
THE MOLECULAR ELECTROSTATIC POTENTIAL AND ATOMIC 
CHARGES 
The Molecular Electrostatic Potential ()
 at a point P  the reversible w per unit charge needed to move an 
infinitesimal test charge Qt from  to P, 

location of point P in space

where d is the distance between point P and the charge. 

The SI unit : volt (V), 1V = 1 J/C
we change its potential energy by w

If V (of Qt) = 0  Vp = wp = pQt (electrical potential energy of a charge at P) 



system consists of a single point charge QA at (xA, yA, zA):

system consists of several point charges:

r1A : the distance between A and 1 

a molecule: view it as a collection of point-charge nuclei and electronic 
charge smeared out into a continuous distribution. 
The probability of finding a molecular electron in a tiny volume dV = dx dy 
dz:

ρ dV, (ρ :electron probability density)
amount of electronic charge in dV:

-eρ dV



distance between 1 and 2 

molecular electric potential : 

over all space 

MEP at P would be the molar electrical interaction energy between the molecule 
and a test charge (e) at P, assuming that the molecule is not polarized by the test 
charge. 

Quantum chemists commonly call  the molecular electrostatic potential (MEP) or 
the electrostatic potential (ESP) . 

volts

Quantum chemists traditionally multiply above eq by e and NA

In atomic units, the e and the 4π0 disappear from eq.



approximate electronic wave function 

ρ(x, y, z) 



MEP : is not strongly affected by the choice of basis set or by the inclusion 
of electron correlation. 
The MEP is often calculated at the HF/6-31G* level of theory or using DFT.. 

 ρ(x, y, z) tells us how the electronic charge is distributed in a molecule. 
 MEP tells us the interaction energy between a nonpolarizing test 

charge at (x,y, z) and the nuclear charges and electronic charge  
distribution of the molecule. 

 MEPs : generally positive within a molecule, due to the strong positive 
contributions from the nuclei; outside a molecule, positive or negative. 

 For H2O and HCONH2: negative outside the oxygen atom and positive 
outside other atoms. 



An electrophilic species: attack sites where the MEP is most negative. 

atom in a molecule : a sphere of radius equal to the vdW radius of the 
atom

the vdW surface : outward-facing surfaces of atomic spheres. 
In intermolecular interactions, the MEP in the regions outside the vdW
surface are most significant. 

The vdW surface is what one sees in space-filling CPK (R. B. Corey–Pauling–
Koltun) molecular models.



• A more sophisticated surface than the vdW surface is an isodensity surface (IS),

• Definition: a surface on which the molecule’s electron probability density ρ is 
constant. 

• molecular IS for which ρ = 0.001 electrons/bohr3 = 0.006748 electrons/Å3 was found 
to have about the same surface area as the vdW surface.

• this IS is often used, although many workers prefer the 0.002 electrons/bohr3 IS. 

• molecular surface area and the molecular volume: have no well-defined meaning, 
but these values are usually calculated as the area of and the volume enclosed by the 
vdW surface or by an IS with a specified ρ value.



• An alternative: surfaces of constant MEP, the molecular surface 
electrostatic potential (MSEP or MSESP). 

• The MSEP is often depicted using a color scheme: red denoting the most 
negative MEP values, blue the most positive, and other spectrum colors 
intermediate values. 

• Negative regions arise: from lone pairs on electronegative atoms, from π
electrons (benzene; is negative within much of the hexagon above and 
below the molecular plane), and from strained C-C bonds (cyclopropane; is 
negative in the three regions that lie near to and outside the three carbon–
carbon bonds and near the plane of the C atoms).



MEP : well-defined, physically significant 
What is Q on a particular atom in a molecule? no unique, well-defined 
answer 

As noted previously, MPA gives atomic charges that vary erratically as 
the basis set is improved. Better values are obtained from natural 
population analysis (NPA).

Atomic Charges



A popular way: Qa is obtained by fitting the MEP . 

molecular wf 

 at a grid of many points in the region outside the molecule's vdW surface

places a charge Qa at each nucleus a

varies the Qa values; Qa = 0 for 
neutral molecule

ESP charges: Various ways of choosing the grid points and of including other refinements 
Three common schemes:

Merz-Singh-Kollman (MK or MSK) method 
CHELPG (charges from electrostatic potentials, grid method) 

RESP (restrained ESP) method

minimize the sum of the 
squares of the deviations:



atomic charges based on Bader's atoms-in-molecules (AIM) theory 

approximate wf

ρ(x, y, z)

contour surfaces of constant ρ
(isodensity surfaces, ISs) 

gradient paths (GPs)

AIM charge on atom A: 

over the region ΩA

start at infinity and end at one of the nuclei. 

ΩA (space belonging to atom A of the molecule): 
the region that contains all the GPs that end at 
the nA. 



 gradient vector  at P is perpendicular to IS (ρ = constant at P)
 only one perpendicular direction to a surface at p  a line perpendicular 

to ISs at p (GP) will have the same direction as p  
 p has a unique direction at each point GPs from different nuclei 

cannot cross each other (GPs terminating at each nucleus divide space 
into nonover-lapping regions, one for each atom). 

AIM charges have been criticized for being larger than seems chemically reasonable 
and, according to Cramer, “are of little chemical utility”



 Cramer, Truhlar, and co-workers have devised the methods Charge-Model 1 (CM1), 
CM2, CM3, CM4, and CM5 to calculate atomic charges.

 Another method to find atomic charges is the Hirshfeld method.

 Because Hirshfeld charges have several deficiencies, the improved Hirshfeld-I
method (where I stands for iterative) was proposed.

 A modification of the Hirshfeld-I method is the valence Hirshfeld-I method.



AB INITIO QUANTUM CHEMISTRY PROGRAMS 

Gaussian HF, CI, MCSCF, DFl, MP, CC 
semiempirical, molecular- Mechanics

Opt (GS and TS), feq, therm. 
properties, NMR, MEPs, SCRF

the most widely used 
QM program package

GAMESS , free the second-most widely 
used ab initio program 

Q-Chem HF, MP2, DF

Jaguar HF, MP2, DF,  GVB

ACES II CC , MP

Turbomole

Molpro MCSCF, MR-CI

CADPAC correlation methods

SPARTAN 
has very good graphical 
interfaces

HF, MP2, semiempirical, molecular 
mechanics, DF

HyperChem
has very good graphical 
interfaces

GAMESS (General Atomic and Molecular Electronic Structure System)

CADPAC (Cambridge analytical derivatives package)



Speeding Up Hartree–Fock Calculations 

• Dealing with electron-repulsion integrals 
• rapid evaluation of Fock Matrix elements 



Dealing with electron-repulsion integrals 

approximately b4/8 Electron-Repulsion Integrals (rs|tu) 
consumes a major part of the time in an SCF MO calculation. 
1) Using molecular symmetry
example
H2O : (H11s O2s|H21s H21s) = (H21s O2s,|H11s H11s) 
symmetry cuts the number of integrals to be evaluated in H2O 
approximately in half. 
2) In a large molecule, any one atom is far from most of the other atoms, 
and so a large fraction of the two-electron integrals are negligibly small for 
large molecules; 
many programs test each (rs|tu) integral to get its order of magnitude. 
Integrals < threshold value can be neglected without affecting the accuracy 
n  b4, n> threshold  b2

< 10-9 hartree neglected  increasing time  b2.3





4) Storage of integrals (rs|tu)
 recalled from memory as their values are needed in each SCF iteration
 Typically, 5 to 50 iterations 
 Some (rs|tu) values have to be stored on external memory 
 Locating in and reading from external memory is a relatively slow 

process. 
 the number of integrals to be stored may even exceed the capacity of 

the available external memory. 
 in direct SCF method, no (rs|tu) integrals are stored, but recomputed 

each time its value is needed.

5) The pseudospectral (PS) method
 for solving the HF equations uses both a basis-set expansion of each 

MO and a 
 representation of each MO as a set of numerical values at chosen grid 

points in three-dimensional space (Fock matrix elements are evaluated 
without explicitly evaluating two-electron integrals). 

 The PS method is a few times faster than conventional ab initio SCF 
calculations and may be useful for calculations on very large molecules  



Electron Correlation

1) neglect of or incomplete treatment of ec, 
2) incompleteness of the BS
3) relativistic effects, 
4) deviations from the Born-Oppenheimer 

approximation (are usually negligible for 
GS molecules. 

sources of error in ab initio 
molecular electronic 
calculations 

For molecules without heavy atoms, 1) and 2) are the main sources of error. 



• Almost all computational methods expand the MOs in a basis set of one-electron 
functions.

• The basis set has a finite number of members and hence is incomplete 
(incompleteness of the basis set)  the basis-set incompleteness (or truncation) 
error (BSIE or BSTE).

• This chapter discusses methods that include electron correlation. 
1) Configuration interaction method
2) Møller–Plesset (MP) perturbation theory
3) Coupled cluster (CC) method
4) Density functional theory



Electron Correlation 

• Es calculated by the HF method are typically in error by  0.5 % for light atoms. 
• On an absolute basis this is not much, but for the chemist it is too large. 
• For example, Etot of C is  -1000 eV, and 0.5 % of this is 5 eV. Chemical single-bond 

energies run about 5 eV. Calculating a bond energy by taking the difference 
between HF molecular and atomic energies, which are in error by several 
electronvolts for light atoms, is an unreliable procedure. 

• We must seek a way to improve HF WF and Es. 



• A HF SCF WF takes into account the interactions between electrons only in an 
average way. 

• Actually, we must consider the instantaneous interactions between electrons.
• Since electrons repel each other, they tend to keep out of each other’s way. For 

example, in He, if one electron is close to the nucleus at a given instant, it is 
energetically more favorable for the other electron to be far from the nucleus at 
that instant. One sometimes speaks of a Coulomb hole surrounding each electron 
in an atom. This is a region in which the probability of finding another electron is 
small. The motions of electrons are correlated with each other, and we speak of 
electron correlation. 

• We must find a way to introduce the instantaneous electron correlation into the 
wave function. 



• Actually, a HF wave function does have some instantaneous electron correlation. 
• A HF function satisfies the antisymmetry requirement. Therefore, it vanishes 

when two electrons with the same spin have the same spatial coordinates. 
• For a HF function, there is little probability of finding electrons of the same spin in 

the same region of space, so a HF function has some correlation of the motions 
of electrons with the same spin. (Fermi hole around each electron in a HF wave 
function: a region in which the probability of finding another electron with the 
same spin is small). 

• The Ecorr is the difference between the exact nonrelativistic energy Enonrel and the 
(nonrelativistic) HF energy EHF: Ecorr = Enonrel - EHF



• Two of the ways in which we may provide for instantaneous electron 
correlation:

• 1) Introduce the interelectronic distances rij into the wave function
• 2) Another method is configuration interaction
• the zeroth-order wave function for the helium-atom 1s2 ground state 

to be 
1s(1)1s(2)[spin]

• The first- and higher-order corrections to the wave function will mix 
in contributions from excited configurations, producing configuration 
interaction (CI), also called configuration mixing (CM). 



• The most common way to do a configuration-interaction calculation 
on an atom or molecule uses the variation method. 



Properties of Methods
• A quantum-chemistry method is variational if the energy calculated by the method is 

never less than the true energy of the state being calculated. 

• Since an SCF MO WF energy is equal to the variational integral, it is variational. 

• variational is a desirable property

• many methods currently used (such as MP, CC, DFT) are not variational.

• Two other desirable properties are size extensivity and size consistency. 

• Size extensive: the computed energy of a system composed of n noninteracting identical 
systems equals n times the energy of one subsystem computed by the same method

• Size consistent: if the computed energy of a molecule dissociated into two or more 
infinitely separated parts and treated as a single system equals the sum of the computed 
energies of each part. 

• They are related but not equivalent; a method can have one property but not the other. 

• Size consistency applies only at infinite separation of the parts, but size extensivity
applies at all geometries



CBS Extrapolation
• A common procedure to reduce basis-set truncation error is to do a series of 

calculations using one method with two, three, or four increasingly larger basis 
sets and extrapolate the results to what one hopes is a value close to the 
complete-basis-set (CBS) limit. 

• When a method such as CC that includes correlation is used, the extrapolation is 
commonly done in two steps. One first does HF calculations with a series of basis 
sets to estimate the CBS HF energy limit EHF

∞ . Then one does a series of CC 
calculations with the same series of basis sets and uses an empirical extrapolation 
formula to estimate the CBS correlation energy Ecorr

∞

• The estimation of the CBS molecular energy = EHF
∞+ Ecorr

∞

• The basis sets most commonly used for CBS extrapolations are the correlation 
consistent (cc) basis sets such as cc-pVnZ and aug-cc-pVnZ.

• Another method to reduce basis-set truncation error is the F12 method, which 
introduces interelectronic distances rij into the wave function. 



Notation

• Method/(Basis set) : specify the method and the basis set used in a calculation. 
• HF/6-31G* : an SCF MO calculation using the 6-31G* basis set. 
• HF : any SCF MO calculation and do not imply that the HF limit has been reached. 
• CCSD(T)/CBS : a result found by extrapolation of CCSD(T) calculations to the CBS 

limit. 
• For high-level calculations, a geometry optimization may be too time consuming 

to do, so one sometimes does a single-point high-level energy calculation at the 
equilibrium geometry found from a lower-level calculation. 

• CCSD(T)/cc-pVQZ//HF/6-31G* : a single-point energy calculation done with the 
high-level CCSD(T) method and the cc-pVQZ basis set at the equilibrium geometry 
found by an HF/6-31G* geometry optimization.



Test Sets of Data
• Many sets of experimental and high-level calculation data have been compiled for use in 

testing the performance of quantum-chemistry methods.

• The G3/05 test set : accurately known experimental thermochemical data consists of 270 
enthalpies of formation, 105 ionization energies, 63 electron affinities, 10 proton 
affinities, and 6 dimerization energies of H-bonded dimers 

• Some medium-size molecules in the G3/05 set : naphthalene, SF6, and C6H13Br, does not 
include any transition-metal compounds. 

• The G3/05 set (contains 454 energy changes) is an expansion of the earlier test sets G2 
(125 energy changes), G2/97 (301 energy changes), and G3/99 (376 energy changes).

• Noncovalent interactions such as H-bonding and dispersion (London) forces are 
important in determining the structures of biomolecules. 

• S66 test set: devised to test the accuracy of methods used in biomolecule calculations

• S66 contains equilibrium binding energies of 66 noncovalently bound molecular 
complexes subdivided into three categories: H-bonded complexes (as the water dimer; 
the complex of water with N-methylacetamide), dispersion-dominated complexes (as the 
benzene dimer; the complex of uracil with pentane), and complexes bound by a mix of 
dispersion and electrostatic interactions (as the complex of water and benzene).



• The energies were calculated using a high-level method that accurately estimates 
the CCSD(T)/CBS limit. 

• The interaction energies were also calculated for eight nonequilibrium distances 
along the dissociation curve of each complex, and these energies comprise the 
S66x8 dataset. 

• The S66 set is an improvement on an earlier set, the S22 set. 
• The GMTKN30 database (general main group thermochemistry, kinetics, and 

noncovalent interactions database) is a collection of 30 databases of 
experimental and high-level ab initio atomization energies, ionization potentials, 
electron affinities, reaction barrier heights, reaction energies, energy differences 
between conformers, isomerization energies, noncovalent interaction energies, . . 
. and contains 841 relative energy values



Configuration Interaction 

• The lC Method 
• The MCSCF Method 
• The MRCI Method 
• Status of the CI Method 
• The CI-Singles Method 
• Use of the Two-Electron Reduced Density Matrix 



CI WAVE FUNCTIONS
To overcome the deficiencies of HF wave function go beyond the Hartree-
Fock approximation; one can introduce configuration interaction (CI)

in a molecular CI calculation: begins with a set of bfs χi

SCF calculation to find SCF 
occupied and virtual MOs

form configuration (state) 
functions i

 =                  (molecular wave function ) 

find bi's (variation method )

on diatomic molecules, the basis  functions can be ST AOs, some 
centered on one atom, the remainder on the second atom. 





 The number of CFs increases very rapidly as the number of e and the 
number of bfs increase. [n electrons and b bfs: n(CFs)  bn]

 full CI calculation: includes all possible CFs with proper symmetry 
 full CI calculations are out of the question except for small molecules 

(small n) and small basis sets (small b). 



 Which types of CFs make the largest contributions to ?
Unexcited CF (the SCF wave function) makes the largest contribution

 Which types of excited configurations make significant contributions to 
?

doubly excited CFs. [instantaneous electron correlation ≡ Ĥ’  (1) 
doubly excited CFs (for closed-shell, (0) =HF wave function)]

 Although singly excited configuration functions are less important than 
double excitations in affecting the wave function, it turns out that 
single excitations have a significant effect on one-electron properties. 
[A one-electron property is one calculated as <|B|> where the 
operator B is a sum of terms, each of which involves only a single 
particle (dipole moment)]. Therefore, one usually includes single 
excitations in a CI calculation.

 The most common type of CI calculation: SDCI or CISD or CI-SD, 
includes the singly and doubly excited CFs. 

 The second-order correction to the HF function includes single, 
double, triple, and quadruple excitations.



When looking at energy changes in processes affecting primarily the 
valence-shell electrons, one makes further approximation of considering 
only CFs involving excitation of valence-shell electrons. 



EXAMPLE The He SCF calculation in previous example used a basis set of two 
STOs χ1 and χ2. For the helium ground state treated with this basis set, (a) 
write down the configuration state functions (CSFs) that are present in the 
wave function in a full CI treatment, and (b) write down the wave function in 
a full CI treatment that includes only doubly excited CSFs. 

occupied 

virtual 

a) The SCF orbitals: 

has a node

11  1S

22  1S

12  1S, 3S

Ground state   1S

1S CSFs, 



(b) 
The CSF 2 is doubly substituted, 3 is singly substituted



SCF energy = -77.87 eV 
true energy = -79.00 eV. 
This CI recovered 34% of the correlation energy 

The CI ground-state

lower root 



 The CI procedure uses SCF MOs to form CFs (convergence rate is very 
slow and very large numbers of CSFs must be included for accurate 
results). 
103 to 108 CSFs, more than 108 CSFs for large molecules (is impractical)

 excited (virtual) SCF orbitals have much of their probability density at 
large distances from the nuclei  very slow convergence 
GS wave function has most of its probability density near the nuclei. 

 there is no necessity to use SCF MOs in a CI calculation. In full CI, any 
set of MOs (calculated from the bs) will produce the same final wave 
function. 

 if the non-SCF MOs are well chosen, they can produce much faster 
convergence and allowing fewer CSFs to be included in . 

There are Two approaches: 
(1) multiconfiguration SCF (MCSCF) method 
(2) the method of natural orbitals 



MCSCF method: 

varies not only bi but also the forms of the molecular orbitals in the CSFs. 

Also varying cris in i = criχr

Example:
MCSCF calculation for the He when including only the CSFs 1 and 2

simultaneously vary b1, b2, c11, c21, c12, and c22 (conditions: orthonormality 
of 1 and 2 and normalization of ) to minimize the variational integral
(iterative process)

energy will be lower 



 good results with inclusion of relatively few CSFs. 
 amount of calculation is great

The most commonly used kind of MCSCF is the complete active space SCF 
(CASSCF) method 
1) as usual, one writes
2) divide the orbitals in the CSFs into inactive (kept doubly occupied in all 
CSFs) and active orbitals. 
3) write 
by distributing the active electrons among the active orbitals in all possible 
ways and that have the same spin and symmetry eigenvalues as the state to 
be treated
4) do an MCSCF calculation to find the optimum coefficients cri and bi. 

A reasonable choice: 
active orbitals ≡ MOs that arise from the valence orbitals  



Example:
C2 ground-state configuration: 

2s and 2p carbon AOs  2σg, 2σu, 1πux, 1πuy, 3σg, 1πgx, 1πgy, 3σu MOs, 

unoccupied occupied 

active orbitals 

1σg, 1σu

Inactive orbitals 

Inactive electrons = 4 active electrons = 8 



A CASSCF calculation on the C2 ground electronic state : 
a basis set of 82 functions
inactive orbitals: 1σg, 1σu
active orbitals: 2σg, 2σu, 1πu, 3σg, 1πg, 3σu, 4σg, 4σu MOs
Distribution of the eight active electrons among the ten active orbitals 
gave a wave function consisting of 1900 CSFs. 
The electronic energy  U(R)  Schrodinger equation for nuclear 
motion (solved numerically)
Re/Å = 1.25 (1.24), 
De/eV = 6.06 (6.3), 
(νe/c)/cm‒1 = 1836 (1855), 
(νexe/c)/cm‒1 = 14.9 (13.4), 

For comparison, the Hartree-Fock  gives:
De = 0.8 eV, 
(νe/c)/cm‒1 = 1905, 
(νexe/c)/cm‒1 = 12.1 
Re = 1.24 Å. 



With modern computational techniques, very large MCSCF wave 
functions can be calculated. Typically, up to 12 active orbitals can be 
handled. 

In the conventional CI method, 
One starts with the SCF wave function 1 (reference function)
moves electrons out of occupied orbitals of 1 into virtual SCF orbitals 
to produce CSFs 2, 3,..., 
one writes the wave function as  

one then varies the bi's to minimize the variational integral. 

multireference CI (MRCI) method: combines the MCSCF and 
conventional CI methods 





Natural orbitals can be used instead of SCF MOs in CI calculations

For a CI wave function, which is a linear combination of Slater 
determinants, 

's : all MOs that appear in the Slater determinants of the CI wave 
function 
aij’s : a set of numbers 
we can take a linear combination of MOs to form a new set of MOs 
without changing the overall wave function. 
natural orbitals: a set of MOs, {θi}, that when the CI wave function is 
expressed using the θi 's the probability density has the simple form 

occupation numbers, between 0 
and 2 (need not be integers) 



 A CI calculation using natural orbitals converges much faster than 
one using SCF orbitals

 the natural orbitals are defined in terms of the final CI wave function 
 Several schemes have been devised to calculate approximate natural 

orbitals

iterative natural-orbital (INO) method:
1) calculating a CI wave function using a manageable number of CSFs.
2) calculates approximate natural orbitals 
3) use those to construct an improved CI wave function; this process is 
then repeated to get further improvement.

Example:
LiH ground state:
An INO calculation using 45 CSFs obtained 87% of the correlation 
energy and gave a slightly lower energy than an ordinary CI wave 
function of 939 CSFs; 



In a CI calculation using SCF MOs, there are two major computational tasks:

1) transform the known integrals over χrs into integrals over the SCF MOs i

(rs|tu)  <ij|1/r12|kl>            time consuming
b functions χi  b MOs i  b4/8 different <ij|1/r12|kl>
number of computations = b8/8       (clever procedure can reduce to b5)
b = 100   1015 integrals

2) to solve the CI secular equation to find the lowest energy eigenvalue and 
expansion coefficients.

In an SCF calculation: 100 basis functions matrix order is 100. 
In an accurate CI calculation: one might use 106 CSFs  matrix order is 106.



 CI calculation: with 106 CSFs   1012 matrix elements Hij between CSFs
too many to be stored in the internal memory of the computer

 The direct CI method: avoids explicit calculation of the integrals Hij and 
avoids solving the secular equation. coefficients and the energy are 
calculated directly from the one- and two-electron integrals over the 
basis functions.
This allows conventional CI calculations with more than 108 CSFs and 
MCSCF calculations with up to 106 CSFs

 Another technique used to speed up CI calculations is the graphical 
unitary- group approach (GUGA).

To obtain reliable results (in CI calculations ):
sound judgment in choosing the basis set, the molecular orbitals, the 
configuration functions. 

Other methods to allow for electron correlation are presented latter.



• In most calculations one is looking at energy changes in processes affecting primarily the valence-
shell electrons, 

• So one expects the correlation energies involving the inner-shell electrons to change only slightly. 

• Hence, includ only configuration functions that involve excitation of valence-shell electrons. 

• The omission of excitations of inner-shell (core) electrons is called the frozen-core (FC) 
approximation. 

• The notation FCI(FC) denotes a full-CI calculation with the frozen-core approximation

• Use of the FC approximation is so common that people often omit the FC. The default option in 
Gaussian 09 CI, MP, and CC calculations is to use the frozen-core approximation unless otherwise 
specified by the user. 



In a CI calculation,
 = bii

each CSF is: (1) a LC of one to a few Slater determinants and (2) is an 
eigenfunction of the spin operators Ŝ2 and Ŝz and (3) satisfies the spatial 
symmetry requirements of the molecule. 

the number of CSFs 
(in a full CI calculation) 

b = the number of BFs 

where, electrons=n and S = 0, 



For 6-31G** in CH3OH, b = 15 + 15 + 4(5) = 50; n = 18 
N(CSF) = 7.6 X 1017, so this full CI is not possible
STO-3G : b = 5 + 5 + 4(1) = 14;  N(CSF) = 1.0 X 106, is feasible, but would be a 
waste of time
to get a substantial portion of the ce, one must use a large BS.

Example:
H2O, full CI, with DZ BS and 256473 CSFs , E= -76.158 hartrees, 
EHF (limit)= -76.068 hartrees, E(true)= 76.438 hartrees. 
a small portion of correlation energy has been obtained, Ece = -0.370 hartree
EHF (DZ) = -76.010 hartrees, Efull-CI(DZ) – EHF(DZ) = -0.148 hartree ≡ basis-set 
correlation energy. 

Full CI (FCI) is impossible except for small molecules and small BSs, one 
resorts to:
1) limited CI (CI-SD, …)
2) Frozen-core (FC) approximation; excitations out of core MOs of the 

molecule are not included. 



 For a 10-electron molecules: CI-SD gave about 94% of the BS CE 
 size of the molecule ↑ ⇨ %BS CE obtained by CI-SD ↓ . 
 For molecules that consist of first-row atoms, CI-SD estimate :

82% to 90% of CE for 20-electron molecules
68% to 78% of CE for 50-electron molecules
55% to 67% for 100-electron molecules 

A related defect : CI-SD calculations are neither size extensive nor size 
consistent. 
Size consistency is important whenever results of substantially different size 
molecules are to be compared
Example, in calculation of the energy change in A —> B + C. 



CI-SD wf is a variation function  ECI-SD  Etrue  CI-SD method is said to be 
variational. 

Example:
two infinitely separated He (Hea and Heb).
CI-SD calculation of Hea using a CBS (CI-SD = full CI for this 2e atom)  Eexact
CBS CI-SD calculation for the composite system (CI-SD ≠ full CI for this four electrons) 
 ECI-SD
ECI-SD > 2E(full CI)
Therefore, CI-SD is not size consistent. 
Full CI is size extensive and size consistent. SCF MO calculations are size extensive. 

 after double excitations, quadruple excitations are next in importance. 
 10-electron molecules: CI-SDTQ gave over 99% of BS CE.
 For molecules containing only first-row atoms, CI-SDTQ is estimated to give:

98% to 99% of BS CE for 20-electron 
90% to 96% of BS CE for 50-electron 
80% to 90% of BS CE for 100-electron molecules 

 For molecules with no more than about 50 electrons: CI-SDTQ  full CI (will 
be approximately size consistent)



Estimation of energy contribution due to Q excitations: 

Davidson 

a0 : coefficient of the SCF function 0 in 
Example (DZ calculation on H2O at eq geometry ):
ESCF = -76.009838, ECI-SD = -76.150015, a0 = 0.97874          in au
EQ = -0.005897
ECI-SD + EQ = -76.155912 (reasonably close to the CI-SDTQ DZ result:  -76.157603) 

Davidson correction reduces the size-consistency error 

 CISD often do not give results (molecular properties) of high accuracy
 Highly accurate CI results require a CISDTQ calculation, which is generally 

impractical. 



H2O Calculations that include correlation. nonrelativistic, fixed-nuclei calculations. 

true 

below the 
true value



BLYP/UCC and B3PW91/UCC calculations are density-functional calculations 
and are not variational. 
The lowest E (variational) corresponds to MRCI calculation, with 97% of the 
CE. 



MOLLER-PLESSET (MP) PERTURBATION THEORY 

 various perturbation-theory methods : to deal with systems of many 
interacting particles (nucleons in a nucleus, atoms in a solid, electrons 
in an atom or molecule), constitute many-body perturbation theory 
(MBPT). 

 Moller-Plesset (MP) perturbation theory (a form of MBPT): 
perturbation treatment of atoms and molecules in which (0) is the HF 
function

For closed-shell, GS molecules, using spin-orbitals ui
HF equations (for electron m in an n-electron molecule):



The MP unperturbed Ĥ is taken as the sum of the one-electron Fock 
operators

The GS HF wf 0 : the Slater determinant |u1u2…un|of spin-orbitals 
(antisymmetrized product)  (expanded) the sum of n! terms 
(permutations)
Each term is an eigenfunction of the MP Ĥ°

Example (a four-electron system)

other terms are eigenfunctions of Ĥ° with the same eigenvalue, thus:

Where: 



Perturbation: 

The perturbation H' = the difference between the true interelectronic 
repulsions and the HF interelectronic potential (an average potential) 



The MP first-order correction:

= variational integral for the HFWF 0
= EHF

To improve on EHF:



Formulas for the MP energy corrections E(3), E(4) and so on, have also been 
Derived: 
 (1) [contains only doubly excited determinants] determines both E(2)and E(3)

 E(3) contains summations over only double substitutions 
 MP E(4) involves summations over single, double, triple, and quadruple 

substitutions 
 MP3 or MBPT(C): include energy corrections through E(3

 MP4 or MBPT(D): include corrections through E(4)



a complete set of BFs to expand the spin-orbitals  exact EHF + an infinite 
number of VOs, infinite number of terms
a finite (incomplete basis set)  a finite number of VOs, a finite number of 
terms (a BS truncation error + error due to truncation of the MP 
perturbation energy at E(2) or E(3) or whatever. 

To do an MP electron-correlation calculation:

chooses a basis set 

SCF calculation 

obtain 0, EHF, and virtual orbitals

)2(E
integrals over spin-orbitals 
integrals over the BFs



MP4: evaluation of the terms that involve triply substituted  
determinants is very time consuming , sometimes neglected [even though 
their contribution to E(4) is not small]  MP4-SDQ or SDQ-MBPTD)
(SDQ ≡ inclusion of single, double, and quadruple excitations)
To save time in MP2, MP3, and MP4  the frozen-core approximation 
(terms involving excitations out of core orbitals are omitted) 

MP3 is longer than MP2 , but little improvement over MP2 (so are rarely done)
The most common MP level is MP2; the next is MP4. 

MP is faster than CI 
Relative times for single-point ab initio frozen-core 6-31G* calculations on 
CH3NH2:

MP4-SDQMP3MP2CI-SDSCF

5.83.61.5171

A calculation on pentane : t(MP4/6-31G*) = 17  t(MP2/6-31G*)



 MP calculations are size consistent (Szabo and Ostlund, Section 6.7.4). 
 MP calculations are not variational (can produce an energy below true 

energy)
Currently, size consistency is viewed as more important than being variational

For the cc-pVDZ basis set, the frozen-core MP perturbation series usually 
converged, but when the basis set is augmented with diffuse functions, the 
MP series often diverged. 

As with CI calculations, MP calculations with small basis sets are of little  
practical value (6-31G* or larger basis set for useful results)
MP2 on closed-shell molecules: 85% to 95% of the BS CE for DZP BS



For most electron-correlation calculations: the BS truncation error > error 
due to truncation of the correlation treatment

Example
MP2/6-31G* to MP2/TZ2P  single-bond lengths are reduced by a factor of 
2 or 3 
MP2/TZ2P to MP3/TZ2P  no improvement in geometry accuracy

The energy gradient in MP2 : is readily evaluated analytically  geometry 
optimization is done easily, allows calculation of MP2 vibrational frequencies 



 direct MP2 method : uses no external storage
 conventional MP2 method : which stores all the integrals
 semidirect MP2 method : which uses some external storage (much less 

than conventional MP2) 
 Localized MP2 (LMP2) method : for large molecules 



The CASPT2 (complete active space second-order perturbation theory) method: 
Instead of starting with an SCF wf as the ZOWF, start with an MCSCF wf (most 
commonly CASSCF wf) and apply PT to get a generalization of MP theory. 
The choice of Ĥ0 is not unique; herein it is more complicated than:

Inclusion of energy corrections through E(2) gives the CASPT2,
results of similar high quality as MRCI, but with less computational effort. 



THE COUPLED-CLUSTER METHOD 

The coupled-cluster (CC) method for dealing with a system of interacting 
particles 

Fundamental equation:

: exact nonrelativistic GS molecular electronic wf
0 : the normalized GS HF wf

A Taylor-series expansion 

cluster operator 

Can be proofed 

n= number of electrons
 is not normalized but can be normalized at the end of the calculation. 



one-particle excitation operator

two-particle excitation operator 



Excitation allows electrons to keep away from one 
another and thereby provides for electron correlation. 

OSO: occupied spin orbital
VSO: virtual spin orbital



 CC method: one works with individual Slater determinants rather than 
CSFs

 each CSF is a LC of one or a few Slater determinants
 CC and CI : can each be formulated either in terms of individual Slater 

determinants or in terms of CSFs. 





Equations to find the CCD amplitudes:

0*  and integration 







CCD, CCSD, CCSD(T), and CCSDT : 
size consistent, nonvariational, analytic gradients are available, FC 
approximation is used

Size-consistent forms:
QCISD, which is an approximation to CCSD
QCISD(T), which is similar to CCSD + T(CCSD). QCISD(T) [excellent results 
for CEs in many calculations]





much too computationally 
demanding to be used regularly

the most accurate, yet 
computationally tractable



DENSITY-FUNCTIONAL THEORY  (DFT)



The Hohenberg-Kohn Theorem
For molecules with a nondegenerate GS, E0(0≡GS), wf, and all other 
molecular electronic properties are uniquely determined by the GS 
electron probability density ρ0(x, y, z), a function of only three variables 

Say : E0 is a functional of ρ0 ; E0 = E0[ρ0]

DFT attempts to calculate E0 and other GS molecular properties from ρ0



Variational integral 

gives a number for each well-behaved 



does not provide a practical way to calculate E0 from ρ0, because F[ρ0] is unknown



The Kohn-Sham (KM) Method
Hohenberg-Kohn theorem:
If we know ρ0(r)  it is possible to calculate all the GS molecular properties 
(without having to find the molecular WF)
Theorem does not tell us how to calculate E0 from ρ0 [since the functional F 
is unknown], and ρ0 without finding wf

Kohn and Sham devised a practical method for finding ρ0 and for finding E0
from ρ0
in principle yielding exact results; equations of KS method contain an 
unknown functional that must be approximated, the KS formulation of DFT 
yields approximate results.  



are easy to evaluate from ρ
include the main contributions to E0

not easy to evaluate accurately
relatively small

The key to accurate KS DFT calculation of molecular properties is to get a 
good approximation to Exc. 



ρ0  evaluate the terms
By definition (reference system) ρs = ρ0
It is readily proved (see Problem 15.67) that:

easily evaluated if ρ(r) is known. 

Slater-Condon rules 

How do we evaluate the terms? 


