

Refinements of a reversed AM–GM operator inequality

Mojtaba Bakherad*

Faculty of Mathematics, Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran

Communicated by L. Molnar

(Received 24 May 2015; accepted 17 October 2015)

We prove some refinements of a reverse AM–GM operator inequality due to M. Lin [Studia Math. 2013;215:187–194]. In particular, we show the operator inequality

$$\Phi^p\left(A\nabla_{\nu}B + 2rMm(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1})\right) \le \alpha^p \Phi^p\left(A\sharp_{\nu}B\right),$$

where *A*, *B* are positive operators on a Hilbert space such that $0 < m \le A$, $B \le M$ for some positive numbers *m*, *M*, Φ is a positive unital linear map on $\mathbb{B}(\mathscr{H})$, $\nu \in [0, 1], r = \min\{\nu, 1 - \nu\}, p > 0$ and $\alpha = \max\left\{\frac{(M+m)^2}{4Mm}, \frac{(M+m)^2}{4^{\frac{2}{p}}Mm}\right\}$.

Keywords: operator arithmetic mean; operator geometric mean; operator harmonic mean; positive unital linear map; reverse AM–GM operator inequality

AMS Subject Classifications: Primary: 47A63; Secondary: 47A60

1. Introduction and preliminaries

Let $\mathbb{B}(\mathscr{H})$ denote the C^* -algebra of all bounded linear operators on a complex Hilbert space \mathscr{H} , with the identity I. In the case when dim $\mathscr{H} = n$, we identify $\mathbb{B}(\mathscr{H})$ with the matrix algebra \mathbb{M}_n of all $n \times n$ matrices with entries in the complex field. An operator $A \in \mathbb{B}(\mathscr{H})$ is called positive if $\langle Ax, x \rangle \ge 0$ for all $x \in \mathscr{H}$, and we then write $A \ge 0$. We write A > 0 if A is a positive invertible operator. For self-adjoint operators $A, B \in \mathbb{B}(\mathscr{H})$ we say that $A \le B$ if $B - A \ge 0$. The Gelfand map $f(t) \mapsto f(A)$ is an isometrical *-isomorphism between the C^* -algebra $C(\operatorname{sp}(A))$ of continuous functions on the spectrum $\operatorname{sp}(A)$ of a self-adjoint operator A and the C^* -algebra generated by A and I. If $f, g \in C(\operatorname{sp}(A))$, then $f(t) \ge g(t)$ ($t \in \operatorname{sp}(A)$) implies that $f(A) \ge g(A)$. A linear map Φ on $\mathbb{B}(\mathscr{H})$ is positive if $\Phi(A) \ge 0$ whenever $A \ge 0$. It is said to be unital if $\Phi(I) = I$.

Let $A, B \in \mathbb{B}(\mathscr{H})$ be two positive invertible operators and $\nu \in [0, 1]$. The operator weighted arithmetic, geometric and harmonic means are defined by $A\nabla_{\nu}B = (1 - \nu)A + \nu B$, $A \sharp_{\nu}B = A^{\frac{1}{2}} \left(A^{\frac{-1}{2}}BA^{\frac{-1}{2}}\right)^{\nu} A^{\frac{1}{2}}$ and $A!_{\nu}B = ((1 - \nu)A^{-1} + \nu B^{-1})^{-1}$, respectively. In particular, for $\nu = \frac{1}{2}$ we get the usual operator arithmetic mean ∇ , the geometric mean

^{*}Corresponding author. Email: bakherad@member.ams.org

and the harmonic mean ! The AM-GM inequality reads

$$\frac{A+B}{2} \ge A \sharp B$$

for all positive operators A, B. It is shown in [1] the following reverse of AM–GM inequality involving positive linear maps

$$\Phi\left(\frac{A+B}{2}\right) \le \frac{(M+m)^2}{4Mm} \Phi(A \sharp B), \tag{1.1}$$

where $0 < m \leq A$, $B \leq M$ and Φ is a positive unital linear map on $\mathbb{B}(\mathcal{H})$.

For two positive operators $A, B \in \mathbb{B}(\mathcal{H})$, the Löwner–Heinz inequality states that, if $A \leq B$, then

$$A^p \le B^p, \qquad (0 \le p \le 1). \tag{1.2}$$

In general (1.2) is not true for p > 1. Lin [1, Theorem 2.1] showed however a squaring of (1.1), namely that the inequality

$$\Phi^2\left(\frac{A+B}{2}\right) \le \left(\frac{(M+m)^2}{4Mm}\right)^2 \Phi^2(A \sharp B) \tag{1.3}$$

as well as

$$\Phi^2\left(\frac{A+B}{2}\right) \le \left(\frac{(M+m)^2}{4Mm}\right)^2 (\Phi(A) \sharp \Phi(B))^2 \tag{1.4}$$

hold. Using inequality (1.2) we therefore get

$$\Phi^p\left(\frac{A+B}{2}\right) \le \left(\frac{(M+m)^2}{4Mm}\right)^p \Phi^p(A \sharp B) \qquad (0 (1.5)$$

and

$$\Phi^p\left(\frac{A+B}{2}\right) \le \left(\frac{(M+m)^2}{4Mm}\right)^p \left(\Phi(A) \sharp \Phi(B)\right)^p \qquad (0$$

where $0 < m \leq A$, $B \leq M$ and Φ is a positive unital linear map on $\mathbb{B}(\mathcal{H})$.

In [2], the authors extended (1.3) and (1.4) to p > 2. They proved the inequalities

$$\Phi^p\left(\frac{A+B}{2}\right) \le \left(\frac{(M+m)^2}{4^{\frac{2}{p}}Mm}\right)^p \Phi^p(A \sharp B) \qquad (p>2)$$
(1.7)

and

$$\Phi^p\left(\frac{A+B}{2}\right) \le \left(\frac{(M+m)^2}{4^{\frac{2}{p}}Mm}\right)^p (\Phi(A) \sharp \Phi(B))^p \qquad (p>2), \tag{1.8}$$

where $0 < m \le A$, $B \le M$. In [3,4] the authors showed that

$$\Phi^p \left(A \sigma B \right) \le \alpha^p \Phi^p \left(A \tau B \right), \tag{1.9}$$

and

$$\Phi^p (A\sigma B) \le \alpha^p (\Phi(A)\tau \Phi(B))^p, \qquad (1.10)$$

1688

where $0 < m \le A, B \le M, \Phi$ is a positive unital linear map on $\mathbb{B}(\mathscr{H}), \sigma, \tau$ are two arbitrary means between harmonic and arithmetic means, $\alpha = \max\left\{\frac{(M+m)^2}{4Mm}, \frac{(M+m)^2}{4\frac{p}{p}Mm}\right\}$ and p > 0. For further information about the harmonic and arithmetic means we refer the reader to [5,6] and references therein. Choi's inequality (see e.g. [7, p.41]) reads

$$\Phi(A)^{-1} \le \Phi(A^{-1}), \tag{1.11}$$

for any positive unital linear map Φ on $\mathbb{B}(\mathcal{H})$ and operator A > 0. Choi's inequality cannot be squared,[1] but a reverse of Choi's inequality (known as the operator Kantorovich inequality) can be squared, see e.g. [8].

In this paper, we present some refinements of inequalities (1.5) and (1.6) under some mild conditions for 0 and some refinements of inequalities (1.7) and (1.8) for the operator norm and <math>p > 2.

2. Main results

We need the following lemmas to prove our results.

LEMMA 2.1 [9, Theorem 1] Let A, B > 0. Then

$$\|AB\| \le \frac{1}{4} \|A + B\|^2.$$

LEMMA 2.2 [10, Corollary 1] Let $A, B \ge 0$ and p > 1. Then

$$||A^{p} + B^{p}|| \le ||(A + B)^{p}||$$

LEMMA 2.3 Let A, B > 0 and $\alpha > 0$. Then $A \le \alpha B$ if and only if $||A^{\frac{1}{2}}B^{-\frac{1}{2}}|| \le \alpha^{\frac{1}{2}}$.

Proof Obviously, $A \le \alpha B$ if and only if $B^{\frac{-1}{2}} A B^{\frac{-1}{2}} \le \alpha$. By definition, this holds if and only if $\|A^{\frac{1}{2}}B^{\frac{-1}{2}}\|^2 \le \alpha$ and the proof is complete.

LEMMA 2.4 [3, Lemma 2.1] Let $0 < m \le A$, $B \le M$, Φ be a positive unital linear map on $\mathbb{B}(\mathcal{H})$ and σ , τ be two arbitrary means between harmonic and arithmetic means. Then

$$\Phi(A\sigma B) + Mm\Phi^{-1}(A\tau B) \le M + m.$$

The next proposition complements (1.7)-(1.10).

PROPOSITION 2.5 Let $0 < m \le A$, $B \le M$, Φ be a positive unital linear map on $\mathbb{B}(\mathcal{H})$, σ , τ be two arbitrary means between harmonic and arithmetic means and p > 0. Then

$$\Phi^{p}(A\sigma B) \Phi^{-p}(A\tau B) + \Phi^{-p}(A\tau B) \Phi^{p}(A\sigma B) \leq 2\alpha^{p},$$

where $\alpha = \max\left\{\frac{(M+m)^2}{4Mm}, \frac{(M+m)^2}{4^{\frac{1}{p}}Mm}\right\}.$

Proof By [11, Lemma 3.5.12] we have that $||X|| \le t$ if and only if $\begin{pmatrix} tI & X \\ X^* & tI \end{pmatrix} \ge 0$, for any $X \in \mathbb{B}(\mathcal{H})$. If $0 , then <math>\alpha = \frac{(M+m)^2}{4Mm}$. Applying inequality (1.9) and Lemma 2.3 we get

$$\|\Phi^p(A\sigma B) \Phi^{-p}(A\tau B)\| \le \alpha^p.$$

Hence,

$$\begin{pmatrix} \alpha^{p}I & \Phi^{p}(A\sigma B) \Phi^{-p}(A\tau B) \\ \Phi^{-p}(A\tau B) \Phi^{p}(A\sigma B) & \alpha^{p}I \end{pmatrix} \ge 0$$

and

$$\begin{pmatrix} \alpha^{p}I & \Phi^{-p}(A\tau B) \Phi^{p}(A\sigma B) \\ \Phi^{p}(A\sigma B) \Phi^{-p}(A\tau B) & \alpha^{p}I \end{pmatrix} \ge 0.$$

Hence,

$$\begin{pmatrix} 2\alpha^{p}I & \Phi^{-p}(A\tau B) \Phi^{p}(A\sigma B) + \Phi^{p}(A\sigma B) \Phi^{-p}(A\tau B) \\ \Phi^{p}(A\sigma B) \Phi^{-p}(A\tau B) + \Phi^{-p}(A\tau B) \Phi^{p}(A\sigma B) & 2\alpha^{p}I \end{pmatrix}$$

is positive and the desired inequality for 0 . Using inequality (1.9) with the same argument, we get the desired inequality for <math>p > 1.

We need the following lemma, proved in [12]; (see also [13]).

LEMMA 2.6 [12, Theorem 2.1] Let a, b > 0 and $v \in [0, 1]$. Then

$$a^{1-\nu}b^{\nu} + r(\sqrt{a} - \sqrt{b})^2 \le (1-\nu)a + \nu b,$$
(2.1)

where $r = \min\{v, 1 - v\}$.

Now, we are ready to present our main result.

THEOREM 2.7 Let $0 < m \leq A, B \leq M, \Phi$ be a positive unital linear map on $\mathbb{B}(\mathcal{H})$, $\nu \in [0, 1]$ and p > 0. Then

$$\Phi^p \left(A \nabla_{\nu} B + 2r Mm (A^{-1} \nabla B^{-1} - A^{-1} \sharp B^{-1}) \right) \le \alpha^p \Phi^p \left(A \sharp_{\nu} B \right)$$
(2.2)

and

$$\Phi^{p}\left(A\nabla_{\nu}B + 2r\,Mm(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1})\right) \le \alpha^{p}\,(\Phi(A)\,\sharp_{\nu}\Phi(B))^{p}\,,\qquad(2.3)$$

where $r = \min\{\nu, 1 - \nu\}$ and $\alpha = \max\left\{\frac{(M+m)^2}{4Mm}, \frac{(M+m)^2}{4^{\frac{2}{p}}Mm}\right\}$.

Proof We prove first the inequalities (2.2) and (2.3) for $0 . Since <math>0 < m \le A$, $B \le M$ we get

$$(M-A)(A-m)A^{-1} \ge 0$$
 and $(M-B)(B-m)B^{-1} \ge 0$,

whence

$$A + MmA^{-1} \le M + m$$
 and $B + MmB^{-1} \le M + m$.

Therefore, for a positive unital linear map Φ on $\mathbb{B}(\mathscr{H})$ we have

$$\Phi(A) + Mm\Phi(A^{-1}) \le M + m$$

and

$$\Phi(B) + Mm\Phi(B^{-1}) \le M + m.$$

Obviously we have also the inequalities

$$\Phi((1-\nu)A) + Mm\Phi((1-\nu)A^{-1}) \le (1-\nu)M + (1-\nu)m$$

and

$$\Phi(\nu B) + Mm\Phi(\nu B^{-1}) \le \nu M + \nu m.$$

for any $\nu \in [0, 1]$. Summing up, we therefore get

$$\Phi(A\nabla_{\nu}B) + Mm\Phi((1-\nu)A^{-1} + \nu B^{-1}) \le M + m.$$
(2.4)

Moreover, by using the inequality (2.1) and functional calculus for the positive operator $A^{\frac{1}{2}}B^{-1}A^{\frac{1}{2}}$ we have

$$\left(A^{\frac{1}{2}}B^{-1}A^{\frac{1}{2}}\right)^{\nu} + r\left(A^{\frac{1}{2}}B^{-1}A^{\frac{1}{2}} + I - 2\left(A^{\frac{1}{2}}B^{-1}A^{\frac{1}{2}}\right)^{\frac{1}{2}}\right) \le (1-\nu) + \nu A^{\frac{1}{2}}B^{-1}A^{\frac{1}{2}}.$$

Multiplying both sides of the above inequality both to the left and to the right by $A^{\frac{-1}{2}}$ we get that

$$A^{-1}\sharp_{\nu}B^{-1} + 2r\left(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1}\right) \le (1-\nu)A^{-1} + \nu B^{-1}.$$
 (2.5)

Applying (1.11), (2.4) and (2.5) and taking into account the properties of Φ we have

Therefore,

whence

$$\left\|\Phi\left(A\nabla_{\nu}B + 2rMm(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1})\right)\Phi^{-1}(A\sharp_{\nu}B)\right\| \leq \frac{(M+m)^2}{4Mm}$$

Hence, by Lemma 2.3

$$\Phi^{2}\left(A\nabla_{\nu}B + 2rMm(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1})\right) \leq \left(\frac{(M+m)^{2}}{4Mm}\right)^{2}\Phi^{2}\left(A\sharp_{\nu}B\right).$$

Since $0 < p/2 \le 1$, by inequality (1.2) we have

$$\Phi^p\left(A\nabla_{\nu}B + 2rMm(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1})\right) \le \left(\frac{(M+m)^2}{4Mm}\right)^p \Phi^p\left(A\sharp_{\nu}B\right).$$

Thus we get the inequality (2.2) for 0 . We prove now (2.3) for <math>0 . Applying Lemma 2.1, then the inequality [14, Theorem 5.8]

$$\Phi(A)\sharp_{\nu}\Phi(B) \ge \Phi(A\sharp_{\nu}B) \ (\nu \in [0,1]), \tag{2.7}$$

.

where A, B are positive operators and using inequality (2.2) we have

$$\begin{split} & \left\| \Phi \left(A \nabla_{\nu} B + 2r \, Mm (A^{-1} \nabla B^{-1} - A^{-1} \sharp B^{-1}) \right) Mm (\Phi(A) \sharp_{\nu} \Phi(B))^{-1} \right\| \\ & \leq \frac{1}{4} \left\| \Phi (A \nabla_{\nu} B + 2r \, Mm (A^{-1} \nabla B^{-1} - A^{-1} \sharp B^{-1})) + Mm (\Phi(A) \sharp_{\nu} \Phi(B))^{-1} \right\|^{2} \\ & \text{(by Lemma 2.1)} \\ & \leq \frac{1}{4} \left\| \Phi (A \nabla_{\nu} B + 2r \, Mm (A^{-1} \nabla B^{-1} - A^{-1} \sharp B^{-1})) + Mm \Phi^{-1} (A \sharp_{\nu} B) \right\|^{2} \\ & \text{(by inequality (2.7))} \\ & \leq \frac{1}{4} (M + m)^{2} \qquad \text{(by inequality (2.6)).} \end{split}$$

Hence, we get the inequality (2.3) for 0 .

Now, we prove the inequalities (2.2) and (2.3) for p > 2. Then, by Lemmas 2.1 and 2.2 we get

$$\begin{split} M^{\frac{p}{2}}m^{\frac{p}{2}} & \left\| \Phi^{\frac{p}{2}} \left(A\nabla_{\nu}B + 2r\,Mm(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1}) \right) \Phi^{\frac{-p}{2}}(A\sharp_{\nu}B) \right\| \\ &= \left\| \Phi^{\frac{p}{2}} \left(A\nabla_{\nu}B + 2r\,Mm(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1}) \right) M^{\frac{p}{2}}m^{\frac{p}{2}} \Phi^{\frac{-p}{2}}(A\sharp_{\nu}B) \right\| \\ &\leq \frac{1}{4} \left\| \Phi^{\frac{p}{2}}(A\nabla_{\nu}B + 2r\,Mm(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1})) + M^{\frac{p}{2}}m^{\frac{p}{2}} \Phi^{\frac{-p}{2}}(A\sharp_{\nu}B) \right\|^{2} \\ &\leq \frac{1}{4} \left\| \left(\Phi(A\nabla_{\nu}B + 2r\,Mm(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1})) + Mm\Phi^{-1}(A\sharp_{\nu}B) \right)^{\frac{p}{2}} \right\|^{2} \\ &= \frac{1}{4} \left\| \Phi(A\nabla_{\nu}B + 2r\,Mm(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1})) + Mm\Phi^{-1}(A\sharp_{\nu}B) \right\|^{p} \\ &\leq \frac{1}{4}(M+m)^{p} \qquad \text{(by inequality (2.6)).} \end{split}$$

1692

Hence, we get the inequality (2.2) for p > 2. Further, we have

Thus we get the inequality (2.3) for p > 2 and this completes the proof of the theorem.

Remark 2.8 Let $0 < m \le A$, $B \le M$ and Φ be a positive unital linear map on $\mathbb{B}(\mathcal{H})$. If 0 , then, obviously,

$$\Phi^{p}\left(A\nabla_{\nu}B\right) \leq \left(\Phi\left(A\nabla_{\nu}B\right) + 2rMm\Phi\left(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1}\right)\right)^{p}.$$
(2.8)

Hence, the inequality (2.8) shows that Theorem 2.7 is a refinement of inequalities (1.5) and (1.6) for 0 .

We also have

$$\Phi^p(A\nabla_{\nu}B) \le \Phi^p(A\nabla_{\nu}B) + (2rMm)^p \Phi^p\left(A^{-1}\nabla B^{-1} - A^{-1} \sharp B^{-1}\right),$$

where $p \ge 1, v \in [0, 1]$ and $r = \min\{v, 1 - v\}$. Hence,

$$\begin{aligned} \left\| \Phi^{p} \left(A \nabla_{\nu} B \right) \right\| &\leq \left\| \Phi^{p} \left(A \nabla_{\nu} B \right) + (2r Mm)^{p} \Phi^{p} \left(A^{-1} \nabla B^{-1} - A^{-1} \sharp B^{-1} \right) \right\| \\ &\leq \left\| \Phi^{p} \left(A \nabla_{\nu} B + 2r Mm \left(A^{-1} \nabla B^{-1} - A^{-1} \sharp B^{-1} \right) \right) \right\| \text{ (by Lemma 2.2).} \end{aligned}$$

Therefore, Theorem 2.7 is a refinement of the inequalities, (1.7) and (1.8) for the operator norm and $p \ge 2$.

The following examples show that inequality (2.2) is a refinement of (1.5) and (1.7).

Example 2.9 If
$$A = \begin{pmatrix} 1.75 & 0.433 \\ 0.433 & 1.25 \end{pmatrix}$$
, $B = \begin{pmatrix} 2.5 & 0.5 \\ 0.5 & 2.5 \end{pmatrix}$, $\Phi(X) = \frac{1}{2} \text{tr}(X)$ $(X \in \mathbb{M}_2)$,
 $m = 1, M = 3, \nu = \frac{1}{2}$ and $p = 3$, then $A\nabla_{\nu}B = \begin{pmatrix} 2.1250 & 0.4665 \\ 0.4665 & 1.8750 \end{pmatrix}$ and $A\nabla_{\nu}B + 2rMm(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1}) = \begin{pmatrix} 2.1601 & 0.4260 \\ 0.4260 & 2.0016 \end{pmatrix}$. Hence,

$$\Phi^{3}\left(A\nabla_{\nu}B + 2rMm\left(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1}\right)\right) - \Phi^{3}(A\nabla_{\nu}B) = 9.0095 - 8 = 1.0095 > 0.$$

Example 2.10 Let
$$\Phi(X) = T^*XT \ (X \in \mathbb{M}_2)$$
, where $T = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$.
If $A = \begin{pmatrix} 5 & -2 \\ -2 & 5 \end{pmatrix}$, $B = \begin{pmatrix} 4.75 & 0.433 \\ 0.433 & 4.25 \end{pmatrix}$, $m = 3$, $M = 7$, $\nu = \frac{1}{2}$ and $p = \frac{5}{3}$,
then $A\nabla_{\nu}B = \begin{pmatrix} 4.8750 & -0.7835 \\ -0.7835 & 4.6250 \end{pmatrix}$ and $A\nabla_{\nu}B + 2rMm \left(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1}\right) = \begin{pmatrix} 5.0283 & -0.7730 \\ -0.7730 & 4.7909 \end{pmatrix}$. Hence,

$$\Phi^{\frac{5}{3}}\left(A\nabla_{\nu}B + 2rMm\left(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1}\right)\right) - \Phi^{\frac{5}{3}}(A\nabla_{\nu}B) = \begin{pmatrix} 0.7838 & -1.0172\\ -1.0172 & 0.7199 \end{pmatrix} > 0.$$

COROLLARY 2.11 Let $0 < m \le A$, $B \le M$ and Φ be a positive unital linear map on $\mathbb{B}(\mathcal{H})$. Then

$$\Phi^p\left(\frac{A+B}{2} + Mm(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1})\right) \le \alpha^p \Phi^p(A\sharp B)$$

and

$$\Phi^{p}\left(\frac{A+B}{2}+Mm(A^{-1}\nabla B^{-1}-A^{-1}\sharp B^{-1})\right)\leq\alpha^{p}\left(\Phi\left(A\right)\sharp\Phi\left(B\right)\right)^{p},$$

where p > 0 and $\alpha = \max\left\{\frac{(M+m)^2}{4Mm}, \frac{(M+m)^2}{4^{\frac{2}{p}}Mm}\right\}$.

Proof Take $r = v = \frac{1}{2}$ in Theorem 2.7.

If the positive unital linear map $\Phi(A) = A$ ($A \in \mathbb{B}(\mathcal{H})$), then we get from Theorem 2.7 the following reverse AM–GM inequalities, which improve the reversed AM–GM inequality (1.1).

COROLLARY 2.12 Let $0 < m \le A$, $B \le M$. Then, the inequalities

$$\left(\frac{A+B}{2} + Mm(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1})\right)^p \le \left(\frac{(M+m)^2}{4Mm}\right)^p (A\sharp B)^p \quad (0$$

and

$$\left(\frac{A+B}{2} + Mm(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1})\right)^p \le \left(\frac{(M+m)^2}{4^{2/p}Mm}\right)^p (A\sharp B)^p \quad (p>2)$$

hold.

Acknowledgements

The author would like to sincerely thank the anonymous referees for some useful comments and suggestions. The author also would like to thank the Tusi Mathematical Research Group (TMRG).

Disclosure statement

No potential conflict of interest was reported by the author.

References

- [1] Lin M. Squaring a reverse AM-GM inequality. Studia Math. 2013;215:187–194.
- [2] Fu X, He C. Some operator inequalities for positive linear maps. Linear Multilinear Algebra. 2015;63:571–577.
- [3] Hoa DT, Binh DTH, Toan HM. On some inequalities with matrix means. RIMS Kokyuroku. 2014;1893:67–71. Kyoto University.
- [4] Fu X, Hoa DT. On some inequalities with matrix means. Linear Multilinear Algebra. 2015;63:2373–2378.
- [5] Liao W, Wu J. Matrix inequalities for the difference between arithmetic mean and harmonic mean. Ann. Funct. Anal. 2015;6:191–202.
- [6] Mićić J. Refinements of quasi-arithmetic means inequalities for Hilbert space operators. Banach J. Math. Anal. 2015;9:111–126.
- [7] Bhatia R. Positive definite matrices. Princeton: Princeton University Press; 2007.
- [8] Lin M. On an operator Kantorovich inequality for positive linear maps. J. Math. Anal. Appl. 2013;402:127–132.
- [9] Bhatia R, Kittaneh F. Notes on matrix arithmetic-geometric mean inequalities. Linear Algebra Appl. 2000;308:203–211.
- [10] Ando T, Zhan X. Norm inequalities related to operator monotone functions. Math. Ann. 1999;315:771–780.
- [11] Horn RA, Johnson CR. Topics in matrix analysis. Cambridge: Cambridge University Press; 1991.
- [12] Kittaneh F, Manasrah Y. Improved Young and Heinz inequalities for matrices. J. Math. Anal. Appl. 2010;36:262–269.
- [13] Bakherad M, Moslehian MS. Reverses and variations of Heinz inequality. Linear Multilinear Algebra. 2015;63:1972–1980.
- [14] Pečarić J, Furuta T, Mićić Hot J, Seo Y. Mond Pečarić method in operator inequalities. In: Kirkland S, editor. Inequalities for bounded selfadjoint operators on a Hilbert space. Monographs in Inequalities. Zagreb: ELEMENT; 2005.