i\theta}X & 0\end{bmatrix}\right) = w(X) \text{ for } \theta \in \mathbb{R}.$$

Proof Since all parts, except part (d), have bee shown in [10,11], we prove only part (d). If we take $C = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$ and $S = \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}$, then $CSC^* = \begin{bmatrix} 0 & AXB^* \\ BYA^* & 0 \end{bmatrix}$. Now, using part (a), we have

$$\begin{split} w\left(\left[\begin{array}{cc} 0 & AXB^* \\ BYA^* & 0 \end{array}\right]\right) &= w(CSC^*) \\ &\leq \|C\|^2 w(S) \\ &= \max\{||A||^2, ||B||^2\} w\left(\left[\begin{array}{cc} 0 & X \\ Y & 0 \end{array}\right]\right), \end{split}$$

as required.

Now, we are in position to demonstrate the main results of this section by using some ideas from [13,14].

Theorem 2.2 Let $A \in \mathbb{B}(\mathcal{H})$ be a G_1 operator with $\sigma(A) \subset \mathbb{D}$ and $f \in \mathfrak{A}$. Then for every $X \in \mathbb{B}(\mathcal{H})$, we have

$$w(f(A)X + X\bar{f}(A)) \le \frac{2}{d_A^2}w(X - AXA^*)$$

and

$$w(f(A)X - X\bar{f}(A)) \le \frac{4}{d_A^2} ||A|| w(X).$$

Proof Using the Herglotz representation theorem (see e.g., [7, p.21]), we have

$$f(z) = \int_0^{2\pi} \frac{e^{i\alpha} + z}{e^{i\alpha} - z} d\mu(\alpha) + i \operatorname{Im} f(0) = \int_0^{2\pi} \frac{e^{i\alpha} + z}{e^{i\alpha} - z} d\mu(\alpha),$$

where μ is a positive Borel measure on the interval $[0, 2\pi]$ with finite total mass $\int_0^{2\pi} d\mu(\alpha) = f(0) = 1$. Hence,

$$\bar{f}(z) = \overline{\int_0^{2\pi} \frac{e^{i\alpha} + z}{e^{i\alpha} - z} d\mu(\alpha)} = \int_0^{2\pi} \frac{e^{-i\alpha} + \bar{z}}{e^{-i\alpha} - \bar{z}} d\mu(\alpha),$$

where \bar{f} is the conjugate function of f. So,

$$f(A)X + X\bar{f}(A) = \int_0^{2\pi} \left[\left(e^{i\alpha} + A \right) \left(e^{i\alpha} - A \right)^{-1} X \right]$$

$$+ X \left(e^{-i\alpha} + A^* \right) \left(e^{-i\alpha} - A^* \right)^{-1} d\mu(\alpha)$$

$$= \int_0^{2\pi} \left(e^{i\alpha} - A \right)^{-1} \left[\left(e^{i\alpha} + A \right) X \left(e^{-i\alpha} - A^* \right) \right]$$

$$+ \left(e^{i\alpha} - A \right) X \left(e^{-i\alpha} + A^* \right) \left[\left(e^{-i\alpha} - A^* \right)^{-1} d\mu(\alpha) \right]$$

$$= 2 \int_0^{2\pi} \left(e^{i\alpha} - A \right)^{-1} (X - AXA^*) \left(e^{-i\alpha} - A^* \right)^{-1} d\mu(\alpha).$$

Hence,

Since A is a G_1 operator, it follows that

$$\left\| \left(e^{i\alpha} - A \right)^{-1} \right\| = \frac{1}{\operatorname{dist}(e^{i\alpha}, \sigma(A))} \le \frac{1}{\operatorname{dist}(\partial \mathbb{D}, \sigma(A))} = \frac{1}{d_A},$$

and so

$$\begin{split} w\left(f(A)X + X\bar{f}(A)\right) &\leq \left(\frac{2}{d_A^2} \int_0^{2\pi} d\mu(\alpha)\right) w(X - AXA^*) \\ &= \left(\frac{2}{d_A^2} f(0)\right) w(X - AXA^*) \\ &= \frac{2}{d_A^2} w(X - AXA^*). \end{split}$$

This proves the first inequality.

Similarly, it follows from the equations

$$f(A)X - X\bar{f}(A) = \int_0^{2\pi} \left[\left(e^{i\alpha} + A \right) \left(e^{i\alpha} - A \right)^{-1} X \right] d\mu(\alpha)$$

$$= \int_0^{2\pi} \left(e^{i\alpha} + A^* \right) \left(e^{-i\alpha} - A^* \right)^{-1} d\mu(\alpha)$$

$$= \int_0^{2\pi} \left(e^{i\alpha} - A \right)^{-1} \left[\left(e^{i\alpha} + A \right) X \left(e^{-i\alpha} - A^* \right) \right] - \left(e^{i\alpha} - A \right) X \left(e^{-i\alpha} + A^* \right) d\mu(\alpha)$$

$$= 2 \int_0^{2\pi} \left(e^{i\alpha} - A \right)^{-1} \left(e^{-i\alpha} A X - e^{i\alpha} X A^* \right)$$

$$\times \left(e^{-i\alpha} - A^* \right)^{-1} d\mu(\alpha)$$

$$= 2 \int_0^{2\pi} \left(e^{i\alpha} - A \right)^{-1} \left(\left(e^{-i\alpha} A \right) X \right) d\mu(\alpha)$$

$$= 2 \int_0^{2\pi} \left(e^{i\alpha} - A \right)^{-1} d\mu(\alpha)$$

that

$$\begin{split} & w(f(A)X - X\bar{f}(A)) \\ &= 2w \left(\int_0^{2\pi} \left(e^{i\alpha} - A \right)^{-1} \left(\left(e^{-i\alpha} A \right) X - X \left(e^{-i\alpha} A \right)^* \right) \left(e^{-i\alpha} - A^* \right)^{-1} d\mu(\alpha) \right) \\ &\leq 2 \int_0^{2\pi} w \left(\left(e^{i\alpha} - A \right)^{-1} \left(\left(e^{-i\alpha} A \right) X - X \left(e^{-i\alpha} A \right)^* \right) \left(e^{-i\alpha} - A^* \right)^{-1} \right) d\mu(\alpha) \\ & \qquad \qquad \qquad \text{(since } w(\,\cdot\,) \text{ is a norm)} \end{split}$$

$$\leq 2 \int_{0}^{2\pi} \left\| \left(e^{i\alpha} - A \right)^{-1} \right\|^{2} w \left(\left(e^{-i\alpha} A \right) X - X \left(e^{-i\alpha} A \right)^{*} \right) d\mu(\alpha)$$
(by Lemma 2.1 (a))
$$\leq 4 \int_{0}^{2\pi} \left\| \left(e^{i\alpha} - A \right)^{-1} \right\|^{2} \left\| e^{-i\alpha} A \right\| w(X) d\mu(\alpha)$$
(by Lemma 2.1 (b))
$$\leq \frac{4}{d_{A}^{2}} \|A\| w(X) \int_{0}^{2\pi} d\mu(\alpha)$$

$$\leq \frac{4}{d_{A}^{2}} \|A\| w(X).$$

This proves the second inequality and completes the proof of the theorem.

If we take X = I in Theorem 2.2, we get the following result. Observe that $\bar{f}(A) = (f(A))^*$.

Corollary 2.3 Let $A \in \mathbb{B}(\mathcal{H})$ be a G_1 operator with $\sigma(A) \subset \mathbb{D}$ and $f \in \mathfrak{A}$. Then

$$||Re(f(A))|| \le \frac{1}{d_A^2} ||I - AA^*||$$

and

$$||Im(f(A))|| \le \frac{2}{d_A^2} ||A||.$$

Theorem 2.4 Let $A, B \in \mathbb{B}(\mathcal{H})$ be G_1 operators with $\sigma(A) \cup \sigma(B) \subset \mathbb{D}$ and $f \in \mathfrak{A}$. Then for every $X \in \mathbb{B}(\mathcal{H})$, we have

$$\begin{split} & w(f(A)X\bar{f}(B) - f(B)X\bar{f}(A)) \\ & \leq \frac{2}{d_Ad_B} \left[2w\left(X\right) + w\left(AXB^* + BXA^*\right) + w\left(AXB^* - BXA^*\right) \right] \end{split}$$

and

$$\begin{split} & w(f(A)X\bar{f}(B) + 2X + f(B)X\bar{f}(A)) \\ & \leq \frac{2}{d_Ad_B} \left[2w\left(X\right) + w\left(AXB^* + BXA^*\right) + w\left(AXB^* - BXA^*\right) \right]. \end{split}$$

Proof We have

$$\begin{split} f(A)X\bar{f}(B) - f(B)X\bar{f}(A) \\ &= \int_0^{2\pi} \int_0^{2\pi} \left[\left(e^{i\alpha} - A \right)^{-1} (e^{i\alpha} + A)X(e^{-i\beta} + B^*) \left(e^{-i\beta} - B^* \right)^{-1} \right. \\ &\left. - \left(e^{i\beta} - B \right)^{-1} (e^{i\beta} + B)X(e^{-i\alpha} + A^*) \left(e^{-i\alpha} - A^* \right)^{-1} \right] d\mu(\alpha) d\mu(\beta). \end{split}$$

Using the equations

$$\begin{split} \left(e^{i\alpha}-A\right)^{-1} &(e^{i\alpha}+A)X(e^{-i\beta}+B^*) \left(e^{-i\beta}-B^*\right)^{-1} \\ &-\left(e^{i\beta}-B\right)^{-1} (e^{i\beta}+B)X(e^{-i\alpha}+A^*) \left(e^{-i\alpha}-A^*\right)^{-1} \\ &=\left(e^{i\alpha}-A\right)^{-1} (e^{i\alpha}+A)X(e^{-i\beta}+B^*) \left(e^{-i\beta}-B^*\right)^{-1} + X \\ &-X-\left(e^{i\beta}-B\right)^{-1} (e^{i\beta}+B)X(e^{-i\beta}+A^*) \left(e^{-i\alpha}-A^*\right)^{-1} \\ &=\left(e^{i\alpha}-A\right)^{-1} \left[(e^{i\alpha}+A)X(e^{-i\beta}+B^*) \\ &+(e^{i\alpha}-A)X(e^{-i\beta}-B^*)\right] \left(e^{-i\beta}-B^*\right)^{-1} \\ &-\left(e^{i\beta}-B\right)^{-1} \left[(e^{i\beta}-B)X(e^{-i\alpha}-A^*) \\ &+(e^{i\beta}+B)X(e^{-i\alpha}+A^*)\right] \left(e^{-i\alpha}-A^*\right)^{-1} \\ &=2(e^{i\alpha}-A)^{-1}(e^{i\alpha}e^{-i\beta}X+AXB^*)(e^{-i\beta}-B^*)^{-1} \\ &-2(e^{i\beta}-B)^{-1}(e^{-i\alpha}e^{i\beta}X+BXA^*)(e^{-i\alpha}-A^*)^{-1}, \end{split}$$

we have

$$\begin{split} & w(f(A)X\bar{f}(B) - f(B)X\bar{f}(A)) \\ &= 2w \left(\int_0^{2\pi} \int_0^{2\pi} (e^{i\alpha} - A)^{-1} (e^{i\alpha}e^{-i\beta}X + AXB^*)(e^{-i\beta} - B^*)^{-1} \\ &- (e^{i\beta} - B)^{-1} (e^{-i\alpha}e^{i\beta}X + BXA^*)(e^{-i\alpha} - A^*)^{-1} d\mu(\alpha) d\mu(\beta) \right) \\ &\leq 2 \int_0^{2\pi} \int_0^{2\pi} w \left((e^{i\alpha} - A)^{-1} (e^{i\alpha}e^{-i\beta}X + AXB^*)(e^{-i\beta} - B^*)^{-1} \\ &- (e^{i\beta} - B)^{-1} (e^{-i\alpha}e^{i\beta}X + BXA^*)(e^{-i\alpha} - A^*)^{-1} \right) d\mu(\alpha) d\mu(\beta) \\ & \qquad \qquad \text{(since } w(\cdot) \text{ is a norm)} \\ &\leq 4 \int_0^{2\pi} \int_0^{2\pi} \| (e^{i\alpha} - A)^{-1} \| \| (e^{i\beta} - B)^{-1} \| \\ &\times w \left(\left[e^{-i\alpha}e^{i\beta}X + BXA^* & 0 \right] \right) d\mu(\alpha) d\mu(\beta) \\ &\qquad \qquad \text{(by Lemma 2.1 (c))} \\ &\leq \frac{4}{d_A d_B} \int_0^{2\pi} \int_0^{2\pi} \left[w \left(\left[0 e^{-i\alpha}e^{i\beta}X - AXB^* \right] \right) d\mu(\alpha) d\mu(\beta) \right. \\ &+ w \left(\left[0 AXB^* \\ BXA^* & 0 \right] \right) d\mu(\alpha) d\mu(\beta) \end{split}$$

$$= \frac{4}{d_A d_B} \int_0^{2\pi} \int_0^{2\pi} \left[w \left(\begin{bmatrix} 0 & X \\ X & 0 \end{bmatrix} \right) + w \left(\begin{bmatrix} 0 & AXB^* \\ BXA^* & 0 \end{bmatrix} \right) \right] d\mu(\alpha) d\mu(\beta)$$

$$\leq \frac{2}{d_A d_B} \left[2w \left(X \right) + w \left(AXB^* + BXA^* \right) + w \left(AXB^* - BXA^* \right) \right]$$
(by Lemma 2.1 (e) and (f)).

This proves the first inequality.

Similarly, we have

$$\begin{split} f(A)X\bar{f}(B) + 2X + f(B)X\bar{f}(A) \\ &= \int_0^{2\pi} \int_0^{2\pi} \left[\left(e^{i\alpha} - A \right)^{-1} (e^{i\alpha} + A)X(e^{-i\beta} + B^*) \left(e^{-i\beta} - B^* \right)^{-1} + 2X \right. \\ &+ \left. \left(e^{i\beta} - B \right)^{-1} (e^{i\beta} + B)X(e^{-i\alpha} + A^*) \left(e^{-i\alpha} - A^* \right)^{-1} \right] d\mu(\alpha)d\mu(\beta). \end{split}$$

Using the equations

$$\begin{split} \left(e^{i\alpha}-A\right)^{-1} & (e^{i\alpha}+A)X(e^{-i\beta}+B^*) \left(e^{-i\beta}-B^*\right)^{-1} + 2X \\ & + \left(e^{i\beta}-B\right)^{-1} (e^{i\beta}+B)X(e^{-i\alpha}+A^*) \left(e^{-i\alpha}-A^*\right)^{-1} \\ & = \left(e^{i\alpha}-A\right)^{-1} (e^{i\alpha}+A)X(e^{-i\beta}+B^*) \left(e^{-i\beta}-B^*\right)^{-1} + X \\ & + X + \left(e^{i\beta}-B\right)^{-1} (e^{i\beta}+B)X(e^{-i\beta}+A^*) \left(e^{-i\alpha}-A^*\right)^{-1} \\ & = \left(e^{i\alpha}-A\right)^{-1} \left[(e^{i\alpha}+A)X(e^{-i\beta}+B^*) \\ & + (e^{i\alpha}-A)X(e^{-i\beta}-B^*)\right] \left(e^{-i\beta}-B^*\right)^{-1} \\ & + \left(e^{i\beta}-B\right)^{-1} \left[(e^{i\beta}-B)X(e^{-i\alpha}-A^*) \\ & + (e^{i\beta}+B)X(e^{-i\alpha}+A^*)\right] \left(e^{-i\alpha}-A^*\right)^{-1} \\ & = 2(e^{i\alpha}-A)^{-1} (e^{i\alpha}e^{-i\beta}X+AXB^*)(e^{-i\beta}-B^*)^{-1} \\ & + 2(e^{i\beta}-B)^{-1} (e^{-i\alpha}e^{i\beta}X+BXA^*)(e^{-i\alpha}-A^*)^{-1}, \end{split}$$

we have

$$w(f(A)X\bar{f}(B) + 2X + f(B)X\bar{f}(A))$$

$$= 2w\left(\int_0^{2\pi} \int_0^{2\pi} (e^{i\alpha} - A)^{-1} (e^{i\alpha}e^{-i\beta}X + AXB^*)(e^{-i\beta} - B^*)^{-1} + (e^{i\beta} - B)^{-1}(e^{-i\alpha}e^{i\beta}X + BXA^*)(e^{-i\alpha} - A^*)^{-1}d\mu(\alpha)d\mu(\beta)\right)$$

$$\leq 2 \int_{0}^{2\pi} \int_{0}^{2\pi} w \left((e^{i\alpha} - A)^{-1} (e^{i\alpha} e^{-i\beta} X + AXB^{*}) (e^{-i\beta} - B^{*})^{-1} \right. \\ + (e^{i\beta} - B)^{-1} (e^{-i\alpha} e^{i\beta} X + BXA^{*}) (e^{-i\alpha} - A^{*})^{-1} \right) d\mu(\alpha) d\mu(\beta)$$
 (since $w(\cdot)$ is a norm)
$$\leq 4 \int_{0}^{2\pi} \int_{0}^{2\pi} \| (e^{i\alpha} - A)^{-1} \| \| (e^{i\beta} - B)^{-1} \| \\ \times w \left(\begin{bmatrix} 0 & e^{i\alpha} e^{-i\beta} X + AXB^{*} \\ e^{-i\alpha} e^{i\beta} X + BXA^{*} & 0 \end{bmatrix} \right) d\mu(\alpha) d\mu(\beta)$$
 (by Lemma 2.1 (c))
$$\leq \frac{4}{d_{A}d_{B}} \int_{0}^{2\pi} \int_{0}^{2\pi} \left[w \left(\begin{bmatrix} 0 & e^{i\alpha} e^{-i\beta} X \\ e^{-i\alpha} e^{i\beta} X & 0 \end{bmatrix} \right) \right. \\ + w \left(\begin{bmatrix} 0 & AXB^{*} \\ BXA^{*} & 0 \end{bmatrix} \right) \right] d\mu(\alpha) d\mu(\beta)$$

$$= \frac{4}{d_{A}d_{B}} \int_{0}^{2\pi} \int_{0}^{2\pi} \left[w \left(\begin{bmatrix} 0 & X \\ X & 0 \end{bmatrix} \right) + w \left(\begin{bmatrix} 0 & AXB^{*} \\ BXA^{*} & 0 \end{bmatrix} \right) \right] d\mu(\alpha) d\mu(\beta)$$

$$\leq \frac{2}{d_{A}d_{B}} \left[2w (X) + w \left(AXB^{*} + BXA^{*} \right) + w \left(AXB^{*} - BXA^{*} \right) \right]$$
 (by Lemma 2.1 (e) and (f)).

This proves the second inequality and completes the proof of the theorem.

Remark 2.5 Under the assumptions of Theorem 2.4 and the hypothesis that *X* is self-adjoint, we have

$$\begin{split} &\|f(A)X\bar{f}(B) - f(B)X\bar{f}(A)\| \\ &\leq \frac{4}{d_Ad_B} \max\{\|\,|X|\,\| + \|\,|AXB^*|\,\|,\,\|\,|X|\,\| + \|\,|BXA^*|\,\|\} \end{split}$$

and

$$|| f(A)X\bar{f}(B) + 2X + f(B)X\bar{f}(A) ||$$

$$\leq \frac{4}{d_A d_B} \max\{|| |X| || + || |AXB^*| ||, || |X| || + || |BXA^*| ||\}.$$

To see this, first note that if X is self-adjoint, then the operator matrix

$$T = \begin{bmatrix} 0 & e^{i\alpha}e^{-i\beta}X + AXB^* \\ e^{-i\alpha}e^{i\beta}X + BXA^* & 0 \end{bmatrix}$$

is self-adjoint, hence w(T) = ||T||. Moreover, T = M + N, where

$$M = \begin{bmatrix} 0 & e^{i\alpha}e^{-i\beta}X \\ e^{-i\alpha}e^{i\beta}X & 0 \end{bmatrix}, \quad N = \begin{bmatrix} 0 & AXB^* \\ BXA^* & 0 \end{bmatrix}$$

are self-adjoint operators. Using the fact that $||C+D|| \le |||C|+|D|||$ for any normal operators C and D (see [6]), we have

$$w(T) = ||M + N|| \le || |M| + |N| ||$$

= max{|| |X| || + || |AXB*| ||, || |X| || + || |BXA*| ||}.

Hence, we get the required inequalities by the same arguments as in the proof of Theorem 2.4.

If we take X = I in Theorem 2.4, we get the following result.

Corollary 2.6 Let $A, B \in \mathbb{B}(\mathcal{H})$ be G_1 operators with $\sigma(A) \cup \sigma(B) \subset \mathbb{D}$ and $f \in \mathfrak{A}$. Then

$$||Im(f(A)\bar{f}(B))|| \le \frac{2}{d_A d_B} (1 + ||AB^*||)$$

and

$$\|Re(f(A)\bar{f}(B))+I\|\leq \frac{2}{d_Ad_B}\left(1+\|AB^*\|\right).$$

Remark 2.7 If instead of applying Lemma 2.1 (c) we use Lemma 2.1 (d) and (f) in the proof Theorem 2.4, we obtain the related inequalities

$$w(f(A)X\bar{f}(B) - f(B)X\bar{f}(A)) \le \frac{4}{d_A d_B} \left[1 + \max\{\|A\|^2, \|B\|^2\} \right] w(X)$$

and

$$w(f(A)X\bar{f}(B) + 2X + f(B)X\bar{f}(A)) \le \frac{4}{d_A d_B} \left[1 + \max\{\|A\|^2, \|B\|^2\} \right] w(X).$$

Acknowledgements The first author would like to thank the Tusi Mathematical Research Group (TMRG).

References

- 1. Abu-Omar, A., Kittaneh, F.: Estimates for the numerical radius and the spectral radius of the Frobenius companion matrix and bounds for the zeros of polynomials. Ann. Func. Anal. 5(1), 56–62 (2014)
- Abu-Omar, A., Kittaneh, F.: Numerical radius inequalities for products of Hilbert space operators. J. Oper. Theory 72(2), 521–527 (2014)
- Abu-Omar, A., Kittaneh, F.: Notes on some spectral radius and numerical radius inequalities. Stud. Math. 227(2), 97–109 (2015)
- Bao, L., Lin, Y., Wei, Y.: Krylov subspace methods for the generalized Sylvester equation. Appl. Math. Comput. 175(1), 557–573 (2006)
- Bhatia, R., Sinha, K.B.: Derivations, derivatives and chain rules. Linear Algebra Appl. 302/303, 231–244 (1999)
- 6. Bourin, J.C.: Matrix subadditivity inequalities and block-matrices. Int. J. Math. 20(6), 679-691 (2009)
- 7. Donoghue, W.F.: Monotone Matrix Functions and Analytic Continuation. Springer, New York (1974)
- 8. Dunford, N., Schwartz, J.: Linear Operators I. Interscience, New York (1958)

- 9. Gustafson, K.E., Rao, D.K.M.: Numerical Range, The Field of Values of Linear Operators and Matrices. Springer, New York (1997)
- 10. Hirzallah, O., Kittaneh, F., Shebrawi, Kh: Numerical radius inequalities for commutators of Hilbert space operators. Numer. Funct. Anal. Optim. **32**(7), 739–749 (2011)
- 11. Hirzallah, O., Kittaneh, F., Shebrawi, Kh: Numerical radius inequalities for certain 2 × 2 operator matrices. Integral Equ. Oper. Theory **71**(1), 129–147 (2011)
- 12. Kittaneh, F.: A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Stud. Math. **158**(1), 11–17 (2003)
- 13. Kittaneh, F.: Norm inequalities for commutators of G_1 operators. Complex Anal. Oper. Theory **10**(1), 109–114 (2016)
- 14. Kittaneh, F., Moslehian, M.S., Sababheh, M.: Unitarily invariant norm inequalities for elementary operators involving *G*₁ operators. Linear Algebra Appl. **513**, 84–95 (2017)
- 15. Putnam, C.R.: Operators satisfying a G₁ condition. Pac. J. Math. **84**, 413–426 (1979)
- Sheikhhosseini, A., Moslehian, M.S., Shebrawi, K.: Inequalities for generalized Euclidean operator radius via Young's inequality. J. Math. Anal. Appl. 445(2), 1516–1529 (2017)
- Yamazaki, T.: On upper and lower bounds of the numerical radius and an equality condition. Stud. Math. 178, 83–89 (2007)