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Abstract

In this paper, we employ the Mond–Pečarić method to establish some reverses of the operator Bellman
inequality under certain conditions. In particular, we show

δ IH +

n
j=1

ω jΦ j

(IH − A j )

p
≥


n

j=1

ω jΦ j (IH − A j )

p

,

where A j (1 ≤ j ≤ n) are self-adjoint contraction operators with 0 ≤ m IH ≤ A j ≤ M IH , Φ j
are unital positive linear maps on B(H ), ω j ∈ R+ (1 ≤ j ≤ n) such that

n
j=1 ω j = 1, δ =

(1 − p)


1
p

(1−m)p
−(1−M)p

M−m

 p
p−1

+
(1−M)(1−m)p

−(1−m)(1−M)p

M−m and 0 < p < 1. We also present some

refinements of the operator Bellman inequality.
c⃝ 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

Let B(H ) denote the C∗-algebra of all bounded linear operators on a complex Hilbert space
H with the identity IH . In the case when dim H = n, we identify B(H ) with the matrix
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algebra Mn(C) of all n × n matrices with entries in the complex field. An operator A ∈ B(H )

is called positive if ⟨Ax, x⟩ ≥ 0 for all x ∈ H and in this case we write A ≥ 0. We write
A > 0 if A is a positive invertible operator. The set of all positive invertible operators is denoted
by B(H )+. For self-adjoint operators A, B ∈ B(H ), we say A ≤ B if B − A ≥ 0. Also, an
operator A ∈ B(H ) is said to be contraction, if A∗ A ≤ IH . The Gelfand map f (t) → f (A)

is an isometrical ∗-isomorphism between the C∗-algebra C(sp(A)) of continuous functions on
the spectrum sp(A) of a self-adjoint operator A and the C∗-algebra generated by A and IH . If
f, g ∈ C(sp(A)), then f (t) ≥ g(t) (t ∈ sp(A)) implies that f (A) ≥ g(A).

Let f be a continuous real valued function defined on an interval J . It is called operator
monotone if A ≤ B implies f (A) ≤ f (B) for all self-adjoint operators A, B ∈ B(H ) with
spectra in J ; see [4] and references therein for some recent results. It is said to be operator
concave if λ f (A)+(1−λ) f (B) ≤ f (λA+(1−λ)B) for all self-adjoint operators A, B ∈ B(H )

with spectra in J and all λ ∈ [0, 1]. Every nonnegative continuous function f is operator
monotone on [0, +∞) if and only if f is operator concave on [0, +∞); see [5, Theorem 8.1].
A map Φ : B(H ) −→ B(K ) is called positive if Φ(A) ≥ 0 whenever A ≥ 0, where K is a
complex Hilbert space and is said to be unital if Φ(IH ) = IK . We denote by PN [B(H ), B(K )]

the set of all unital positive linear maps Φ : B(H ) → B(K ).
The axiomatic theory for operator means of positive invertible operators have been developed

by Kubo and Ando [7]. A binary operation σ on B(H )+ is called a connection, if the following
conditions are satisfied:

(i) A ≤ C and B ≤ D imply Aσ B ≤ Cσ D;
(ii) An ↓ A and Bn ↓ B imply Anσ Bn ↓ Aσ B, where An ↓ A means that A1 ≥ A2 ≥ · · · and

An → A as n → ∞ in the strong operator topology;
(iii) T ∗(Aσ B)T ≤ (T ∗ AT )σ (T ∗ BT ) (T ∈ B(H )).

There exists an affine order isomorphism between the class of connections and the class of
positive operator monotone functions f defined on (0, ∞) via f (t)IH = IH σ f (t IH ) (t > 0).

In addition, Aσ f B = A
1
2 f (A−

1
2 B A−

1
2 )A

1
2 for all A, B ∈ B(H )+. The operator monotone

function f is called the representing function of σ f . A connection σ f is a mean if it is normalized,
i.e. IH σ f IH = IH . The function f∇µ(t) = (1 − µ) + µt and f♯µ(t) = tµ on (0, ∞) for
µ ∈ (0, 1) give the operator weighted arithmetic mean A∇µ B = (1−µ)A+µB and the operator

weighted geometric mean A♯µ B = A
1
2


A−

1
2 B A−

1
2

µ

A
1
2 , respectively. The case µ = 1/2, the

operator weighted geometric mean gives rise to the so-called geometric mean A♯B.
Bellman [2] proved that if p is a positive integer and a, b, a j , b j (1 ≤ j ≤ n) are positive real

numbers such that
n

j=1 a p
j ≤ a p and

n
j=1 bp

j ≤ bp, then
a p

−

n
j=1

a p
j

1/p

+


bp

−

n
j=1

bp
j

1/p

≤


(a + b)p

−

n
j=1

(a j + b j )
p

1/p

.

A multiplicative analogue of this inequality is due to J. Aczél; see [1] and its operator version
in [10]. In 1956, Aczél [1] proved that if a j , b j (1 ≤ j ≤ n) are positive real numbers such that
a2

1 −
n

j=2 a2
j > 0 or b2

1 −
n

j=2 b2
j > 0, then

a2
1 −

n
j=2

a2
j


b2

1 −

n
j=2

b2
j


≤


a1b1 −

n
j=2

a j b j

2

.
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Popoviciu [11] extended the following Aczél’s inequality
a p

1 −

n
j=2

a p
j


bp

1 −

n
j=2

bp
j


≤


a1b1 −

n
j=2

a j b j

p

,

where p ≥ 1 and a p
1 −

n
j=2 a p

j > 0 or bp
1 −

n
j=2 bp

j > 0.
During the last decades several generalizations, refinements and applications of the Bellman

inequality in various settings have been given and some results related to integral inequalities are
presented; see [3,8,9,12] and references therein.

In [9] the authors showed an operator Bellman inequality as follows:

Φ

(IH − A)p

∇λ(IH − B)p
≤ (Φ(IH − A∇λ B))p ,

whenever A, B are positive contraction operators, Φ is a unital positive linear map on B(H )

and 0 < p < 1. They also [8] showed the following generalization of the Bellman operator
inequality

IH −

n
j=1

A j


σ f p


IH −

n
j=1

B j


≤


IH −


n

j=1

A jσ f B j

p

, (1.1)

where A j , B j (1 ≤ j ≤ n) are positive operators such that
n

j=1 A j ≤ IH ,
n

j=1 B j ≤

IH , σ f is a mean with the representing function f and 0 < p < 1.
In this paper, we use the Mond–Pečarić method to present some reverses of the operator

Bellman inequality under some mild conditions. We also show some refinements of (1.1).

2. Some reverses of the Bellman type operator inequality

The operator Choi–Davis–Jensen inequality says that if f is an operator concave function
on an interval J and Φ ∈ PN [B(H ), B(K )], then f (Φ(A)) ≥ Φ( f (A)) for all self-
adjoint operators A with spectrum in J . The Mond–Pečarić method [5, Chapter 2] present
that if f is a strictly concave differentiable function on an interval [m, M] with m < M and
Φ ∈ PN [B(H ), B(K )],

µ f =
f (M) − f (m)

M − m
, ν f =

M f (m) − m f (M)

M − m
and

γ f = max


f (t)

µ f t + ν f
: m ≤ t ≤ M


,

(2.1)

then

γ f Φ( f (A)) ≥ f (Φ(A)). (2.2)

In inequality (2.2), if we put Φ(X) := Ψ(A)−1/2Ψ(A1/2 X A1/2)Ψ(A)−1/2, where Ψ is an
arbitrary unital positive linear map and take f to be the representing function of an operator
mean σ f , then we reach the inequality

max
m≤t≤M

f (t)

µ f t + ν f


Ψ(Aσ f B) ≥ Ψ(A)σ f Ψ(B) (2.3)

whenever 0 < m A ≤ B ≤ M A.
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Finally, if we take Ψ in (2.3) to be the positive unital linear map defined on the diagonal
blocks of operators by Ψ(diag(A1, . . . , An)) =

1
n

n
j=1 A j , then

γ f

n
j=1

A jσ f B j ≥


n

j=1

A j


σ f


n

j=1

B j


, (2.4)

where γ f is given by (2.1) and 0 < m A j ≤ B j ≤ M A j (1 ≤ j ≤ n).
In the following theorem we show a reversed operator Bellman type inequality.

Theorem 2.1. Suppose that 0 < m A j ≤ B j ≤ M A j (1 ≤ j ≤ n) and 0 < m


IH −

γ f
n

j=1 A j


≤ IH − γ f

n
j=1 B j ≤ M


IH − γ f

n
j=1 A j


for some positive real numbers

m, M such that m < 1 < M, γ f is given by (2.1), σ f is an operator mean with the representing
function f and p ∈ [0, 1]. Then

γ
p
f


IH −

n
j=1

A j


σ f


IH −

n
j=1

B j

p

≥


IH − γ f


n

j=1

A jσ f B j

p

. (2.5)

Proof. By using (2.4) we have

γ f

n+1
j=1

X jσ f Y j ≥


n+1
j=1

X j


σ f


n+1
j=1

Y j


,

where 0 < m X j ≤ Y j ≤ M X j (1 ≤ j ≤ n + 1). If we take X j = A j , Y j = B j (1 ≤ j ≤

n), Xn+1 = IH −
n

j=1 A j ≥ 0 and Yn+1 = IH −
n

j=1 B j ≥ 0, then

γ f


n

j=1

A j


σ f


n

j=1

B j


+


IH −

n
j=1

A j


σ f


IH −

n
j=1

B j


≥ IH σ f IH = IH ,

whence
IH −

n
j=1

A j


σ f


IH −

n
j=1

B j


≥

1
γ f

IH −


n

j=1

A j


σ f


n

j=1

B j


. (2.6)

It follows from inequality (2.6) and the Löwner–Heinz inequality [5, Theorem 1.8] that
IH −

n
j=1

A j


σ f


IH −

n
j=1

B j

p

≥


1
γ f

IH −


n

j=1

A j


σ f


n

j=1

B j

p

. �

Lemma 2.2. Suppose that C, X ∈ B(H ) such that C is a contraction operator, 0 < m IH ≤

X ≤ M IH , f is a concave and operator monotone function on [m, M] and γ f is given by (2.1).
Then

γ f

C∗ f (X)C + f (m)(IH − C∗C)


≥ f (C∗ XC). (2.7)

Proof. Let D = (IH −C∗C)
1
2 . Consider the positive unital linear map Φ


X 0
0 Y


= C∗ XC +

D∗Y D (X, Y ∈ B(H )). Using inequality (2.2) and the operator monotonicity of f we
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have

f (C∗ XC) ≤ f (C∗ XC + D∗m D)

= f


Φ


X 0
0 m


≤ γ f


Φ


f (X) 0
0 f (m)


(by (2.2))

= γ f

C∗ f (X)C + D∗ f (m)D


,

whenever 0 < m IH ≤ X ≤ M IH . �

Lemma 2.3. Let 0 < m A ≤ B ≤ M A with A contraction. Let σ f be an operator mean with the
representing function f and h be an operator monotone function on [0, +∞). Then

γh

h( f (m))


IH − A


+


Aσhof B


≥ h


Aσ f B

, (2.8)

where µh =
h( f (M))−h( f (m))

f (M)− f (m)
, νh =

f (M)h( f (m))− f (m)h( f (M))
f (M)− f (m)

and γh = max f (m)≤t≤ f (M)
h(t)

µh t+νh
.

Proof. It follows from f (m) ≤ f


A−1/2 B A−1/2


≤ f (M) and inequality (2.7) that

h


Aσ f B


= h


A1/2 f


A−1/2 B A−1/2


A1/2


≤ γh


A1/2h


f


A−1/2 B A−1/2


A1/2
+ (IH − A)1/2 h( f (m)) (IH − A)1/2


(by (2.7))

= γh


Aσhof B

+ h( f (m)) (IH − A)


�

Applying the operator monotone function f (t) = (1 − λ) + λt (λ ∈ [0, 1]) in Theorem 2.1,
due to

γ f = max
m≤t≤M

f (t)

µ f t + ν f
= max

m≤t≤M

(1 − λ) + λt

(1 − λ) + λt
= 1

and using Lemma 2.3 for the special case h(t) = t p (p ∈ [0, 1]), due to

γh = max
f (m)≤t≤ f (M)

t p

µh t + νh
=

p p( f (M) − f (m))( f (M) f (m)p
− f (m) f (M)p)p−1

(1 − p)p−1( f (M)p − f (m)p)p

we have the following result; see [5, p. 77].

Corollary 2.4 (A Reverse Operator Bellman Inequality). Let 0 < m A j ≤ B j ≤ M A j (1 ≤ j ≤

n) and 0 < m


IH −
n

j=1 A j


≤ IH −

n
j=1 B j ≤ M


IH −

n
j=1 A j


for some positive

real numbers m, M such that m < 1 < M and p ∈ [0, 1]. Then

δ


f (m)p


n

j=1

A j


+


IH −

n
j=1

A j


σ((1−λ)+λt)p


IH −

n
j=1

B j



≥


IH −


n

j=1

A jσ f B j

p

,

where δ =
p p( f (M)− f (m))( f (M) f (m)p

− f (m) f (M)p)p−1

(1−p)p−1( f (M)p− f (m)p)p and f (t) = (1 − λ) + λt (λ ∈ [0, 1]).
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Proof. We have

δ


f (m)p


n

j=1

A j


+


IH −

n
j=1

A j


σ((1−λ)+λt)p


IH −

n
j=1

B j



≥


IH −

n
j=1

A j


∇λ


IH −

n
j=1

B j

p

(by (2.8))

≥


IH −


n

j=1

A j∇λ B j

p

(by (2.5)). �

In [6], the authors showed another way to find a reverse Choi–Davis–Jensen inequality. If f
is a strictly concave differentiable function on an interval [m, M] with m < M and Φ is a unital
positive linear map, then

β f IH + Φ( f (A)) ≥ f (Φ(A)), (2.9)

where A ∈ B(H ) is a self-adjoint operator with spectrum in [m, M] and β f = maxm≤t≤M
f (t) − µ f t − ν f


.

In inequality (2.9), if we put Ψ(X) := Ψ(A)−1/2Ψ(A1/2 X A1/2)Ψ(A)−1/2, where Ψ is an
arbitrary unital positive linear map and take f to be the representing function of an operator
mean σ f , then we reach the inequality

β f Ψ(X) + Ψ(Xσ f Y ) ≥ Ψ(X)σ f Ψ(Y ), (2.10)

where 0 < m X ≤ Y ≤ M X, σ f is an operator mean with representing function f and
β f = maxm≤t≤M


f (t) − µ f t − ν f


that is the unique solution of the equation f ′(t) = µ f ,

whenever µ f =
f (M)− f (m)

M−m and ν f =
M f (m)−m f (M)

M−m .
Applying (2.10) to the positive unital linear map defined on the diagonal blocks of operators

by Ψ(diag(X1, . . . , Xn+1)) =
1
n

n+1
j=1 X j , we get

β f

n+1
j=1

X j +

n+1
j=1

Y jσ f X j ≥


n+1
j=1

X j


σ f


n+1
j=1

Y j


, (2.11)

where 0 < m X j ≤ Y j ≤ M X j (1 ≤ j ≤ n + 1), σ f is an operator mean with representing
function f and β f = maxm≤t≤M


f (t) − µ f t − ν f


.

Now, we have the next result.

Proposition 2.5. Suppose that 0 < m A j ≤ B j ≤ M A j (1 ≤ j ≤ n) and 0 < m


IH −n
j=1 A j


≤ IH −

n
j=1 B j ≤ M


IH −

n
j=1 A j


for some positive real numbers m, M

such that m < 1 < M and σ f is an operator mean with representing function f . Then
β f IH +


IH −

n
j=1

A j


σ f


IH −

n
j=1

B j

p

≥


IH −


n

j=1

A jσ f B j

p

,

whenever p ∈ [0, 1] and β f = maxm≤t≤M


f (t) − µ f t − ν f

.



652 M. Bakherad, A. Morassaei / Indagationes Mathematicae 26 (2015) 646–659

Proof. If we take X j = A j , Y j = B j (1 ≤ j ≤ n), Xn+1 = IH −
n

j=1 A j and Yn+1 =

IH −
n

j=1 B j in inequality (2.11), then we get

β f IH +


IH −

n
j=1

A j


σ f


IH −

n
j=1

B j


≥


IH −


n

j=1

A jσ f B j


. (2.12)

By the operator monotonicity of h(t) = t p and (2.12) we reach the desired inequality. �

Corollary 2.6 (A Reverse Aczél Type Inequality). Let 0 < m A j ≤ B j ≤ M A j (1 ≤ j ≤

n), 0 < m


IH −
n

j=1 A j


≤ IH −

n
j=1 B j ≤ M


IH −

n
j=1 A j


for some positive real

numbers m, M such that m < 1 < M. Then
ζ IH +


IH −

n
j=1

A j


♯λ


IH −

n
j=1

B j

p

≥


IH −


n

j=1

A j♯λ B j

p

,

where p, λ ∈ [0, 1] and ζ = (1 − p)


M p
−m p

p(M−m)

 p
p−1

−
Mm p

−mM p

M−m .

We can generalize the operator Bellman inequality in Corollary 2.2 of [9] as follows
Φ


IH −

n
j=1

ω j A j

p

≥ Φ


n

j=1

ω j (IH − A j )
p


, (2.13)

where Φ ∈ PN [(H ), (K )], A j are contractions, 0 < p < 1 and ω j are real positive numbers
such that

n
j=1 ω j = 1.

In [9], the authors presented an equivalent form of Bellman inequality. With a similar
argument in the proof of [9, Theorem 2.5], the following theorem holds.

Theorem 2.7. The following equivalent statements hold:

(i) If m, n are positive integers, 0 < p < 1, ω1, . . . , ωn are any finite number of positive real
numbers such that

n
j=1 ω j = 1 and ai j ( j = 1, . . . , n, i = 1, . . . , m) are positive real

numbers such that
m

i=1 a1/p
i j ≤ 1 for all j = 1, . . . , n, then

n
j=1

ω j


1 −

m
i=1

a
1
p

i j

p

≤


1 −

m
i=1

 n
j=1

ω j ai j

 1
p

p

. (2.14)

(ii) (Generalization of Classical Bellman Inequality) If n is a positive integer, 0 < p < 1
and Mi , ai j ( j = 1, . . . , n, i = 1, . . . , m) are nonnegative real numbers such thatm

i=1 a1/p
i j ≤ M1/p

j for all j = 1, . . . , n, then

n
j=1


M

1
p
j −

m
i=1

a
1
p

i j

p

≤

 n
j=1

M j

 1
p

−

m
i=1


n

j=1

ai j

 1
p
p

. (2.15)
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Proof. Let m, n be positive integers, 0 < p < 1, ω1, . . . , ωn ∈ R+ are any finite number
of positive real numbers such that

n
j=1 ω j = 1 and ai j ( j = 1, . . . , n, i = 1, . . . , m) are

positive real numbers such that
m

i=1 a1/p
i j ≤ 1 for all j = 1, . . . , n. Set A j =

m
i=1 a

1
p

i j 0
0 1


∈

M2(C) ( j = 1, . . . , n). Then


I2 −

n
j=1

ω j A j

p

=

1 0
0 1


−


n

j=1

m
i=1

ω j a
1
p

i j 0

0 1




p

=




1 −

n
j=1

m
i=1

ω j a
1
p

i j

p

0

0 0



=




n
j=1

ω j


1 −

m
i=1

a
1
p

i j

p

0

0 0

 .

and

n
j=1

ω j (I2 − A j )
p

=

n
j=1

ω j

1 −

m
i=1

a
1
p

i j 0

0 0


p

=


n

j=1

ω j


1 −

m
i=1

a
1
p

i j

p

0

0 0

 .

It follows from (2.13) with the identity map Φ that

n
j=1

ω j


1 −

m
i=1

a
1
p

i j

p

≤


n

j=1

ω j


1 −

m
i=1

a
1
p

i j

p

=


1 −

n
j=1

ω j

 m
i=1

a
1
p

i j

p

=


1 −

m
i=1

 n
j=1

ω j a
1
p

i j

p

≤


1 −

m
i=1

 n
j=1

ω j ai j

 1
p

p

(by the convexity of t1/p for 0 < p < 1),

which gives (2.14).
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(i)⇒(ii) Set ω j =
M jn

j=1 M j
and replace ai j by ai j/M j , respectively, in (2.14) to get

1
n

j=1
M j

n
j=1


M

1
p
j −

m
i=1

a
1
p

i j

p

=

n
j=1

M j
n

j=1
M j


1 −

m
i=1

 ai j

M j

 1
p

p

=

n
j=1

ω j


1 −

m
i=1

 ai j

M j

 1
p

p

≤


1 −

m
i=1

 n
j=1

ω j
ai j

M j

 1
p

p

=

1 −

m
i=1

 n
j=1

M j
n

j=1
M j

ai j

M j

 1
p


p

=

1 −
1 n

j=1
M j
 1

p

m
i=1

 n
j=1

ai j

 1
p


p

=
1

n
j=1

M j

 n
j=1

M j

 1
p

−

m
i=1

 n
j=1

ai j

 1
p

p

.

We therefore deduce the desired inequality (2.15).
(ii)⇒(i) Set M j = ω j , and replace ai j by ω j ai j in (2.15) to get (2.14). �

Let A j ∈ B(H ) (1 ≤ j ≤ n) be self-adjoint operators with sp(A j ) ⊆ [m, M] for some
scalars m < M,Φ j be unital positive linear maps on B(H ), ω1, . . . , ωn ∈ R+ be any finite num-
ber of positive real numbers such that

n
j=1 ω j = 1 and f be a strictly concave differentiable

function. If we take the positive unital linear map Φ(diag(A1, . . . , An)) =
n

j=1 ω jΦ j (A j ), in
inequality (2.9), then

β f IH +

n
j=1

ω jΦ j


f (A j )


≥ f


n

j=1

ω jΦ j (A j )


, (2.16)

where β f = maxm≤t≤M


f (t) − µ f t − ν f

; see also [5, Corollary 2.16].

Now, we state reverse of (2.13) by following result.

Corollary 2.8 (A Second Type Reverse Operator Bellman Inequality). Let A j ,Φ j , ω j , j =

1, . . . , n be as above, A j be contractions such that 0 ≤ m IH ≤ A j ≤ M IH and 0 < p < 1.
Then

δ IH +

n
j=1

ω jΦ j

(IH − A j )

p
≥


n

j=1

ω jΦ j (IH − A j )

p

, (2.17)

where δ = (1 − p)


1
p

(1−m)p
−(1−M)p

M−m

 p
p−1

+
(1−M)(1−m)p

−(1−m)(1−M)p

M−m .
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Proof. Note that the function g(t) = tr is operator concave on (0, ∞) when 0 ≤ r ≤ 1 and so
is the function f (t) = (1 − t)p on (0, 1) when 0 ≤ p ≤ 1. It follows from the linearity and the
normality of Φ j that

n
j=1

ω jΦ j (IH − A j )

p

=


n

j=1

ω j

IK − Φ j (A j )

p

=


IH −

n
j=1

ω jΦ j (A j )

p

= f


n

j=1

ω jΦ j (A j )



≤

n
j=1

ω jΦ j ( f (A j )) + β f IH (by (2.16))

=

n
j=1

ω jΦ j

(IH − A j )

p
+ β f IK .

Since f (t) = (1 − t)p is a differentiable function on (0, 1), the function h(t) := (1 − t)p
−

(1−M)p
−(1−m)p

M−m t −
M(1−m)p

−m(1−M)p

M−m (m ≤ t ≤ M) attained its maximum value in t0 =

1 −


1
p

(1−m)p
−(1−M)p

M−m

 1
p−1

which is equal to

δ = max
m≤t≤M

h(t) = (1 − p)


1
p

(1 − m)p
− (1 − M)p

M − m

 p
p−1

+
(1 − M)(1 − m)p

− (1 − m)(1 − M)p

M − m
. �

Corollary 2.9. If m, n are positive integers, 0 < p < 1, ω1, . . . , ωn ∈ R+ are any finite number
of positive real numbers such that

n
j=1 ω j = 1 and ai j ( j = 1, . . . , n, i = 1, . . . , m) are

positive real numbers such that 1 ≥
m

i=1 a1/p
i j ( j = 1, . . . , n), then

(1 − p)p
p

1−p +

n
j=1

ω j


1 −

m
i=1

a
1
p

i j

p

≥


1 −

m
i=1

n
j=1

ω j a
1
p

i j

p

. (2.18)

Proof. Let m, n be positive integers, 0 < p < 1, 0 ≤ ω j ≤ 1 and ai j (1 ≤ j ≤ n, 1 ≤ i ≤ m)

are positive real numbers such that 1 ≥
m

i=1 a1/p
i j ( j = 1, . . . , n). Set A j =

m
i=1 a1/p

i j 0
0 1


∈

M2(C) ( j = 1, . . . , n). Then

n
j=1

ω j (I2 − A j )
p

=

n
j=1

ω j

1 0
0 1


−


m

i=1

a
1
p

i j 0

0 1




p

=

n
j=1

ω j




1 −

m
i=1

a
1
p

i j

p

0

0 0


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=


n

j=1

ω j


1 −

m
i=1

a
1
p

i j

p

0

0 0

 .

and 
n

j=1

ω j (I2 − A j )

p

=

 n
j=1

ω j

1 0
0 1


−


m

i=1

a
1
p

i j 0

0 1





p

=


n

j=1

ω j


1 −

m
i=1

a
1
p

i j


0

0 0


p

=




1 −

n
j=1

m
i=1

ω j a
1
p

i j

p

0

0 0

 .

It follows from (2.17) with the identity map Φ that

δ I2 +


n

j=1

ω j


1 −

m
i=1

a
1
p

i j

p

0

0 0

 ≥




1 −

n
j=1

m
i=1

ω j a
1
p

i j

p

0

0 0

 ,

where δ = (1 − p)p
p

1−p by taking m = 0 and M = 1 in (2.17), which gives (2.18). �

Corollary 2.10. Let Φ ∈ PN [B(H ), B(K )], 0 < m IH ≤ A j ≤ M IH be positive operators
and 0 ≤ ω j ≤ 1 ( j = 1, . . . , n) such that

n
j=1 ω j = 1. Then

log


1
e


Mm

mM

 1
M−m

L(m, M)


+ Φ


n

j=1

ω j log A j


≥ log


n

j=1

ω jΦ(A j )



where L(a, b) =


b − a

log b − log a
; a ≠ b

a ; a = b
is the logarithmic mean of positive real numbers a and b.

Proof. Put f (t) = log t and Φ j = Φ in (2.16). �

3. Some refinements of the Bellman operator inequality

In this section, we present some refinements of the operator Bellman inequality by using some
ideas of [3]. First we need the following lemmas.

Lemma 3.1. Let A, B, A j , B j , (1 ≤ j ≤ n) be positive operators such that
n

j=1 A j ≤ A,n
j=1 B j ≤ B and let σ f be an operator mean with the representing function f . Then

A −

n
j=1

A j


σ f


B −

n
j=1

B j


≤ (Aσ f B) −

n
j=1


A jσ f B j


. (3.1)



M. Bakherad, A. Morassaei / Indagationes Mathematicae 26 (2015) 646–659 657

Proof. The subadditivity of operator mean says that [5, Theorem 5.7]

n+1
j=1


X jσ f Y j


≤


n+1
j=1

X j


σ f


n+1
j=1

Y j


, (3.2)

where X j , Y j , (1 ≤ j ≤ n + 1) are positive operators. If we put X j = A j , Y j = B j (1 ≤ j ≤

n), Xn+1 = A −
n

j=1 A j and Yn+1 = A −
n

j=1 B j in inequality (3.2), then we reach

n
j=1


A jσ f B j


+


A −

n
j=1

A j


σ f


B −

n
j=1

B j


≤ Aσ f B.

Therefore
A −

n
j=1

A j


σ f


B −

n
j=1

B j


≤


Aσ f B

−

n
j=1


A jσ f B j


. �

Lemma 3.2 ([8, Lemma 2.1]). Let A, B ∈ B(H ) be positive operators such that A is contrac-
tion, h is a nonnegative operator monotone function on [0, +∞) and σ f be an operator mean
with the representing function f . Then

Aσhof B ≤ h(Aσ f B).

In the next theorem, we show a refinement of (1.1).

Theorem 3.3. Let A j , B j , (1 ≤ j ≤ n) be positive operators such that
n

j=1 A j ≤ IH ,n
j=1 B j ≤ IH , σ f be an operator mean with the representing function f and p ∈ [0, 1]. Then

IH −

n
j=1

A j


σ f p


IH −

n
j=1

B j


≤


IH −

k
j=1

A j


σ f


IH −

k
j=1

B j



−

n
j=k+1


A jσ f B j

p

≤


IH −

n
j=1


A jσ f B j

p

,

in which k = 1, 2, . . . , n − 1.

Proof. For k = 1, 2, . . . , n − 1 we have
IH −

n
j=1

A j


σ f


IH −

n
j=1

B j



=


IH −

k
j=1

A j


−

n
j=k+1

A j


σ f


IH −

k
j=1

B j


−

n
j=k+1

B j



≤


IH −

k
j=1

A j


σ f


IH −

k
j=1

B j


−

n
j=k+1

(A jσ f B j ) (by (3.1))
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≤


IH σ f IH


−

k
j=1

(A jσ f B j )


−

n
j=k+1


A jσ f B j


(by (3.1))

= IH −

n
j=1


A jσ f B j


,

whence for the spacial case g(t) = t p (p ∈ [0, 1]) we have
IH −

n
j=1

A j


σ f p


IH −

n
j=1

B j



≤


IH −

n
j=1

A j


σ f


IH −

n
j=1

B j

p

(by Lemma 3.2)

≤


IH −

k
j=1

A j


σ f


IH −

k
j=1

B j


−

n
j=k+1

(A jσ f B j )

p

=


IH −

n
j=1


A jσ f B j

p

. �

Using the same idea as in the proof of Theorem 3.3 we improve inequality (1.1) in the next
theorem.

Theorem 3.4. Let A j , B j , (1 ≤ j ≤ n) be positive operators such that
n

j=1 A j ≤ IH ,n
j=1 B j ≤ IH , σ f be an operator mean with the representing function f and p ∈ [0, 1]. Then

IH −

n
j=1

A j


σ f p


IH −

n
j=1

B j



≤


IH −

n
j=1

t j A j


σ f


IH −

n
j=1

t j B j


−

n
j=1

(1 − t j )


A jσ f B j
p

≤


IH −

n
j=1


A jσ f B j

p

,

where t j ∈ [0, 1] ( j = 1, . . . , n).

Proof. Let t j ∈ [0, 1] ( j = 1, . . . , n). It follows from IH −
n

j=1 t j A j ≥
n

j=1(1 − t j )A j ,

IH −
n

j=1 t j B j ≥
n

j=1(1 − t j )B j and inequality (3.1) that
IH −

n
j=1

A j


σ f


IH −

n
j=1

B j



=


IH −

n
j=1

t j A j


−

n
j=1

(1 − t j )A j


σ f


IH −

n
j=1

t j B j


−

n
j=1

(1 − t j )B j



≤


IH −

n
j=1

t j A j


σ f


IH −

n
j=1

t j B j


−

n
j=1


(1 − t j )A jσ f (1 − t j )B j


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(by (3.1))

=


IH −

n
j=1

t j A j


σ f


IH −

n
j=1

t j B j


−

n
j=1

(1 − t j )


A jσ f B j


(by property (iii) of operator means)

≤


(IH σ f IH ) −

n
j=1

(t j A jσ f t j B j ) −

n
j=1

(1 − t j )


A jσ f B j


(by (3.1))

=


IH −

n
j=1

t j (A jσ f B j ) −

n
j=1

(1 − t j )


A jσ f B j


(by property (iii) of operator means)

=


IH −

n
j=1


A jσ f B j


. (3.3)

Using Lemma 3.2, the operator monotone function g(t) = t p (p ∈ [0, 1]) and inequality (3.3)
we get the desired result. �
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