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Refinements of a reversed AM–GM operator inequality
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We prove some refinements of a reverse AM–GM operator inequality due to
M. Lin [Studia Math. 2013;215:187–194]. In particular, we show the operator
inequality

�p
(

A∇ν B + 2r Mm(A−1∇ B−1 − A−1�B−1)
)

≤ α p�p (A�ν B) ,

where A, B are positive operators on a Hilbert space such that 0 < m ≤ A, B ≤
M for some positive numbers m, M , � is a positive unital linear map on B(H ),

ν ∈ [0, 1], r = min{ν, 1 − ν}, p > 0 and α = max

{
(M+m)2

4Mm ,
(M+m)2

4
2
p Mm

}
.
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1. Introduction and preliminaries

Let B(H ) denote the C∗-algebra of all bounded linear operators on a complex Hilbert space
H , with the identity I . In the case when dimH = n, we identify B(H ) with the matrix
algebra Mn of all n × n matrices with entries in the complex field. An operator A ∈ B(H )

is called positive if 〈Ax, x〉 ≥ 0 for all x ∈ H , and we then write A ≥ 0. We write A > 0
if A is a positive invertible operator. For self-adjoint operators A, B ∈ B(H ) we say that
A ≤ B if B − A ≥ 0. The Gelfand map f (t) 	→ f (A) is an isometrical ∗-isomorphism
between the C∗-algebra C(sp(A)) of continuous functions on the spectrum sp(A) of a self-
adjoint operator A and the C∗-algebra generated by A and I . If f, g ∈ C(sp(A)), then
f (t) ≥ g(t) (t ∈ sp(A)) implies that f (A) ≥ g(A). A linear map � on B(H ) is positive
if �(A) ≥ 0 whenever A ≥ 0. It is said to be unital if �(I ) = I .

Let A, B ∈ B(H ) be two positive invertible operators and ν ∈ [0, 1]. The operator
weighted arithmetic, geometric and harmonic means are defined by A∇ν B = (1 − ν)A +
νB, A�ν B = A

1
2

(
A

−1
2 B A

−1
2

)ν

A
1
2 and A!ν B = (

(1 − ν)A−1 + νB−1
)−1

, respectively.

In particular, for ν = 1
2 we get the usual operator arithmetic mean ∇, the geometric mean
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� and the harmonic mean ! The AM–GM inequality reads

A + B

2
≥ A�B

for all positive operators A, B. It is shown in [1] the following reverse ofAM–GM inequality
involving positive linear maps

�

(
A + B

2

)
≤ (M + m)2

4Mm
�(A�B), (1.1)

where 0 < m ≤ A, B ≤ M and � is a positive unital linear map on B(H ).
For two positive operators A, B ∈ B(H ), the Löwner–Heinz inequality states that, if

A ≤ B, then

Ap ≤ B p, (0 ≤ p ≤ 1). (1.2)

In general (1.2) is not true for p > 1. Lin [1, Theorem 2.1] showed however a squaring of
(1.1), namely that the inequality

�2
(

A + B

2

)
≤
(

(M + m)2

4Mm

)2

�2(A�B) (1.3)

as well as

�2
(

A + B

2

)
≤
(

(M + m)2

4Mm

)2

(�(A)��(B))2 (1.4)

hold. Using inequality (1.2) we therefore get

�p
(

A + B

2

)
≤
(

(M + m)2

4Mm

)p

�p(A�B) (0 < p ≤ 2) (1.5)

and

�p
(

A + B

2

)
≤
(

(M + m)2

4Mm

)p

(�(A)��(B))p (0 < p ≤ 2), (1.6)

where 0 < m ≤ A, B ≤ M and � is a positive unital linear map on B(H ).
In [2], the authors extended (1.3) and (1.4) to p > 2. They proved the inequalities

�p
(

A + B

2

)
≤
(

(M + m)2

4
2
p Mm

)p

�p(A�B) (p > 2) (1.7)

and

�p
(

A + B

2

)
≤
(

(M + m)2

4
2
p Mm

)p

(�(A)��(B))p (p > 2), (1.8)

where 0 < m ≤ A, B ≤ M . In [3,4] the authors showed that

�p (Aσ B) ≤ α p�p (Aτ B) , (1.9)

and

�p (Aσ B) ≤ α p (�(A)τ�(B))p , (1.10)
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where 0 < m ≤ A, B ≤ M , � is a positive unital linear map on B(H ), σ , τ are two

arbitrary means between harmonic and arithmetic means, α = max

{
(M+m)2

4Mm ,
(M+m)2

4
2
p Mm

}
and p > 0. For further information about the harmonic and arithmetic means we refer the
reader to [5,6] and references therein. Choi’s inequality (see e.g. [7, p.41]) reads

�(A)−1 ≤ �(A−1), (1.11)

for any positive unital linear map � on B(H ) and operator A > 0. Choi’s inequality
cannot be squared,[1] but a reverse of Choi’s inequality (known as the operator Kantorovich
inequality) can be squared, see e.g. [8].

In this paper, we present some refinements of inequalities (1.5) and (1.6) under some
mild conditions for 0 < p ≤ 1 and some refinements of inequalities (1.7) and (1.8) for the
operator norm and p > 2.

2. Main results

We need the following lemmas to prove our results.

Lemma 2.1 [9, Theorem 1] Let A, B > 0. Then

‖AB‖ ≤ 1

4
‖A + B‖2.

Lemma 2.2 [10, Corollary 1] Let A, B ≥ 0 and p > 1. Then

‖Ap + B p‖ ≤ ‖(A + B)p‖.

Lemma 2.3 Let A, B > 0 and α > 0. Then A ≤ αB if and only if ‖A
1
2 B

−1
2 ‖ ≤ α

1
2 .

Proof Obviously, A ≤ αB if and only if B
−1
2 AB

−1
2 ≤ α. By definition, this holds if and

only if ‖A
1
2 B

−1
2 ‖2 ≤ α and the proof is complete. �

Lemma 2.4 [3, Lemma 2.1] Let 0 < m ≤ A, B ≤ M, � be a positive unital linear map
on B(H ) and σ , τ be two arbitrary means between harmonic and arithmetic means. Then

�(Aσ B) + Mm�−1(Aτ B) ≤ M + m.

The next proposition complements (1.7)–(1.10).

Proposition 2.5 Let 0 < m ≤ A, B ≤ M, � be a positive unital linear map on B(H ),
σ , τ be two arbitrary means between harmonic and arithmetic means and p > 0. Then

�p (Aσ B)�−p (Aτ B) + �−p (Aτ B) �p (Aσ B) ≤ 2α p,

where α = max

{
(M+m)2

4Mm ,
(M+m)2

4
1
p Mm

}
.
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Proof By [11, Lemma 3.5.12] we have that ‖X‖ ≤ t if and only if

(
t I X
X∗ t I

)
≥ 0, for

any X ∈ B(H ). If 0 < p ≤ 1, then α = (M+m)2

4Mm . Applying inequality (1.9) and Lemma
2.3 we get

‖�p (Aσ B) �−p (Aτ B) ‖ ≤ α p.

Hence, (
α p I �p (Aσ B) �−p (Aτ B)

�−p (Aτ B) �p (Aσ B) α p I

)
≥ 0

and (
α p I �−p (Aτ B) �p (Aσ B)

�p (Aσ B)�−p (Aτ B) α p I

)
≥ 0.

Hence,(
2α p I �−p (Aτ B) �p (Aσ B) + �p (Aσ B) �−p (Aτ B)

�p (Aσ B) �−p (Aτ B) + �−p (Aτ B) �p (Aσ B) 2α p I

)

is positive and the desired inequality for 0 < p ≤ 1. Using inequality (1.9) with the same
argument, we get the desired inequality for p > 1. �

We need the following lemma, proved in [12]; (see also [13]).

Lemma 2.6 [12, Theorem 2.1] Let a, b > 0 and ν ∈ [0, 1]. Then

a1−νbν + r(
√

a − √
b)2 ≤ (1 − ν)a + νb, (2.1)

where r = min{ν, 1 − ν}.

Now, we are ready to present our main result.

Theorem 2.7 Let 0 < m ≤ A, B ≤ M, � be a positive unital linear map on B(H ),
ν ∈ [0, 1] and p > 0. Then

�p
(

A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)
)

≤ α p�p (A�ν B) (2.2)

and

�p
(

A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)
)

≤ α p (� (A) �ν� (B))p , (2.3)

where r = min{ν, 1 − ν} and α = max

{
(M+m)2

4Mm ,
(M+m)2

4
2
p Mm

}
.

Proof We prove first the inequalities (2.2) and (2.3) for 0 < p ≤ 2. Since 0 < m ≤
A, B ≤ M we get

(M − A)(A − m)A−1 ≥ 0 and (M − B)(B − m)B−1 ≥ 0,

whence

A + Mm A−1 ≤ M + m and B + Mm B−1 ≤ M + m.
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Therefore, for a positive unital linear map � on B(H ) we have

�(A) + Mm�(A−1) ≤ M + m

and

�(B) + Mm�(B−1) ≤ M + m.

Obviously we have also the inequalities

�((1 − ν)A) + Mm�((1 − ν)A−1) ≤ (1 − ν)M + (1 − ν)m

and

�(νB) + Mm�(νB−1) ≤ νM + νm.

for any ν ∈ [0, 1]. Summing up, we therefore get

�(A∇ν B) + Mm�((1 − ν)A−1 + νB−1) ≤ M + m. (2.4)

Moreover, by using the inequality (2.1) and functional calculus for the positive operator
A

1
2 B−1 A

1
2 we have(

A
1
2 B−1 A

1
2

)ν + r

(
A

1
2 B−1 A

1
2 + I − 2

(
A

1
2 B−1 A

1
2

) 1
2
)

≤ (1 − ν) + ν A
1
2 B−1 A

1
2 .

Multiplying both sides of the above inequality both to the left and to the right by A
−1
2 we

get that

A−1�ν B−1 + 2r
(

A−1∇B−1 − A−1�B−1
)

≤ (1 − ν)A−1 + νB−1. (2.5)

Applying (1.11), (2.4) and (2.5) and taking into account the properties of � we have∥∥∥�(A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)) + Mm�−1(A�ν B)

∥∥∥
≤
∥∥∥�(A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)) + Mm�

(
A−1�ν B−1)∥∥∥

(by inequality (1.11))

=
∥∥∥�(A∇ν B) + Mm�(A−1�ν B−1 + 2r(A−1∇B−1 − A−1�B−1))

∥∥∥
≤
∥∥∥�(A∇ν B) + Mm�((1 − ν)A−1 + νB−1)

∥∥∥ (by inequality (2.5))

≤ M + m (by inequality (2.4)). (2.6)

Therefore,∥∥∥� (
A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)

)
Mm�−1(A�ν B)

∥∥∥
≤ 1

4

∥∥∥�(A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)) + Mm�−1(A�ν B)

∥∥∥2

(by Lemma 2.1)

≤ 1

4
(M + m)2 (by inequality (2.6)),
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whence∥∥∥� (
A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)

)
�−1(A�ν B)

∥∥∥ ≤ (M + m)2

4Mm
.

Hence, by Lemma 2.3

�2
(

A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)
)

≤
(

(M + m)2

4Mm

)2

�2 (A�ν B) .

Since 0 < p/2 ≤ 1, by inequality (1.2) we have

�p
(

A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)
)

≤
(

(M + m)2

4Mm

)p

�p (A�ν B) .

Thus we get the inequality (2.2) for 0 < p ≤ 2. We prove now (2.3) for 0 < p ≤ 2.
Applying Lemma 2.1, then the inequality [14, Theorem 5.8]

�(A)�ν�(B) ≥ �(A�ν B) (ν ∈ [0, 1]), (2.7)

where A, B are positive operators and using inequality (2.2) we have∥∥∥� (
A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)

)
Mm(�(A)�ν�(B))−1

∥∥∥
≤ 1

4

∥∥∥�(A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)) + Mm(�(A)�ν�(B))−1
∥∥∥2

(by Lemma 2.1)

≤ 1

4

∥∥∥�(A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)) + Mm�−1(A�ν B)

∥∥∥2

(by inequality (2.7))

≤ 1

4
(M + m)2 (by inequality (2.6)).

Hence, we get the inequality (2.3) for 0 < p ≤ 2.
Now, we prove the inequalities (2.2) and (2.3) for p > 2. Then, by Lemmas 2.1 and 2.2

we get

M
p
2 m

p
2

∥∥∥� p
2

(
A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)

)
�

−p
2 (A�ν B)

∥∥∥
=
∥∥∥� p

2

(
A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)

)
M

p
2 m

p
2 �

−p
2 (A�ν B)

∥∥∥
≤ 1

4

∥∥∥� p
2 (A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)) + M

p
2 m

p
2 �

−p
2 (A�ν B)

∥∥∥2

≤ 1

4

∥∥∥∥(�(A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)) + Mm�−1(A�ν B)
) p

2

∥∥∥∥
2

= 1

4

∥∥∥�(A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)) + Mm�−1(A�ν B)

∥∥∥p

≤ 1

4
(M + m)p (by inequality (2.6)).
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Hence, we get the inequality (2.2) for p > 2. Further, we have

M
p
2 m

p
2

∥∥∥� p
2

(
A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)

)
(� (A) �ν� (B))

−p
2

∥∥∥
=
∥∥∥� p

2

(
A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)

)
M

p
2 m

p
2 (� (A) �ν� (B))

−p
2

∥∥∥
≤ 1

4

∥∥∥� p
2 (A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)) + M

p
2 m

p
2 (� (A) �ν� (B))

−p
2

∥∥∥2

≤ 1

4

∥∥∥∥(�(A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)) + Mm (� (A) �ν� (B))−1
) p

2

∥∥∥∥
2

= 1

4

∥∥∥�(A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)) + Mm (� (A) �ν� (B))−1
∥∥∥p

≤ 1

4

∥∥∥�(A∇ν B + 2r Mm(A−1∇B−1 − A−1�B−1)) + Mm�−1(A�ν B)

∥∥∥p

(by inequality (2.7))

≤ 1

4
(M + m)p (by inequality (2.6)).

Thus we get the inequality (2.3) for p > 2 and this completes the proof of the
theorem. �

Remark 2.8 Let 0 < m ≤ A, B ≤ M and � be a positive unital linear map on B(H ). If
0 < p ≤ 1, then, obviously,

�p (A∇ν B) ≤
(
�(A∇ν B) + 2r Mm�

(
A−1∇B−1 − A−1�B−1

))p
. (2.8)

Hence, the inequality (2.8) shows that Theorem 2.7 is a refinement of inequalities (1.5) and
(1.6) for 0 < p ≤ 1.

We also have

�p (A∇ν B) ≤ �p (A∇ν B) + (2r Mm)p�p
(

A−1∇B−1 − A−1�B−1
)

,

where p ≥ 1, ν ∈ [0, 1] and r = min{ν, 1 − ν}. Hence,∥∥�p (A∇ν B)
∥∥ ≤

∥∥∥�p (A∇ν B) + (2r Mm)p�p
(

A−1∇B−1 − A−1�B−1
)∥∥∥

≤
∥∥∥�p

(
A∇ν B + 2r Mm

(
A−1∇B−1 − A−1�B−1

) )∥∥∥ (by Lemma 2.2).

Therefore, Theorem 2.7 is a refinement of the inequalities, (1.7) and (1.8) for the operator
norm and p ≥ 2.

The following examples show that inequality (2.2) is a refinement of (1.5) and (1.7).

Example 2.9 If A =
(

1.75 0.433
0.433 1.25

)
, B =

(
2.5 0.5
0.5 2.5

)
, �(X) = 1

2 tr(X) (X ∈ M2),

m = 1, M = 3, ν = 1
2 and p = 3, then A∇ν B =

(
2.1250 0.4665
0.4665 1.8750

)
and A∇ν B +

2r Mm
(

A−1∇B−1 − A−1�B−1
) =

(
2.1601 0.4260
0.4260 2.0016

)
. Hence,
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�3
(

A∇ν B + 2r Mm
(

A−1∇ B−1 − A−1�B−1
))

− �3(A∇ν B) = 9.0095 − 8 = 1.0095 > 0.

Example 2.10 Let �(X) = T ∗ XT (X ∈ M2), where T =
( √

2
2

√
2

2

−
√

2
2

√
2

2

)
.

If A =
(

5 −2
−2 5

)
, B =

(
4.75 0.433

0.433 4.25

)
, m = 3, M = 7, ν = 1

2 and p = 5
3 ,

then A∇ν B =
(

4.8750 −0.7835
−0.7835 4.6250

)
and A∇ν B + 2r Mm

(
A−1∇B−1 − A−1�B−1

) =(
5.0283 −0.7730

−0.7730 4.7909

)
. Hence,

�
5
3

(
A∇ν B + 2r Mm

(
A−1∇ B−1 − A−1�B−1

))
− �

5
3 (A∇ν B) =

(
0.7838 −1.0172

−1.0172 0.7199

)
> 0.

Corollary 2.11 Let 0 < m ≤ A, B ≤ M and � be a positive unital linear map on
B(H ). Then

�p
(

A + B

2
+ Mm(A−1∇B−1 − A−1�B−1)

)
≤ α p�p (A�B)

and

�p
(

A + B

2
+ Mm(A−1∇B−1 − A−1�B−1)

)
≤ α p (� (A) �� (B))p ,

where p > 0 and α = max

{
(M+m)2

4Mm ,
(M+m)2

4
2
p Mm

}
.

Proof Take r = ν = 1
2 in Theorem 2.7. �

If the positive unital linear map �(A) = A (A ∈ B(H )), then we get from Theorem 2.7
the following reverseAM–GM inequalities, which improve the reversedAM–GM inequality
(1.1).

Corollary 2.12 Let 0 < m ≤ A, B ≤ M. Then, the inequalities

(
A + B

2
+ Mm(A−1∇B−1 − A−1�B−1)

)p

≤
(

(M + m)2

4Mm

)p

(A�B)p (0 < p ≤ 2)

and

(
A + B

2
+ Mm(A−1∇B−1 − A−1�B−1)

)p

≤
(

(M + m)2

42/p Mm

)p

(A�B)p (p > 2)

hold.
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