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Quantum Mechanics

 Chapter 2

Ira N. Levine, Quantum Chemistry

Differential Equations

Ordinary differential equations Partial differential equations

Third order

Linear differential equation

Linear homogeneous differential equation

g(x) = 0 Homogeneous; otherwise it is inhomogeneous
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General solution

solutions2       y, 1y

Differential Equations

Differential Equations

Linear homogeneous second order differential equation 
with constant coefficients

Auxiliary equation
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dimensional -particle in a one
box

Potential energy function V(x) for the particle in a one-dimensional box

V(x) = 0 when 0 < x < l         

V(x) = ∞      elsewhere



boundary conditions

dimensional -particle in a one
box
Schrödinger equation for regions I and III:  V(x) = ∞ 
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Neglecting E in comparison with ∞

We conclude that (x) is zero outside the box:

0x) = (IIIx) = (I
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dimensional -particle in a one
box

For region II (inside the box):   V(x) = 0 
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where, m = mass of the particle, and E is a total energy

a linear homogeneous second-order differential equation with 
constant coefficients 

Y’’ + py’ + qy = 0

The general solution is: y = C1 es1x + C2 es2x

0q = ps + + 2s

x1se= 1y x2se= 2y
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dimensional -particle in a one
box
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A and B are new arbitrary constants 

dimensional -particle in a one
box

 sincos)sin()cos( iie i 

])2(sin[])2(cos[)( 2
112

11 xmEBxmEAxII
  

x
mE

Bx
mE

AxII 22

2
sin

2
cos)(




Now we determine A and B by applying boundary conditions. 

dimensional -particle in a one
box
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If Ψ(x) is to be continuous at the point x=0
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dimensional -particle in a one
box

It seems reasonable to postulate that the wave function will 
be continuous.
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If Ψ(x) is to be continuous at the point x=l
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B cannot be zero because this would make the wave function 
zero everywhere. 

dimensional -particle in a one
box
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We must reject the value zero for n, which makes E = 0. why? 
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Application of boundary conditions has forced us to the conclusion 
that the values of the energy are quantized. 

dimensional -particle in a one
box

Ground state   n = 1

Exited state   n > 1
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dimensional -particle in a one
box
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Example:

A particle of mass 2.00 X 10-26 g is in a one-dimensional box of 
length 4.00 nm. Find the frequency and wavelength of the photon 
emitted when this particle goes from the n = 3 to the n = 2 level. 

By conservation of energy, 
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The constant B is still arbitrary.  To fix its value, we use the 
normalization requirement: 

dimensional -particle in a one
box

?
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dimensional -particle in a one
box

ie2/1l)/2(

Note that we have determined only the absolute value of B.
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To explain this: 
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By subtraction 
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dimensional -particle in a one
box
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dimensional -particle in a one
box

dimensional box-particle in a one
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dimensional -particle in a one
box

Graph of ψn
2(x) / [ψ1

2(x)]max

Bohr correspondence principle
Result of Q.M ‘approach’ to the C.M when classical limit
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Exercise: 

 For particle in a box show: 

Example: 
Find the probability of finding the particle in the first 
tenth (from 0 to L/10 ) of the box for n  = 1, 2, and 3 
states.

Solution: The wavefunction is given by:

To find the probability in a region, the probability 
density must be integrated over that region of 
space.
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Exercise:
For the particle in a one-dimensional box of length l, 
we could have put the coordinate origin at the center 
of the box. Find the wave functions and energy levels 
for this choice of origin. 

The free particle in one dimension

For     E < 0:

V(x) = 0

F = 0    V = cte

It seems reasonable to postulate that ψ will remain finite as x goes to ±. 
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Particle in a rectangular well

,,   0for x < 0VV = 

V = 0    for  0 ≤ x ≤ l  

lfor x > 0VV = 

Particle in a rectangular well
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Particle in a rectangular well

Particle in a rectangular well

G as a function of A

if d/dx changed 
discontinuously 
at a point then its derivative 
d2/dx2 would become 
infinite at that point. 
d2/dx2 = (2m/ħ2)(V - E)
does not contain anything 
infinite on the right
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Particle in a rectangular well

Graphical solution of the equation tan(2πL√2mE/h) =√E/√U −E. Here
L = 2.50 nm, m = 9.11 × 10−31 kg, U = 1 eV = 16.02 × 10−20 J. 
Intersections occur at E = 0.828×10−20 J, 3.30×10−20 J, 7.36×10−20 J 
and 12.8×10−20 J.
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Particle in a rectangular well

0 l

bound states when E < V0 unbound states when E > V0

 For E > V0, (V0 – E)1/2 is imaginary  all energies above V0 are 
allowed.

 A state in which   0 as x   and as x  - is called a bound 
state. 

 For an unbound state,  does not go to zero as x  ±  and is not 
normalizable. 

 For the particle in a rectangular well, states with E < V0 are bound 
and states with E > V0 are unbound. 

 For the particle in a box with infinitely high walls, all states are 
bound. 

 For the free particle, all states are unbound. 
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Tunneling
Tunneling: the penetration of a particle into a classically  
forbidden region or the passage of a particle through a potential-
energy barrier whose height exceeds the particle's energy.

 The emission of alpha particles from a radioactive nucleus
 The inversion of the NH3 pyramidal molecule
 Internal rotation in CH3CH3

 Tunneling of electrons in oxidation-reduction reactions
 The scanning tunneling microscope (STM)

classical equations 
E = T + V 

Tunneling

Potential energy barrier of height V0 and width a.



Univ. of Sistan and Baluchestan ٠۴/٠٢/١۴۴٠

Ali Ebrahimi ١٩

Tunneling
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 The transmission coefficient  


