Quantum Mechanics

- Chapter 2

Differential Equations

Ordinary differential equations Partial differential equations
$y^{\prime \prime \prime}+2 x\left(y^{\prime}\right)^{2}+\sin x \cos y=3 e^{x}$
Third order

Linear differential equation
$A_{n}(x) y^{(n)}+A_{n-1}(x) y^{(n-1)}+\cdots+A_{1}(x) y^{\prime}+A_{0}(x) y=g(x)$
$g(x)=0$ Homogeneous; otherwise it is inhomogeneous

Linear homogeneous differential equation
$y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$

Differential Equations

$$
\begin{aligned}
& y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 \\
& \mathrm{y}_{1}, \mathrm{y}_{2} \quad \text { solutions } \\
& \begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \quad \text { General solution } \\
& \\
& c_{1} y_{1}^{\prime \prime}+c_{2} y_{2}^{\prime \prime}+P(x) c_{1} y_{1}^{\prime}+P(x) c_{2} y_{2}^{\prime}+Q(x) c_{1} y_{1}+Q(x) c_{2} y_{2} \\
&=c_{1}\left[y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}\right]+c_{2}\left[y_{2}^{\prime \prime}+P(x) y_{2}^{\prime}+Q(x) y_{2}\right] \\
&=c_{1} \cdot 0+c_{2} \cdot 0=0
\end{aligned}
\end{aligned}
$$

Differential Equations

Linear homogeneous second order differential equation with constant coefficients

$$
\begin{gathered}
y^{\prime \prime}+p y^{\prime}+q y=0 \\
y=e^{s x} . \quad \longrightarrow \begin{array}{r}
s^{2} e^{s x}+p s e^{s x}+q e^{s x}=0 \\
s^{2}+p s+q=0
\end{array} \quad \text { Auxiliary equation } \\
y_{1}=e^{s 1 x} \quad y_{2}=e^{s 2 x} \\
y=c_{1} e^{s_{1} x}+c_{2} e^{s_{2} x}
\end{gathered}
$$

particle in a one-dimensional

box

 - 00

Potential energy function $\mathbf{V}(\mathrm{x})$ for the particle in a one-dimensional box boundary conditions $\begin{cases}V(x)=0 & \text { when } 0<x<1 \\ V(x)=\infty & \text { elsewhere }\end{cases}$

particle in a one-dimensional

 boxSchrödinger equation for regions I and III: $\mathbf{V}(\mathrm{x})=\infty$

$$
\begin{aligned}
& \frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+\infty \psi(x)=E \psi(x) \\
& \frac{\partial^{2} \psi(x)}{\partial x^{2}}+\frac{2 m}{\hbar}(E-\infty) \psi(x)=0
\end{aligned}
$$

Neglecting E in comparison with ∞

$$
\begin{aligned}
& \frac{\partial^{2} \psi(x)}{\partial x^{2}}=\infty \psi(x) \\
& \frac{\partial^{2} \psi(x)}{\partial x^{2}} \frac{1}{\infty}=\psi(x)
\end{aligned}
$$

We conclude that $\psi(x)$ is zero outside the box:

$$
\psi_{I}(\mathbf{x})=\psi_{I I I}(\mathbf{x})=\mathbf{0}
$$

particle in a one-dimensional

box

For region II (inside the box): V(x) = 0

$$
\frac{\partial^{2} \psi(x)}{\partial x^{2}}+\frac{2 m}{\hbar^{2}} E \psi(x)=0
$$

where, $m=$ mass of the particle, and E is a total energy
a linear homogeneous second-order differential equation with constant coefficients

$$
\begin{aligned}
& Y^{\prime \prime}+p y^{\prime}+q y=0 \quad \longrightarrow \quad s^{2}+p s+q=0 \\
& y_{1}=e^{s 1 x} \quad y_{2}=e^{s 2 x}
\end{aligned}
$$

The general solution is: $y=C_{1} e^{s 1 x}+C_{2} e^{s 2 x}$

particle in a one-dimensional

 box
$\psi_{I I}=c_{1} e^{i(2 m E)^{1 / 2} x / \hbar}+c_{2} e^{-i(2 m E)^{1 / 2} x / \hbar}$

Let: $\quad \theta=(2 m E)^{1 / 2} x / \hbar$
$\psi(x)=c_{1} e^{i \theta}+c_{2} e^{-i \theta}$

particle in a one-dimensional

 box$$
\begin{aligned}
& \psi_{I I}(x)=c_{1} e^{i \theta}+c_{2} e^{-i \theta} \\
& e^{i \theta}=\cos \theta+i \sin \theta \\
& e^{-i \theta}=\cos (-\theta)+i \sin (-\theta)=\cos \theta-i \sin \theta \\
& \psi_{I I}(x)=c_{1} \cos \theta+i c_{1} \sin \theta+c_{2} \cos \theta-i c_{2} \sin \theta \\
& \psi_{I I}(x)=\left(c_{1}+c_{2}\right) \cos \theta+\left(i c_{1}-i c_{2}\right) \sin \theta \\
& \psi_{I I}(x)=A \cos \theta+B \sin \theta
\end{aligned}
$$

A and B are new arbitrary constants

particle in a one-dimensional

 box$$
\begin{aligned}
& \psi_{I I}(x)=A \cos \left[\hbar^{-1}(2 m E)^{1 / 2} x\right]+B \sin \left[\hbar^{-1}(2 m E)^{1 / 2} x\right] \\
& \psi_{I I}(x)=A \cos \sqrt{\frac{2 m E}{\hbar^{2}}} x+B \sin \sqrt{\frac{2 m E}{\hbar^{2}}} x
\end{aligned}
$$

Now we determine A and B by applying boundary conditions.

particle in a one-dimensional

box

It seems reasonable to postulate that the wave function will be continuous.

If $\boldsymbol{\Psi}(x)$ is to be continuous at the point $\mathbf{x = 0}$

$$
\begin{aligned}
& \lim _{x-0} \psi(x)=0 \\
& \lim _{x-0}\left[A \cos \sqrt{\frac{2 m E}{\hbar^{2}}} x+B \sin \sqrt{\frac{2 m E}{\hbar^{2}}} x\right]=0 \\
& A \cos \sqrt{\frac{2 m E}{\hbar^{2}}}(0)+B \sin \sqrt{\frac{2 m E}{\hbar^{2}}}(0)=0 \\
& A \cos \sqrt{\frac{2 m E}{\hbar^{2}}}(0)=0 \\
& A=0
\end{aligned}
$$

particle in a one-dimensional

 box$\psi(x)=B \sin \sqrt{\frac{2 m E}{\hbar^{2}}} x$

If $\boldsymbol{\Psi}(x)$ is to be continuous at the point $x=1$
$\lim _{x \rightarrow l} \psi(x)=0$
$\lim _{x \rightarrow l}\left[B \sin \sqrt{\frac{2 m E}{\hbar^{2}}} x\right]=0$
$B \sin \sqrt{\frac{2 m E}{\hbar^{2}}}(l)=0$
B cannot be zero because this would make the wave function zero everywhere.

particle in a one-dimensional

 box$$
\begin{aligned}
& \sin \sqrt{\frac{2 m E}{\hbar^{2}}} l=0 \\
& \sqrt{\frac{2 m E}{\hbar^{2}}} l= \pm n \pi \quad, \quad n=1,2, \ldots
\end{aligned}
$$

We must reject the value zero for n, which makes $E=0$. why?

$$
E=n^{2} \frac{h^{2}}{8 m l^{2}} \quad, n=1,2, \ldots \quad \begin{array}{r}
\text { Ground state } \mathrm{n}=1 \\
\text { Exited state } \mathrm{n}>1
\end{array}
$$

Application of boundary conditions has forced us to the conclusion that the values of the energy are quantized.

particle in a one-dimensional

 box$E=n^{2} \frac{h^{2}}{8 m l^{2}} \quad, n=1,2, \ldots$
$\frac{E}{h^{2}}=n^{2}$
$\overline{8 m l^{2}}$

Example:

A particle of mass $2.00 \times 10^{-26} \mathrm{~g}$ is in a one-dimensional box of length 4.00 nm . Find the frequency and wavelength of the photon emitted when this particle goes from the $\mathrm{n}=3$ to the $\mathrm{n}=2$ level.

By conservation of energy,

$$
\begin{aligned}
h \nu & =E_{\text {upper }}-E_{\text {lower }}=n_{u}^{2} h^{2} / 8 m l^{2}-n_{l}^{2} h^{2} / 8 m l^{2} \\
\nu & =\frac{\left(n_{u}^{2}-n_{l}^{2}\right) h}{8 m l^{2}}=\frac{\left(3^{2}-2^{2}\right)\left(6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)}{8\left(2.00 \times 10^{-29} \mathrm{~kg}\right)\left(4.00 \times 10^{-9} \mathrm{~m}\right)^{2}}=1.29 \times 10^{12} \mathrm{~s}^{-1} \\
\lambda & =2.32 \times 10^{-4} \mathrm{~m}
\end{aligned}
$$

particle in a one-dimensional

$$
\begin{aligned}
& \psi(x)=B \sin \sqrt{\frac{2 m E}{\hbar^{2}}} x \\
& \sqrt{\frac{2 m E}{\hbar^{2}}} l= \pm n \pi \\
& \psi(x)=B \sin \left(\frac{n \pi x}{l}\right) \quad \mathbf{n}=\mathbf{1}, \mathbf{2}, 3, \ldots
\end{aligned}
$$

The constant B is still arbitrary. To fix its value, we use the normalization requirement:

particle in a one-dimensional

 box$$
\begin{aligned}
& \int_{-\infty}^{+\infty}|\psi(x)|^{2} \partial x=1 \\
& \int_{-\infty}^{a}|\psi(x)|^{2} d x+\int_{0}^{l}|\psi(x)|^{2} d x+\int_{l}^{\infty}|\psi(x)|^{2} d x=1 \\
& |B|^{2} \int_{0}^{l} \sin ^{2}\left(\frac{n \pi x}{l}\right) d x=1=|B|^{2} l / 2 \\
& |B|=\sqrt{\frac{2}{l}} \quad(2 / l)^{1 / 2} \mathrm{e}^{\mathbf{i} \alpha}
\end{aligned}
$$

Note that we have determined only the absolute value of B.

$$
\psi_{I I}(x)=\sqrt{\frac{2}{l}} \sin \left(\frac{n \pi x}{l}\right)
$$

particle in a one-dimensional

 boxTo explain this:

$$
\begin{aligned}
& \cos ^{2} \theta+\sin ^{2} \theta=1 \\
& \cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta
\end{aligned}
$$

By summation

$$
2 \cos ^{2} \theta=\cos 2 \theta+1
$$

By subtraction

$$
2 \sin ^{2} \theta=1-\cos 2 \theta \quad \sin ^{2} \theta=(1-\cos 2 \theta) / 2
$$

particle in a one-dimensional

 box$$
\begin{aligned}
& \int_{0}^{l} \sin ^{2}\left(\frac{n \pi x}{l}\right) d x=\frac{1}{2} \int_{0}^{l} 2 \sin ^{2}\left(\frac{n \pi x}{l}\right) d x \\
& =\frac{1}{2} \int_{0}^{l}\left(1-\cos \frac{2 n \pi x}{l}\right) d x \\
& =\frac{1}{2} \int_{0}^{l} d x-\frac{1}{2} \int_{0}^{l} \cos \frac{2 n \pi x}{l} d x \\
& =\left.\frac{1}{2} x\right|_{0} ^{l}-\frac{l}{4 n \pi} \int_{0}^{l} \cos \frac{2 n \pi x}{l} d \frac{2 n \pi x}{l} \\
& =\frac{1}{2} l-\left.\frac{l}{4 n \pi} \sin \frac{2 n \pi x}{l}\right|_{0} ^{l}=\frac{1}{2} l-\frac{l}{4 n \pi}[\sin 2 n \pi-\sin 0]=\frac{1}{2} l
\end{aligned}
$$

particle in a one-dimensional box

$$
\psi_{I I}(x)=\sqrt{\frac{2}{l}} \sin \left(\frac{n \pi x}{l}\right) \quad\left|\psi_{I I}(x)\right|^{2}=\psi_{I I} \psi_{I I}^{*}=\frac{2}{l}\left(\sin \left(\frac{n \pi x}{l}\right)\right)^{2}
$$

particle in a one-dimensional box

Graph of $\Psi_{\mathrm{n}}{ }^{2}(\mathrm{x}) /\left[\Psi_{1}{ }^{2}(\mathrm{x})\right]_{\text {max }}$

Bohr correspondence principle
Result of Q.M 'approach' to the C.M when classical limit

Exercise:

- For particle in a box show:

$$
\begin{array}{ll}
\int_{-\infty}^{\infty} \psi_{i}^{*} \psi_{j} d x=1 & \text { if } i=j \\
\int_{-\infty}^{\infty} \psi_{i}^{*} \psi_{j} d x=0, & i \neq j
\end{array}
$$

Example:

Find the probability of finding the particle in the first tenth (from 0 to $\mathrm{L} / 10$) of the box for $\mathrm{n}=1,2$, and 3 states.

Solution: The wavefunction is given by:

$$
\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)
$$

To find the probability in a region, the probability density must be integrated over that region of space.

$$
\begin{gathered}
P_{n}=\int_{0}^{L / 10}\left[\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)\right]\left[\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)\right] d x=\frac{2}{L} \int_{0}^{L / 10} \sin ^{2}\left(\frac{n \pi x}{L}\right) d x \\
\quad \int \sin ^{2}(c x) d x=\frac{x}{2}-\left(\frac{1}{4 c}\right) \sin (2 c x) \\
P_{n}=\frac{2}{L}\left[\frac{L}{20}-\left(\frac{L}{4 n \pi}\right) \sin \left(\frac{2 n \pi}{10}\right)\right]=\left[\frac{1}{10}-\left(\frac{1}{2 n \pi}\right) \sin \left(\frac{n \pi}{5}\right)\right]
\end{gathered}
$$

For $\mathrm{n}=1: P_{1}=\frac{1}{10}-\frac{1}{2 \pi} \sin \left(\frac{\pi}{5}\right) \cong 0.0064$
For $\mathrm{n}=2: P_{2}=\frac{1}{10}-\frac{1}{4 \pi} \sin \left(\frac{2 \pi}{5}\right) \cong 0.024$
For $\mathrm{n}=3: P_{3}=\frac{1}{10}-\frac{1}{6 \pi} \sin \left(\frac{3 \pi}{5}\right) \cong 0.050$

Exercise:

For the particle in a one-dimensional box of length I, we could have put the coordinate origin at the center of the box. Find the wave functions and energy levels for this choice of origin.

The free particle in one dimension

$$
\mathrm{F}=0 \rightarrow \mathrm{~V}=\mathrm{cte}
$$

$\mathrm{V}(\mathrm{x})=0$
$\frac{d^{2} \psi}{d x^{2}}+\frac{2 m}{\hbar^{2}} E \psi=0$
$\psi=c_{1} e^{i(2 m E)^{1 / 2} x / \hbar}+c_{2} e^{-i(2 m E)^{1 / 2} x / \hbar}$
It seems reasonable to postulate that ψ will remain finite as x goes to $\pm \infty$.

$$
\text { For } E<0 \text { : }
$$

$i(2 m E)^{1 / 2}=i(-2 m|E|)^{1 / 2}=i \cdot i \cdot(2 m|E|)^{1 / 2}=-(2 m|E|)^{1 / 2}$

$$
E \geq 0
$$

Particle in a rectangular well

$$
\begin{aligned}
& V=V_{0} \quad \text { for } x<0, \\
& V=0 \text { for } 0 \leq x \leq 1 \\
& V=V_{0} \text { for } x>I
\end{aligned}
$$

Particle in a rectangular well

$$
\begin{gathered}
E<V_{0} \\
d^{2} \psi / d x^{2}+\left(2 m / \hbar^{2}\right)\left(E-V_{0}\right) \check{\psi}=0 \\
s^{2}+\left(2 m / \hbar^{2}\right)\left(E-V_{0}\right)=0 \\
s= \pm\left(2 m / \hbar^{2}\right)^{1 / 2}\left(V_{0}-E\right)^{1 / 2} \\
\psi_{\mathrm{I}}=C \exp \left[\left(2 m / \hbar^{2}\right)^{1 / 2}\left(V_{0}-E\right)^{1 / 2} x\right]+D \exp \left[-\left(2 m / \hbar^{2}\right)^{1 / 2}\left(V_{0}-E\right)^{1 / 2} x\right] \\
\psi_{\text {III }}=F \exp \left[\left(2 m / \hbar^{2}\right)^{1 / 2}\left(V_{0}-E\right)^{1 / 2} x\right]+G \exp \left[-\left(2 m / \hbar^{2}\right)^{1 / 2}\left(V_{0}-E\right)^{1 / 2} x\right] \\
x \rightarrow-\infty \quad \quad D=0 \\
x \rightarrow+\infty \quad \quad F=0
\end{gathered}
$$

Particle in a rectangular well

$\psi_{\mathrm{I}}=C \exp \left[\left(2 m / \hbar^{2}\right)^{1 / 2}\left(V_{0}-E\right)^{1 / 2} x\right]$
$\psi_{\mathrm{III}}=G \exp \left[-\left(2 m / \hbar^{2}\right)^{1 / 2}\left(V_{0}-E\right)^{1 / 2} x\right]$

In region II, $V=0$
$\psi_{\mathrm{II}}=A \cos \left[\left(2 m / \hbar^{2}\right)^{1 / 2} E^{1 / 2} x\right]+B \sin \left[\left(2 m / \hbar^{2}\right)^{1 / 2} E^{1 / 2} x\right]$

Particle in a rectangular well

\(\left.\begin{array}{ll}\psi_{\mathbf{I}}(0)=\psi_{\mathrm{II}}(0) \& x=0

\psi_{\mathrm{II}}(l)=\psi_{\mathrm{III}}(l) \& x=l

d \psi_{\mathrm{I}} / d x=d \psi_{\mathrm{II}} / d x \& x=0

d \psi_{\mathrm{II}} / d x=d \psi_{\mathrm{III}} / d x \& x=l\end{array}\right\} \rightarrow\)| if d $/ d \mathrm{dx}$ change |
| :--- |
| discontinuous |
| at a point the |
| $\mathrm{d}^{2} \psi / \mathrm{c}^{2}$ would |
| infinite at that |
| $\mathrm{d}^{2} \psi / \mathrm{dx}=(2 \mathrm{~m}$ |
| does not cont |
| infinite on the |

Particle in a rectangular well

$$
\begin{aligned}
& \psi_{\mathrm{II}}^{\prime}(l)=\psi_{\mathrm{III}}^{\prime}(l) \\
& \psi_{\mathrm{II}}(l)=\psi_{\mathrm{III}}(l) \\
& \quad\left(2 E-V_{0}\right) \sin \left[(2 m E)^{1 / 2} l / \hbar\right]=2\left(V_{0} E-E^{2}\right)^{1 / 2} \cos \left[(2 m E)^{1 / 2} l / \hbar\right] \\
& \varepsilon \equiv E / V_{0} \quad b \equiv\left(2 m V_{0}\right)^{1 / 2} l / \hbar \\
& \quad(2 \varepsilon-1) \sin \left(b \varepsilon^{1 / 2}\right)-2\left(\varepsilon-\varepsilon^{2}\right)^{1 / 2} \cos \left(b \varepsilon^{1 / 2}\right)=0
\end{aligned}
$$

Graphical solution of the equation $\tan (2 \pi L \sqrt{ } 2 m E / h)=\sqrt{ } E / \sqrt{ } U-E$. Here $\mathrm{L}=2.50 \mathrm{~nm}, \mathrm{~m}=9.11 \times 10-31 \mathrm{~kg}, \mathrm{U}=1 \mathrm{eV}=16.02 \times 10-20 \mathrm{~J}$.
Intersections occur at $\mathrm{E}=0.828 \times 10-20 \mathrm{~J}, 3.30 \times 10-20 \mathrm{~J}, 7.36 \times 10-20 \mathrm{~J}$ and $12.8 \times 10-20 \mathrm{~J}$.

Particle in a rectangular well

$N-1<b / \pi \leq N$
$b \equiv\left(2 m V_{0}\right)^{1 / 2} l / \hbar$
$V_{0}=h^{2} / m l^{2}$
$b / \pi=2\left(2^{1 / 2}\right)=2.83$
$N=3$
bound states when $\mathrm{E}<\mathrm{V}_{0}$

unbound states when $E>V_{0}$
\checkmark For $\mathrm{E}>\mathrm{V}_{0},\left(\mathrm{~V}_{0}-\mathrm{E}\right)^{1 / 2}$ is imaginary \rightarrow all energies above V_{0} are allowed.
\checkmark A state in which $\psi \rightarrow 0$ as $x \rightarrow \infty$ and as $x \rightarrow-\infty$ is called a bound state.
\checkmark For an unbound state, ψ does not go to zero as $x \rightarrow \pm \infty$ and is not normalizable.
\checkmark For the particle in a rectangular well, states with $\mathrm{E}<\mathrm{V}_{0}$ are bound and states with $\mathrm{E}>\mathrm{V}_{0}$ are unbound.
\checkmark For the particle in a box with infinitely high walls, all states are bound.
\checkmark For the free particle, all states are unbound.

Tunneling

Tunneling: the penetration of a particle into a classically forbidden region or the passage of a particle through a potentialenergy barrier whose height exceeds the particle's energy.

\checkmark The emission of alpha particles from a radioactive nucleus
\checkmark The inversion of the NH_{3} pyramidal molecule
\checkmark Internal rotation in $\mathrm{CH}_{3} \mathrm{CH}_{3}$
\checkmark Tunneling of electrons in oxidation-reduction reactions
\checkmark The scanning tunneling microscope (STM)

Tunneling

Potential energy barrier of height V_{0} and width a .

$$
\begin{aligned}
V(x) & =V_{0}, & & 0 \leqslant x \leqslant a \\
& =0, & & x<0, \quad x>a
\end{aligned}
$$

Tunneling

$$
\begin{aligned}
& T=16 \varepsilon(1-\varepsilon) e^{-2 l / D} \quad \text { The transmission coefficient } \\
& \varepsilon=\frac{E}{V_{0}} \\
& D=\frac{\hbar}{\left\{2 m\left(V_{0}-E\right)\right\}^{1 / 2}}
\end{aligned}
$$

