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Chapter 1

Different Concepts of

Dependence

1.1 Quadrant dependence

This section contains basic concepts, properties, theorems together with several

concerning quadrant dependent (QD), in particular NQD random variables The

following Definitions due to Lehmman (1966).

Definition 1.1.1. The random variables X and Y are said positive quadrant

dependence (PQD)if for every x, y ∈ R

P [X ≤ x, Y ≤ y] ≥ P [X ≤ x]P [Y ≤ y] (1)

negative quadrant dependent (NQD) if for every x, y ∈ R

P [X ≤ x, Y ≤ y] ≤ P [X ≤ x]P [Y ≤ y] (2)

Remark 1.1.2. The inequalities of 1 and 2 equivalent to the following inequalities

respectively,

P [X > x, Y > y] ≥ P [X > x]P [Y > y]
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and

P [X > x, Y > y] ≤ P [X > x]P [Y > y]

Example 1.1.3. i) (X,X) is PQD, ii) (X,−X) is NQD.

iii) If X1, X2, X3 are iid with distribution of exp(1), then X = X1 + X3 and

Y = X2 +X3 are PQD.

Question: What it is relationships between QD and correlated.?

The following Lemma which due to Hoeffding (1940) give us answer this question.

Lemma 1.1.4. Let (X,Y ) be a joint distribution F and marginal distributions

F1 and F2 such that E|XY | <∞, E|X| <∞, and E|Y | <∞. Then

Cov(X,Y ) =
∫ ∞
−∞

∫ ∞
−∞

[F (x, y)− F1(x)F2(y)]dxdy.

Proof. Let (X1, Y1), (X2, Y2) ∼iid F , then

2(E(X1Y1)− EX1EY1) = E[(X1 −X2)(Y1 − Y2)]

= E

∫ ∫
(I(−∞,X1](u)− I(−∞,X2](u))(I(−∞,Y1](v)− I(−∞,Y2](v))dudv

= 2
∫ ∞
−∞

∫ ∞
−∞

[F (x, y)− F1(x)F2(y)]dxdy.

Where for all i, j = 1, 2

E(XiYj) = E

∫ Xi

0

∫ Yj

0
dudv = E

∫ +∞

−∞

∫ +∞

−∞
I(Xi>u)I(Yj>v)dudv.

Guardas (2002) extended above Lemma as the following and Matula (2006)

proved some applications of this Lemma.

Lemma 1.1.5. Let α(.) and β(.) be two real valued function such that

E|α(X)β(Y )| <∞, E|α(X)| <∞, E|β(Y )| <∞.

Then

Cov(α(X), β(Y )) =
∫ ∫

[F (x, y)− F1(x)F2(y)]dα(x)dβ(y)
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Definition 1.1.6. The two real-valued functions f and g of n arguments are

concordance for the ith coordinate if, considered as functions of the ith coordinate

(with all other coordinates held fixed), they are monotone in the same direction,

i.e. either both non-decreasing or both non-increasing. Similarly f and g will

be called discordant for the ith coordinate if they are monotone in opposite

directions.

Theorem 1.1.7. Let f and g be two real valued functions and concordance ,then

i) If X and Y are PQD, then f(X) and g(Y ) are PQD.

ii) If X and Y are NQD, then f(X) and g(Y ) are NQD.

Proof. ii) Let f and g be nondecreasing functions and X , Y be NQD

random variables then for all x, y ∈ R we have

P [f(X) ≤ x, g(Y ) ≤ y] = P [X ∈ f−1(−∞, x], Y ∈ g−1(−∞, y]]

≤ P [X ∈ f−1(−∞, x]]P [Y ∈ g−1(−∞, y]]

= P [f(X) ≤ x]P [g(Y ) ≤ y].

Hence f(X) , g(Y ) are NQD random variables. Similar argument works when

f and g are non-increasing functions.

Theorem 1.1.8. Let f and g be two real valued functions and concordance (all

increasing or all decreasing ),then

i) X and Y are PQD, if and only if Cov(f(X), g(Y )) ≥ 0 .

ii) X and Y are NQD, if and only if Cov(f(X), g(Y )) ≤ 0 .

Proof. ii) (Necessary) By Hoeffding’s Lemma and Theorem 1.2 we have

Cov(f(X), g(Y )) =
∫ ∞
−∞

∫ ∞
−∞

(P [f(X) ≤ t, g(Y ) ≤ s]− P [f(X) ≤ t]P [g(Y ) ≤ s])dtds ≤ 0.
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(Sufficiency): Let (1.3) hold. Define fx(t) = I[t>x] and

gy(s) = I[s>y] ,where

I[u>v] =

 1 if u > v

0 if u ≤ v

for every x, y ∈ R we have

Cov(fx(X), gy(Y )) = P [X > x, Y > y]− P [X > x]P [Y > y] ≤ 0,

hence

P [X > x, Y > y] ≤ P [X > x]P [Y > y],

and this completes the proof. �

Corollary 1.1.9. i) If X and Y are PQD, then Cov(X,Y ) ≥ 0.

ii) If X and Y are NQD, then Cov(X,Y ) ≤ 0.

iii) If X and Y are PQD, and Cov(X,Y ) = 0 then X and Y are independence.

iv) If X and Y are NQD, and Cov(X,Y ) = 0 then X and Y are independence.

Theorem 1.1.10. Let (Xi, Yi) ∼id Fi(x, y), i = 1, 2, ..., n, f : Rn → R, g :

Rn → R and X = f(X1, X2, ..., Xn), Y = g(Y1, Y2, ..., Yn), then

i) X and Y are PQD, if:

1- Xi and Yi, i = 1, 2, ..., n are PQD, and f , g concordance .

2- Xi and Yi, i = 1, 2, ..., n are NQD, and f , g dis-concordance.

ii) X and Y are NQD, if:

1- Xi and Yi, i = 1, 2, ..., n are NQD, and f , g concordance .
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2- Xi and Yi, i = 1, 2, ..., n are PQD, and f , g dis-concordance.

iii) Let U and V be independence r.v.’s and moreover independence of (Xi, Yi), i =

1, 2, ...n, then X = f(U,X1, X2, ..., Xn), Y = g(V, Y1, Y2, ..., Yn) satisfy in i) and

ii) without any behavior f and g in u and v respectively.

Example 1.1.11. The following are some pairs of random variables (X,Y ) with

PQD (NQD); the property in each case follows from Theorem 1.9.

i) X and f(X) are PQD for any r.v. X and any non-decreasing f (NQD for

any non-increasing f).

ii) X = U + aZ, and Y = V + bZ are PQD for any independent r.v. U, V, Z

and ab > 0 (NQD if ab < 0..

iii) X = f(U,Z) and Y = g(V,Z) are PQD where U, V, Z are independent and

f and g are non-decreasing in Z but otherwise arbitrary, (NQD if f and g are

non-increasing).

Example 1.1.12. Let F (x, y) = F1(x)F2(y)[1 +α(1−F1(x))(1−F2(y))], −1 ≤

α ≤ 1.

i) Show that X and Y are PQD iff 0 ≤ α ≤ 1.

ii) Show that X and Y are NQD iff −1 ≤ α ≤ 0.

Corollary 1.1.13. Let X and Y be NQD(PQD) random variables and

absolute continuous then Kendal’s τ and Spearman’s ρs are negative(positive).

Proof. Let (X1, Y1) and (X2, Y2) be independent and distributed identically as
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(X,Y ). Define

U = sgn(X2 −X1) =

 1 if X2 > X1

−1 if X2 < X1

and

V = sgn(Y2 − Y1) =

 1 if Y2 > Y1

−1 if Y2 < Y1

by Theorem 1.3 and 1.9 we have

τ = Cov(U, V ) ≤ (≥)0.

Now let (X1, Y1) , (X2, Y2) and (X3, Y3) be independent and distributed

identically as (X,Y ), we have

ρs
3

= Cov[sgn(X2 −X1), sgn(Y3 − Y1)],

the result follows from Lemma 1.3 and Theorem 1.9 (i) by putting

n = 3 and

f(x1, x2, x3) = sgn(x2 − x1) , g(y1, y2, y3) = sgn(y3 − y1).

Theorem 1.1.14. Let f be the joint and fX , fY be the marginal densities

of X and Y , and let for every x, y ∈ R,

f(x, y) ≤ fX(x)fY (y), (1.4)

then

i) X and Y are NQD.

ii) If X , Y are nonnegative random variables then,

a) E[X|Y = y] ≤ E[X] W.P.1,

b) E[Y |X = x] ≤ E[Y ] W.P.1.

iii) FX+Y ≤ FX ? FY .
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proof i) Suppose X and Y are absolute continuous then, for each x, y ∈ R,

F (x, y) =
∫ x

−∞

∫ y

−∞
f(t, s)dtds

≤
∫ x

−∞

∫ y

−∞
f(t)f(s)dtds = FX(x)FY (y),

hence X and Y are NQD.

ii) To prove (a),we have

E[X|Y = y] =
∫ ∞

0
xf(x|y)dx

=
∫ ∞

0
x
f(x, y)
f(y)

dx

≤
∫ ∞

0
x
f(x)f(y)
f(y)

dx = E[X].

Similarly we obtain (b).

iii)

FX+Y (t) =
∫ ∫

[x+y≤t]
f(x, y)dxdy

≤
∫ ∫

[x+y≤t]
f(x)f(y)dxdy

=
∫ ∞
−∞

∫ t−y

−∞
f(x)f(y)dxdy

=
∫ ∞
−∞

FX(t− y)fY (y)dy = FX ? FY (t). �

In the following example we will show that inverse of part i of Theorem 1.13

dose not hold, and the NQD properties are not valid for absolute value and square

of random variables.

Example 1.1.15. Let (X,Y ) have the following probability density function.

X2 X1 -1 0 1

-1 0 1
9

2
9

0 1
9

1
9 0

1 2
9

1
9

1
9
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i) Random variables X and Y are NQD random variables since for each

x, y ∈ R we have

F (x, y) ≤ F (x)F (y).

ii) The density functions f , fX and fY do not satisfy condition (1.4) since

P [X = 1, Y = −1] = 2/9 >

P [X = 1]P [Y = −1] = (3/9)(3/9).

iii) X and V = Y 2 are not NQD random variables because for

−1 ≤ x < 0 and 0 ≤ v < 1 we have

F (x, v) = 1/9 > FX(x)FV (v) = (3/9)(2/9).

iv) U = X2 and Y are not NQD random variables because for

0 ≤ u < 1 and 0 ≤ y < 1 we have

F (u, y) = 2/9 > FU (u)FY (y) = (3/9)(5/9).

v) U = X2 and V = Y 2 are not NQD random variables as well as |X| and

|Y | since for 0 ≤ u < 1 , 0 ≤ v < 1 we have

F (u, v) = 1/9 > FU (u)FV (v) = (2/9)(3/9). �

Remark 1.1.16. The above example also show that if X , Y are NQD random

variables, then part ii of Theorem 1.13 may not hold, because in the above

example we have

E[X|Y = −1] = 2/9 > E[X] = 0

and

E[Y |X = −1] = 2/9 > E[Y ] = 1/9.

Hence the condition (1.4) is a necessary condition for part ii of Theorem 1.13.
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Lemma 1.1.17. Let Y be a random variable with P [Y > 0] = 1 ,

E[ 1
Y ] <∞ , then

E[
1
Y

] ≥ 1
E[Y ]

.

Proof In Caushy Schurz inequality , for U =
√
Y , V = 1√

Y
we have

1 = E2[UV ] ≤ E[U2]E[V 2] = E[Y ]E[
1
Y

],

hence

E[
1
Y

] ≥ 1
E[Y ]

. �

Theorem 1.6 i) If X and Y are NQD random variables with

P [Y > 0] = 1 , E|X| <∞ , E[ 1
Y ] <∞ , then,

a) X and 1
Y are PQD random variables,

b) E[XY ] ≥ E(X)
E(Y ) if E(X) ≥ 0.

ii) If X and Y are PQD random variables then ,

a) X and 1
Y are NQD random variables,

b) E[XY ] ≤ E(X)
E(Y ) if E(X) ≤ 0.

Proof i) Part ii of Theorem 1.1 implies that X and 1
Y are PQD ,and by

Lemma 1.3 we have

Cov(X,
1
Y

) ≥ 0 =⇒ E[
X

Y
] ≥ E[X]E[

1
Y

],

hence Lemma 1.3 implies that

E[
X

Y
] ≥ E[X]

E[Y ]
if E(X) ≥ 0.

ii) Part i of Theorem 1.9 implies that X and 1
Y are NQD ,and by Lemma

1.1 we have

Cov(X,
1
Y

) ≤ 0 =⇒ E[
X

Y
] ≤ E[X]E[

1
Y

],
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hence Lemma 1.3 implies that

E[
X

Y
] ≤ E[X]

E[Y ]
if E(X) ≤ 0. �

1.2 Weakley Negatively Dependent

In following we present a new definition of dependence which is assumed in this

section.

Definition 1.2.1. The random variables X1 and X2 are said Weakley Negatively

Dependent (WND) if there exist a C > 1 such that, f(x1, x2) ≤ C.f1(x1).f2(x2)

where f(x1, x2), f1(x1) and f2(x2) are joint density and marginal densities of X1

and X2, respectively.

The class of WND random variables is well defined and a large class of these

random variables can be found. Some examples of this class will present in

following.

Example 1.2.2. The following examples are evidence of WND random vari-

ables:

i) Suppose that X1 and X2 have half-normal distribution, then

fX1,X2(x1, x2) =
2

π
√

1− ρ2
exp

[
− 1

2(1− ρ2)
{x2

1 + x2
2 − 2ρx1x2}

]
;x1, x2 > 0,

fXi(xi) =

√
1
π
exp{−1

2
x2
i }; i = 1, 2.

If −1 < ρ ≤ 0, then X1 and X2 are NQD r.v.’s (Ebrahimi and Ghosh. (1981)).

Moreover,

fX1,X2(x1, x2)
fX1(x1)fX2(x2)

=
1√

1− ρ2
exp

[
−ρ2

2(1− ρ2)
(x2

1 + x2
2) +

ρ

1− ρ2
x1x2

]
≤ 1√

1− ρ2
.

Then f(x1, x2) ≤ C.f1(x1).f2(x2), where C = 1/
√

1− ρ2 ≥ 1. So, X1 and X2

are WND.
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ii) Let X and Y be two random variables with joint FGM (Farlie-Gumbel-Morgenstern)

distribution, we have

fX,Y (x, y) = fX(x)fY (y) [1 + α(1− 2FX(x))(1− 2FY (y))] .

On the other hand, it’s obvious that

|1 + α(1− 2FX(x))(1− 2FY (y)| ≤ 1 + |α|,

and

fX,Y (x, y) ≤ [1 + |α|]fX(x)fY (y).

Therefore, the random variables X and Y are WND with C = 1 + |α| ≥ 1.

Moreover, we know if −1 < α ≤ 0, then X and Y are NQD ([3]).(For more details

see: Ranjbar et al. 2008 ).

Lemma 1.2.3. Let X1 and X2 be two WND random variables with distribution

functions Fi, i = 1, 2 , then

i) For every x1, x2 ∈ R we have, FX1,X2(x1, x2) ≤ C.FX1(x1)FX2(x2).

ii) For all positive value of x, P (X1 +X2 > x) ≤ C.
∫∞

0 F 1(x− u)dF2(u).

iii)If h1(.), h2(.)are monotone measurable functions then h1(X1), h2(X2) are WND.

1.3 Dependent events

Definition 1.3.1. The events A and B are NQD if their indicator functions

are NQD.

Theorem 1.18 The events A and B are NQD if and only if

P (A ∩B) ≤ P (A)P (B). (1.5)
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Proof (Necessary) Let X = IA and Y = IB , then by Definition 1.2

X and Y are NQD ,thus the inequalities (1.1) and (1.2) hold ,and for every

x, y ∈ R such that 0 ≤ x, y < 1 we have

P (A ∩B) = P (X = 1, Y = 1)

= P (X > x, Y > y)

≤ P (X > x)P (Y > y) = P (A)P (B).

Moreover we can show that the inequality (1.5) is equivalent with the following

inequality

P (Ac ∩Bc) ≤ P (Ac)P (Bc). (1.6)

(Sufficiency): Let the inequality (1.5) is hold.

i) If 0 ≤ x, y < 1 then

P (X ≤ x, Y ≤ y) = P (X = 0, Y = 0)

= P (Ac ∩Bc) ≤ P (Ac)P (Bc)

= P (X = 0)P (Y = 0) = P (X ≤ x)P (Y ≤ y),

ii) If x < 0 or y < 0 then

P (X ≤ x, Y ≤ y) = 0 ≤ P (X ≤ x)P (Y ≤ y),

iii) If x ≥ 1 and 0 ≤ y < 1 then

P (X ≤ x, Y ≤ y) = P (Y ≤ y),

and since P (X ≤ x) = 1 , thus the inequality (1.1) is hold,similarly for 0 ≤ x <

1 and y ≥ 1 .

iv) If x ≥ 1 , y ≥ 1 then

P (X ≤ x, Y ≤ y) = 1 ≤ P (X ≤ x)P (Y ≤ y) = 1.

Hence for all real numbers x , y the inequality (1.1) holds for random

variables X = IA and Y = IB , thus by definition X , Y are NQD and

A , B are ND. �
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1.4 Association

Let X and Y be two random variables with joint distribution function F (x, y).

i)-The random variables X and Y are said positive correlated if

Cov(X,Y ) ≥ 0, (1)

ii)-(Lehmann, 1966) The random variables X and Y are said positive associated

if for all nondecreasing f, g

Cov(f(X), g(Y )) ≥ 0, (2)

iii)-(Esary and Proschan, 1967) The random variables X and Y are said positive

associated (PA) if for all nondecreasing f, g

Cov(f(X,Y ), g(X,Y )) ≥ 0, (3)

Remark 1.4.1. It is easy to show that (3)⇒ (2)⇒ (1) and (2)⇔ PQD.

iv)-(Joage and Proschan, 1983) The random variables X and Y are said negative

associated (NA) if for all nondecreasing f, g

Cov(f(X), g(Y )) ≤ 0, (4).

Properties of NA random variables

P1-The non decreasing functions of NA random variables are NA.

P2-If for all binary function γ1 and γ2 Cov(γ1(X), γ1(Y )) ≤ 0 then X and Y are

NA.

Proof For all non decreasing functions f and g set

γf (x) = I(x,∞)(f(X)), γg(y) = I(y,∞)(g(Y ))

Now, Hoefdding’s Lemma implies that

Cov(f(X), g(Y )) =
∫ ∫

Cov(γf(X)(x), γg(Y )(y))dxdy,

this complete the proof.

P3-If X and Y are binary NA random variables then 1−X and 1− Y are NA.
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P4-If X and Y are binary NA random variables then X and Y are NA if and

only if Cov(X,Y ) ≤ 0.

P5-The random variables X and Y are NQD if and only if are NA.

For more details see (Joage and Proschan, 1983.)

Definition 1.4.2. The random variables X and Y are said linear negative de-

pendence (LIND) if for all λ1, λ2 > 0 the random variables λ1X and λ2Y are

NQD. Similarly we LIPD.

Corollary 1.4.3. It is easy to show that in bivariate case LIND(X,Y ) ⇔

NA(X,Y )⇔ NQD(X,Y ).

Corollary 1.4.4. If X and Y are NA(PA) and Cov(X,Y ) = 0, then X and Y

are independent. Joage and Proschan 1983.

1.5 Regression Dependence and Stochastic monotonic-

ity

Let X and Y be two random variables with joint distribution function F (x, y)

and mrginals F1 and F2 respectively

i)- The random variable Y is said stochastically increasing in X, (SI(Y |X)) if for

all y: P [Y > y|X = x] is non decreasing in x, equivalently P [Y ≤ y|X = x] is

non increasing in x.

ii)-The random variable Y is said stochastically decreasing in X, (SD(Y |X)) if

for all y: P [Y > y|X = x] is non increasing in x, equivalently P [Y ≤ y|X = x] is

non decreasing in x

Lehmann (1966) introduced these concepts as the following:

Positive regression dependence (PRD(Y |X) if P [Y ≤ y|X = x] is non increasing

in x. Similarly we can define SI(X|Y ) or PRD(X|Y ).

Negative regression dependence NRD(Y |X), if P [Y ≤ y|X = x] is non decreas-
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ing in x. Similarly we can define SD(X|Y ) or NRD(X|Y ).

Example 1.5.1. Let Y = α+ βX + U and X and U are independent, then

i) PRD(X,Y) ⇔ β ≥ 0

ii) NRD(X,Y) ⇔ β ≤ 0.

For all x, t ∈ R we have

P [Y ≤ t|X = x] = P [α+ βX + U ≤ t|X = x]

= P [U ≤ t− α− βx] = FU (t− α− βx),

that is increasing(decreasing) function in x iff β ≤ (≥)0

Theorem 1.5.2. If for all x, y ∈ R , P [Y ≤ y|X = x] is a nondecreasing

function in x , then X and Y are NQD random variables.

Proof For each x1, x2 ∈ R, (x1 < x2) and with assumptions

P [X ≤ x1] 6= 0, P [X ≤ x2] 6= 0 we have

P [Y > y|X ≤ x1] =

∫ x1

−∞ P [Y > y|X = u]d(FX(u))
P [X ≤ x1]

=

∫ =∞
−∞ P [Y > y|X = u]I[−∞,x1](u)d(FX(u))

P [X ≤ x1]

≥
∫ +∞
−∞ P [Y > y|X = u]I[−∞,x2](u)d(FX(u))

P [X ≤ x2]
= P [Y > y|X ≤ x2],

The inequality holds since h(u) = P [Y > y|X = u] is decreasing in u, so, for all

x1 < x2,

g1(u) = h(u)I[−∞,x1](u) ≥ h(u)I[−∞,x2](u) = g2(u),

Therefore,
∫ +∞
−∞ g1(u)dF (u) ≥

∫ +∞
−∞ g2(u)dF (u). Thus for every x1, x2 ∈ R, (x1 <

x2)

P [Y ≤ y|X ≤ x1] ≤ P [Y ≤ y|X ≤ x2].

If x2 −→∞ we have

P [Y ≤ y|X ≤ x1] ≤ P [Y ≤ y],
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and for all x1, y ∈ R

P [X ≤ x1, Y ≤ y] ≤ P [X ≤ x1]P [Y ≤ y]

hence X and Y are NQD. �

Example 1.5.3. i) Let random vector (X1, · · · , Xn) to have multivariate

distribution Bure (B12) and g(u) = (u+v)c2

1+uc1 ↗ in u for some

v ∈ R. Then Xi and Xj −Xi , (i 6= j) are NQD random variables. We have

fi,j(x, y) =
k(k + 1)c1c2x

c1−1yc2−1

[1 + xc1 + yc2 ]k+2
, x, y, c1, c2 > 0

and

fi(x) =
kc1x

c1−1

[1 + xc1 ]c1+1
, x, c1 > 0

let U = Xi and V = Xj −Xi , (i 6= j) we obtain

P [V > v|U = u] = [1 + g(u)]−(k+1), u, v > 0

Now by the above assumption P [V ≤ v|U = u] is increasing in u. Hence by

Theorem 1.4 Xi and Xj −Xi , (i 6= j) are NQD.

ii) let X1, · · · , Xn be a random sample of F distribution ,and

Xu1 < Xu2 < · · · < Xum , (m < n) are upper records of above sample and h(x) =
1−F (x+a)

1−F (x) ↗ in x for every a > 0, then Xum and Xun −Xum are NQD.

Define

V = Xum , W = Xun −Xum and R(x) = − ln(1− F (x))

we have

fV (v) =
[R(v)]m−1f(v)

(m− 1)!
, v ∈ R

and

f(v, w) =
[R(v)]m−1[R(v + w)−R(v)]n−m−1f(v)f(v + w)

(m− 1)!(n−m− 1)!(1− F (v))
,

thus

P [W ≤ w|V = v] =
1

(n−m)!

∫ w

0

1− F (v + u)
1− F (v)

d[R(u+ v)−R(v)]n−m.
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Now by assumption (h(x)↗ in x) we obtain

P [W ≤ w|V = v]↗ in v.

Hence V and W are NQD.

1.6 Right-tail increasing and Left-tail decreasing

Let X and Y be two random variables with joint distribution function F (x, y)

and mrginals F1 and F2 respectively

i)- The random variable Y is said left tail decreasing in X (LTD(Y |X))

if P [Y ≤ y|X ≤ x] = F (x,y)
F1(x) is non increasing in x, and similarly we can define

LTD(X|Y ).

ii)- The random variable Y is said right tail increasing in X (RTI(Y |X))

if P [Y > y|X > x] = F̄ (x,y)
F̄1(x)

is non decreasing in x, and similarly we can define

RTI(X|Y ).

(for more detail see Esary and Proschan, 1972 )

iii)-The random variable Y is said left tail increasing in X (LTI(Y |X))

if P [Y ≤ y|X ≤ x] = F (x,y)
F1(x) is non decreasing in x, and similarly we can define

LTI(X|Y ).

iv)-The random variable Y is said right tail decreasing in X (RTD(Y |X))

if P [Y > y|X > x] = F̄ (x,y)
F̄1(x)

is non decreasing in x, and similarly we can define

LTD(X|Y ).

Theorem 1.6.1. It is easy to prove that:

i)-SI(Y |X)⇒ LTD(Y |X) and RTI(Y |X)⇒ PQD(X,Y )

ii)-SD(Y |X)⇒ LTI(Y |X) and RTD(Y |X)⇒ NQD(X,Y ).

Proof. By Theorem 1.5.1 SD(Y |X) ⇒ LTI(Y |X), RTD(Y |X), but for the sec-

ond implication we have,

LTI(Y |X) ⇔ F (x1,y)
F1(x1) ≤

F (x2,Y )
F1(x2) , for all X1 < x2. Now, if x2 → ∞, we obtain
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F (x1, y) ≤ F1(x1).F2(y). This completes proof of (ii), and similarly we can prove

(i).

Example 1.6.2. Let for all x, y ≥ 0 and 0 ≤ θ ≤ a+ 1, a > 0.

F̄ (x, y) = [1 + x+ y + θxy]−a

. Then F̄ (x,y)
F̄1(x)

= [1+y.1=θx
1+x ]−α, is increasing if 0 ≤ θ ≤ 1 ( in this case this family

of distributions is PQD)and decreasing if 1 ≤ θ ≤ α. (in this case this family of

distribution is NQD).

1.7 The Likelihood ratio dependence and corner set

monotonicity

Definition 1.7.1. i).(Karlin 1968) A non negative function f defined on R2 is

totally positive of order 2 ( denoted by TP2) if for all x1 < x2, y1 < y2,

f(x1, y1).f(x2, y2) ≥ f(x1, y2).f(x2, y1).

ii).The non negative function f is said reverse regular of order 2 (or reverse rule

of order 2 RR2) if for all x1 < x2, y1 < y2,

f(x1, y1).f(x2, y2) ≤ f(x1, y2).f(x2, y1).

The following definition give a concept of dependence which introduced by Lehmann(1966).

Definition 1.7.2. Let X and Y be continuous random variables with joint den-

sity function f(x, y), then

i) X and Y are said positive likelihood ratio dependence PLRD(X,Y ) if f(x, y)

is TP2. or equivalently if f(y|x′)
f(y|x) is increasing in y for all x < x′ .

ii) X and Y are said negative likelihood ratio dependence NLRD(X,Y ) if f(x, y)

is TP2. or equivalently if f(y|x′)
f(y|x) is decreasing in y for all x < x′ .
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Theorem 1.7.3. Let X and Y be continuous random variables with joint density

function f(x, y), then

i) PLRD(X,Y )⇒ PRD(Y |X) and PRD(X|Y ). But inverse implication is not

true. (Lehmann (1966).

ii) NLRD(X,Y ) ⇒ NRD(Y |X) and NRD(X|Y ). But inverse implication is

not true

Proof For all y and fixed y0, define

ψy0(y) = I(−∞,y0)(y) and Exφ(Y ) =
∫
φ(y)f(y|x)dy.

Let Y1, Y2 be iid copy of Y for all x < x′ we have

0 ≤ I =
1
2
Ex{(ψ(Y1)− ψ(Y2))(

f(Y1|x′)
f(Y1|x)

− f(Y2|x′)
f(Y2|x)

)}

=
1
2
{Ex(ψ(Y1)

f(Y1|x′)
f(Y1|x)

)− Ex(ψ(Y1))Ex(
f(Y2|x′)
f(Y2|x)

)}

− 1
2
{Ex(ψ(Y2))Ex(

f(Y1|x′)
f(Y1|x)

) + Ex(ψ(Y2))Ex(
f(Y2|x′)
f(Y2|x)

)}

= Ex(ψ(Y )
f(Y |x′)
f(Y |x)

)− Exψ(Y )Ex(
f(Y |x′)
f(Y |x)

)

this implies that ∫ y0

−∞
f(y|x)dy ≤

∫ y0

−∞
f(y|x′)dy

if and only if

P [Y ≤ y0|X = x] ≤ P [Y ≤ y0|X = x′] ∀ x < x′ ⇔ NRD(Y |X)

Similarly we can show that NLRD(X,Y )⇒ NRD(X|Y ).

The following concepts on dependence due to Harris (1970).

Definition 1.7.4. The random variables X and Y are said

i) Left corner set decreasing LCSD(X,Y ) if for all x < x′, y < y′

P [X ≤ x, Y ≤ y|X ≤ x′, Y ≤ y′]↘ in x′, y′.

ii) Right corner set increasing RCSI(X,Y ) if for all x < x′, y < y′

P [X > x, Y > y|X > x′, Y > y′]↗ in x′, y′.
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iii) Left corner set increasing LCSI(X,Y ) if for all x < x′, y < y′

P [X ≤ x, Y ≤ y|X ≤ x′, Y ≤ y′]↗ in x′, y′.

iv) Right corner set decreasing RCSD(X,Y ) if for all x < x′, y < y′

P [X > x, Y > y|X > x′, Y > y′]↘ in x′, y′.

Theorem 1.7.5. Let X and Y be continuous random variables, then i) LCSD(X,Y )⇒

LTD(Y |X), LTD(X|Y ).

ii) RCSI(X,Y )⇒ RTI(Y |X), RTI(X|Y ).

iii) LCSI(X,Y )⇒ LTI(Y |X), LTI(X|Y ).

iv) RCSD(X,Y )⇒ RTD(Y |X), RTD(X|Y ).

Proof. For part (i), set x =∞ and y′ =∞ to obtain LTD(Y |X), and set y =∞

and x′ =∞ to obtain LTD(X|Y ). Parts (ii), (III) and (iV) are similar.

Theorem 1.7.6. Let (X,Y ) be an absolutely continuous random vector with dis-

tribution function F (x, y) and survival function F̄ (x, y). Then,

i) LCSD(X,Y )⇔ F (x, y) is TP2.

ii) RCSI(X,Y )⇔ F̄ (x, y) is TP2.

iii) LCSI(X,Y )⇒ F (x, y) is RR2.

iv) RCSD(X,Y )⇒ F̄ (x, y) is RR2.

Proof. The part (iv) is proved, the other parts are similar.

RCSD(X,Y )⇒ F̄ (x, y) is RR2 : In this case, taking y = −∞,

P (X > x|X > x′, Y > y′) is decreasing in x′ and in y′, for all x ∈ IR . So,

if x > x′, then P (X > x|X > x′, Y > y′) = P (X>x,Y >y′)
P (X>x′,Y >y′)

is decreasing in y′,

consequently for all y′ < y, we obtain

P (X > x, Y > y)
P (X > x′, Y > y)

≤ P (X > x, Y > y′)
P (X > x′, Y > y′)

, (1.1)
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this implies that F̄ (x, y) is RR2.

F̄ (x, y) is RR2 ⇒ RCSD(X,Y ) : In this case, for all x > x′ and y > y′, (1.1)

valid and for all x > x′, P (X > x|X > x′, Y > y′) = P (X>x,Y >y′)
P (X>x′,Y >y′)

is decreasing

in y′ . Similarly for all y > y′ we have,

P (Y > y|X > x′, Y > y′) ≥ P (Y > y|X > x, Y > y′)

i.e. P (Y > y|X > x′, Y > y′) is decreasing in x′ . Now, if x > x′, y < y′

P (X > x, Y > y|X > x′, Y > y′) =
P (X > x, Y > y′)
P (X > x′, Y > y′)

≤ P (X > x, Y > y)
P (X > x′, Y > y)

= P (X > x, Y > y|X > x′, Y > y),

then, P (X > x, Y > y|X > x′, Y > y′) is decreasing in y′. Similarly for x ≤ x′,

y > y′, P (X > x, Y > y|X > x′, Y > y′) is decreasing in x′. Also for x < x′,

y < y′, P (X > x, Y > y|X > x′, Y > y′) = 1. Therefore (X,Y ) is RCSD.

Example 1.7.7. i) Let for all x, y ≥ 0 and λ1, λ2, λ12 ≥ 0

F̄ (x, y) = exp[−λ1x− λ2y − λ12 max{x, y}].

Show that F̄ (x, y) is TP2 and so is we have RCSI(X,Y ).

ii)-Let for all x, y ≥ 0 and 0 ≤ θ ≤ a+ 1, a > 0.

F̄ (x, y) = [1 + x+ y + θxy]−a

. i) Show that F̄ (x, y) is TP2 if 0 ≤ θ ≤ 1.

ii) F̄ (x, y) is RR2 if 1 ≤ θ ≤ a+ 1.

Theorem 1.7.8. Let X and Y be continuous random variables with joint distri-

bution F , and density f .

i) PLRD(X,Y )⇒ SI(Y |X), SI(X|Y ), LCSD(X,Y ), RCSI(X,Y )

ii) NLRD(X,Y )⇒ SD(Y |X), SD(X|Y ), LCSI(X,Y ), RCSD(X,Y )

Proof For part i) refer to Joe(1997) and Nelsen (2006).For part ii) we have two
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method

Method 1 :(based on Joe,1997)

NLRD(X,Y ) ⇔ f(x, y).f(x′, y′)− f(x, y′).f(x′, y) ≤ 0 ∀ x < x′, y < y′

→
∫ x

−∞

∫ y

−∞

∫ x′

x

∫ y′

y
[f(t, s).f(t′, s′)− f(t, s′).f(t′, s)]dt′ds′dtds ≤ 0

→ F (x, y)[F (x′, y′)− F (x′, y)− F (x, y′) + F (x, y)]

≤ [F (x, y′)− F (x, y)].[F (x′, y)− F (x, y)]

→ F (x, y).F (x′, y′) ≤ F (x, y′).F (x′, y)⇔ LCSI(X,Y ).

Similarly we can show that NLRD(X,Y )⇒ RCSD(X,Y ).

Method 1 :(based on Nelsen,2006)

NLRD(X,Y ) ⇔ f(y1|x1).f(y2|x2) ≤ f(y1|x2).f(y2|x1), ∀ x1 < x2, y1 < y2

→
∫ +∞

y2

∫ y1

−∞
f(t|x1).f(s|x2)dtds ≤

∫ +∞

y2

∫ y1

−∞
f(t|x1).f(s|x2)dtds

→ P [Y ≤ y|X = x1].P [Y > y|X = x2] ≤ P [Y ≤ y|X = x2].P [Y > y|X = x1],

adding P [Y > y|X = x1].P [Y > y|X = x2] to both side final inequality. We get

P [Y > y|X = x1] ≤ P [Y > y|X = x2]⇔ SD(Y |X).

1.8 Negatively hazard and Local dependence

Let X and Y be absolutely continuous random variables having joint density

f(x, y) and survival function F̄ (x, y). Basu [3] introduced bivariate hazard func-

tion by r(x, y) = f(x, y)/F̄ (x, y). In the independent case the bivariate hazard

function is equal to product of conditional hazard functions, ∂
∂x [− log F̄ (x, y)]

and ∂
∂y [− log F̄ (x, y)]. If equality failed we deal with dependent (positive or neg-

ative) random variables. Oluyede [17] and [18] has obtained some properties

and inequalities for positively hazard and local dependence. More details about

notions of dependence are in Lehmann [14], Karlin [13], Esary and Proschan

[5], Joe [10] and Shaked and Shanthikumar [20]. In this paper we use notions
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of negatively hazard and local dependence, say HND, LND, and investigate

relationship between these concepts with some other concepts of dependence. Fi-

nally, we obtain measures of association as Θ-measure (known as Clayton-Oakes

measure), ϕ-measure and γ-measure for some bivariate distributions family, then

evaluate the relationship between these measures and HND(LND).

Let (X,Y ) be an absolutely continuous random vector with distribution func-

tion F (x, y) and survival functionF̄ (x, y). Next, we need the following definitions.

Definition 1.8.1. ([17]) Absolutely continuous random variables X and Y hav-

ing a joint density function f(x, y) are hazard negative (positive)dependence,

HND(HPD), if and only if

f(x, y)
F̄ (x, y)

≤ (≥)
∫ ∞
x

f(u, y)du
F̄ (x, y)

∫ ∞
y

f(x, v)dv
F̄ (x, y)

(1.2)

where f(x,y)
F̄ (x,y)

is the bivariate hazard rate function, and∫ ∞

x

f(u, y)du
F̄ (x, y)

=
∂

∂y
[− log F̄ (x, y)], and

∫ ∞
y

f(x, v)dv
F̄ (x, y)

=
∂

∂x
[− log F̄ (x, y)]

are conditional hazard functions. Note that, equality holds in (1) if and only if

X and Y are independent.

Definition 1.8.2. ([18]) Absolutely continuous random variables X and Y hav-

ing a joint density function f(x, y) are locally negative (positive) dependence,

LND(LPD), if and only if

F (x, y)f(x, y) ≤ (≥)
∫ x

−∞
f(u, y)du

∫ y

−∞
f(x, v)dv, (1.3)

Note that, equality holds in (2) if and only if X and Y are independent

Definition 1.8.3. A non-negative function h on A2 , where A ⊆ IR , is reverse

rule of order 2 ( RR2 ) if for all x1 < x2 and y1 < y2 , with xi, yj ∈ A i = 1, 2

j = 1, 2

h(x1, y1)h(x2, y2) ≤ h(x1, y2)h(x2, y1). (1.4)

Definition 1.8.4. Let X and Y be continuous random variables.Then;
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• X and Y are right corner set decreasing,( which we denote RCSD(X,Y )),

if

P (X > x, Y > y|X > x′, Y > y′) (1.5)

is decreasing (non-increasing) in x′ and in y′ , for all x and y .

• X and Y are left corner set increasing, LCSI(X,Y ) , if

P (X ≤ x, Y ≤ y|X ≤ x′, Y ≤ y′) (1.6)

is increasing (non-decreasing) in x′ and in y′ , for all x and y .

Definition 1.8.5. Let Fθ(x) be a family of distribution functions. This fam-

ily is called monotone decreasing likelihood ratio, (MDLR)(monotone increasing

likelihood ratio, (MILR)) if for all η > θ , Fη(x)
Fθ(x) is decreasing (increasing) in x.

1.8.1 Some results

In this section, we obtain some useful results about HND and LND which show

relation of these concepts with other notions of dependence.

Proposition 1.8.6. Let (X,Y) be an absolutely continuous random vector with

distribution F (x, y) and survival function F̄ (x, y) .Then

i) F̄ (x, y) is RR2 if and only if for all x1 < x2 and y1 < y2 ,

P (X > x2, Y > y2) P (x1 < X ≤ x2, y1 < Y ≤ y2)

≤ P (x1 < X ≤ x2, Y > y2)P (X > x2, y1 < Y ≤ y2).(1.7)

ii) F (x, y) is RR2 if and only if for all x1 < x2 and y1 < y2,

P (X ≤ x1, Y ≤ y1) P (x1 < X ≤ x2, y1 < Y ≤ y2)

≤ P (X ≤ x1, y1 < Y ≤ y2)P (x1 < X ≤ x2, Y ≤ y1).(1.8)
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Proof. We prove part (i). The part of (ii) is similar. Note that F̄ (x, y) is RR2

, i.e. for all x1 < x2 and y1 < y2∣∣∣∣∣∣ P (X > x1, Y > y1) P (X > x1, Y > y2)

P (X > x2, Y > y1) P (X > x2, Y > y2)

∣∣∣∣∣∣ ≤ 0. (1.9)

It is easy to show that (8) is equivalent to∣∣∣∣∣∣ P (x1 < X ≤ x2, y1 < Y ≤ y2) P (x1 < X ≤ x2, Y > y2)

P (X > x2, y1 < Y ≤ y2) P (X > x2, Y > y2)

∣∣∣∣∣∣ ≤ 0. (1.10)

and (9) is equivalent to (6). This completes the proof.

The following proposition gives a relationship between RR2 and HND(LND).

Proposition 1.8.7. Let (X,Y) be an absolutely continuous random vector with

distribution function F (x, y) and survival function F̄ (x, y). Then,

i) F̄ (x, y) is RR2 ⇒ HND(X,Y).

ii) F (x, y) is RR2 , ⇒ LND(X,Y).

Proof.

i) Let x1 = x , x2 = x+ ∆x , y1 = y , y2 = y + ∆y where ∆x,∆y > 0. By using

(6) and dividing the result by ∆x∆y and letting ∆x → 0,∆y → 0 , the

result follows.

ii) The proof is similar, to (i).

Corollary 1.8.8. Under the assumptions of Theorem 2.3 and Proposition 2.2

i) RCSD(X,Y )⇒ HND(X,Y ).

ii) LCSI(X,Y )⇒ LND(X,Y ).
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Theorem 1.8.9. Let Fθ(x) and Gθ(y) be two families of distribution functions.

For any mixing distribution K , consider the distribution

H(x, y) =
∫

Ω
Fθ(x)Gθ(y)dK(θ),

where Ω is a Borel set in IRn and K is a probability measure on Ω .

(i) If one of the family is MILR and the other is MDLR , then H(x, y) is LND.

(ii) If Fθ(x) and Gθ(y) are both MDLR or MILR, then H(x, y) is LPD.

Proof. We prove part (i) . The proof of part (ii) is similar . Let Fθ(x) be MDLR

and Gθ(y) be MILR , so that for x < x′ , y < y′ and η > θ (η, θ ∈ Ω) , we have

[Fη(x)Fθ(x′)− Fη(x′)Fθ(x)][Gη(y)Gθ(y′)−Gη(y′)Gθ(y)] ≤ 0.

After some simple calculation we obtain H(x, y)H(x′, y′) ≤ H(x, y′)H(x′, y).

Therefore the distribution function H is RR2, and hence H is LND.

Assadian et al. (2009).

1.9 Dependence DTP(m,n) and DRR(m,n)

5. The bivariate failure rate (Basu (1971)). The failure rate of a random vector

(X,Y ) having joint density f(x, y) and distribution function F (x, y) is given by

r(x, y) =
f(x, y)
F̄ (x, y)

.

Johnson and Kotz (1975) defined the hazard gradient as a vector

(r(x|Y > y), r(y|X > x)) where r(x|Y > y) is the hazard rate of the conditional

distribution of X given Y > y. Similarly r(y|X > x) is the hazard rate of the

conditional distribution of Y given X > x.

6. Arnold and Zahedi (1988) defined The vector (m(x|Y > y),m(y|X > x))

where m(y|X > x) = E [Y − y|X > x, Y > y] is the mean residual life func-

tion of Y with the additional information that X > x . In general m(y|X ∈ A) =
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E [Y − y|X ∈ A, Y > y] . m(x|Y ∈ A) is defined similarly.

7. Dependent by total positivity of order two.

Shaked (1977b) proposes some nested definitions of dependence. Let

ψm,n(x, y) =
∫∞
y

∫∞
yn−1

...
∫∞
y1

∫∞
x

∫∞
xm−1

...
∫∞
x1
f(x◦, y◦)dx◦dx1...dxm−1dy◦dy1...dyn−1,

for m,n > 0, and for m = 0, n = 0 define ψ0,0(x, y) = f(x, y). For m,n ≥ 0 the

random vector (X,Y ) , or its distribution function F , or its Survival function F̄

is said to be dependent by total positivity of order two with degree (m,n) (denoted

by DTP (m,n)) if ψm,n(x, y) is TP2 in x and y (x, y ∈ R).

Remark 1.9.1. Let (X,Y ) be a random vector with joint distribution function F

and joint density function f and suppose that (X,Y ) is absolutely continuous,

based on definition and Proposition 3.3 of Shaked (1977b), the random vector

(X,Y ) is:

(i) DTP(0,0) or equivalently LRD, when the joint density f(x, y) is TP2 .

(ii) DTP(0,1), when − ∂
∂x F̄ (x, y) is TP2 , similarly DTP(1,0) when − ∂

∂y F̄ (x, y)

is TP2.

(iii) DTP(1,1), when F̄ (x, y) is TP2 .

(iv) DTP(0,2) (DTP(2,0)), When the mean residual life function,

m(y|X = x) = E [Y − y|X = x, Y > y] (m(x|Y = y) = E [X − x|X > x, Y = y])

increasing in y(x) for all x(y)

(v) DTP(1,2) (DTP(2,1)), when m(y|X > x) (m(x|Y > y)) is increasing in x (y)

for all y (x) .

Bivariate decreasing failure rate.

Brindley and Tompson (1972) proved that if X , Y are non-negative random

variables with joint distribution function F (x, y) then F (x, y) is decreasing fail-

ure rate (DFR) if F̄ (x+∆,y+∆)
F̄ (x,y)

is increasing in x and y for each ∆ > 0 and all

x , y ≥ 0 , such that F̄ (x, y) > 0 .
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9. Let X,Y be non-negative random variables, denote the conditional hazard

function of X given Y ∈ A by

R(x|Y ∈ A) =
∫ x

0
r(t|Y ∈ A)dt = − logP (X > x|Y ∈ A).
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1.10 Copula function and dependence

It is well known and easily verified that F1(X) and F2(Y ), where F1 and F2 are

the marginals distributions of X and Y respectively, are two uniform variables

if F1 and F2 are continuous. Hence if the marginals F1 and F2 of the bivariate

distribution F are continuous, there exists a unique copula, which is a cumulative

distribution function, with its marginals being uniform. Formally a function

C : [0, 1]2 → [0, 1] such that

F (x, y) = C(F1(x), F2(y))

is a copula. on other hand, if C(u1, u2) and continuous F1 and F2 are given, then

there exists and F such that:

C(u1, u2) = F (F−1
1 (u1), F−1

2 (u2)).

Fi(t), i = 1, 2 is continuous and non decreasing, but could be constant on some

intervals. In that case, one defines a quasi-inverse by

F−1
i (t) = inf{x : Fi(x) ≥ t}.

Using copulas allows us to separate the study of dependence from the study of the

marginals, since one is then reduced to study of the relation between two uniform

variables. The purpose of this section is to present results on copulas scattered

in diverse literature with the emphasis on dependence concepts and properties.

Definition 1.10.1. A bivariate copulas is a function C : [0, 1]2 → [0, 1] subject

to

i) C(x, 0) = C(0, y) = 0, for all x, y ∈ [0, 1].

ii) C(x, 1) = C(1, y) = y, for all x, y ∈ [0, 1].

iii) C is joint-increasing i.e. for every 2-box J = [x1, x2] × [y1, y2] ∈ [0, 1]2,

the associated C-volume VC(J) satisfies

VC(J) = C(x2, y2) + C(x1, y1)− C(x1, y2)− C(x2, y1) ≥ 0.
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Theorem 1.10.2. (Sklor, 1959) Let F be a joint distribution function with

marginal F1 and F2. Then, there exists a copula C subject to

∀x, y ∈ R̄; F (x, y) = C(F1(x), F2(y)). (1.11)

If F1 and F2 are continuous, then C is unique. Otherwise, C is uniquely

determined on Rain F1× Rain F2. Conversely, if C is copula and F1 and F2 are

distribution functions, then the function F as defined in 1.11 is a joint distribution

function with marginal F1 and F2.

Corollary 1.10.3. Under the assumptions of Theorem 1, we have

C(u, v) = F (F−1
1 (u), F−1

2 (v)),

where, F−1(u) = sup[x : F (x) ≤ u] = inf[x : F (x) ≥ u].

Example 1.10.4. 1) FGM : F (x, y) = F1F2[1 + θF̄1F̄2] then, C(u, v) = uv[1 +

θ(1− u)(1− v)]

2) Gumbel, F̄ (x, y) = exp−(x+ y + θxy), x ≥ 0, y ≥ 0, 0 ≤ θ ≤ 1. Then,

we can show that

Cθ(u, v) = u+ v − 1 + (1− u)(1− v) exp {−θ ln(1− u)(1− v)}

Corollary 1.10.5. Under the assumptions of Theorem 1, we obtain that

i) f(x, y) = f1f2C(F1, F2),

ii) c(u, v) = ∂2C(u,v)
∂u∂v .

1.11 Some elementary properties

1) Continuity: The copulas C satisfies in Lipschitz’s condition as the following

|C(u2, v2)− C(u1, v1)| ≤ |u2 − u1|+ |v2 − v1|.

2) Differentiability:

i) 0 ≤ ∂C(u,v)
∂u ≤ 1, 0 ≤ ∂C(u,v)

∂v ≤ 1,
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ii) c(u, v) = ∂2C(u,v)
∂u∂v .

3) The survival function of a Copula:

C̄(u, v) = P (U > u, V > v) = 1− P (U ≤ u)− P (V ≤ v) + P (U ≤ u, V ≤ v)

= 1− u− v − C(u, v).

We have

C̄(u, 1) = C̄(1, v) = 0 and C̄(u, 0) = C̄(0, v) = 1.

3)

F̄ (x, y) = Ĉ(F̄1(x), F̄2(y)) where

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v).

F̄ (x, y) = 1− F1(x)− F̄2(y) + F (x, y)

= F̄1(x) + F̄2(y)− 1 + C(1− F̄1(x), 1− F̄2(y)).

So if we define, Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v), we have

F̄ (x, y) = Ĉ(F̄1(x), F̄2(y)).

Then,

Ĉ(u, v) = F̄ (F̄1
−1(u), F̄2

−1(v)).

The Ĉ(u, v) is a copula and we refer to Ĉ as the survival Copula of X and Y .

Remark 1.11.1. If Ĉ(u, v) = 1− u− v + C(u, v) = Ĉ(1− u, 1− v) then

C(u, v) = u+ v − 1 + Ĉ(1− u, 1− v).

Example 1.11.2.

F̄ (x, y) = [1 + x+ y + θxy]−a, 0 ≤ θ ≤ a+ 10, a > 0, x, y ≥ 0.

Assume that u = F̄1(x) = (1 + x)−a, v = F̄2(y) = (1 + y)−a. Then, we have

1 + x = u−1/a and 1 + y = v−1/a.
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So,

x = u−1/a − 1 and y = v−1/a − 1.

Therefore,

Ĉ(u, v) = F̄ (u−1/a − 1, v−1/a − 1)

= [1 + u−1/a − 1 + v−1/a − 1 + θ(1− u−1/a)(1− v−1/a)]−a

= [u−1/a + v−1/a − 1 + θ(1− u−1/a)(1− v−1/a)]−a, 0 < u < 1, 0 < v < 1.

Then,

C(u, v) = u+v−1+{(1−u)−1/a+(1−v)−1/a−1+[1−(1−u)−1/a][1−(1−v)−1/a]}−1/a.

Theorem 1.11.3. Let X and Y be continuous r.v.’s with copula Cxy. If α and β

are strictly increasing on Rain X and Rain Y , respectively. Then, Cα(X), β(Y ) =

CXY . Thus, CXY is invariant under strictly increasing transformation of X and

Y .

Proof. Let α(X) ∼ G1 and β(Y ) ∼ G2. Then G1(x) = F1(α−1(x)) and

G2(y) = F2(β−1(y)). Since α(.) and β(.) are strictly increasing, we have

Gα(X),β(Y )(t, s) = P [α(x) ≤ t, β(Y ) ≤ s] = P [X ≤ α−1(t), Y ≤ β−1(s)]

= F (α−1(t), β−1(s)) = CX,Y [F1(α−1(t)), F2(β−1(s))]

= GX,Y (G1(t), G2(s)). (1.12)

Also,

Gα(X),β(Y )(t, s) = Cα(X),β(Y )(G1(t), G2(s)). (1.13)

Then from (1.12) and (1.13)

Cα(X),β(Y )(u, v) = GX,Y (u, v), ∀(u, v) ∈ I2. (1.14)

Since X and Y are continuous, hence RanG1 = RanG2 = I = [0, 1].
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Theorem 1.11.4. Let X and Y are continuous random variables with Copula

CX,Y . Let α and β be strictly monotone on Ran(x) and Ran(Y ). Then i) If α

is strictly increasing and β is strictly decreasing, then

Cα(X),β(Y )(u, v) = U −GX,Y (u, 1− v).

ii) If α(.) is strictly decreasing and β is strictly increasing, then

Cα(U,V ),β(Y )(u, v) = V −GX,Y (1− u, v).

iii) If α and β are both strictly decreasing, then

Cα(X),β(Y )(u, v) = U + V − 1−GX,Y (1− u, 1− v).

1.12 Copula function and Dependence

1- We define π = u.v. Let X and Y are continuous random variables with joint

distribution function F and with Copula function C(u, v). Then

i) If C(u, v) ≥ π(u, v) = u.v ⇒ PQD(X,Y )

ii) If C(u, v) ≤ π(u, v) = u.v ⇒ NQD(X,Y )

Example 1.12.1. In FGM family, we have

i) Cθ(u, v) = uv[1 + θ(1− u)(1− v)]

ii) Cθ is PQD if θ ≥ 0

iii) Cθ is NQD if θ ≤ 0

Exercise: Prove that

i) ρC = 12
∫
I2{C(u,v)-uv}dudv.

ii) τC = 4
∫
I2C(u,v)dC(u,v)-1.

Theorem 1.12.2. i) If X and Y are PQD random variables, then 3τ ≥ ρ ≥ 0.

ii) If X and Y are NQD random variables, then 3τ ≤ ρ ≤ 0.

Proof. In FGM family, we have

Cθ(u, v) = uv + θuv(1− u)(1− v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1.
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Then

ρC = 12
∫ 1

0

∫ 1

0
{C(u, v)− uv}dudv

= 12
∫ 1

0

∫ 1

0
θuv(1− u)(1− v)dudv

= 12θ
∫ 1

0
{
∫ 1

0
(u− u2)du}v(1− v)dv

= 12θ[
1
2
− 1

3
][

1
2
− 1

3
] =

θ

3
.

Since dCθ(u, v) = [1 + θ(2u− 1)(2v − 1)dudv], we obtain that∫ 1

0

∫ 1

0
Cθ(u, v)dCθ(u, v) =

∫ 1

0

∫ 1

0
{uv + θuv(1− u)(1− v)}{1 + θ(2u− 1)(2v − 1)}dudv

=
1
4

+
θ

18
.

So,

τC = 4
∫ 1

0

∫ 1

0
Cθ(u, v)dCθ(u, v)− 1

=
2θ
9
.

Then

3τC − ρC =
2θ
3
− θ

3

=
θ

3
.

Therefore, if 0 ≤ θ ≤ 1 then X and Y are PQD random variables and so 3τC −

ρC ≥ 0. Also, if −1 ≤ θ ≤ 0 then X and Y are NQD random variables and so

3τC − ρC ≤ 0.

Theorem 1.12.3. Let X and Y are continuous random variables with copula

function C. Then

i) LTD(Y |X) ⇔ ∀v ∈ [0, 1]: C(u,v)
u ↘ in u.

ii) LTD(X|Y ) ⇔ ∀u ∈ [0, 1]: C(u,v)
v ↘ in v.

iii) RTI(Y |X) ⇔ v−C(u,v)
1−u ↘ in u, ∀v ∈ [0, 1].

iv) RTI(X|Y ) ⇔ u−C(u,v)
1−v ↘ in v, ∀u ∈ [0, 1].
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Proof.

LTD(Y |X) ⇔ F (x,y)
F1(x) ↘ in x, ∀y ⇔ C(u,v)

u ↘ in u, ∀v.

{U = F1(X), V = F2(Y )}= C(F1(x),F2(y))
F1(x)

RTI(Y |X)⇔ F̄ (x, y)
F̄1(x)

=
Ĉ(F̄1(x), F̄2(y))

F̄1(x)

=
Ĉ(1− u, 1− v)

1− u

=
1− u− v + C(u, v)

1− u

= 1− v − C(u, v)
1− u

.

So, we conclude
F̄ (x,y)
F̄1(x)

↗ in x, ∀y ⇔ v−C(u,v)
1−u ↘ in u, ∀v ∈ [0, 1].

Corollary 1.12.4. i) LTD(Y |X) ⇔ ∂C(u,v)
∂u ≤ C(u,v)

u , a.s. ∀u.

ii) LTD(X|Y ) ⇔ ∂C(u,v)
∂v ≤ C(u,v)

v , a.s. ∀v.

iii) RTI(Y |X) ⇔ ∂C(u,v)
∂u ≤ v−C(u,v)

1−u , a.s. ∀u.

iv) RTI(X|Y ) ⇔ ∂C(u,v)
∂v ≥ u−C(u,v)

1−v , a.s. ∀v.

Proof. i) If C(u,v)
u ↘ in u, then

∂

∂u
[
C(u, v)
u

] =
u ∂
∂uC(u, v)− C(u, v)

u2
≤ 0⇔ ∂C(u, v)

∂u
≤ C(u, v)

u
.

The other parts are prove as the same method.

Theorem 1.12.5. Under the assumptions of Theorem 1.12.3, we have

i) SI(Y |X) ⇔ ∀v ∈ [0, 1], for almost all u: ∂C(u,v)
∂u ↘ in u.

ii) SI(X|Y ) ⇔ ∀u ∈ [0, 1], for almost all v: ∂C(u,v)
∂v ↘ in v.

Proof. i)

SI(Y |X) ⇔ P [y ≤ y|X = x] ↘ in x, ∀y.
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And

P [y ≤ y|X = x] =
∫ y

−∞
f(t|x)dt

=
1

f1(x)

∫ y

−∞
f(t, x)dt

=
1

f1(x)
∂F (x, y)
∂x

=
1

f1(x)
∂F (x, y)
∂F1(x)

∂F1(x)
∂x

=
∂C(u, v)
∂u

↘ in u, ∀v ∈ [0, 1].

Corollary 1.12.6. Under the assumptions of Theorem 1.12.5, we have i) SI(Y |X)

⇔ ∀v ∈ [0, 1], C(u, v) is concave function with respect to u.

ii) SI(X|Y ) ⇔ ∀u ∈ [0, 1], C(u, v) is concave function with respect to v.

Theorem 1.12.7. We have the similar results for ND case:

i) LTI(Y |X) ⇔ C(u,v)
u ↗ in u.

ii) RTD(Y |X) ⇔ v−C(u,v)
1−u ↗ in u.

iii) LTI(Y |X) ⇔ ∂C(u,v)
∂u ≥ C(u,v)

u .

iv) RTD(Y |X) ⇔ ∂C(u,v)
∂u ≤ v−C(u,v)

1−u .

v) LSD(Y |X) ⇔ C(u, v) is a convex function with respect to u.

vi) RTI(Y |X) ⇔ C(u, v) is a convex function with respect to u.

vii) SD(Y |X) ⇔ ∂C(u,v)
∂u ↗ in u, ∀v ∈ [0, 1].

iix) SD(Y |X) ⇔ C(u, v) is a convex function with respect to u.

Example 1.12.8. Let C(u, v) = uv[1+θ(1−u)a(1−v)a], 0 ≤ u ≤ 1, 0 ≤ v ≤ 1.

Then

Cθ(u, v) = uv[1 + 2θ(1−u)(1− v)(1 +u+ v− 2uv)]. (Hutchinson−Lai, 1990)

So, we obtain that
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i)

Cθ(u, v)
u

= v + 2θv(1− v)(1− u)[1 + u(1− v) + v(1− u)]

= v + 2θv(1− v)[(1− u) + (1− v)u(1− u) + v(1− u)2]

= v + 2θv(1− v)(1− u) + 2θv(1− v)2u(1− u) + 2θv2(1− v)(1− u)2.

Therefore

∂

∂u
[
Cθ(u, v)

u
] = −2θv(1− v) + 2θv(1− v)2 − 4θv2(1− u)(1− v)

= −2θv(1− v)[1− (1− v)(1− 2u) + 2v(1− v)]

= −2θv(1− v)[v + 2u− 2uv + 2v − 2uv]

= −2θv(1− v)[v + 2u(1− v) + 2v(1− u)].

Then if −1
4 ≤ θ ≤ 0, we have ∂

∂u [Cθ(u,v)
u ] ≥ 0. On the other hand if 0 ≤ θ ≤ 1

4 ,

we get ∂
∂u [Cθ(u,v)

u ] ≤ 0.

So, LTD(Y |X) ⇔ 0 ≤ θ ≤ 1
4 and LTI(Y |X) ⇔ −1

4 ≤ θ ≤ 0.

ii) RTI(Y |X) ⇔ v−C(u,v)
1−u ↘ in u. And

v − C(u, v)
1− u

= v − 2θuv(1− v)[1 + u+ v − 2uv]

= v − 2θuv(1− v)− 2θu2v(1− v)2 − 2θuv2(1− v)(1− u).

So, we obtain that

∂

∂u
[
v − C(u, v)

1− u
] = −2θv(1− v)− 4θuv(1− v)− 2θv2(1− v)(1− 2u)

= −2θv(1− v)[1 + 2u+ v(1− 2u)]

= −2θv(1− v)[1 + v + 2u(1− v)].

So, RTI(Y |X) ⇔ 0 ≤ θ ≤ 1
4 and RTD(Y |X) ⇔ −1

4 ≤ θ ≤ 0.

iii) LCSD(Y |X) ⇔ C is TD ⇔ ∂2 lnC
∂u∂v ≥ 0.

Theorem 1.12.9. Let X and Y be continuous random variables with copula

function C. Then

i) LSCD(X,Y ) ⇔ C is TP2.
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ii) RCSI(X,Y ) ⇔ Ĉ is TP2.

iii) LCSI(X,Y ) ⇔ C is RR2.

iv) RCSD(X,Y ) ⇔ Ĉ is RR2.

Lemma 1.12.10. i) f is TP2 ⇔ ∂2 ln f
∂x∂y ≥ 0.

ii) f is RR2 ⇔ ∂2 ln f
∂x∂y ≤ 0.

Proof. Let (X,Y ) has a joint distribution function F with Copula function

C. Then

i)LCSD(X,Y ) ⇔ F is TP2

⇔ F (x, y)F (x́, ý) ≥ F (x, ý)F (x́, y) for all x < x́andy < ý

⇔ C(F1(x), F2(y)).C(F1(x́), F2(ý)) ≥ C(F1(x), F2(ý)).C(F1(x́), F2(y))

⇔ C(u, v).C(ú), C(v́) ≥ C(u, v́).C(ú, v)

⇔ C(u, v) is TP2.

ii)RCSD(X,Y ) ⇔ F̄ is RR2

⇔ for all x < x́andy < ý

⇔ F̄ (x, y).F̄ (x́, ý) ≤ F̄ (x́, y).F̄ (x, ý)

⇔ Ĉ(F̄1(x), F̄2(y)).Ĉ(F̄1(ú), F̄2(v́) ≤ Ĉ(F̄1(x́, F̄2(y)).Ĉ(F̄1(x), F̄2(ý))

⇔ Ĉ(u, v).Ĉ(ú, v́) ≤ Ĉ(ú, v).Ĉ(u, v́)

⇔ Ĉ(u, v) is RR2.

Corollary 1.12.11. Under the assumptions of Theorem 1.12.12, we have

i) LSCD(X,Y ) ⇔ ∂2C(u,v)
∂u∂v ≥ 0 and RCSI(X,Y ) ⇔ ∂2Ĉ(u,v)

∂u∂v ≥ 0.

ii) LCSI(X,Y ) ⇔ ∂2C(u,v)
∂u∂v ≤ 0 and RCSI(X,Y ) ⇔ ∂2Ĉ(u,v)

∂u∂v ≤ 0.

Theorem 1.12.12. Let X and Y be continuous random variables with joint

density function F and Copula function C. Then

i) PLRD(X,Y ) ⇔ C(v,ú)
C(v,u) ↗ in v, ∀u < ú.

ii) NLRD(X,Y ) ⇔ C(v,ú)
C(v,u) ↘ in v, ∀u < ú.
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Proof.

i)PLRD(X,Y ) ⇔ f(x, y)f(x́, ý) ≥ f(x, ý)f(x́, y) for all x < x́andy < ý

⇔ C(u, v).C(ú, v́) ≥ C(ú, v).C(u, v́)

⇔ C(úv́)
C(u, v́)

≥ C(ú, v)
C(u, v)

⇔ C(ú, v)
C(u, v)

↗ in v, ∀u < ú,

where u = F1(x), ú = F2(x́), v = F1(y) and v́ = F2(ý) and

f(x, y) = f1(x)f2(y).
∂2C(F1(x), F2(y))
∂F1(x)∂F2(y)

= f1f2C(u, v),

where C(u, v) = ∂2C(u,v)
∂u∂v .

ii)NLRD(X,Y ) ⇔ f(x, y)f(x́, ý) ≤ f(x, ý)f(x́, y) for all x < x́andy < ý

⇔ C(u, v).C(ú, v́) ≤ C(ú, v).C(u, v́)

⇔ C(úv́)
C(u, v́)

≤ C(ú, v)
C(u, v)

⇔ C(ú, v)
C(u, v)

↘ in v, ∀u < ú.

1.13 Archimedean Copulas

Definition 1.13.1. Let φ be a continuous *** decreasing function from I →

[0,+∞] such that φ(1) = 0. The Pseudo-inverse of φ is the function φ[−1] with

Domφ[−1] = [0,+∞], Rφ[−1] = I given by

φ[−1](t) =

 φ−1(t) , 0 ≤ t ≤ φ(0)

0 , t ≥ φ(0)
(1.15)

Note that φ[−1] is continuous and non-increasing on [0,+∞] and strictly decreas-

ing on [0, φ(0)]. Furthermore, φ[−1](φ(u)) = u on I. So

φ(φ−1(t)) =

 t , 0 ≤ t ≤ φ(0)

φ(0) , φ(0) ≤ t ≤ ∞
= min{t, φ(0)}
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Finally if φ(0) = +∞, then φ[−1] = φ−1.

Lemma 1.13.2. Let φ be a continuous, strictly decreasing function φ : I =

[0, 1]→ [0,+∞] subject to φ(1) = 0 and φ[−1] be the Pseudo-Inverse of φ defined

above. Let C : I2 → I given by

C(u, v) = φ[−1](φ(u) + φ(v)).

Then if and only if C is a Copula function, φ is convex.

In this case φ is to be said generator of the Copula C and C is to be said

Archimedean Copula.

C(u, v) = φ−1[φ(u)+φ(v)]⇒ φ[C(u, v)] = φ(u)+φ(v). Then by differentiating

relative to u (v) of both side of the last equation, we have φ′(C)∂C∂u = φ′(u)

φ′(C)∂C∂v = φ′(v)
(1.16)

So,  ∂C
∂u = φ′(u)

φ′(C)

∂C
∂v = φ′(v)

φ′(C)

(1.17)

Therefore,
∂2C

∂u∂v
= −φ

′′(C)φ′(u)φ′(v)
φ′2(C)

.

Since C(u, v) ≥ 0, then if and only if φ is convex and decreasing function, φ−1 is

convex and decreasing function.

Remark 1.13.3. If Λ(θ) is a distribution function with Λ(0) = 0 and Ψ(t) =
∫ +∞

0 ,

then φ = Ψ−1. Also, if Ψ is the Laplace transform of a distribution, then

C(u, v) = Ψ[Ψ−1(u) + Ψ−1(v)],

where F (u) = exp {−Ψ−1(u)} and G(v) = exp {−Ψ−1(v)}.

Let M be a univariate distribution function of a positive random variables

(M(0) = 0) and Ψ be the Laplace transform of M as:

Ψ(s) = Ee−sθ =
∫ +∞

0
e−sθdM(θ). s ≥ 0
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Then

i) (Joe, 1997) For an arbitrary univariate distribution function F , there exists

a unique distribution G subject to

F (x) =
∫ +∞

0
Gθ(x)dM(θ) = Ψ[− logG(x)].

So, G(t) = exp[−Ψ−1(F (t))].

There is a similar relationship for survival functions as

F̄ (x) =
∫ +∞

0
H̄θ(x)dM(θ) = Ψ[− log H̄(x)],

where H̄ = exp[−Ψ−1(F̄ (t))].

Next, consider the bivariate class F(F1, F2) for all j = 1, 2, letGj = exp[−Ψ−1(Fj)].

Then the following term is a distribution function in F(F1, F2):∫ +∞

0
Gθ1G

θ
2dM(θ) = Ψ[− logG1 − logG2]

= Ψ[Ψ−1(F1) + Ψ−1(F2)].

The Copula distribution function for F1 and F2 is

C(u, v) = Ψ[Ψ−1(u) + Ψ−1(v)],

where Ψ−1 = φ. Therefore, φ = Ψ−1 is a generator of C.

Similarly, one could work with survival functions to get∫ +∞

0
H̄θ

1H̄
θ
2dM(θ) = Ψ[− log H̄1 − log H̄2]

= Ψ[Ψ−1(F̄1) + Ψ−1(F̄2)],

where H̄j = exp[−Ψ−1(F̄j)], j = 1, 2.

Example 1.13.4. Let M ∼ Γ(α = 1
θ , β = 1). For v > 0, we have

s = Ψ(t) = (
1

λ+ t
)

1
θ

= (1 + t)−
1
θ .
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Then, s−θ = 1 + t and φ(t) = Ψ−1(t) = t−θ − 1. So

Cφ(u, v) = φ−1[φ(u) + φ(v)] = φ−1[u−θ − 1 + v−θ − 1]

= [u−θ + v−θ − 1]−
1
θ is a Copula function.

Example 1.13.5. If M(θ) ∼ EXP (θ). Then Ψ(t) = 1
θ+t . So with s = 1

θ+t , we

have Ψ−1 = 1
t − θ. Therefore

Cφ(u, v) = φ−1[φ(u) + φ(v)] = φ−1[
1
u

+
1
v
− 2θ]

= [θ +
1
u

+
1
v
− θ]−1

= [
1
u

+
1
v
− θ]−1 =

uv

u+ v − θuv
.

Theorem 1.13.6. A Copula C is Archimedean, if and only if there exists a

mapping f : (0, 1)→ (0,+∞) subject to

∂C
∂u
∂C
∂v

=
f(u)
f(v)

. ∀ 0 < u, v < 1

Then φ(t) =
∫ 1
t f(u)du.

Example 1.13.7. i) In Lomax distribution with joint distribution function

F̄ (x, y) = [1 + x+ y + θxy]−a. 0 ≤ θ ≤ a+ 1.

Then

C(u, v) = [(1−u)−1/a+(1−v)−1/a−1+θ[1−(1−u)−1/a][1−(1−v)−1/a]]−a+u+v−1.

ii) Cθ(u, v) = u+v−1+(1−u)(1−v)e−θ log(1−u) log(1−v), 0 ≤ θ ≤ 1 and we have

∂C

∂u
= 1− (1−v)e−θ log(1−u) log(1−v) +

θ log(1− v)
1− u

(1−u)(1−v)e−θ log(1−u) log(1−v),

and

∂C

∂v
= 1− (1−u)e−θ log(1−u) log(1−v) +

θ log(1− v)
1− u

(1−u)(1− v)e−θ log(1−u) log(1−v)

.
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1.14 Empirical copula function

In this section we will show that there are expressions for the sample versions of

several measures of association analogous to those whose population versions were

seen. The population versions can be expressed in terms of copulasthe sample

versions will now be expressed in terms of empirical copulas and the correspond-

ing empirical copula frequency function.

Definition 1. Let {(xk, yk)}nk=1 denote a sample of size n from a continuous

bivariate distribution. The empirical copula is the function Cn given by

Cn

(
i

n
,
j

n

)
=
number of pairs (x, y) in the sample with x ≤ x(i), y ≤ y(j)

n
.

where x(i) and y(j), 1 ≤ i, j ≤ n, denote order statistics from the sample. The

empirical copula frequency cn is given by

cn

(
i

n
,
j

n

)
=
{

1/n,
0,

if (x(i), y(j)) is an element of the sample
otherwise

Note that Cn and cn are related via

Cn

(
i

n
,
j

n

)
=

i∑
p=1

j∑
q=1

cn

( p
n
,
q

n

)
and

cn

(
i

n
,
j

n

)
= Cn

(
i

n
,
j

n

)
−Cn

(
i− 1
n

,
j

n

)
−Cn

(
i

n
,
j − 1
n

)
+Cn

(
i− 1
n

,
j − 1
n

)
.

Empirical copulas were introduced and first studied by Deheuvels (1979), who

called them empirical dependence functions.

For continuous random variables X and Y with copula C, recall the population

versions of Spearman’s ρ, Kendall’s τ , and Gini’s γ, respectively,

ρ = 12
∫ ∫

I2
[C(u, v)− uv]dudv,

τ = 2
∫ 1

0

∫ 1

0

∫ v
′

0

∫ u
′

0

[
c(u, v)c(u

′
, v
′
)− c(u, v′)c(u′ , v)

]
dudvdu

′
dv
′
,
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and

γ = 4
{∫ 1

0
C(u, 1− u)du−

∫ 1

0
[u− C(u, u)]du

}
.

In the next theorem, we present the corresponding version for a sample (we use

Latin letters for the sample statistics):

Theorem 1Let Cn and cn denote, respectively, the empirical copula and the

empirical copula frequency function for the sample {(xk, yk)}nk=1. If r, t and g

denote, respectively, the sample versions of Spearman’s rho, Kendall’s tau, and

Gini’s gamma, then

r =
12

n2 − 1

n∑
i=1

n∑
j=1

[
Cn

(
i

n
,
j

n

)
− i

n
.
j

n

]
, (1.18)

t =
2n
n− 1

n∑
i=2

n∑
j=2

i−1∑
p=1

j−1∑
q=1

[
cn

(
i

n
,
j

n

)
cn

( p
n
,
q

n

)
− cn

(
i

n
,
q

n

)
cn

(
p

n
,
j

n

)]
,

(1.19)

g =
2n

[n2/2]

{
n−1∑
i=1

Cn

(
i

n
, 1− i

n

)
−

n∑
i=1

[
i

n
− Cn

(
i

n
,
i

n

)]}
. (1.20)

Proof. We will show that the above expressions are equivalent to the expressions

for r, t, and g that are usually encountered in the literature. The usual expression

for r is (Kruskal 1958; Lehmann 1975)

r =
12

n(n2 − 1)

[
n∑
k=1

kRk −
n(n+ 1)2

4

]
, (1.21)

where Rk = m, whenever (x(k), y(m)) is an element of the sample. Since

n∑
i=1

n∑
j=1

(
i

n

j

n

)
=

(n+ 1)2

4

to show that (1) is equivalent to (4), we need only show that

n∑
i=1

n∑
j=1

Cn

(
i

n
,
j

n

)
=

1
n

n∑
k=1

kRk (1.22)

Observe that a particular pair (x(k), y(m)) in the sample contributes 1/n to the

double sum in (5) for each pair of subscripts (i,j) with i ≥ k and j ≥ m. That is,
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the total contribution to the double sum in (5) by a particular pair (x(k), y(m)) is

1/n times (n− k + 1)(n−m+ 1), the total number of pairs (i,j) such that i ≥ k

and j ≥ m. Hence, writing Rk for m and summing on k, we have ,

n∑
i=1

n∑
j=1

Cn

(
i

n
,
j

n

)
=

1
n

n∑
k=1

(n− k + 1)(n−Rk + 1)

=
1
n

n∑
k=1

{
(n+ 1)2 + kRk − k(n+ 1)−Rk(n+ 1)

}
= (n+ 1)2 +

1
n

n∑
k=1

kRk −
2(n+ 1)

n

n∑
k=1

k

=
1
n

n∑
k=1

kRk

Next we show that (2) is equivalent to definition of Kendall’s tau, i.e., the differ-

ence between number of concordant and discordant pairs in the sample divided

by the total number
(
n
2

)
of pairs of elements from the sample. Note that the

summand in (2) reduces to (1/n)2 whenever the sample contains both (x(p), y(q))

and (x(i), y(j)) , a concordant pair because x(p) < x(i) and y(q) < y(j); reduces

to −(1/n)2 whenever the sample contains both (x(p), y(j)) and (x(i), y(q)) , a dis-

cordant pair; and is 0 otherwise. Thus the quadruple sum in (2) is (1/n)2 times

the difference between the number of concordant and discordant pairs, which is

equivalent to definition of Kendall’s tau. Evaluating the inner double summation

in (2) yields

t =
2n
n− 1

n∑
i=2

n∑
j=2

[
Cn

(
i

n
,
j

n

)
Cn

(
i− 1
n

,
j − 1
n

)
− Cn

(
i

n
,
j − 1
n

)
Cn

(
i− 1
n

,
j

n

)]

=
2n
n− 1

n∑
i=2

n∑
j=2

i−1∑
p=1

j−1∑
q=1

[
cn

(
i

n
,
j

n

)
cn

( p
n
,
q

n

)
− cn

(
i

n
,
q

n

)
cn

(
p

n
,
j

n

)]
.

If pi and qi denote the ranks of xi and yi,i = 1, ..., n, respectively, then(Gini 1910)

g =
1

[n2/2]

{
n∑
i=1

|pi + qi − n− 1| −
n∑
i=1

|pi − qi|

}
(1.23)
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hence to show that (3) is equivalent to the sample version of Gini’s gamma in

(6), we need only show that

n∑
i=1

|pi − qi| = 2n
n∑
i=1

[
i

n
− Cn

(
i

n
,
i

n

)]
(1.24)

n∑
i=1

|pi + qi − n− 1| = 2n
n−1∑
i=1

Cn

(
i

n
,
n− i
n

)
. (1.25)

We give only the proof for (7); the proof for (8) is similar. The sample {(xk, yk)}nk=1

can be written {(xpi , yqi)}
n
i=1. Because nCn(i/n, i/n) is the number of points

(xpi , yqi) in the sample for which pi ≤ i and qi ≤ i, the sample point (xpi , yqi) is

counted (n−max(pi, qi) + 1) times in the sum n
∑n

i=1Cn(i/n, i/n). Thus

2n
n∑
i=1

[
i

n
− Cn

(
i

n
,
i

n

)]
= n(n+ 1)− 2

n∑
i=1

[(n+ 1)−max(pi, qi)]

= 2
n∑
i=1

max(pi, qi)− n(n+ 1)

= 2
n∑
i=1

max(pi, qi)−
n(n+ 1)

2
− n(n+ 1)

2

= 2
n∑
i=1

max(pi, qi)−
n∑
i=1

pi −
n∑
i=1

qi

=
n∑
i=1

[2max(pi, qi)− (pi + qi)] .

But 2max(u, v)− (u+ v) = |u− v|, and hence

2n
n∑
i=1

[
i

n
− Cn

(
i

n
,
i

n

)]
=

n∑
i=1

|pi − qi|. �

1.15 Particular cases and relationships

Implications 1:( among concepts of Positive Dependence )

SI(Y |X)⇒ LTD(Y |X), RTI(Y |X)⇒ PA(X,Y )⇒ PQD(X,Y )
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PLRD(X,Y )⇒ SI(Y |X)⇒ RTI(Y |X)⇐ RCSI(X,Y )⇐ PLRD(X,Y )

SI(Y |X)⇒ LTD(Y |X)⇒ PQD(X,Y )⇐ RTI(Y |X)

SI(X|Y )⇒ LTD(X|Y )⇒ PQD(X,Y )⇐ RTI(X|Y )⇐ SI(X|Y )

PLRD(X,Y )⇒ LCSD(X,Y )⇒ LTD(X|Y )⇐ SI(X|Y )⇐ PLRD(X,Y )

Implications 2:( among concepts of Negative Dependence )

SD(Y |X)⇒ LTI(Y |X), RTD(Y |X)⇒ NA(X,Y )⇔ NQD(X,Y )

NLRD(X,Y )⇒ SD(Y |X)⇒ RTD(Y |X)⇐ RCSD(X,Y )⇐ NLRD(X,Y )

SD(Y |X)⇒ LTI(Y |X)⇒ NQD(X,Y )⇐ RTD(Y |X)

SD(X|Y )⇒ LTI(X|Y )⇒ NQD(X,Y )⇐ RTD(X|Y )⇐ SD(X|Y )


