Ira N. Levine, Quantum Chemistry



#### **Quantum Mechanics**

Chapter 2

### **Differential Equations**



**Ordinary differential equations** 

Partial differential equations

$$y''' + 2x(y')^2 + \sin x \cos y = 3e^x$$

Third order

Linear differential equation

$$A_n(x)y^{(n)} + A_{n-1}(x)y^{(n-1)} + \dots + A_1(x)y' + A_0(x)y = g(x)$$

g(x) = 0 Homogeneous; otherwise it is inhomogeneous

Linear homogeneous differential equation

$$y'' + P(x)y' + Q(x)y = 0$$

### **Differential Equations**



$$y'' + P(x)y' + Q(x)y = 0$$

 $y_1$ ,  $y_2$  solutions

$$y = c_1 y_1 + c_2 y_2$$
 General solution

$$c_1y_1'' + c_2y_2'' + P(x)c_1y_1' + P(x)c_2y_2' + Q(x)c_1y_1 + Q(x)c_2y_2$$

$$= c_1[y_1'' + P(x)y_1' + Q(x)y_1] + c_2[y_2'' + P(x)y_2' + Q(x)y_2]$$

$$= c_1 \cdot 0 + c_2 \cdot 0 = 0$$

### **Differential Equations**



Linear homogeneous second order differential equation with constant coefficients

$$y'' + py' + qy = 0$$

$$y = e^{sx}$$
.  $\Rightarrow s^2 e^{sx} + pse^{sx} + qe^{sx} = 0$   
 $s^2 + ps + q = 0$  Auxiliary equation

$$y_1 = e^{s1x}$$
  $y_2 = e^{s2x}$   
 $y = c_1 e^{s_1 x} + c_2 e^{s_2 x}$ 

### <u>particle in a one-dimensional</u> <u>box</u>





Potential energy function V(x) for the particle in a one-dimensional box

boundary conditions 
$$\begin{cases} V(x) = 0 & \text{when } 0 < x < I \\ V(x) = \infty & \text{elsewhere} \end{cases}$$

# particle in a one-dimensional box



Schrödinger equation for regions I and III:  $V(x) = \infty$ 

$$\frac{-\hbar^{2}}{2m}\frac{\partial^{2}\psi(x)}{\partial x^{2}} + \infty \psi(x) = E \psi(x)$$

$$\frac{\partial^{2}\psi(x)}{\partial x^{2}} + \frac{2m}{\hbar}(E - \infty)\psi(x) = 0$$

Neglecting E in comparison with  $\infty$ 

$$\frac{\partial^{2} \psi(x)}{\partial x^{2}} = \infty \psi(x)$$

$$\frac{\partial^{2} \psi(x)}{\partial x^{2}} \frac{1}{\infty} = \psi(x)$$

We conclude that  $\psi(x)$  is zero outside the box:

$$\psi_{I}(x) = \psi_{III}(x) = 0$$



For region II (inside the box): V(x) = 0

$$\frac{\partial^2 \psi(x)}{\partial x^2} + \frac{2m}{\hbar^2} E \psi(x) = 0$$

where, m = mass of the particle, and E is a total energy

a linear homogeneous second-order differential equation with constant coefficients

$$Y'' + py' + qy = 0$$
  $\implies$   $s^2 + ps + q = 0$ 

$$y_1 = e^{s1x}$$
  $y_2 = e^{s2x}$ 

The general solution is:  $y = C_1 e^{s1x} + C_2 e^{s2x}$ 

### <u>particle in a one-dimensional</u> <u>box</u>



$$q = \frac{2m}{\hbar^2} E$$

$$s^2 + 2mE/\hbar^2 = 0 \qquad s^2 = (-2mE)/\hbar^2 \qquad s = \pm (-2mE)^{1/2}/\hbar$$

$$\psi_{II} = c_1 e^{i(2mE)^{1/2} x/\hbar} + c_2 e^{-i(2mE)^{1/2} x/\hbar}$$

Let: 
$$\theta = (2mE)^{\frac{1}{2}}x/\hbar$$

$$\psi(x) = c_1 e^{i\theta} + c_2 e^{-i\theta}$$



$$\psi_{II}(x) = c_1 e^{i\theta} + c_2 e^{-i\theta}$$

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$e^{-i\theta} = \cos(-\theta) + i\sin(-\theta) = \cos\theta - i\sin\theta$$

$$\psi_{II}(x) = c_1 \cos \theta + ic_1 \sin \theta + c_2 \cos \theta - ic_2 \sin \theta$$

$$\psi_{II}(x) = (c_1 + c_2)\cos\theta + (ic_1 - ic_2)\sin\theta$$

$$\psi_{II}(x) = A\cos\theta + B\sin\theta$$

A and B are new arbitrary constants

# particle in a one-dimensional box



$$\psi_{II}(x) = A\cos[\hbar^{-1}(2mE)^{\frac{1}{2}}x] + B\sin[\hbar^{-1}(2mE)^{\frac{1}{2}}x]$$

$$\psi_{II}(x) = A\cos\sqrt{\frac{2mE}{\hbar^2}} x + B\sin\sqrt{\frac{2mE}{\hbar^2}} x$$

Now we determine A and B by applying boundary conditions.

### <u>particle in a one-dimensional</u> <u>box</u>



It seems reasonable to **postulate** that the wave function will be continuous

If  $\Psi(x)$  is to be continuous at the point x=0

$$\lim_{x \to 0} \psi(x) = 0$$

$$\lim_{x \to 0} \left[ A \cos \sqrt{\frac{2mE}{\hbar^2}} x + B \sin \sqrt{\frac{2mE}{\hbar^2}} x \right] = 0$$

$$A \cos \sqrt{\frac{2mE}{\hbar^2}} (0) + B \sin \sqrt{\frac{2mE}{\hbar^2}} (0) = 0$$

$$A \cos \sqrt{\frac{2mE}{\hbar^2}} (0) = 0$$

$$A = 0$$

### <u>particle in a one-dimensional</u> <u>box</u>



$$\psi(x) = B \sin \sqrt{\frac{2mE}{\hbar^2}} x$$

If  $\Psi(x)$  is to be continuous at the point x=1

$$\lim_{x \to l} \psi(x) = 0$$

$$\lim_{x \to l} [B \sin \sqrt{\frac{2mE}{\hbar^2}} x] = 0$$

$$B\sin\sqrt{\frac{2mE}{\hbar^2}}(l) = 0$$

B cannot be zero because this would make the wave function zero everywhere.



$$\sin \sqrt{\frac{2mE}{\hbar^2}} l = 0$$

$$\sqrt{\frac{2mE}{\hbar^2}} l = \pm n\pi \quad , \quad n = 1, 2, \dots$$

We must reject the value zero for n, which makes E = 0. why?

$$E=n^2 \frac{h^2}{8ml^2}$$
 ,  $n=1,2,...$  Ground state  $n=1$  Exited state  $n>1$ 

Application of boundary conditions has forced us to the conclusion that the values of the energy are quantized.

# particle in a one-dimensional box



$$E = n^2 \frac{h^2}{8ml^2}$$
,  $n = 1, 2, ...$   
$$\frac{E}{\frac{h^2}{8ml^2}} = n^2$$



### **Example:**



A particle of mass  $2.00 \text{ X } 10^{-26} \text{ g}$  is in a one-dimensional box of length 4.00 nm. Find the frequency and wavelength of the photon emitted when this particle goes from the n = 3 to the n = 2 level.

By conservation of energy,

$$h\nu = E_{\text{upper}} - E_{\text{lower}} = n_u^2 h^2 / 8ml^2 - n_l^2 h^2 / 8ml^2$$

$$\nu = \frac{(n_u^2 - n_l^2)h}{8ml^2} = \frac{(3^2 - 2^2)(6.626 \times 10^{-34} \text{ J s})}{8(2.00 \times 10^{-29} \text{ kg})(4.00 \times 10^{-9} \text{ m})^2} = 1.29 \times 10^{12} \text{ s}^{-1}$$

$$\lambda = 2.32 \times 10^{-4} \text{ m}.$$

# particle in a one-dimensional box



$$\psi(x) = B \sin \sqrt{\frac{2mE}{\hbar^2}} x$$

$$\sqrt{\frac{2mE}{\hbar^2}} l = \pm n\pi$$

$$\psi(x) = B \sin \left(\frac{n\pi x}{l}\right)$$

$$n = 1, 2, 3, ...$$

The constant B is still arbitrary. To fix its value, we use the normalization requirement:



$$\int_{-\infty}^{+\infty} |\psi(x)|^2 \, \partial x = 1$$

$$\int_{-\infty}^{a} |\psi(x)|^2 \, dx + \int_{0}^{l} |\psi(x)|^2 \, dx + \int_{l}^{\infty} |\psi(x)|^2 \, dx = 1$$

$$|B|^2 \int_{0}^{l} \sin^2 \left(\frac{n\pi x}{l}\right) dx = 1 = |B|^2 \frac{l}{2}$$

$$|B| = \sqrt{\frac{2}{l}}$$
(2/I)<sup>1/2</sup>e<sup>i\alpha</sup>

Note that we have determined only the absolute value of B.

$$\psi_{II}(x) = \sqrt{\frac{2}{l}} \sin\left(\frac{n\pi x}{l}\right)$$

# particle in a one-dimensional box



To explain this:

$$\cos^2 \theta + \sin^2 \theta = 1$$
$$\cos^2 \theta - \sin^2 \theta = \cos 2\theta$$

By summation

$$2\cos^2\boldsymbol{\theta} = \cos 2\boldsymbol{\theta} + 1$$

By subtraction

$$2\sin^2\theta = 1 - \cos 2\theta$$
  $\sin^2\theta = (1 - \cos 2\theta)/2$ 



$$\int_{0}^{l} \sin^{2}\left(\frac{n\pi x}{l}\right) dx = \frac{1}{2} \int_{0}^{l} 2 \sin^{2}\left(\frac{n\pi x}{l}\right) dx$$

$$= \frac{1}{2} \int_{0}^{l} \left(1 - \cos\frac{2n\pi x}{l}\right) dx$$

$$= \frac{1}{2} \int_{0}^{l} dx - \frac{1}{2} \int_{0}^{l} \cos\frac{2n\pi x}{l} dx$$

$$= \frac{1}{2} x \Big|_{0}^{l} - \frac{l}{4n\pi} \int_{0}^{l} \cos\frac{2n\pi x}{l} dx$$

$$= \frac{1}{2} l - \frac{l}{4n\pi} \sin\frac{2n\pi x}{l} \Big|_{0}^{l} = \frac{1}{2} l - \frac{l}{4n\pi} [\sin 2n\pi - \sin 0] = \frac{1}{2} l$$







#### **Exercise:**



$$\int_{-\infty}^{\infty} \psi_i^* \psi_j \, dx = 1 \qquad \text{if } i = j$$

$$\int_{-\infty}^{\infty} \psi_i^* \psi_j \, dx = 0, \qquad i \neq j$$

#### Example:

Find the probability of finding the particle in the first tenth (from 0 to L/10) of the box for n=1, 2, and 3 states.

Solution: The wavefunction is given by:

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

To find the probability in a region, the probability density must be integrated over that region of space.



$$P_{n} = \int_{0}^{L/10} \left[ \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right) \right] \left[ \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right) \right] dx = \frac{2}{L} \int_{0}^{L/10} \sin^{2}\left(\frac{n\pi x}{L}\right) dx$$

$$\int \sin^{2}(cx) dx = \frac{x}{2} - \left(\frac{1}{4c}\right) \sin(2cx)$$

$$P_{n} = \frac{2}{L} \left[ \frac{L}{20} - \left(\frac{L}{4n\pi}\right) \sin\left(\frac{2n\pi}{10}\right) \right] = \left[ \frac{1}{10} - \left(\frac{1}{2n\pi}\right) \sin\left(\frac{n\pi}{5}\right) \right]$$

For n = 1: 
$$P_1 = \frac{1}{10} - \frac{1}{2\pi} \sin\left(\frac{\pi}{5}\right) \approx 0.0064$$

For n = 2: 
$$P_2 = \frac{1}{10} - \frac{1}{4\pi} \sin\left(\frac{2\pi}{5}\right) \approx 0.024$$

For n = 3: 
$$P_3 = \frac{1}{10} - \frac{1}{6\pi} \sin\left(\frac{3\pi}{5}\right) \approx 0.050$$



#### Exercise:

For the particle in a one-dimensional box of length I, we could have put the coordinate origin at the center of the box. Find the wave functions and energy levels for this choice of origin.

#### The free particle in one dimension

$$F = 0 \rightarrow V = cte$$



$$V(x) = 0$$

$$\frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2} E\psi = 0$$

$$\psi = c_1 e^{i(2mE)^{1/2}x/\hbar} + c_2 e^{-i(2mE)^{1/2}x/\hbar}$$

It seems reasonable to postulate that  $\psi$  will remain finite as x goes to  $\pm \infty$ .

$$i(2mE)^{1/2} = i(-2m|E|)^{1/2} = i \cdot i \cdot (2m|E|)^{1/2} = -(2m|E|)^{1/2}$$

$$E \ge 0$$





 $V = V_0 \quad \text{for } x < 0,,$   $V = 0 \quad \text{for } 0 \le x \le I$ 

 $V = V_0$  for x > I

### Particle in a rectangular well



$$E < V_0$$

$$d^{2}\psi/dx^{2} + (2m/\hbar^{2})(E - V_{0})\psi = 0$$

$$s^{2} + (2m/\hbar^{2})(E - V_{0}) = 0$$

$$s = \pm (2m/\hbar^{2})^{1/2}(V_{0} - E)^{1/2}$$

$$\begin{split} \psi_{\rm I} &= C \exp \left[ (2m/\hbar^2)^{1/2} (V_0 - E)^{1/2} x \right] + D \exp \left[ -(2m/\hbar^2)^{1/2} (V_0 - E)^{1/2} x \right] \\ \psi_{\rm III} &= F \exp \left[ (2m/\hbar^2)^{1/2} (V_0 - E)^{1/2} x \right] + G \exp \left[ -(2m/\hbar^2)^{1/2} (V_0 - E)^{1/2} x \right] \end{split}$$

$$x \to -\infty \qquad D = 0$$

$$x \to +\infty \qquad F = 0$$



$$\psi_1 = C \exp \left[ (2m/\hbar^2)^{1/2} (V_0 - E)^{1/2} x \right]$$

$$\psi_{\text{III}} = G \exp \left[ -(2m/\hbar^2)^{1/2} (V_0 - E)^{1/2} x \right]$$

In region II, V = 0.

$$\psi_{\text{II}} = A \cos \left[ (2m/\hbar^2)^{1/2} E^{1/2} x \right] + B \sin \left[ (2m/\hbar^2)^{1/2} E^{1/2} x \right]$$

### Particle in a rectangular well



$$\psi_{\rm I}(0) = \psi_{\rm II}(0) \qquad \qquad x = 0$$

$$\psi_{\rm II}(l) = \psi_{\rm III}(l) \qquad \qquad x = l$$

$$d\psi_{\mathrm{I}}/dx = d\psi_{\mathrm{II}}/dx$$
  $x = 0$   $d\psi_{\mathrm{II}}/dx = d\psi_{\mathrm{III}}/dx$   $x = l$ 

if d/dx changed discontinuously at a point then its derivative d<sup>2</sup>ψ/dx<sup>2</sup> would become infinite at that point.  $d^2\psi/dx^2 = (2m/\hbar^2)(V - E)\psi$ → does not contain anything

$$\psi_{\rm I}(0) = \psi_{\rm II}(0)$$

$$C = A$$

$$\psi_{\rm I}'(0) = \psi_{\rm II}'(0)$$

$$\psi'_{\rm I}(0) = \psi'_{\rm II}(0)$$
  $B = (V_0 - E)^{1/2} A/E^{1/2}$ 

$$\psi_{\rm II}(l) = \psi_{\rm III}(l)$$
 G as a function of A



$$\begin{array}{l} \psi_{\rm II}'(l) \ = \ \psi_{\rm III}'(l) \ \\ \psi_{\rm II}(l) \ = \ \psi_{\rm III}(l) \ \\ (2E - V_0) \sin \left[ (2mE)^{1/2} l/\hbar \right] \ = \ 2 (V_0 E - E^2)^{1/2} \cos \left[ (2mE)^{1/2} l/\hbar \right] \ \\ \varepsilon \equiv E/V_0 \ b \equiv (2mV_0)^{1/2} l/\hbar \end{array}$$

$$(2\varepsilon - 1)\sin(b\varepsilon^{1/2}) - 2(\varepsilon - \varepsilon^2)^{1/2}\cos(b\varepsilon^{1/2}) = 0$$



Graphical solution of the equation  $tan(2\pi L\sqrt{2}mE/h) = \sqrt{E}/\sqrt{U} - E$ . Here L = 2.50 nm, m = 9.11 × 10–31 kg, U = 1 eV = 16.02 × 10–20 J. Intersections occur at E = 0.828×10–20 J, 3.30×10–20 J, 7.36×10–20 J and 12.8×10–20 J.



$$N-1 < b/\pi \le N$$

$$b \equiv (2mV_0)^{1/2}l/\hbar$$

$$V_0 = h^2/ml^2$$

$$b/\pi = 2(2^{1/2}) = 2.83$$

$$N = 3$$

bound states when  $E < V_0$ 



unbound states when E > V<sub>0</sub>



- ✓ For E >  $V_0$ ,  $(V_0 E)^{1/2}$  is imaginary → all energies above  $V_0$  are allowed.
- $\checkmark$  A state in which  $\psi \to 0$  as  $x \to \infty$  and as  $x \to -\infty$  is called a bound state.
- ✓ For an unbound state,  $\psi$  does not go to zero as  $x \to \pm \infty$  and is not normalizable.
- ✓ For the particle in a rectangular well, states with E <  $V_0$  are bound and states with E >  $V_0$  are unbound.
- ✓ For the particle in a box with infinitely high walls, all states are bound.
- ✓ For the free particle, all states are unbound.

### **Tunneling**



Tunneling: the penetration of a particle into a classically forbidden region or the passage of a particle through a potential-energy barrier whose height exceeds the particle's energy.



- ✓ The emission of alpha particles from a radioactive nucleus
- ✓ The inversion of the NH<sub>3</sub> pyramidal molecule
- ✓ Internal rotation in CH<sub>3</sub>CH<sub>3</sub>
- ✓ Tunneling of electrons in oxidation-reduction reactions
- √ The scanning tunneling microscope (STM)

### **Tunneling**





Potential energy barrier of height  $V_{\rm 0}$  and width a.

$$V(x) = V_0,$$
  $0 \le x \le a$   
= 0,  $x < 0,$   $x > a$ 

### **Tunneling**



$$T=16arepsilon(1-arepsilon)e^{-2I/D}$$
 The transmission coefficient 
$$arepsilon=\frac{E}{V_0}$$
 
$$D=\frac{\hbar}{\{2m(V_0-E)\}^{1/2}}$$