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Let A, B be positive definite n×n matrices. We present several reverse Heinz-type
inequalities, in particular

‖AX + X B‖2
2 + 2(ν − 1)‖AX − X B‖2

2 ≤ ‖Aν X B1−ν + A1−ν X Bν‖2
2,

where X is an arbitrary n × n matrix, ‖ · ‖2 is Hilbert–Schmidt norm and ν > 1.
We also establish a Heinz-type inequality involving Hadamard product of the
form

2|||A 1
2 ◦ B

1
2 ||| ≤ |||As ◦ B1−t + A1−s ◦ Bt |||

≤ max{|||(A + B) ◦ I |||, |||(A ◦ B) + I |||},
in which s, t ∈ [0, 1] and ||| · ||| is a unitarily invariant norm.

Keywords: Heinz inequality; Hilbert–Schmidt norm; operator mean; Hadamard
product

AMS Subject Classifications: Primary: 47A63; Secondary: 47A60; 15A60; 15A42

1. Introduction and preliminaries

Let B(H ) denote the C∗-algebra of all bounded linear operators on a complex Hilbert
space H . In the case when dim H = n, we identify B(H ) with the matrix algebra
Mn of all n × n matrices with entries in the complex field C. An operator A ∈ B(H ) is
called positive (positive semidefinite for matrices) if 〈Ax, x〉 ≥ 0 for all x ∈ H . The set
of all positive invertible operators (respectively, positive definite matrices) is denoted by
B(H )++ (respectively, Pn ).

The Gelfand map f (t) 
→ f (A) is an isometrically ∗-isomorphism between the
C∗-algebra C(σ (A)) of all continuous functions on the spectrum σ(A) of a self-adjoint
operator A and the C∗-algebra generated by A and the identity operator I such that if
f, g ∈ C(σ (A)), then f (t) ≥ g(t) (t ∈ σ(A)) implies that f (A) ≥ g(A).

If {e j } is an orthonormal basis of H , V : H → H ⊗ H is the isometry defined
by V e j = e j ⊗ e j and A ⊗ B is the tensor product of operators A, B, then the Hadamard
product A ◦ B regarding to {e j } is expressed by A ◦ B = V ∗(A ⊗ B)V .

∗Corresponding author. Email: moslehian@um.ac.ir

© 2014 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

R
M

IT
 U

ni
ve

rs
ity

] 
at

 1
2:

48
 1

1 
M

ar
ch

 2
01

4 



2 M. Bakherad and M.S. Moslehian

A unitarily invariant norm ||| · ||| is defined on a norm ideal L|||·||| of B(H ) associated
with it and has the property |||U X V ||| = |||X |||, where U and V are arbitrary unitaries
in B(H ) and X ∈ L|||·|||. A compact operator A ∈ B(H ) is called Hilbert–Schmidt if

‖A‖2 =
(∑∞

j=1 s2
j (A)

)1/2
< ∞, where s1(A), s2(A), · · · are the singular values of A, i.e.

the eigenvalues of the positive operator |A| = (A∗ A)
1
2 enumerated as s1(A) ≥ s2(A) ≥

· · · with their multiplicities counted. The Hilbert–Schmidt norm is a unitarily invariant

norm. For A = [ai j ] ∈ Mn , it holds that ‖A‖2 =
( ∑n

i, j=1 |ai, j |2
)1/2

. For two operators

A, B ∈ B(H )++, let A�μ B = A
1
2

(
A

−1
2 B A

−1
2

)μ

A
1
2 (μ ∈ R). The operators A� 1

2
B and

A∇B = A+B
2 are called the operator geometric mean and the operator arithmetic mean,

respectively.
The Heinz mean is defined by

Hν(a, b) = aνb1−ν + a1−νbν

2
(0 ≤ ν ≤ 1, a, b > 0).

The function Hν is symmetric about the point ν = 1
2 . Note that H0(a, b) = H1(a, b) = a+b

2 ,
H1/2(a, b) = √

ab and H1/2(a, b) ≤ Hν(a, b) ≤ H0(a, b) for all ν ∈ [0, 1].
The Heinz norm (double) inequality, which is one of the essential inequalities in operator

theory, states that for any positive operators A, B ∈ B(H ), any operator X ∈ B(H ) and
any ν ∈ [0, 1], the double inequality

2‖A
1
2 X B

1
2 ‖ ≤ ‖Aν X B1−ν + A1−ν X Bν‖ ≤ ‖AX + X B‖ (1.1)

holds; see [1]. Bhatia and Davis [2] proved that (1.1) is valid for any unitarily invariant
norm. Fujii et al. [3] proved that the right-hand side inequality at (1.1) is equivalent to
several other norm inequalities such as

(i) the McIntosh inequality [4] asserting that ‖A∗ AX + X B∗ B‖ ≥ 2‖AX B∗‖ for all
A, B, X ∈ B(H );

(ii) the Corach–Porta–Recht inequality ‖AX A−1 + A−1 X A‖ ≥ 2‖X‖, where A ∈
B(H ) is selfadjoint and invertible and X ∈ B(H ) (see also [5]), and

(iii) the inequality ‖A2m+n X B−n + A−n X B2m+n‖ ≥ ‖A2m X + X B2m‖ in which A, B
are invertible self-adjoint operators, X is an arbitrary operator in B(H ) and both
m and n are nonnegative integers; see also Section 3.9 of the monograph.[6]

Audenaert [7] gave a singular value inequality for the Heinz means of matrices as
follows: If A, B ∈ Mn are positive semidefinite and ν ∈ [0, 1], then

s j (Aν B1−ν + A1−ν Bν) ≤ s j (A + B).

Kittaneh and Manasrah [8] showed a refinement of the right-hand side of inequality (1.1)
for the Hilbert–Schmidt norm as follows:

‖Aν X B1−ν + A1−ν X Bν‖2
2 + 2r0‖AX − X B‖2

2 ≤ ‖AX + X B‖2
2, (1.2)
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Linear and Multilinear Algebra 3

in which A, B, X ∈ Mn such that A, B are positive semidefinite, ν ∈ [0, 1] and
r0 = min{ν, 1−ν}. Kaur et al. [9], using the convexity of the function f (ν) = |||A1−ν X Bν+
Aν X B1−ν ||| (ν ∈ [0, 1]) presented more refinements of the Heinz inequality. More
precisely, for A, B, X ∈ Mn such that A, B are positive semidefinite and ν ∈ [0, 1],
they showed the inequality

|||Aν X B1−ν + A1−ν X Bν ||| ≤ |||4r1 A
1
2 X B

1
2 + (1 − 2r1)(AX + X B)|||,

where r1 =
{
ν, | 1

2 − ν|, 1 − ν
}

. It is shown in [10] a reverse of inequality (1.2) as

‖AX + X B‖2
2 ≤ ‖Aν X B1−ν + A1−ν X Bν‖2

2 + 2r0‖AX − X B‖2
2, (1.3)

where A, B, X ∈ Mn such that A, B are positive semidefinite, ν ∈ [0, 1] and
r0 = max{ν, 1 − ν}. Singh and Aujla [11] showed that

2|||A 1
2 X B

1
2 ||| ≤ |||As X B1−t + A1−s X Bt |||,

where A, B, X ∈ Mn such that A and B are positive semidefinite, s, t ∈ [0, 1]. It is
remarkable that, by using the fact that the function g(s, t) = |||As X B1−t + A1−s X Bt |||
attains its maximum at the vertices of the square [0, 1] × [0, 1], one can see that under the
same conditions as above

|||As X B1−t + A1−s X Bt ||| ≤ max {|||AX + X B|||, |||AX B + X |||} ,

Recently, Krnić et al. used the Jensen functional to improve several Heinz-type inequalities.
[12]

In this paper, we obtain a reverse of (1.2) and some other operator inequalities. We also
show some results on the Hadamard product. In particular, we get the following Heinz-type
inequality

2|||A 1
2 ◦ B

1
2 ||| ≤ |||As ◦ B1−t + A1−s ◦ Bt ||| ≤ max{|||(A + B) ◦ I |||, |||(A ◦ B) + I |||},

where A, B ∈ Pn, X ∈ Mn and s, t ∈ [0, 1].

2. A reverse of the Heinz inequality for matrices

In this section, we present a converse of the Heinz inequality and give several refinements
for matrices.

Lemma 2.1 Let a, b > 0 and ν �∈ [0, 1]. Then,

a + b ≤ aνb1−ν + bνa1−ν . (2.1)

Proof Let ν �∈ [0, 1]. Assume that f (t) = t1−ν − ν + (ν − 1)t (t ∈ (0,∞)). It is easy to
see that f (t) has a minimum at t = 1 in the interval (0,∞). Hence, f (t) ≥ f (1) = 0 for
all t > 0. Assume that a, b > 0. Letting t = b

a , we get

νa + (1 − ν)b ≤ aνb1−ν . (2.2)
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4 M. Bakherad and M.S. Moslehian

Applying (2.2), we obtain

νa + (1 − ν)b ≤ aνb1−ν and νb + (1 − ν)a ≤ bνa1−ν,

whence

a + b ≤ aνb1−ν + bνa1−ν .

�

For ν �∈ [0, 1], if we replace ν by ν/(2ν−1) and A, B, X by A2ν−1, B2ν−1, A1−ν X B1−ν

in (1.1), respectively, then we reach the following Theorem, complementary to the right
inequality in (1.1).

Theorem 2.2 Let A, B ∈ Pn, X ∈ Mn and ν �∈ [0, 1]. Then,

|||AX + X B||| ≤
∣∣∣∣∣∣
∣∣∣Aν X B1−ν + A1−ν X Bν

∣∣∣∣∣∣
∣∣∣ .

In the next theorem, we show a reverse of (1.2). First, we need the following lemma.

Lemma 2.3 Let a, b > 0 and ν �∈ [ 1
2 , 1]. Then,

(i) νa + (1 − ν)b + (ν − 1)(
√

a − √
b)2 ≤ aνb1−ν

(ii) (a + b) + 2(ν − 1)(
√

a − √
b)2 ≤ aνb1−ν + bνa1−ν

(iii) (a + b)2 + 2(ν − 1)(a − b)2 ≤ (aνb1−ν + bνa1−ν)2.

Proof Let a, b > 0 and ν �∈
[

1
2 , 1

]
.

(i) By inequality (2.2),

νa + (1 − ν)b + (ν − 1)(
√

a − √
b)2 = (2 − 2ν)

√
ab + (2ν − 1)a

≤ (
√

ab)2−2νa2ν−1 = aνb1−ν .

(ii) It can be proved in a similar fashion as (ii).
(iii) It follows from (ii) by replacing a by a2 and b by b2. �

Theorem 2.4 Suppose that A, B ∈ Pn, X ∈ Mn and ν > 1. Then,

‖AX + X B‖2
2 + 2(ν − 1)‖AX − X B‖2

2 ≤ ‖Aν X B1−ν + A1−ν X Bν‖2
2 .

Proof By the spectral decomposition [13, Theorem 3.4], there are unitary matrices U,

V ∈ Mn such that A = U�U∗ and B = V �V ∗, where � = diag(λ1, λ2, · · · , λn),
� = diag(γ1, γ2, · · · , γn), and λ j , γ j ( j = 1, · · · , n) are eigenvalues of A and B, respec-
tively. These numbers are positive. If Z = U∗ X V = [

zi j
]
, then

AX + X B = U
(
�Z + Z�

)
V ∗ = U

[(
λi + γ j

)
zi j

]
V ∗, (2.3)

AX − X B = U�U∗ X − X V �V ∗ = U
[
�Z − Z�

]
V ∗ = U

[(
λi − γ j

)
zi j

]
V ∗ (2.4)
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Linear and Multilinear Algebra 5

and

Aν X B1−ν + A1−ν X Bν = U�νU∗ X V �1−νV ∗ + U�1−νU∗ X V �νV ∗

= U�ν Z�1−νV ∗ + U�1−ν Z�νV ∗

= U
[
�ν Z�1−ν + �1−ν Z�ν

]
V ∗

= U
[(

λν
i γ

1−ν
j + λ1−ν

i γ ν
j

)
zi j

]
V ∗. (2.5)

It follows from (2.3), (2.3) and (2.5) that

‖AX + X B‖2
2 + 2(ν − 1)‖AX − X B‖2

2

=
n∑

i, j=1

(
λi + γ j

)2|zi j |2 + 2(ν − 1)

n∑
i, j=1

(
λi − μ j

)2|zi j |2

≤
n∑

i, j=1

(
λν

i γ
1−ν
j + λ1−ν

i γ ν
j

)2|zi j |2 (by Lemma 2.3 (iii))

= ‖Aν X B1−ν + A1−ν X Bν‖2
2.

�

Remark 2.5 Utilizing Lemma 2.3, one can easily see that Theorem 2.4 holds for ν < 1
2 .

The case ν < 1
2 is not interesting since the left-hand side is less precise than the left-hand

side of Theorem 2.2, but the case of 0 ≤ ν ≤ 1
2 coincides with inequality (1.3).

Theorem 2.4 yields the next two corollaries.

Corollary 2.6 Suppose that A, B ∈ Pn, X ∈ Mn and ν > 1. Then,

‖AX + X B‖2 = ‖Aν X B1−ν + A1−ν X Bν‖2

if and only if AX = X B.

Proof If AX = X B, then Aν X = X Bν and A1−ν X = X B1−ν . Hence,

‖Aν X B1−ν + A1−ν X Bν‖2 = ‖Aν A1−ν X + X B1−ν Bν‖2 = ‖AX + X B‖2.

Conversely, assume that ‖AX + X B‖2 = ‖Aν X B1−ν + A1−ν X Bν‖2. It follows from
Theorem 2.4 that ‖AX − X B‖2 = 0. Thus AX = X B. �

Corollary 2.7 Let A, B ∈ Pn and ν > 1. Then,

s j (A + B) = s j (Aν B1−ν + A1−ν Bν) ( j = 1, 2, · · · , n)

if and only if A = B.

Proof If A = B, then A + B = Aν B1−ν + A1−ν Bν . Conversely, assume that s j (A +
B) = s j (Aν B1−ν + A1−ν Bν) ( j = 1, 2, · · · , n). Then, ‖AX + X B‖2 = ‖Aν X B1−ν +
A1−ν X Bν‖2. It follows from Corollary 2.6 that A = B. �
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6 M. Bakherad and M.S. Moslehian

3. A reverse of the Heinz inequality for operators

In this section, we obtain a reverse of the Heinz inequality for two positive invertible
operators as well as some other operator inequalities.

In [14], the authors investigated an operator version of the classical Heinz mean, i.e. the
operator

Hν(A, B) = A�ν B + A�1−ν B

2
, (3.1)

where A, B ∈ B(H )++, and ν ∈ [0, 1]. As in the real case, this mean interpolates between
arithmetic and geometric mean, that is,

A� B ≤ Hν(A, B) ≤ A∇ B.

On the other hand, since A, B ∈ B(H )++, the expression (3.1) is also well defined for
ν �∈ [0, 1]. Using inequality (2.2) and the functional calculus for A

−1
2 B A

−1
2 we get the

following result.

H1−ν(A, B) = A�1−ν B + A�ν B

2
≥ A∇1−ν B + A∇ν B

2
= A∇B, (3.2)

where A, B ∈ B(H )++ and ν �∈ [0, 1]. Applying Lemma 2.3 (ii), we have a refinement of
inequality (3.2).

Theorem 3.1 Let A, B ∈ B(H )++ and ν > 1. Then,

A∇B + 2(ν − 1)(A∇B − A�1/2 B) ≤ H1−ν(A, B) .

Proof By Lemma 2.3 (ii), we have 1+t
2 + 2(ν − 1)(t − 2

√
t + 1) ≤ t1−ν+tν

2 (t > 0).
Hence,

(1 + A− 1
2 B A− 1

2 )

2
+ 2(ν − 1)(A− 1

2 B A− 1
2 − 2(A− 1

2 B A− 1
2 )

1
2 + 1)

≤ (A− 1
2 B A− 1

2 )1−ν + (A− 1
2 B A− 1

2 )ν

2
. (3.3)

Multiplying A
1
2 by the both sides of (3.3) we get

A∇B + 2(ν − 1)(A∇B − A�1/2 B) ≤ A�1−ν B + A�ν B

2
= H1−ν(A, B) . �

Remark 3.2 Theorem 3.1 also holds for ν < 1
2 . The case when ν < 1

2 is not interesting,
since it is less precise than inequality (3.2), but the case of 0 ≤ ν ≤ 1

2 coincides with the
inequality at [14, Corollary 2].

Applying Theorem 3.1, we get immediately the following result.

Corollary 3.3 Let A, B ∈ B(H )++ and ν > 1. Then,

H1−ν(A, B) = A∇B

if and only if A = B.
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Linear and Multilinear Algebra 7

Applying Lemma 2.1 we get

a + a−1 ≤ aν + a−ν (a > 0, ν > 1).

Utilizing this inequality, the functional calculus for A ⊗ B−1 and the definition of the
Hadamard product we get the following result.

Proposition 3.4 Let A, B ∈ B(H )++ and ν > 1. Then,

(i) A ⊗ B−1 + A−1 ⊗ B ≤ Aν ⊗ B−ν + A−ν ⊗ Bν

(ii) A ◦ B−1 + A−1 ◦ B ≤ Aν ◦ B−ν + A−ν ◦ Bν .

4. Some Heinz-type inequality related to Hadamard product

In this section, using some ideas of [15] and [11], we show some Heinz-type inequalities.

Lemma 4.1 [16, Theorem 1.1.3] Let A, B ∈ Pn and X ∈ Mn. Then, the block matrix(
A X

X∗ B

)
is positive semidefinite if and only if A ≥ X B−1 X∗.

Theorem 4.2 The two variables function

H(s, t) = A1+s ⊗ B1−t + A1−s ⊗ B1+t

is convex on [−1, 1] × [−1, 1] and attains its minimum at (0, 0) for all A, B ∈ Pn.

Proof Since H is continuous, it is enough to prove

H(s1, t1) ≤ 1

2
(H(s1 + s2, t1 + t2) + H(s1 − s2, t1 − t2))

for all s1 ±s2, t1 ± t2 ∈ [0, 1]; see [11]. For A, B ∈ Pn and s1 ±s2, t1 ± t2 ∈ [0, 1] it follows

from Lemma 4.1 that the matrices

(
A1+s1+s2 A1+s1

A1+s1 A1+(s1−s2)

)
,

(
A1−(s1+s2) A1−s1

A1−s1 A1−(s1−s2)

)
,(

B1+t1+t2 B1+t1

B1−t1 B1+(t1−t2)

)
and

(
B1−(t1+t2) B1−t1

B1−t1 B1−(t1−t2)

)
are positive semidefinite. Hence,

the matrices

X =
(

A1+s1+s2 ⊗ B1−(t1+t2) + A1−(s1+s2) ⊗ B1+t1+t2 A1+s1 ⊗ B1−t1 + A1−s1 ⊗ B1+t1

A1+s1 ⊗ B1−t1 + A1−s1 ⊗ B1+t1 A1+(s1−s2) ⊗ B1+(t1−t2) + A1−(s1−s2) ⊗ B1−(t1−t2)

)

is positive semidefinite. Similarly,

Y =
(

A1+(s1−s2) ⊗ B1+(t1−t2) + A1−(s1−s2) ⊗ B1−(t1−t2) A1+s1 ⊗ B1−t1 + A1−s1 ⊗ B1+t1

A1+s1 ⊗ B1−t1 + A1−s1 ⊗ B1+t1 A1+s1+s2 ⊗ B1−(t1+t2) + A1−(s1+s2) ⊗ B1+t1+t2

)

is positive semidefinite. Thus,

X + Y =
(

H(s1 + s2, t1 + t2) + H(s1 − s2, t1 − t2) 2H(s1, t1)
2H(s1, t2) H(s1 + s2, t1 + t2) + H(s1 − s2, t1 − t2)

)

is positive semidefinite and therefore(
In −In

0 0

)
(X + Y )

(
In 0

−In 0

)
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8 M. Bakherad and M.S. Moslehian

is positive semidefinite. Hence, H(s1 + s2, t1 + t2) + H(s1 − s2, t1 − t2) − 2H(s1, t1) ≥ 0,
which proves the convexity of H . Further note that H(s, t) = H(−s,−t), s, t ∈ [0, 1].
This together with the convexity of H imply that H attains its minimum at (0, 0). �

If in Theorem 4.2 we replace s, t , A, B by 2s − 1, 2t − 1, A
1
2 , B

1
2 , respectively, we

reach the following result.

Corollary 4.3 The two variable’s function

K (s, t) = As ◦ B1−t + A1−s ◦ Bt (A, B ∈ Pn)

is convex on [0, 1] × [0, 1] and attains its minimum at ( 1
2 , 1

2 ).

Singh and Aujla [15] showed that

2|||A 1
2 ◦ B

1
2 ||| ≤ |||At ◦ B1−t + A1−t ◦ Bt ||| ≤ |||A + B|||,

where A, B ∈ Pn and t ∈ [0, 1]. Now, we are ready to state our last result.

Corollary 4.4 Let A, B ∈ Pn and s, t ∈ [0, 1]. Then,

2|||A 1
2 ◦ B

1
2 ||| ≤ |||As ◦ B1−t + A1−s ◦ Bt ||| ≤ max{|||(A + B) ◦ I |||, |||(A ◦ B) + I |||}.

Proof Let K (s, t) = As ◦ B1−t + A1−s ◦ Bt . If we put G(s, t) = |||K (s, t)|||, then by the
convexity of K and Fan Dominance Theorem [16, p.58] (see also [17]), the function G is
convex on [0, 1]×[0, 1], and attains minimum at ( 1

2 , 1
2 ). Hence, we have the first inequality.

In addition, since the function G is continuous and convex on [0, 1] × [0, 1], it follows that
G attains its maximum at the vertices of the square. Moreover, due to the symmetry there
are only two possibilities for the maximum. �
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